
 Z/TPF TCP/IP SOCK Driver 12/14/10

z/TPF TCP/IP SOCKET Driver Users Guide

 Copyright IBM Corp. 2010

 1.

 Z/TPF TCP/IP SOCK Driver 12/14/10

1.0 Introduction

The socket driver consists of multiple DLMs that issue TCP/IP API calls to send and
receive TCP data. There are many variations to the driver functional message to start different
types of servers and clients. Depending on the functional message entered the driver can start
TCP servers and clients, UDP servers and clients, servers and clients sending and receiving data
using various API calls, sockets that send and receive out-of-band (OOB) data, sockets that run
in blocking and non-blocking mode, etc. For more information on how to use and run the driver
see Section 2.0 - Syntax Information.

 2.

 Z/TPF TCP/IP SOCK Driver 12/14/10

2.0 Syntax Information

I. Syntax Diagram:

Most of the functional messages are arranged in the way shown below.
Note: There are socket functional messages that do not follow this format

 >>--|-ZTEST-----|--SOCK--|--socket-----------|-->
 |--protocol---------|-->
 |--type-------------|-->
 |-------------------|-->

 |---ip address--|-->
 |---port no.----|-->
 |---msgs--------|-->
 |---msg_size----|-->
 |---resends-----|-->

 __

Where:
PARAMETER DESCRIPTION

socket Specifies whether the socket is a server socket or a client socket. For a
server socket, specify server. For a client socket, specify client.

protocol Specifies whether the socket is the UDP or TCP protocol. For a UDP
socket, specify datagram. For a TCP socket specify stream.
Note: The nstream and ndatag can also be used to invoke certain drivers (see below)

type Specifies the type of socket API and/or socket options that will be used.
Available types are: NOAOR
 AOR
 TPFTOTPF
 SELECT
 AORAOR
 AORSENDTO
 SERRC
 SETSOCKOPT
 BLOCK
 NONBLOCK
 OOB
 THREADNOAOR
 THREADAOR
 THREAD
 CREM
 SWEEP
 NOCONN
 NOBIND
Note: Not all types can be used with every socket and every protocol (see below)

ip address This field is only valid if the socket is a CLIENT. It specifies the IP

 3.

 Z/TPF TCP/IP SOCK Driver 12/14/10

address of the remote server you wish to communicate with.
port no. This field is only valid if the socket is a CLIENT. It specifies the port

number of the remote server you wish to communicate with.
msgs This field is only valid if the socket is a CLIENT. It specifies the

number of messages you wish to send to the server.
msg_size This field is only valid if the socket is a CLIENT. It specifies the size of

the message you wish to send to the server.
resends This field is only valid if the socket is a CLIENT and the protocol is

DATAGRAM. It specifies the number of times you want the UDP client to
attempt to resend the message without getting a response before it considers
the connection dead.

 function This field is only valid when connecting to servers with the nstream or
ndatagr protocol specified. It specifies the type of function you want the
driver to perform:
 PING-PONG, PINGPONG1, PINGPONG2: Echo TCP messages back
and forth
 SEND-ONLY, SENDONLY1, SENDONLY2: Client just continually
sends while server just does reads
 READ-ONLY,READONLY1, READONLY2: Server just continually
sends while client just does reads

**** ZTEST SOCK HELP/? can be used to display an on-line help ****

I. Sample Invocations

The next section is split into servers that can be started and clients that can be started using the
socket driver. Each application (server or client) has documented the associated server or client
that it can establish connections with as well as a short description of the processing that is
involved with the application. The servers also have associated with them the port that the server
is bound to so when starting the client to that server, you can specify the correct port.

Server Applications

ZTEST SOCK SERVER STREAM NOAOR - segment QXYD (PORT 5003)
This application creates a TCP socket binding to IP address IPADDR_ANY and port
5003. It will then issue a listen() and an accept() waiting for a client connection. When
the client connects, the application issues a recvfrom() reading the data and immediately
issues sendto() to echo the data back to the client. When all the client messages have
been read and echoed back, the server will issue another accept waiting for the next
connection. Other APIs issued: getsockname(), gethostname(), poll(), close(), shutdown()
CLIENTS: ZTEST SOCK CLIENT STREAM BLOCK

ZTEST SOCK SERVER STREAM AOR - segment QXYE (PORT 5004)
This application creates a TCP socket binding to IP address IPADDR_ANY and port
5004. It will then issue a listen() and an accept() waiting for a client connection. When

 4.

