
IBM Software Group

AIM Enterprise Platform Software

IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
© IBM Corporation 2005

TPF Users Group Fall 2005

z/TPF EE V1.1

z/TPFDF V1.1

TPF Toolkit for WebSphere® Studio V3

TPF Operations Server V1.2

T
i
t
l
e
s
l
i
d
e
e

Name : Michael Shershin

Venue : Main Tent

z/TPF Programming Model

Any references to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion. Any reliance

on such a disclosure is solely at your own risk. IBM makes no commitment to provide additional information in the future.

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-2-

Agenda

• z/TPF Programming Model

• z/TPF PUT 01 Enhancements

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-3-

What is z/TPF Programming Model?

• Large memory areas

• Large programs

• For assembler

– Subroutines

– Stack

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-4-

How does this help you?

• Reduce cost of doing business

– Improve productivity

• Less resources required to develop a product

– Improve quality

• Less problems means less customer impact

• Less resources required to correct problems

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-5-

Large Memory – ECB Private Area

• ECB Private Area

– Minimum size is 4 meg

– Maximum size is 16 meg

• Consider: have ECB cache

– Keep records in private area longer

• Use DECBs

• Don’t need to free up ECB data levels

– Processes which retrieve the same record multiple times

– Improve performance – less I/O needed

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-6-

Large Memory - ECB Usage

• Consider: single ECB rather than multiple ECBs to do a
task
– If multiple ECBs are created due to lack of memory per ECB

– Use DECBs

– Use parallel I/O

– Improve productivity - write less code

– Improve quality – less code means less chance of errors

• Consider: allow ECB to dynamically move between I-
Streams
– Processes which don’t use I-Stream unique fields or records

(Globals)

– Improve I-Stream utilization balance

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-7-

Large Memory – ECB Usage

• Consider: longer running ECBs

– More tasks can be synchronous

• Park ECBs

• Do not need to exit and create new ECBs when response is received

– Rather than allowing 500 active ECBs, consider 1000 or 2000 or 5000
active ECBs

– Improve productivity

• Write less code

• Easier to write code

– Stack is maintained

– ECB is maintained

– ECB private area is maintained

– Improve quality

• Less code means less chance of errors

• Less complexity means less chance of errors

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-8-

Large Memory

Use Large Data Structures

• Use files rather than records

– One API call gets complete file rather than finding many records

• Improves productivity

– Less code needed

• Improves quality

– Less code needed means less chance of errors

– Less complexity means less chance of errors

• On DASD keep large data structures in the File System

– Use Memory File System (MFS) for temporary files

– Use Fixed File System (FFS) or Pool File System (PFS) for better
performance

• Data in FFS and PFS is processor unique

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-9-

Large Memory

Use Large Data Structures

• For ECB unique data structures use ECB Heap
– Use heap for file system accesses

• Two ECB Heaps
– 64-bit ECB Heap

• APIs
– MALOC, CALOC, RALOC with HEAP=64 in assembler

– malloc64(), calloc64(), realloc64() in C

– 31-bit ECB Heap
• APIs

– MALOC, CALOC, RALOC with HEAP=31 (default) in assembler

– malloc(), calloc(), reallloc() in C

• Consider: 100 meg or 500 meg heap size

• Consider: many ECBs each using large amounts of Heap
– 1000 ECBs each using 100 meg = 10 gig

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-10-

Large Memory

Use Large Data Structures

• For memory resident data use Format 2 Globals

– Use files rather than 381, 1055, or 4K records

• Format 2 Globals

– In core data structures

– Fast access

– No limits on number and size of globals

– Easier to use than Format 1 globals in TPF 4.1

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-11-

Large Memory

Trace Log Example
• Trace log writes all ECB trace entries from one ECB to

tape or file system.

