
IBM Software Group

AIM Core and Enterprise Solutions
IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Any references to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion. Any
reliance on such a disclosure is solely at your own risk. IBM makes no commitment to provide additional information in the future.

Copyright IBM Corporation 2004

Chris Filachek
October 2004

Coding Today for z/TPF Tomorrow
C/C++ Coding Changes for Ease of Migration to z/TPF
Languages Subcommittee

TPF Users Group
Grapevine, Texas

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Topics
Data Type Changes
Changes in Compiler Behavior
Proper Programming Practices

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Unchanged
short (2 byte integer)
int (4 byte integer)
long long (8 byte integer)

Changed
long changes from 4 bytes to 8 bytes

Recommendations
Leave all short, int, and long long alone
Change all "long" to "int"

Ensures all 4 byte fields in TPF 4.1 are also 4 bytes in z/TPF
Changing "long" to "int"

Use tool to change all references at once
Change references manually
Change one package at a time, by hand or through tools

Exception: On z/TPF, casting pointers using (int) will truncate the
address

Use (long) to cast pointers to integer data

Integer Data Types

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Pointer Data Type

* (pointer) changes from 4 bytes to 8 bytes
8 byte pointers

8 byte pointers are preferred
Leave pointers as 8 bytes where possible

Function pointers must be 8 bytes
4 byte pointers

Only use 4 byte pointers where required
Structures mapped by assembler DSECTs or written to file

Pointers can be forced to 4 bytes
PTR32ATT macro
__ptr32_t, __uiptr32_t, or __chptr32_t data types

Examples:
__ptr32_t ce1cr0; /* 4 byte core block ptr */
struct mystruct * PTR32ATT ptr; /*4 byte struct ptr */

See APAR PJ29575

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Storage Areas and Memory Addresses

Storage areas guaranteed to be below 2GB (can use 4 byte or 8 byte
pointers)

TPF core blocks (CE1CRx)
malloc()
31-bit system heap
Application stack

alloca() and local variables
Storage areas above 2GB (must use 8 byte pointers)

malloc64()
64-bit system heap
static data and exported variables

Includes string literals and pre-initialized data
C/C++ programs can be forced below the 2 GB bar if necessary

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

TPF 4.1: Enumerations are 1, 2, or 4 bytes
Size depends on values of the enumerations

z/TPF: Enumerations are always 4 bytes
For structures mapped by assembler DSECTs or written to file, change
enumerations as follows

Change 1 byte enumerations to unsigned char
Change 2 byte enumerations to unsigned short
Leave 4 byte enumerations alone

Example
enum options {OPTA = 1, OPTB = 2, OPTC = 3};
enum options optbyte;

Changes to
#define OPTA 1
#define OPTB 2
#define OPTC 3

unsigned char optbyte;

Enumerated Data Types

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

float and double
Size is unchanged for float (4 bytes) and double (8 bytes)
Format is changed

TPF 4.1 uses Hexadecimal Floating Point (HFP)
z/TPF uses Binary Floating Point (BFP)

Conforms to IEEE 754 Standard
For z/TPF, all processing of floating point values is in BFP
(calculations, printing, etc.)
If writing floating point to file, HFP/BFP conversion functions are
available

See APARs PJ29849 & PJ29980*
long double

TPF 4.1: long double is extended floating point (16 bytes)
z/TPF: Extended floating point (16 bytes) is not supported by GCC

long double interpreted same as double (8 bytes)
Use of long double should be avoided or removed

Floating Point Data Types

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Fixed Point Decimal Data Type

decimal(n,p)
An extension of the IBM compiler available on TPF 4.1
Not supported by GCC on z/TPF

Recommendations
Use decNumber library in place of decimal data type

C code: decimal(,) is replaced with decNumber data type
C++ code: decimal(,) is replaced with decNumber or pDecimal
class

See APAR PJ29576

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

size_t, ssize_t, and time_t
Change from 4 byte integers to 8 byte integers
Only affects structures mapped by assembler DSECTs or written to
file

Use new 4 byte data types
size_t32
ssize_t32
time_t32

Upper 4 bytes are truncated for the *_t32 data types
See APAR PJ29630

clock_t
Size is 8 bytes on both systems
Format changes from double (floating point) to long (integer)
If stored on file or passed to assembler, consult with TPF CSR