 Z/TPF TCP/IP SOCK Driver 12/14/10

the client connects, the application issues an activate_on_receipt() activating program
QXYK (which is contained in its own DLM - QXYK). QXYE goes on to issue another
accept() waiting for another connection request. QXYK reads in the clients messages
with with read() and echoes the data back to the client with a write(). Other APIs that
may be issued: getsockname(), gethostname(), close(), shutdown(), getpeername().
CLIENTS: ZTEST SOCK CLIENT STREAM BLOCK

ZTEST SOCK SERVER DATAGRAM NOAOR - segment QXYB (PORT 5001)

This application creates a UDP socket binding to IP address IPADDR_ANY and port
5001. It will then issue a recvfrom() waiting for remote application data and when data
is received it will echo the data back with a sendto(). It will continue issuing recvfrom()
and sendto() infinitely. Other APIs that may be issued: getsockname(), setsockopt(),
close().
CLIENTS: ZTEST SOCK CLIENT DATAGRAM BLOCK

ZTEST SOCK CLIENT DATAGRAM NOCONN
ZTEST SOCK CLIENT DATAGRAM NOBIND

ZTEST SOCK SERVER DATAGRAM AOR - segment QXYC (PORT 5002)
This application creates a UDP socket binding to IP address IPADDR_ANY and port
5002. It will then issue an activate_on_receipt() which will activate segment QXYL
(which is contained in its own DLM - QXYL). QXYL issues a recvfrom() and echoes
back the data with a sendto(). QXYL will then issue another AOR() activating itself
when data arrives. Other APIs that may be issued: getsockname(), setsockopt(),
shutdown(), close().
CLIENTS: ZTEST SOCK CLIENT DATAGRAM BLOCK

ZTEST SOCK CLIENT DATAGRAM NOCONN
ZTEST SOCK CLIENT DATAGRAM NOBIND

ZTEST SOCK SERVER STREAM TPFTOTPF - segment QXYF (PORT will be
assigned by TPF)

This application creates a TCP socket binding to IP address IPADDR_ANY and to a port
of 0, meaning TPF will assign an available port. The application then issues a listen()
and accept() to wait for client connect requests. When a client connects, the application
issues an activate_on_receipt() and when data is available segment QXYM is activated.
QXYF loops back to issue another accept() to wait for another connection. QXYM issues
read() and echoes back each message the client sends with a write(). When all the
messages are read, it closes the socket. Other APIs that may be issued: shutdown(),
getpeername(), getsockname(), gethostname(). Note: when connecting a client to this
server, you have to connect to the port TPF assigned to the server.
CLIENTS: ZTEST SOCK CLIENT STREAM CREM

ZTEST SOCK SERVER DATAGRAM SELECT - segment QXYI (PORT 5005)
This application creates a UDP socket binding it to IP address IPADDR_ANY and port
5005. The application will then go into a loop doing a select() for read. When data
arrives, the select() gets posted and the application will issue a recvfrom() and echo the
data back with a sendto(). This is an infinite loop with it issuing another select(). Other

 5.

 Z/TPF TCP/IP SOCK Driver 12/14/10

APIs that may be issued: close(),setsockopt(), getsockname().
CLIENTS: ZTEST SOCK CLIENT DATAGRAM BLOCK

ZTEST SOCK CLIENT DATAGRAM NOCONN
ZTEST SOCK CLIENT DATAGRAM NOBIND

ZTEST SOCK SERVER STREAM AORAOR - segment QXYJ (PORT 5006)
This application creates a TCP socket binding to IP address IPADDR_ANY and port
5006. The server will do a listen() and go into an infinite accept() loop. When a client
connects the server will do an activate_on_receipt() and when data is available to read,
QXYL will be activated. QXYL will issue read() and echo back the data with a send()
until all the clients messages are processed. Other APIs that may be issued: close(),
shutdown(), getsockname(), gethostname().
CLIENTS: ZTEST SOCK CLIENT STREAM BLOCK