– Traced ECB puts trace entries into queue

– Second ECB works on queue

– Large memory allows for large amount of data on queue

• 50 meg / 100 meg / 500 meg

– Large in core data structure

Queue

ECB #1

Send to

queue

ECB #2

Work

queue

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-12-

Large Memory - ECB Trace

• Improve diagnostic capabilities

– Improve quality – more trace data to help solve problems

• Consider: increase number of trace items per ECB

– Set to 200, 500, 1000 or more trace items per ECB trace
buffer

– Keep more diagnostic data for every ECB

• Consider: define multiple trace groups

– Each middleware package to have own trace group

– For transactions which use services from multiple
applications, have one trace group per application

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-13-

Large Memory

ECB Trace Information

• Add free form information to ECB trace
– Function tpf_trace_info()

– Up to 80 characters

• Consider: at various points in an application add free
form text to trace
– Can be fixed message – “Routine 1 entered” or “Routine 1

complete”

– Can be variable message
• Contents of a register or registers

• Contents of a work area or a record
– sprintf() to format line to use

– WTOPC BUFFA=addr,DISP=NONE to format line in assembler

– Build into the program design

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-14-

Large Memory

ECB Trace Information

• Always on diagnostics

– Use in error paths

– Use to keep track of status

• In large loop call tpf_trace_info() every 1000 times thru a

loop

– Not good for high frequency mainline paths

• Performance

• Usually high frequency routines do not need diagnostics

– Well tested

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-15-

Large Programs

• Grow existing assembler programs

– Keep like function in one program

• No need to split programs

– Improve productivity

• Do not need to go through steps to create a new program

• Use:

– CLINKC

– Multiple base registers

– Single base register for first 4K only

• No base register beyond first 4K

• Constants in first 4K

– Baseless program

– CALLC

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-16-

Large Programs / Subroutines

CLINKC

• Standardized subroutine support for assembler
– Improve quality – structured linkage reduces errors

• Macros are
– CLINKC .. Call subroutine

– SLINKC .. Start subroutine

– RLINKC .. Return from subroutine

– ELINKC .. End subroutine

• SLINKC saves registers R0 – R13 on entry
– R14 is linkage register

– R15 is pointer to stack

• RLINKC return restores R0 – R13
– One register can be used to return information

– Multiple RLNKCs can be coded for each SLINKC

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-17-

CLINKC - example

CLINKC RTN=CPSI5000_ECBTRACE COLLATE it
...
...
...
CPSI5000_ECBTRACE DS 0H

SLINKC BASE=R6
...
...
...

RLINKC , Return
ELINKC

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-18-

Large Programs / Subroutines

Use of Relative instructions

• Assembler programs new routines may not need a base
register
– Branch instructions can use:

• Branch Relative Under Condition - BRU or J

• Branch Relative and Save - BRAS or JAS

• Branch Relative Long – BRL

– Avoid use of literals
• Use immediate instructions

– Load halfword immediate – LHI or LGHI

– Add halfword immediate – AHI or AGHI

– Multiply halfword immediate – MHI or MGHI

• Constant handling
– Use Load Address Relative Long (LARL) to point to constants

– Put all constants in first 4K of program and use one base register

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-19-

Branch Relative - example

• Need to insert code, but new code will cause the

program to be larger than 4K

– Instead insert new code at end of the program and

jump to it

JAS R1,CLH1HLDA GO READ IN KPT A W/ HOLD
...
...
...
CLH1HLDA DS 0H

GETKC KPT=A,DATA=R7,ERROR=CLH1ER04,HOLD GET KPT A
BR R1 RETURN

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-20-

Large Programs - fork()

• Create a new process or ECB
– New ECB starts after fork() call

– New ECB has copy of original ECB:
• Heap

• Stack

• Variables

– New ECB does not have copy of
• ECB

• Traditional ECB private area

• Alternative to traditional TPF create ECB
– CREMC / CREDC / CREXC / CREEC / SWISC

• Not intended for high frequency mainline paths
– Copying heap, stack, and variables may be expensive

– Use in lower frequency routines

• Available in TPF 4.1 and z/TPF
– Larger memory in z/TPF allows more usage of fork()

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-21-

fork() – example
/**/
/* Create a child ECB to calculate inuse count */
/**/
pid = fork();
if (pid == -1) {

recount_err = TRUE;
break;

