IBM Software Group

Coding Today for z/TPF Tomorrow
C/C++ Coding Changes for Ease of Migration to z/TPF

Languages Subcommittee e

---------- PR] — — = -
........... 3 e e o B fre

Chris Filachek
October 2004

AIM Core and Enterprise Solutions
IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

IBM Software Group

Topics

= Data Type Changes
= Changes in Compiler Behavior
= Proper Programming Practices

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Integer Data Types

= Unchanged
» short (2 byte integer)
> int (4 byte integer)
» long long (8 byte integer)
= Changed
» long changes from 4 bytes to 8 bytes
= Recommendations
» Leave all short, int, and long long alone
» Change all "long" to "int"
— Ensures all 4 byte fields in TPF 4.1 are also 4 bytes in z/TPF
— Changing "long" to "int"
e Use tool to change all references at once
e Change references manually
e Change one package at a time, by hand or through tools

— Exception: On z/TPF, casting pointers using (int) will truncate the
address

e Use (long) to cast pointers to integer data

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Pointer Data Type

= * (pointer) changes from 4 bytes to 8 bytes
= 8 byte pointers
» 8 byte pointers are preferred
» Leave pointers as 8 bytes where possible
— Function pointers must be 8 bytes
= 4 byte pointers
» Only use 4 byte pointers where required
— Structures mapped by assembler DSECTSs or written to file
» Pointers can be forced to 4 bytes
— PTR32ATT macro
— _ ptr32_t, _uiptr32_t, or _ chptr32_t data types
» Examples:
- __ptr32_t celcrO; /* 4 byte core block ptr */
- struct nystruct * PTR32ATT ptr; /*4 byte struct ptr */

» See APAR PJ29575

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Storage Areas and Memory Addresses

= Storage areas guaranteed to be below 2GB (can use 4 byte or 8 byte
pointers)

» TPF core blocks (CE1CRX)

» malloc()

» 31-bit system heap

» Application stack
— alloca() and local variables

= Storage areas above 2GB (must use 8 byte pointers)

» malloc64()

» 64-bit system heap

» static data and exported variables
— Includes string literals and pre-initialized data
— C/C++ programs can be forced below the 2 GB bar if necessary

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Enumerated Data Types

TPF 4.1. Enumerations are 1, 2, or 4 bytes
» Size depends on values of the enumerations
z/TPF: Enumerations are always 4 bytes

For structures mapped by assembler DSECTs or written to file, change
enumerations as follows

» Change 1 byte enumerations to unsigned char

» Change 2 byte enumerations to unsigned short

» Leave 4 byte enumerations alone

Example
enum options {OPTA = 1, OPTB = 2, OPTC = 3};
enum opti ons opt byt e;

Changes to

#define OPTA 1
#define OPTB 2
#define OPTC 3

unsi gned char opt byt e;

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Floating Point Data Types

= float and double
» Size is unchanged for float (4 bytes) and double (8 bytes)
» Format is changed
— TPF 4.1 uses Hexadecimal Floating Point (HFP)
— z/TPF uses Binary Floating Point (BFP)
e Conforms to IEEE 754 Standard

» For z/TPF, all processing of floating point values is in BFP
(calculations, printing, etc.)

» If writing floating point to file, HFP/BFP conversion functions are
available

— See APARs PJ29849 & PJ29980*
= |ong double
» TPF 4.1: long double is extended floating point (16 bytes)
» z/TPF: Extended floating point (16 bytes) is not supported by GCC
— long double interpreted same as double (8 bytes)
» Use of long double should be avoided or removed

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Fixed Point Decimal Data Type

= decimal(n,p)
» An extension of the IBM compiler available on TPF 4.1
» Not supported by GCC on z/TPF
= Recommendations
» Use decNumber library in place of decimal data type
— C code: decimal(,) is replaced with decNumber data type

— C++ code: decimal(,) is replaced with decNumber or pDecimal
class

» See APAR PJ29576

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Derived Data Types

= size t, ssize t, and time t
» Change from 4 byte integers to 8 byte integers
» Only affects structures mapped by assembler DSECTSs or written to
file
— Use new 4 byte data types
* Size t32
e ssize t32
e time_t32
— Upper 4 bytes are truncated for the * t32 data types
— See APAR PJ29630
= clock _t
» Size is 8 bytes on both systems
» Format changes from double (floating point) to long (integer)
» If stored on file or passed to assembler, consult with TPF CSR

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Wide Characters

= Wide characters (wchar _t)
» Changes from 2 byte EBCDIC to 4 byte Unicode (UCS-4)
wchar t *wstr = L"ABC'; /* wde char string */
00C1 00C2 00C3 /[* 2 byte EBCDI C */
0000000041 0000000042 0000000043 /* 4 byte Unicode */
» Multi-byte characters are unchanged
— 1 and 2 byte multi-byte EBCDIC characters