ZTEST SOCK SERVER STREAM AORSENDTO - segment QXYQ (PORT 5007)
This application creates a TCP socket binding to IP address IPADDR_ANY and port
5007. The server will do a listen() and go into an infinite accept() loop. When a client
connects the server will do an activate_on_receipt() and when data is available to read,
QXYL will be activated. QXYL will issue recvfrom() and echo back the data with a
sendto() until all the clients messages are processed. Other APIs that may be issued:
close(), shutdown(), getsockname(), gethostname().
CLIENTS: ZTEST SOCK CLIENT STREAM BLOCK

ZTEST SOCK SERVER STREAM SERRC - segment QXYR (PORT will be
assigned TPF)

This application creates a TCP socket binding to IP address IPADDR_ANY and to a port
of 0, meaning TPF will assign an available port. The application then issues a listen() and
and accept() to wait for client connect requests. When a client connects, the application
issues an activate_on_receipt(), which will activate segment QXYM when data becomes
available to read. QXYM will issue a read() and echo the data back with a write() until
all the messages are processed. As QXYM is processing the client QXYR continues
doing accepts. When the fifth client connects, QXYR will issue an OPR dump and exit.
Other APIs that may be issued: close(), shutdown(), gethostname(), getsockname(),
getpeername(), poll().
CLIENTS: ZTEST SOCK CLIENT STREAM CREM

ZTEST SOCK SERVER STREAM SETSOCKOPT - segment QXYT (PORT 5009)
This application creates a TCP socket binding to IP address IPADDR_ANY and port
5009. The application will then issue numerous setsockopt() and getsockopt() API calls
to set values for that socket and to display them. The server will then issue a listen() and
an accept(), waiting for a client connection. When the connection request is received and
the connection is established, the application issues more setsockopt() and getsockopt()
APIs on the new socket block. It will then read the data sent by the remote client

 6.

 Z/TPF TCP/IP SOCK Driver 12/14/10

application and echo it back using read() and send() APIs. Other APIs that may be
issued: close(), shutdown(), gethostname(), getpeername(), getsockname(), gethostid().
CLIENTS: ZTEST SOCK CLIENT STREAM BLOCK

ZTEST SOCK SERVER STREAM NONBLOCK - segment QXYU (PORT 5010)
This application creates a TCP socket binding to IP address IPADDR_ANY and port
5010. The application will the issue a listen() and then do an ioctl() to change the socket
to run in non-blocking mode. The server then issues an accept() and goes into a select()
loop to verify if a connection request was received. When a connection is established, we
CREM to segment QXZX to exchange the data and QXYU will issue another accept
waiting for connections. Using, select() for reads and select() for writes, QXZX can
verify if data is available for read/write and process the data accordingly. Other APIs
that may be issued: close(), shutdown(), setsockopt(), getsockopt().
CLIENTS: ZTEST SOCK CLIENT STREAM NONBLOCK

 7.

 Z/TPF TCP/IP SOCK Driver 12/14/10

ZTEST SOCK SERVER DATAGRAM NONBLOCK - segment QXYW (PORT 5011)
This application creates a UDP socket binding to IP address IPADDR_ANY and port
5011. The application will then do an ioctl() to change the socket to run in non-blocking
mode. The server then issues a recvfrom() waiting for data from the client. When data is
received, the server will echo the data back using the sendto() API. Other APIs that

 may be issue close(), setsockopt(), getsockopt(), getsockname().
CLIENTS: ZTEST SOCK CLIENT DATAGRAM NONBLOCK

ZTEST SOCK SERVER STREAM OOB - segment QXZA (PORT 5012)
This application creates a TCP socket binding to IP address IPADDR_ANY and port
5012. The application will then do a listen() and accept(), waiting for connection
requests. The server will process both OOB data and regular data using the select() API
to determine which type of data is on the queue and doing a recv() to read the data.
Whatever is sent to the server will be echoed back to the client using the send() API.
Other APIs that may be issued: setsockopt(), ioctl(), close().
CLIENTS: ZTEST SOCK CLIENT STREAM OOB

