
readme.txt

z/TPF publish to data streaming platform driver for Java readme

Copyright IBM Corporation 2018, 2023

US Government Users Restricted Rights - Use, duplication or disclosure restricted by

GSA

ADP Schedule Contract with IBM Corp.

NOTE: Before using this information and the product it supports, read the general

information under "Notices" in this document.

CONTENTS

1.0 Introduction

1.1 Driver components and architecture

2.0 Change history

3.0 Prerequisites

4.0 Installing the driver

5.0 Configuring the z/TPF system

6.0 Setting up the Kafka environment

7.0 Starting the kafka JAM

8.0 Running the QKFK driver

9.0 Optional adjustments

10.0 Notices

10.1 Trademarks

10.2 Warranty

1.0 Introduction

Apache Kafka is a distributed streaming platform and is designed to publish and

consume

streams of data such as z/TPF business events. To publish z/TPF business events to

a Kafka

topic without z/TPF support for Java, you might send z/TPF business events to

intermediate

systems. The intermediate systems would receive events from the z/TPF system and

use native

Kafka APIs to publish the events to Kafka topics on a distributed Kafka cluster.

While this model is able to publish z/TPF business events to a Kafka topic, it uses

intermediate systems to get the events from z/TPF to Kafka. These intermediate

systems are

another set of components with their own risks and must be managed in terms of

availability,

reliability, and scalability. In addition, these intermediate systems must be

maintained and

kept up-to-date, similar to other systems in your enterprise.

By using the Apache Kafka Java packages on z/TPF, z/TPF can communicate directly

with the

Page 1

readme.txt

distributed Kafka cluster without requiring any intermediate systems between z/TPF

and the

Kafka cluster. A direct-connect solution between z/TPF and the Kafka cluster means

you can

skip the intermediate systems, resulting in a more reliable solution with fewer

components to

manage and maintain.

The z/TPF publish to data streaming platform driver for Java demonstrates one

example of how

you can use the Apache Kafka Java package to publish z/TPF business events directly

from your

z/TPF system to a Kafka topic. The z/TPF publish to data streaming driver for Java

provides a

working example that creates signal events (a type of z/TPF business event), formats

the event

as a JSON document, and calls a Java service running on z/TPF to publish the

JSON-formatted

event to a Kafka topic on a distributed Kafka cluster. This document describes how

to

install, build, and run this driver on your z/TPF system.

For more information about creating Java application services and calling those

services

from your z/TPF applications, see the z/TPF product documentation in IBM Knowledge

Center

(https://www.ibm.com/support/knowledgecenter/SSB23S).

For more information on Apache Kafka, see the Apache Kafka website

(http://kafka.apache.org/).

1.1 Driver components and architecture

The z/TPF publish to data streaming platform driver for Java contains the following

core

components, which represent a traditional z/TPF application, business event dispatch

processing, and a publishing service:

 o The QKFK driver represents a traditional z/TPF C/C++ application that is

creating

 business events. In this case, the driver creates random flight status

information

 (airline code, flight number, origin, destination, status, etc.) and uses the

 tpf_bev_signal() API to send the flight status as a QKFK_signal signal event.

Depending

 on the driver mode, the QKFK driver displays the flight status information

(Visual mode)

 or creates signal events in a tight loop (Load mode).

 o The QKFK_signal event is defined by the business event specification and

associated

 artifacts (business event dispatch adapter, DFDL schema files, and event custom

Page 2

readme.txt

 programs). The business event dispatch adapter uses an event custom format

program

 (QKFF) and a custom adapter program (QKFT) to format and transmit the signal

event. The

 QKFF program formats the event as a JSON document, sets the topic name to

"flightStatus",

 and creates a key using the airline code and flight number from the signal

event data.

 The QKFT program uses the tpf_srvcInvoke() API call the KafkaPublish service to

publish

 the JSON-formatted event to the Kafka topic.

 While this event defines and processes a flight status signal event created by

the QKFK

 driver, it could represent any signal event or data event created by your z/TPF

system.

 o The KafkaPublish service is a REST service that is written in Java and uses

open source

 Apache Kafka Producer APIs to publish messages to topics in a Kafka cluster.

For the

 QKFK_signal signal event, the KafkaPublish uses the topic and key created by

the

 QKFF program to publish the JSON-formatted signal event to the Kafka topic.

The

 KafkaPublish service is packaged in the KafkaApp service application and is

deployed as

 part of the kafka JAM.

