
IBM Software Group

AIM Core and Enterprise Solutions
IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Any references to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion. Any
reliance on such a disclosure is solely at your own risk. IBM makes no commitment to provide additional information in the future.

Copyright IBM Corporation 2004

Sarat Vemuri
October 2004

C/C++ single source APARs
 Languages Subcommittee

TPF Users Group
Grapevine, Texas

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Single Source APARs
Objective of "Single Source"

Enable the same application source to be built for TPF 4.1 or z/TPF
without any conditional code

Single Source APARs introduce changes into TPF 4.1 that are
required for z/TPF
Apply single source apars to your TPF 4.1 system

Single source apars do not require any changes to applications - they do not
break any existing interfaces
Single source apars enable you to change applications to make them compatible
with z/TPF. The changes do not have to made at one time

Assess code to identify where changes need to be made
For most cases scans will identify where changes can be made
Not all single source apars will require changes to your applications. The impact
for some of the changes may be minimal to none.

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

TPF Single Source APARs
PJ29575 -- Add PTR32 type definitions
PJ29630 -- Add the time_t32 and size_t32 definitions
PJ29593 -- Add wrappers for header file changes and for the tpf directory
PJ29576 -- Provide single-source packed decimal support
PJ29692 -- Add the CPROC and CALLC macros
PJ29640 -- Add the PRLGC, EPLGC, CSTKC and PBASC macros
PJ29849 -- Add support for floating point migration (HFP and BFP)
PJ29980 -- Provide API for conversion between native and HFP or BFP
PJ29937 -- Add gettimeofday() to sys/time.h from sysgtime.h
PJ29957 -- add time zone (TZ) environment variable

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29575 -- PTR32 Type Definitions and PTR32ATT Macro
Added 3 new typedefs that represent data (not function) pointers that are
32-bit addresses

 __ptr32_t 32-bit void pointer
 __chptr32_t 32-bit char pointer
 __uiptr32_t 32-bit unsigned int pointers

Added macro definition PTR32ATT
to assist in the declaration of other pointers types of 32-bit
Example :typedef struct S * PTR32ATT __structSptr32_t;

The new typedefs and the macro are provided in types.h header file
Why?

In z/TPF, all pointers are 64-bit
For C/C++ structures that have equivalent Assembler DSECTs, changing the
pointer field size will require assembler code change
If the pointer can still be 32-bit, it helps to declare the field to be a 32-bit pointer
of appropriate type.

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29575 -- continued
What to look for:

Look at C/C++ structures that have equivalent assembler DSECT.
Also consider C/C++ structures that map data in a database/file.
Examine the pointer fields in those structures.

The following data will still be in 32-bit range in z/TPF
heap
stack
ECB private area

Note: Pointers to literal data and static data are not 32-bit.
These pointers that are still valid 32-bit pointers could be changed to
pointer types of 32-bit.
Example:
__ptr32_t ce1cr0; /* This is a void pointer

 of 32-bit */

__ptr32_t ce1cr0;

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29630 -- time_t32 and size_t32 definitions
Provides typedef definitions for 32-bit data types

time_t32, size_t32, and ssize_t32
The definition(s) of time_t32, size_t32, or ssize_t32 are in whatever headers contain the
definition(s) for time_t, size_t, or ssize_t
Why?

In z/TPF, time_t, size_t, or ssize_t will be 64-bit data types
For C/C++ structures that have equivalent Assembler DSECTs, changing the
field size will require assembler code change
If the field can still be 32-bit, it helps to declare the field to be a 32-bit field of
appropriate type.

What to look for:
Look at C/C++ structures that have equivalent assembler DSECT.
Also consider C/C++ structures that map data in a database/file.

Fields of time_t, size_t, or ssize_t types may be changed to corresponding 32-bit types.
WARNING: Do not pass a pointer to 32-bit data types

When required, assign data to a 64-bit data type and use its address

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29593 -- Wrappers for header file name changes and tpf
directory

Separates the TPF-unique header files from standard API header files in the
hierarchical file system (HFS)

Creates a new directory called tpf
This is a subdirectory of the base include directory
It contains wrapper header files for TPF-unique headers
In the tpf directory, the dollar sign ($) in any header name is replaced with an
underscore (_)

For example:
 .../include/tpf/tpfapi.h

.../include/tpf/c_eb0eb.h
All TPF-unique header files still exist with old names on TPF 4.1 but not on z/TPF

Applying this APAR does not break existing application programs, even if the header
files are in a PDS

The new ACP.CHDR.TPF.... data set should be appended after the old TPF
header file data sets

This APAR enables customers to change code for single source one segment at a
time.

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29593 (continued)
 Why?