ZTEST SOCK IP-xxx.xxx.xxx.xxx PORT-yyyyy STYPE-vvv SPROT-zzz AOR-Y/N
SELECT-Y/N - segment QXZI

Where: xxx.xxx.xxx.xxx is the local IP address to bind to
 yyyyy is the server port number to bind to
 vvv is the type of socket to create (UDP/TCP)
 zzz is the protocol to use (UDP/TCP)

 The server application creates the type of socket specified by the user and issues the
functions specified by the user (ie. AOR, SELECT, etc.). Depending on what type of
server you create is the way the application will process the data. The function specified
by the client also determines certain server behavior, for example specifying AOR-Y will
cause the server to actually use activate_on_receipt_of_TCP_message() instead of
activate_on_receipt() with a PONGPONG1 or SENDONLY1 client.

 CLIENTS: ZTEST SOCK CLIENT NSTREAM BLOCK <ip> <port> <# msg> <size>
<func>

 ZTEST SOCK CLIENT NSTREAM NONBLOCK <ip> <port> <# msg>
<size> <func>

 ZTEST SOCK CLIENT NDATAGR BLOCK <ip> <port> <# msg> <size>
<func>

 ZTEST SOCK CLIENT NDATAGR NONBLOCK <ip> <port> <# msg>
<size> <func>

 8.

 Z/TPF TCP/IP SOCK Driver 12/14/10

ZTEST SOCK FCS-xx [PORT-yyyy] [IP-x.x.x.x]

The FCS option invokes function oriented tests in QXZI. Some of these tests require the use of a
remote application to act as a client or server, which the test will prompt for.

FCS- Tested API or condition
1 accept
2 activate_on_receipt

 2a activate_on_accept
3 bind
4 close
5 connect
6 gethostbyaddr
7 gethostbyname
8 gethostid
9 gethostname

10 getpeername
 10a getsockname

11 getsockopt
12 ioctl
13 listen

 13a poll
14 read
15 recv
16 recvfrom
17 select
18 send
19 sendto
20 setsockopt
21 shutdown
22 socket
23 write
24 writev
25 sendmsg
26 recvmsg

101 UACC
102 ESOCINACT
106 Client connects then closes
107 APAR PJ29020

 108-114 poll
210 UDP connect

 9.

 Z/TPF TCP/IP SOCK Driver 12/14/10

Client Applications

ZTEST SOCK CLIENT DATAGRAM BLOCK < IP ADDR > < PORT # > < # MSGS > < MSG SIZE >
< NO. RESEND > - segment QXYG

This application creates a UDP socket and issues a bind(), which will bind the socket to
the system’s default IP address and the next client port in the port number range
(1024-5000). The client will issue a connect to the server and begin sending the
messages specified by the user on the functional message using the send() API. The
message size sent is also specified by the user. The number of resends on input to the
application is the number of times to resend a lost message before breaking the
connection. Once all of the messages have been sent and have been echoed back by the
server and read using the read() API, we will issue close() to clean up the connection.
Other APIs that may be issued: setsockopt(), getsockname(), select()
SERVERS: ZTEST SOCK SERVER DATAGRAM NOAOR (port 5001)

 ZTEST SOCK SERVER DATAGRAM AOR (port 5002)
 ZTEST SOCK SERVER DATAGRAM SELECT (port 5005)

ZTEST SOCK CLIENT STREAM BLOCK < IP ADDR > < PORT # > < # MSGS > < MSG SIZE >
- segment QXYH

This application creates a TCP socket and issues a bind(), which will bind the socket to
the system’s default IP address and the next client port in the port number range (1024
- 5000). The client will issue a connect to the server and begin sending the messages
specified by the user on the functional message using the send() API. The message size
sent is also specified by the user. Once all of the messages have been sent and have been
echoed back by the server and read using the read() API, we will issue close() to clean up
the connection. Other APIs that may be issued: setsockopt(), getsockname(), select()
SERVERS: ZTEST SOCK SERVER STREAM NOAOR (port 5003)

 ZTEST SOCK SERVER STREAM AOR (port 5004)
 ZTEST SOCK SERVER STREAM AORAOR (port 5006)