Derived Data Types

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Wide characters (wchar_t)
Changes from 2 byte EBCDIC to 4 byte Unicode (UCS-4)
wchar_t *wstr = L"ABC"; /* wide char string */
00C1 00C2 00C3 /* 2 byte EBCDIC */

0000000041 0000000042 0000000043 /* 4 byte Unicode */

Multi-byte characters are unchanged
1 and 2 byte multi-byte EBCDIC characters
Uses shift-in (0x0f) and shift-out (0x0e) characters to transition between 1
and 2 byte characters

Recommendations
Write data to file using multi-byte characters only
Only use wide characters for in-memory processing only
Investigate wide character literals

Wide characters coded using hex values breaks single source

Wide Characters

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Categories supported on both TPF 4.1 and z/TPF
LC_ALL (all categories)
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

Obsolete Categories from TPF 4.1
LC_TOD

Replaced by TZ environment variable support
See APAR PJ29957

LC_SYNTAX
Remove all usage of this category

Locales

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Locale Dependent Functions

Standard functions are unchanged from TPF 4.1 to z/TPF
setlocale()
strcoll() & strxfrm()
strfmon() & strftime()
isctype() family of functions (isalpha, isdigit, etc.)
toupper() & tolower()

Nonstandard collation functions from TPF 4.1 are not supported on
z/TPF (see collate.h on TPF 4.1)

ismccollel() strtocoll() colltostr() collequiv()
collrange() collorder() cclass() maxcoll()
getmccoll() getwmccoll()

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Packing Structures

IBM compiler and GCC both pack structures using #pragma pack()
"packed" and "reset" parameters

Recognized by IBM compiler only
#pragma pack(packed) /* Pack structure */

struct mystruct { ... }

#pragma pack(reset) /* Stop packing */

"1" and empty parameters
Recognized by IBM compiler and GCC
#pragma pack(1) /* Pack structure */

struct mystruct { ... }

#pragma pack() /* Stop packing */

Recommendations
Change "packed" to "1"
Change "reset" to empty parameter
Use #pragma pack() instead of __Packed keyword
Pack all C/C++ structures that are also mapped by Assembler DSECTs

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Valid initializer syntax on TPF 4.1
struct mystruct array[] = {

 item1-a, item1-b, item1-c, /* struct 1 */
 item2-a, item2-b, item2-c, /* struct 2 */
 item3-a, item3-b, item3-c, /* struct 3 */

}

For GCC, lack of brackets causes compiler errors. Add brackets around
each structure
struct mystruct array[] = {

 { item1-a, item1-b, item1-c }, /* struct 1 */
 { item2-a, item2-b, item2-c }, /* struct 2 */
 { item3-a, item3-b, item3-c }, /* struct 3 */

}

Initializing Arrays of Structures

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

GCC issues warnings when nested or multiple operators are coded
without parenthesis
Example: valid if statement

if a || b && c

Which did the programmer intend?
if (a || b) && c
 or
if a || (b && c) /* equivalent to using no */

 /* parenthesis */

Use parenthesis to explicitly group operations

Order of Operations and Parenthesis

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

GCC issues warnings when nested if-else statements are coded without
brackets
Example
if (a)
 if (b)
 QZZ1();
else
 QZZ2();

Which did the programmer intend?
Indentation implies that else belongs to "if (a)"
Compiler associates the else with the innermost if statement - "if (b)"

Use brackets around nested if statements

Ambiguous "else" Statement

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Do not use hardcoded values for structure or data type sizes
malloc(100 * 4);

Use sizeof() to determine the size of structures and data types
malloc(100 * sizeof (void *));

malloc(100 * sizeof (int));

Proper Coding Practices

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Some code may use the ECB workarea or core blocks to map a SIPCC
request blocks, a TPF_regs structure, or other temporary storage areas

Usually found in converted TARGET(TPF) or assembler
programming styles brought into C code
Sizes of these structures may have changed, exceeding these
preallocated areas

Use local variables (stack), alloca(), or malloc() for storage
Bad: struct TPF_regs *treg;

treg = (struct TPF_regs *)&(ecbptr()->ebw000);

Good: struct TPF_regs treg; /* Use stack */
 or
 struct TPF_regs *treg; /* Use alloca() */
 treg = (struct TPF_regs *)
 alloca(sizeof (struct TPF_regs));

Appropriate Storage Areas

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Questions

IBM Software Group

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

Legal

IBM is a registered trademark of International Business Machines, Inc.
Other company, product, or service names may be trademarks or service
marks of others.