 Even though this driver calls the KafkaPublish service from business event

dispatch

 processing, any z/TPF application program could use the tpf_srvcInvoke() API to

call the

 KafkaPublish service and publish messages to Kafka topics.

2.0 Change history

2018Oct15 Initial version

2023Oct12 Incorporate Maven tooling enhancements

3.0 Prerequisites

The following list provides the required release levels:

 o z/TPF (PUT 14 or later) with z/TPF support for Java (APAR PJ43892) installed.

 For more information about installing, building, and configuring z/TPF support

for

 Java, see the z/TPF product documentation in IBM Knowledge Center

 (https://www.ibm.com/support/knowledgecenter/SSB23S).

Page 3

readme.txt

 o Business events must be configured and enabled on your z/TPF system. For

 For more information about configuring and enabling business event processing,

 see the z/TPF product documentation in IBM Knowledge Center

 (https://www.ibm.com/support/knowledgecenter/SSB23S).

The following build tools are required:

 o maketpf utility

4.0 Installing the driver

1) Use FTP to transfer the tar file (QKFK.tar.gz) to your Linux on IBM Z build

 system. This file can be placed in any directory as a holding location, for

example,

 /tmp/ztpftar

2) Create a root directory to hold the unpacked files, for example, /ztpfdrvs

3) Extract the source code from the tar file by entering the following commands:

 cd /ztpfdrvs

 tar -xvzf /tmp/ztpftar/QKFK.tar.gz

 The project source files are extracted in the following directory structure:

 qkfk/kafka.pom.xml

 qkfk/qkf2.cpp

 qkfk/qkf2.mak

 qkfk/qkff.cpp

 qkfk/qkff.mak

 qkfk/qkfj.mak

 qkfk/qkfk.cntl

 qkfk/qkfk.cpp

 qkfk/qkfk.loadfile

 qkfk/qkfk.mak

 qkfk/qkft.cpp

 qkfk/qkft.mak

 qkfk/qkfk_drv.h

 qkfk/qkfk_flightStatus.h

 qkfk/qkfk_functions.cpp

 qkfk/qkfk_kafka.h

 qkfk/fdes/kafka.jam.xml

 qkfk/fdes/KafkaPublish.srvc.json

 qkfk/fdes/KafkaRequest.gen.dfdl.xsd

 qkfk/fdes/kafkaServices.swagger.json

 qkfk/fdes/QKFK_Dispatch.evda.xml

 qkfk/fdes/QKFK_flightStatus.user.dfdl.xsd

 qkfk/fdes/QKFK_signal.se.dfdl.xsd

 qkfk/fdes/QKFK_signal.se.evspec.xml

 qkfk/maven/dependencies.txt

 qkfk/maven/duplicates.txt

 qkfk/producers/flightStatus.properties

 qkfk/src/main/java/com/kafka/KProducer.java

 qkfk/src/main/java/com/kafka/app/KafkaApp.java

Page 4

readme.txt

 qkfk/src/main/java/com/kafka/models/KafkaRequest.java

 qkfk/src/main/java/com/kafka/rest/KafkaHandler.java

4) Create a maketpf.cfg file with the following contents:

 APPL_ROOT := /ztpfdrvs

 TPF_ROOT := /ztpf

 LOADTPF_IP:=ftp://<user>@<host>

 TPF_BSS_NAME := BSS

 #TPF_SS_NAME :=

 #USER_VERSION_CODE :=

 a) Set APPL_ROOT to the directory that contains the driver source code that was

 extracted.

 b) Set TPF_ROOT to the directory that contains the z/TPF source code.

 c) Set LOADTPF_IP to the correct user/host of your z/TPF system.

 d) Set TPF_BSS_NAME to the basic subsystem name of your z/TPF system. By default,

this

 value is set to BSS.

 e) Optional: Set TPF_SS_NAME to the subsystem name.

 f) Optional: Set USER_VERSION_CODE to any 2-character string. The 2-character

string

 that you set is appended to the shared objects that are built. By default,

this

 value is set to null.

 For details about these variables, enter man maketpf.cfg on your Linux on Z build

 system.

5) Build the USRSTUB program and online program attribute table (IPAT) after you add

the

 QKFK driver control file to your user control file.

 a) Add the following line to your user control file (base/cntl/usr.cntl):

 include qkfk/qkfk.cntl

 b) Build the USRSTUB program to generate stubs for all user programs using the

 following command:

 maketpf USRSTUB -f

 c) Rebuild IPAT to incorporate the changes you made in the usr.cntl file:

 maketpf ipat -f

 d) Load the IPAT that was built in step 5c to your z/TPF system.