Created a separate directory to eliminate any future filename conflicts
Removed $ from file names to make name compatible with gcc compiler and linux
rules

 To make your application single source, you will need to make application source
changes.

Change all TPF-unique header file #includes by adding tpf/ prefix
If the original header file name had a $, use the new name with underscore
For example,
change #include <c$eb0eb.h>
to #include <tpf/c_eb0eb.h>

NOTE: Header names are case-sensitive for z/TPF. This was not true for TPF 4.1
If you have a #include header file name in uppercase, you may need to change to the
actual header file name which may not be uppercase.

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29593 (continued)
 Tools to aid changes

The following AS-IS tools will be available for downloading from the TPF web
site when ready. See README files that come with the tools.

add_tpf_hdr.sh This tool adds tpf/ to the front of any TPF-unique header file
referenced in the file.
convert_hdr.sh and convert_src.sh These tools change $ to underscore and
changes #include "..." to #include<...>

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29593 (continued)

compare-and-swap cs() and compare-double-and-swap cds() functions provided in the
tpf/cmpswp.h header on z/TPF
Why?

On TPF 4.1, cs() and cds() are z/OS compiler built-in functions
On z/TPF, cs() and cds() were not gcc built-in functions
We provided them as TPF functions

What
Current application code needs to be changed only to make it single source
In application programs that use cs() or cds(), add the following #include to your
programs:

 #include <tpf/cmpswp.h>

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29576 -- Provide Single Source Packed Decimal Support

gcc compiler does not support the decimal data type
The decimal data type is an extension of the zOS compiler

This APAR provides a compiler-independent API to support packed decimal
data

For C application:
decNumber library that contains the utilities that are needed to do decimal
arithmetic in C programs

For C++ application:
 pDecimal< , > in pDecimal.hpp header is a C++ class for the decNumber
library
This class simplifies decimal arithmetic in the C++ environment and provides
utilities for working with numbers in the familiar packed decimal format

Code updates are simpler when using the pDecimal class.

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29576 -- continued
#include <stdlib.h>
#include <stdio.h>
#include <decimal.h>

main(void)
{
 decimal(15,5) op_1 = 245680.98786d;
 decimal(15,5) op_2 = 5680.87675d;
 decimal(15,5) result;

 result = op_1 - op_2;
 if (result == 240000.11111d)
 { printf(" Successful ! \n"); }

 printf(" The result is %15.2D(15,5) \n",result);
}

#include <stdio.h> // for printf
#include <decNumMac.h>

int main(int argc, char *argv[]) {
 decNumber op_1, op_2, mtwo, result; // working numbers
 char string[DECNUMDIGITS+14];
 decContextDefault

 decNumberFromString(&op_1, "245680.98786")
 decNumberFromString(&op_2, "5680.87675")
 decNumberFromString(&mtwo, "-2")

 decNumberSubtract(&result, &op_1, &op_2) // result= op_1 -
op_2
 decNumberRescale(&result, &result, &mtwo); // Call Rescale to
change
 // the number of digits after the decimal point.
 decNumberToString(&result, string);

 if (!strcmp(string,"240000.11")) /* result has only two digits of
acc. */
 printf(" Successful ! \n");

 printf(" The result is %15s \n",string); // 15 is the total field width
 return 0;
 } // main

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29576 -- continued
#include <stdlib.h>
#include <stdio.h>
#include <decimal.h>

main(void)
{
 decimal(15,5) op_1 = 245680.98786d;
 decimal(15,5) op_2 = 5680.87675d;
 decimal(15,5) result;

 result = op_1 - op_2;

 if (result == 240000.11111d)
 { printf(" Successful ! \n"); }

 printf(" The result is %15.2D(15,5) \n",result);
}

#include <iomanip>
#include <pDecimal.hpp>

using namespace std;

int main(int argc, char *argv[]) {
 pDecimal<15,2> result;
 pDecimal<15,5> op_1("245680.98786");
 pDecimal<15,5> op_2("5680.87675");

 result = op_1 - op_2;

 if (result == "240000.11") // result has just two digits of
accuracy
 printf(" Successful ! \n");

 cout << " The result is " << setw(15) << result.toString() << endl;
 return 0;
 } // main

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29640 -- PRLGC, EPLGC, CSTKC, and PBASC macros

Four new assembler macros to code C library functions in assembler
PRLGC -- generates prolog code in library functions written in assembler,

 similar to the TMSPC macro
EPLGC -- generates epilog code in library functions written in assembler, similar

 to the TMSEC macro
CSTKC -- obtains or saves the address of the current C stack frame
PBASC -- gets or saves the address of the previous program base

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29640 (continued)

Existing functions written in assembler use the TMSPC and TMSEC macros as the
prolog and epilog macros.
Use the following macros to convert assembler-written C functions to single source.
PRLGC

Use instead of TMSPC as the prologue.
EPLGC

Use instead of TMSEC as the epilogue.
CSTKC

Use instead of direct reference to CE3SPTR to save or restore the C stack
frame pointer.