}
else if (!pid) {

/***/
/* It's is the child process here: */
/***/
rc = bbld_recount(ipartOrdinal, lastUtility);
postc(&eventInf, EVENT_CNT, rc);
exit(0);

}
else {

/***/
/* It is the parent process here: */
/***/
evinc(&eventInf);
ipartOrdinal++;

} /* end of if-elseif-else */

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-22-

fork() - Benefits

• Keep all code in same program
– Don’t need to allocate a separate program

• Easy to pass data to child ECB
– Don’t need to create special interface

• Don’t need to rely on data in EBW area

• Don’t need to rely on data level 0

– Can use existing memory areas in parent ECB to pass data
• Heap

• Variables

• Improves productivity

• Improves quality

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-23-

Large Programs - SWISC IMMEDIATE

• Switch a program to a specified I-Stream
– Start immediately following the SWISC call

• APIs
– SWISC TYPE=IMMEDIATE

– swisc_immediate()

• Benefits
– Don’t need to call a separate program

– Keep all of the code in the same program

– Improve productivity

– Improve quality

• Consider:
– fork() followed by swisc_immediate() to load balance new ECBs

– Use when cycling through all I-Streams

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-24-

SWISC IMMEDIATE - example

CINFC R,CMMIST,F,REG=R14 I-STREAM STATUS TABLE
DCTIST REG=R14 MAP I-STREAM TABLE
XR R5,R5 CLEAR THE REGISTER
ICM R5,B'0011',ISTACTIS GET NUMBER OF I-STREAMS
DROP R14
XR R0,R0 CLEAR THE REGISTER
USING DCTPFX,R0 PREFIXED PAGE

CVMNPFX1 DS 0H
SWISC TYPE=IMMEDIATE,IS=R5 CHANGE I-STREAM
ALG R4,PFX2ILCTR ADD VALUE TO IL CTR
STG R4,PFX2DLTHV STORE NEW THRESHOLD
BCT R5,CVMNPFX1 LOOP FOR EACH I-STREAM

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-25-

Large Programs / Subroutines

Service Routines in Program

• Move macro service routines into program
– Inline

– Call routine in program

• Several IBM service routines are in FINIS
– ALASC

– CALLC

– ENTxC (partial)

– FLIPC

– GLOBLC

• Improve performance
– Reduce linkage costs

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-26-

FLIPC - example
FLIPC D0,DA ENSURE LEVEL 0 AVAILABLE

+ BRAS R14,FLIPCDAD0
…..

+*---*
+* FLIPC stub code. *
+*---*
+FLIPCDAD0 DS 0H
+ XC CE1FAA(CE1FA1-CE1FA0),CE1FA0
+ XC CE1FA0(CE1FA1-CE1FA0),CE1FAA
+ XC CE1FAA(CE1FA1-CE1FA0),CE1FA0
+ XC CE1CRA(CE1CR1-CE1CR0),CE1CR0
+ XC CE1CR0(CE1CR1-CE1CR0),CE1CRA
+ XC CE1CRA(CE1CR1-CE1CR0),CE1CR0
+ XC CE1FXA(CE1FX1-CE1FX0),CE1FX0
+ XC CE1FX0(CE1FX1-CE1FX0),CE1FXA
+ XC CE1FXA(CE1FX1-CE1FX0),CE1FX0
+ XC CE1SUD+10(1),CE1SUD+0
+ XC CE1SUD+0(1),CE1SUD+10
+ XC CE1SUD+10(1),CE1SUD+0
+ BR R14

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-27-

Subroutines - CALLC

• Ability to call a C function from assembler

– Interface for legacy assembler to use C

• Ability to write a routine once and call regardless of
programming language

• Improves productivity

• Improves quality

• Infrastructure to allow migration of applications from assembler
to C

• Consider:

– If a program needs to be split, write new support in C and use CALLC

– If a common routine, write in C and have assembler macro do setup and
CALLC

• IBM GETKC macro does this

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-28-

CALLC - example

LG R2,EBW008 Item pointer array
LG R4,EBW016 nbr of items to be collated
LG R5,EBW000 ptr to CO0LL structure

*
* Define prototype for tpf_collate_trace_items() function
*

CPROC RETURN=i,tpf_collate_trace_items,(p,p,i)
*

CALLC tpf_collate_trace_items(R5,R2,R4)
LGR R0,R15

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-29-

CALLC – example in macro

MACRO ,
&LABEL RELKC &KPT=,&PROC=
....