6) If Apache Maven on your Linux on IBM Z build system is configured to use a local

 repository, verify that all dependency files required by this driver are

installed

 in the local repository and download any missing dependencies. For a list of

 dependencies required by this driver, see /ztpfdrvs/qkfk/maven/dependencies.txt.

7) Run the maketpf utility with the accompanied control file (qkfk.cntl) to

Page 5

readme.txt

assemble,

 compile, and link the driver programs:

 bldtpf /ztpfdrvs/qkfk/qkfk.cntl

8) Modify the producer properties file for the flightStatus topic. When publishing

to the

 flightStatus topic, the Kafka producer uses properties defined in the

 qkfk/producers/flightStatus.properties properties file. Change the

bootstrap.servers

 property to list the IP addresses and port numbers for your kafka brokers.

Instructions

 for setting up the Kafka brokers are in Section 6.

9) Use the standard load procedure to transfer and load the driver shared objects,

jar

 files (Java programs), and common deployment files that are required for the QKFK

 driver to the z/TPF system:

 loadtpf -s qkfkload /ztpfdrvs/qkfk/qkfk.cntl /ztpfdrvs/qkfk/qkfk.loadfile

10) Use the standard procedure to activate these loadsets on the z/TPF system.

11) Update the test driver program to start the QKFK driver.

 a) Update base/rt/cvzz.asm (or the tool that runs driver programs) to make an

entry for

 the QKFK driver. The QKFK shared object is the main entry point for the QKFK

driver.

 b) Build and load the updated CVZZ program to the z/TPF system.

For more information about program management, including how to build and load

programs to

the z/TPF system, see the z/TPF product documentation in IBM Knowledge Center

(https://www.ibm.com/support/knowledgecenter/SSB23S).

5.0 Configuring the z/TPF system

To deploy the DFDL schemas, service descriptors, openAPI (swagger) documents, and

the

JAM descriptor, enter the ZTEST QKFK command with INIT parameter specified. This

command

calls the ZMDES DEPLOY command for all common deployment files that are required for

this

driver. For example:

User: ZTEST QKFK INIT

System: QKFK0003I 10.27.14 STARTING INIT REQUEST

 CSMP0099I 10.27.14 000000-B ZMDES DEPLOY FILE-KAFKA.JAM.XML

Page 6

readme.txt

 MDES0008I 14.58.49 DEPLOY IS COMPLETE ON PROCESSOR B FOR

 FILE-/sys/tpf_pbfiles/tpf-fdes/kafka.jam.xml

 ...

 QKFK0004I 10.27.14 INIT REQUEST COMPLETE

Note: An CSMP0099I and MDES0008I messages will be received for each common

deployment file

 that is in the qkfk/fdes source directory.

6.0 Setting up the Kafka environment

1) Download and install the Apache Kafka open source software from kafka.apache.org

onto a

 system of your choice (for example, Linux or Windows).

2) Start a zookeeper server on your remote system. Kakfa provides a script,

 zookeeper-server-start.sh, that you can use to start a zookeeper server.

3) Start and configure your Kafka broker

 a) After starting the zookeeper server, you can start a Kafka brokers on your

remote

 system. Kafka provides a script, kafka-server-start.sh, that you can use to

start a

 Kafka broker.

 b) Create the flightStatus topic in your Kafka environment. Kafka provides a

script,

 kafka-topics.sh, in the /kafka/bin directory that you can use to create a

topic.

4) Start a consumer for the flightStatus topic on your remote system. Kafka

provides a

 script, kafka-console-consumer.sh, that you can use to start a consumer for the

 flightStatus topic.

7.0 Starting the kafka JAM

Enter the ZJAMC START command to start the pricing server in the JAM. For example:

 User: ZJAMC START N-kafka

 System: JAMC0134I 14.28.39 THE JVM FOR JAM kafka IS STARTED, PID 1092157451.

 JAMC0002I 14.28.39 JAM kafka IS ACTIVE.