— Uses shift-in (0x0f) and shift-out (Ox0e) characters to transition between 1
and 2 byte characters

» Recommendations
— Write data to file using multi-byte characters only
— Only use wide characters for in-memory processing only
— Investigate wide character literals
¢ Wide characters coded using hex values breaks single source

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

| ocales

= Categories supported on both TPF 4.1 and z/TPF
» LC _ALL (all categories)
LC _COLLATE
LC _CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
» LC_TIME
= QObsolete Categories from TPF 4.1
» LC_TOD
— Replaced by TZ environment variable support
— See APAR PJ29957
» LC_SYNTAX
— Remove all usage of this category

vvyyvyyy

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Locale Dependent Functions

= Standard functions are unchanged from TPF 4.1 to z/TPF
» setlocale()
» strcoll() & strxfrm()
» strfmon() & strftime()
» isctype() family of functions (isalpha, isdigit, etc.)
» toupper() & tolower()

= Nonstandard collation functions from TPF 4.1 are not supported on
z/TPF (see collate.h on TPF 4.1)

» ismccollel() strtocoll() colltostr() collequiv()
» collrange() collorder() cclass() maxcoll()
» getmccoll() getwmccoll()

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Packing Structures

= |IBM compiler and GCC both pack structures using #pragma pack()
= "packed" and "reset" parameters
» Recognized by IBM compiler only
#pragma pack(packed) /* Pack structure */
struct nystruct { ... }
#pragma pack(reset) [/* Stop packing */
= "1" and empty parameters
» Recognized by IBM compiler and GCC

#pragnma pack(1) /* Pack structure */
struct nystruct { ... }
#pragma pack() /* Stop packi ng */

= Recommendations
» Change "packed" to "1"
» Change "reset" to empty parameter
» Use #pragma pack() instead of __Packed keyword
» Pack all C/C++ structures that are also mapped by Assembler DSECTs

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Initializing Arrays of Structures

= Valid initializer syntax on TPF 4.1
struct nystruct array[]

Iteml-a, 1teml-Db,
Itenk-a, 1tenk-Db,
ItenB-a, 1tenB-Db,

= For GCC, lack of brackets causes compiler errors.

each structure

struct nystruct array[]

{ itenl-a,
{ itenk-a,
{ itenB-a,

| t eml- b,
| t en- b,
| t enB3- b,

{

I teml-c,
| ten®-c,
| tenB- cC,

{

i tenl-c },
i tenk-c },
itenB-c },

[* struct 1 */
[* struct 2 */
[* struct 3 */

Add brackets around

[* struct 1 */
[* struct 2 */
[* struct 3 */

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Order of Operations and Parenthesis

= GCC issues warnings when nested or multiple operators are coded
without parenthesis

= Example: valid if statement
If a||] b & c

= Which did the programmer intend?
If (a|] b) & c
or
If a||] (b & c) [* equivalent to using no */
/| * parenthesis */

= Use parenthesis to explicitly group operations

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Ambiguous "else" Statement

GCC issues warnings when nested if-else statements are coded without
brackets

= Example
if (a)
it (b)
QZZ1() ;

QZZ2() ;

el se

Which did the programmer intend?

» Indentation implies that else belongs to "if (a)"

» Compiler associates the else with the innermost if statement - "if (b)"
= Use brackets around nested if statements

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Proper Coding Practices

= Do not use hardcoded values for structure or data type sizes
mal | oc(100 * 4);

= Use sizeof() to determine the size of structures and data types
mal | oc(100 * sizeof (void *));

mal | oc(100 * sizeof (int));

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Appropriate Storage Areas

= Some code may use the ECB workarea or core blocks to map a SIPCC
request blocks, a TPF_regs structure, or other temporary storage areas

» Usually found in converted TARGET(TPF) or assembler
programming styles brought into C code

» Sizes of these structures may have changed, exceeding these
preallocated areas

= Use local variables (stack), alloca(), or malloc() for storage
Bad: struct TPF regs *treg;
treg = (struct TPF regs *) &(ecbptr()->ebwi00);

Good: struct TPF_regs treg; /* Use stack */
or
struct TPF regs *treg; /* Use alloca() */
treg = (struct TPF regs *)
al | oca(si zeof (struct TPF_regs));

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Questions

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

IBM Software Group

Legal

= |IBM is a registered trademark of International Business Machines, Inc.

= QOther company, product, or service names may be trademarks or service
marks of others.

AIM Core and Enterprise Solutions | IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Copyright IBM Corporation 2004