J RELKCC&SYSNDX
DS 0F

RELKCO&SYSNDX DC H'0'
DC B'00000000'
DC B'000&O(5)0000'

RELKCK&SYSNDX DC C'&KPT'
RELKCC&SYSNDX DS 0H

CPROC RETURN=i,tpf_relkc,(c,i,i)
LARL R14,RELKCO&SYSNDX
PUSH USING
USING RELKCO&SYSNDX,R14
CALLC tpf_relkc(RELKCK&SYSNDX,RELKCO&SYSNDX,&PARM1)

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-30-

Shared functions

• Can use in TPF 4.1 and z/TPF

• Easier to use in z/TPF

– Creation

• Library interface script is not needed

• No need to run LIBI

– Build

• maketpf provides simple easy to use interface

– No limits on library functions

• TPF 4.1 limited to 1024 libraries

• TPF 4.1 limited to 1024 functions per library

– Improved debug capability

• C function trace

• Messages and trace includes module name, object name, and trace name

– Improved performance over TPF 4.1 DLLs

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-31-

Shared Functions - Examples

• Library CVV0 – alter core, display core
– Collection of C functions used to alter and display

core memory
• acor_proc()

• dcor_proc()

• Contains 33 functions

– Users
• acor_proc() called by

– ZACOR / ZADCA / ZACNF / ZAGBL

• dcor_proc() called by
– ZDCOR / ZDDCA / ZDCNF / ZDGBL

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-32-

Shared Functions - Examples

• Library CVBV – disassembler

– CVBV_Disassemble()

– Contains 9 functions

• Users

– Library CVV0

• All of the users of CVV0

– Debugger – CUDA

– ZDPGM - CVBN

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-33-

Shared Functions – Example makefile
DESCRIPTION..... ALTER and DISPLAY package
APP := CVV0
APP_EXPORT := ALL

External LIB References
LIBS := CVBV
LIBS += CNG0

Environments needed for build
maketpf_env := base_rt
maketpf_env += system

C segments
C_SRC := cvv0.c
CXX_SRC := cvv0f1.cpp

Assembler segments
ASM_SRC := cvv0f2.asm
ASM_SRC += cvv1f1.asm

Include maketpf build rules
include maketpf.rules

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-34-

Shared Functions – Example makefile

##
DESCRIPTION.. This is the makefile for ZDCOR

APP := CVV1
APP_ENTRY := CVV1
APP_EXPORT := ENTRY

External LIB References
LIBS := CVV0

Environments needed for build
maketpf_env := base_rt

C segments
C_SRC := cvv1.c

Include maketpf build rules
include maketpf.rules

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-35-

Shared Functions - Benefits

• Write code once, use multiple times

– Improves productivity

– Improves quality

– Reduces total cost to test

• Use of C functions provides well known

standard interface which is highly flexible

– Improves quality

• Migration from 31-bit to 64-bit is easier

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-36-

Stack

• Available to all programs including assembler

• Ability to dynamically allocate more space on Stack
– ALLOC in assembler

– alloca() in C

• Consider:
– Variables on the stack rather than in ECB

• Handle variables in assembler like variables in C

• Easier to make programs iterable

– Save registers on stack rather than in ECB

– Improve quality – work area is only used for this invocation
of this ECB

• Strong benefit when changing legacy assembler programs

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-37-

Storage Protect Override

• Ability to write into Key 1 and Key 9 storage
– Key 1 storage = ECB private area

– Key 9 protected areas
• Globals

• Newly obtained system heap

• Use when updating protected areas and stack, ECB, or other parts of the
private area