8.0 Running the QKFK driver

Before you start the driver, check the following conditions:

Page 7

readme.txt

o Ensure that the kafka JAM is running by entering the ZJAMC DISPLAY command. For

example:

 User: ZJAMC DISPLAY N-kafka

 System: JAMC0007I 15.25.25 START OF ZJAMC DETAILED DISPLAY

 JAM NAME #JVMS #THDS SHARED CLASS CACHE STATE

 kafka 1 4 N/A ACTIVE

 DEPLOYMENT DESCRIPTOR FILE NAME

 /sys/tpf_pbfiles/tpf-fdes/kafka.jam.xml

 JVM PID JVM STATE JVM LOG FILE DIRECTORY

 1946746928 ACTIVE /tpfjam/kafka/1946746928

 END OF DISPLAY+

o Ensure that the QKFK_signal signal event is deployed and signal events are enabled

by

 entering the ZBEVF DISPLAY EVENT command. For example:

 User: ZBEVF DISPLAY EVENT QKFK_signal

 System: BEVF0046I 15.28.11 DISPLAY OF EVENT MESSAGE SIGNAL EVENT QKFK_signal IN

 FILE-/sys/tpf_pbfiles/tpf-fdes/QKFK_signal.se.evspec.xml

 STATUS: SIGNAL EVENTS ENABLED ON PROCESSOR B

 DEPLOYED: YES _

 EVENT NAME: QKFK_signal

 APPLICTN ENRICHMNT PGM:

 DISPATCH ENRICHMNT PGM:

 PERSISTENCE: NO

 PRIORITY: 9

 EXPIRY TIME: -1

 DISPATCH QUEUE NAME: IBEV.UNORDERED.DISPATCH.QUEUE

 ERROR QUEUE NAME:

 EVENT ERROR PROGRAM:

 DISPATCH ADAPTER: QKFK_Dispatch

 EVENT MSG FORMAT FILE: QKFK_signal.se.dfdl.xsd

 END OF DISPLAY+

1) Start the driver in one of the following ways:

 o To start the driver in visual mode, enter ZTEST QKFK START. Every few seconds

a

 flight status signal event is generated and displayed on the console.

 For example:

 User: ZTEST QKFK START

 System: QKFK0001I 10.29.49 THE QKFK DRIVER IS STARTED IN VISUAL MODE

 Example console output when running in visual mode:

 System: QKFK0011I 14.45.58 EVENT DATA FOR THE QKFK_signal SIGNAL EVENT

Page 8

readme.txt

--

 Flight: NW4695 from EWR to AVP

 Departure: 2018-09-26 at 21:52, Gate A41

 Arrival: 2018-09-27 at 03:27, Gate C33

 Status: Gate Closed

 Comment: 0 Bytes

--

 Example message received and displayed by the Kafka consumer (formatted for

readability):

 Consumer: {"Event":

 {

 "EventHeader":{

 "size":77,

 "structID":"C5C8",

 "version":1,

 "ECBCtxFlag":0,

 "UsrCtxFlag":0,

 "eventName":"QKFK_signal",

 "eventType":1,

 "ssuName":"HPN",

 "eventTime":"2018-09-24T18:45:58.655",

 "fractionalMicSec":70,

 "interceptName":"QKF2 Generated Event"

 },

 "EventData":{

 "airline":"NW",

 "flight_number":4695,

 "orig":"EWR",

 "dest":"AVP",

 "departGate":"A41",

 "arriveGate":"C33",

 "departure_date":"2018-09-26 at 21:52",

 "arrival_date":"2018-09-27 at 03:27",

 "status":"Gate Closed",

 "commentSize":0

 }

 }

 }

 o To start the driver in load test mode, enter ZTEST QKFK START MODE-1. In load

test

 mode, signal event information is not displayed and requests to signal events

are

 created in a tight loop. For example:

 User: ZTEST QKFK START MODE-1

 System: QKFK0001I 10.30.55 THE QKFK DRIVER IS STARTED IN LOAD MODE

2) To display a summary of the driver status, enter ZTEST QKFK STATUS. For example:

Page 9

readme.txt

 User: ZTEST QKFK STATUS

 System: QKFK0010I 15.24.00 QKFK DRIVER STATUS

 IS# ECB# SUCCESS/FAIL RATE

 1 0 1498/0 10/sec

 1 ECB(s) 1498/0 10/sec

 Throttle: 100000 us Mode: LOAD

 Time Running: 00:02:31 Comment Size: 0

 END OF DISPLAY

3) To stop the driver, enter ZTEST QKFK STOP. For example:

 User: ZTEST QKFK STOP

 System: QKFK0007I 10.30.08 STOPPING THE QKFK DRIVER

 QKFK0008I 10.30.08 THE QKFK DRIVER IS STOPPED

For information about additional parameters for the QKFK driver command, including

how to

run multiple QKFK driver ECBs, how to add a delay between service requests, and how

to

specify a comment size to alter the size of the signal event, enter ZTEST QKFK HELP.