PBASC
Use instead of direct reference to CSTKLBAS to save or restore the program
base.

For more information about these macros, see TPF General Macros

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29640 (continued)

TPF 4.1 Library Function Example

BEFORE PJ29640 AFTER PJ29640

TMSPC ... PRLGC ...
L R13,CE3SPTR(R12,R9) CSTKC GET=R13
ST R8,CSTKLBAS PBASC SAVER8=YES
L R8,CE1SVP
CEBIC DBI,S CEBIC DBI,S
L R13,CE3SPTR(R12,R9) PBASC RESTORER8=YES
L R8,CSTKLBAS
TMSEC RC=R1 EPLGC RC=R1

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29692 -- Support for CPROC and CALLC Macros
Parameter passing convention is different with z/OS compiler and gcc compiler.

Two new assembler macros to encapsulate parameter passing from assembler to C
programs

CPROC -- facilitates defining C program interface to assembler (similar to function
prototypes in header files).
CALLC -- generates the code needed to call the C/C++ program from assembler.
The macro sets up the parameters to the compiler convention.

Examine all C and C++ program calls from assembler.
No code change is needed if the called program does not have any parameters.
For those that have parameters, use CALLC.
For each program that needs to be called, code a CPROC macro to describe the
interface.

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29980 -- Provide APIs for conversion between native and HFP or BFP
Floating point number representation in compiled programs differ between
TPF 4.1 and z/TPF

TPF 4.1 uses the zOS compiler to generate hexadecimal floating point (HFP)
format for floating point numbers
z/TPF uses the gcc compiler. This compiler uses the binary floating point (BFP)
format for floating point numbers, which is the IEEE standard format

Solution: Provide 4 floating point conversion functions for single source
tpf_fp_hton() convert HFP to native format
tpf_fp_ntoh() convert native format to HFP
tpf_fp_bton() convert BFP to native format
tpf_fp_ntob() convert native format to BFP

where "native" is HFP format for TPF 4.1 and BFP format for z/TPF

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29980 (continued)
TPF 4.1 applications that store floating point numbers on file as hexadecimal data (and
not in character format such as 1e24) should be changed.

When data in file is HFP format, applications need to do the following:
After data is read into memory, issue the tpf_fp_hton() API for each floating point
data item
Before writing the data to file, issue the tpf_fp_ntoh() API for each floating point
data item

When data in file is BFP format, applications need to do the following:
After data is read into memory, issue the tpf_fp_bton() API for each floating point
data item
Before writing the data to file, issue the tpf_fp_ntob() API for each floating point
data item

Note: These APIs do not handle long double
On z/OS compiler, long double is 16 bytes; on gcc compiler, it is 8 bytes
If you store data in file as long double, you must convert to double

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29849 -- Floating Point Migration (HFP to BFP)
At some point, you may want to convert your data on file to BFP format.
Customer utility programs can use the following to convert HFP data to BFP and then
write back to file.

tpf_fp_htob() convert a hexadecimal floating point (HFP) number to
binary floating point (BFP) format

Note: this utility allows conversion from long double to double. It does not allow
conversion to long double.

The following function is used by the 4 single source conversion APIs implemented
by PJ29880

tpf_fp_btoh() convert a BFP number to HFP format

NOTE: This is not a single-source APAR, but part of the solution for migration to
z/TPF.

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29937 -- Add gettimeofday() to sys/time.h from sysgtime.h
For TPF 4.1, gettimeofday() is a TPF function

Prototype is in sysgtime.h header file

For z/TPF, gettimeofday() now is a standard function
Prototype is in sys/time.h header file

Scan for include of <sysgtime.h>.
Replace it with include of sys/time.h

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

APAR PJ29957 -- time zone (TZ) environment variable

Added support for environment variable "TZ".
Allows to change local time zone information

In TPF4.1, locale category, TOD, is used to change the local time zone
information.

TOD category is an IBM extension to locale
z/TPF does not support the locale TOD category in locale

Scan for setlocale() function calls in applications.
If the setlocale() is used to change time zone information

Replace it with setenv() to set "TZ" environment variable.
Example : setenv("TZ", "EST+5EDT,M10.5.0/2,M4.1.0/2")
To request local to GMT time difference be taken from the system is still
supported. Code the local time difference to be >=24hrs.
Example : setenv("TZ", "EST+25EDT,M10.5.0/2,M4.1.0/2")

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Legal

IBM and z/OS are trademarks of International Business Machines Corporation in the United
States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