• APIs
– GLMOD OVERRIDE=YES

– KEYCC OVERRIDE=YES

– tpf_stpoc()

• Cannot give up control when storage protect override is active
– SERRC E,06401A

• Improve productivity
– Less restrictions means less code is needed

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-38-

tpf_stpoc() - example

tpf_stpoc(TPF_STPOC_ON,NULL);
/***/
/* Get lock for the queue and get the first entry. */
/***/

lockc(&(queue->itrqlock),LOCK_O_SPIN);

data_blk=ctlg_Get_Next();
/***/
/* Now that we have the block we unlock the queue. */
/***/

unlkc(&(queue->itrqlock));
/***/
/* Turn on storage protection override. */
/***/

tpf_stpoc(TPF_STPOC_OFF,NULL);

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-39-

C Environment

• C environment exists for every ECB

– No startup costs on enter to first C program

• Consider: write short lived highly accessed

programs in C

– Improve productivity – use high level language

– Improve quality – use high level language

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-40-

Other Enhancements

• ENTRC PRGM,SAVEREGS=YES

– Saves R0 – R8 before PRGM is entered.

– Restores R0 – R8 on return

– Improves quality – data in registers are known

TM FM_AIB,AIB_UEXT Is user exit active?
BNO NO_EXIT No, continue
ENTRC UMEX,SAVEREGS=YES Call user exit

NO_EXIT DS 0H

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-41-

Other Enhancements

• Extended Register Save

– Ability to save / restore R10, R11, R12, R13 across

general macros

• Use more registers

– BEGIN EREGSAVE=YES

• Enables support in entire program

– DEFBC EREGSAVE=YES

• Enables support for a part of the program

– Improves productivity – allows more registers to use

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-42-

Other Enhancements

• Tag an ECB Heap buffer

– To tag an ECB Heap buffer

• tpf_eheap_tag()

• EHEAPC FUNC=TAG,TAG=,ADDR=

– Locate a tagged ECB Heap buffer

• tpf_eheap_locate()

• EHEAPC FUNC=LOCATE,TAG=,ADDR=

– Improve productivity – write less code to keep track

of ECB Heap buffers

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-43-

DECB

• Exists in TPF 4.1 and z/TPF

• Must use for I/O with 8-byte file addresses

• Can be used for I/O with 4-byte file addresses

• Use when more than 16 ECB data levels are needed

• Use in commonly accessed utilities that do I/O
– Alternative to DETAC / ATTAC

– Do not need to determine whether an ECB data level is in use
• Allocate a new DECB when needed

• Improve quality
– Do not need to manage multiple uses of a specific ECB data

level

– Separate DECBs for each function

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-44-

Performance Concerns

• Not all features are best for use in high frequency mainline
routines
– TPF File System (TFS)

• FFS / MFS / PFS are reasonable to use in high frequency mainline routines

– fork()

– tpf_trace_info()

• In the lab we have experienced:
– Most programs are not executed with high frequency

• Consider using these features to improve productivity

– Most development is not in high frequency routines
• Commands

• Error routines

• Supporting functions

• If true in your environment, consider using these features

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-45-

z/TPF PUT 01 Enhancements

• PJ30297 Short term pool logging

• PJ30422 Input list bypass

• Available now on the web

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-46-

z/TPF Diagnostics

• Education session on Wednesday 10/19/2005

– An Introduction to Dump and Trace Analysis on

z/TPF

• By Allan Feldman

• Please bring your laptops

• Please bring USB memory sticks which will be given out

at the IBM hospitality suite Monday evening.

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

TPF Users Group Orlando, Florida Fall 2005
© IBM Corporation 2005

-47-

Notes

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will

experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.

Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual

environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without

notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance,

compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed by the local country counsel for

compliance with local laws.

IBM and z/TPF are trademarks of International Business Machines Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel Inside (logos), MMX, Celeron, Intel Centrino, Intel Xeon, Itanium, Pentium and Pentium III Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries

in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Trademarks