9.0 Optional adjustments

1) By default, the kafka JAM is configured to start one JVM with four application

 threads and is able to run with a maximum of 256 1-MB frames for 64-bit heap;

that is, a

 value of 256 for the MAXXMMES parameter in keypoint A. These are minimal

settings that

 demonstrate how your z/TPF system can publish messages to a Kafka cluster. The

following

 settings can be changed to provide improved application performance and

scalability.

 If you make these changes, ensure that there are enough 1 MB frames allocated to

 accommodate each JVM that uses the amount of 64-bit ECB heap defined by the

MAXXMMES

 parameter.

 o Optional: To run the kafka JAM with more JVMs or application threads, change

 the value of the <NumberJVMs> or <NumberThreadsPerJVM> elements in the

 /ztpfdrvs/qkfk/fdes/kafka.jam.xml file and load the updated kafka JAM

 descriptor to the z/TPF system.

 o Optional: To provide more ECB heap to the JVMs, increase the MAXXMMES

Page 10

readme.txt

parameter value

 in keypoint A to 600 MB or greater.

2) The KafkaApp in the kafka JAM creates a Kafka producer by using the properties

defined in

 the qkfk/producers/flightStatus.properties properties file. Kafka provides

several

 properties to tune the Kafka producer based on your workload, like buffer sizes

and

 linger time.

 If you alter any properties in the properties file, load the updated properties

file to

 your z/TPF system, and stop and start or recycle the kafka JAM. For more

information on

 producer properties, see the Apache Kafka documentation

(http://kafka.apache.org).

3) Section 6 describes how to start a single Kafka broker. For reliability and

scalability,

 multiple Kafka brokers can be started on separate distributed systems.

 If you want to add more Kafka brokers to your environment, create a new

server.properties

 file in the /kafka/config directory on your distributed system. In the new

properties

 file, define the new Kafka broker with a new broker ID, a unique IP address and

port

 combination, and a different log.dirs directory. You also can edit other server

 properties such as log retention time and the default number of partitions per

topic.

 After the updates are complete, you can use the script provided with Kafka,

 kafka-server-start.sh, to start another Kafka broker.

10.0 Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in

other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or

service is not intended to state or imply that only that IBM product, program, or

service

may be used. Any functionally equivalent product, program, or service that does not

infringe any IBM intellectual property right may be used instead. However, it is the

user's responsibility to evaluate and verify the operation of any non-IBM product,

program, or service.

Page 11

readme.txt

IBM may have patents or pending patent applications covering subject matter

described in

this document. The furnishing of this document does not grant you any license to

these

patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

For license inquiries regarding double-byte character set (DBCS) information,

contact the

IBM Intellectual Property Department in your country or send inquiries, in writing,

to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"

WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties

in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes

are periodically made to the information herein; these changes will be incorporated

in

new editions of the publication. IBM may make improvements and/or changes in the

product(s) and/or the program(s) described in this publication at any time without

notice.

Any references in this information to non-IBM websites are provided for convenience

only

and do not in any manner serve as an endorsement of those websites. The materials at

those websites are not part of the materials for this IBM product and use of those

websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs and

other programs (including this one) and (ii) the mutual use of the information which

Page 12

readme.txt

has

been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

Such information may be available, subject to appropriate terms and conditions,

including

in some cases, payment of a fee.

10.1 Trademarks

IBM, the IBM logo, and ibm.com are trademarks of International Business Machines

Corp.,

registered in many jurisdictions worldwide. Other product and service names might be

trademarks of IBM or other companies. A current list of IBM trademarks is available

on

the Web at "Copyright and trademark information" at

www.ibm.com/legal/copytrade.shtml.

Windows is a trademark of Microsoft Corporation in the United States, other

countries,

or both.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries,

or both.

Java and all Java-based trademarks are trademarks or registered trademarks of Oracle

and/or its affiliates.

10.2 Warranty

This package is provided on an "as is" basis. There are no warranties, express or

implied, including the implied warranties of merchantability and fitness for a

particular

purpose. IBM has no obligation to provide service, defect correction, or any

maintenance

for the package. IBM has no obligation to supply any updates or enhancements for

the

package to you even if such are or later become available.

Page 13