 ZTEST SOCK SERVER STREAM AORSENDTO (port 5007)

ZTEST SOCK CLIENT STREAM CREM < IP ADDR > < PORT # > < # MSGS > < MSG SIZE >
< # CLIENTS > - segment QXYN

This application initially enters QXYA (the socket driver parser) and issues CREMC to
QXYN for the number of clients specified on input to the driver. The application creates
a TCP socket and issues a bind(), which will bind the socket to the system’s default IP
address and the next client port in the port number range (1024 - 5000). Each client
(created by CREMC) will issue a connect to the server and begin sending the messages
specified by the user on the functional message using the write() API. The message size
sent is also specified by the user. Once all of the messages have been sent and have been
echoed back by the server and read using the read() API, we will issue close() to clean up

10.

 Z/TPF TCP/IP SOCK Driver 12/14/10

the connection. Other APIs that may be issued: hutdown().
SERVERS: ZTEST SOCK SERVER STREAM TPFTOTPF (port assigned by TPF)

ZTEST SOCK CLIENT DATAGRAM SWEEP < IP ADDR > < PORT # > < # MSGS > < MSG SIZE >
< NO. RESEND > - segment QXYG

This application creates a UDP socket and issues a bind(), which will bind the socket to
the system’s default IP address and the next client port in the port number range (1024
- 5000). The client will issue a connect to the server and begin sending the messages
specified by the user on the functional message using the send() API. The message size
sent is also specified by the user. The number of resends on input to the application is the
number of times to resend a lost message before breaking the connection. Once all of
the messages have been sent and have been echoed back by the server and read using the
read() API, we will issue close() to clean up the connection. Other APIs that may be
issued: setsockopt(), getsockname(), pool()
SERVERS: ZTEST SOCK SERVER DATAGRAM NOAOR (port 5001)

 ZTEST SOCK SERVER DATAGRAM AOR (port 5002)
 ZTEST SOCK SERVER DATAGRAM SELECT (port 5005)

ZTEST SOCK CLIENT DATAGRAM NOSWEEP < IP ADDR > < PORT # > < # MSGS > < MSG SIZE
> < NO. RESEND > - segment QXY9

This application creates a UDP socket with TPF_NOSWEEP on and issues a bind(),
which will bind the socket to the system’s default IP address and the next client port in
the port number range (1024 - 5000). The client will issue a connect to the server and
begin sending the messages specified by the user on the functional message using the
send() API. The message size sent is also specified by the user. The number of resends
on input to the application is the number of times to re - send a lost message before
breaking the connection. Once all of the messages have been sent and have been echoed
back by the server and read using the read() API, we will issue close() to clean up the
connection. Other APIs that may be issued: setsockopt(), getsockname(), poll()
SERVERS: ZTEST SOCK SERVER DATAGRAM NOAOR (port 5001)

 ZTEST SOCK SERVER DATAGRAM AOR (port 5002)
 ZTEST SOCK SERVER DATAGRAM SELECT (port 5005)

ZTEST SOCK CLIENT STREAM NONBLOCK < IP ADDR > < PORT # > < # MSGS > < MSG SIZE>
- segment QXYV

This application creates a TCP socket and issues a bind(), which will bind the socket to
the system’s default IP address and the next client port in the port number range (1024
-5000). The client will issue an ioctl() to put the socket in non-blocking mode. The
client will issue a connect to the server and begin sending the messages specified by the
user on the functional message using the send() API. The message size sent is also
specified by the user. Once all of the messages have been sent and have been echoed

11.

 Z/TPF TCP/IP SOCK Driver 12/14/10

back by the server and read using the recv() API, we will issue close() to clean up the
connection. Other APIs that may be issued:setsockopt(), shutdown(), close(), select()
SERVERS: ZTEST SOCK SERVER STREAM NOBLOCK (port 5010)

ZTEST SOCK CLIENT DATAGRAM NONBLOCK < IP ADDR > < PORT # > < # MSGS >
< MSG SIZE> < # RESENDS > - segment QXYX

This application creates a UDP socket and issues a bind(), which will bind the socket to
the system’s default IP address and the next client port in the port number range (1024
- 5000). The client will issue an ioctl() to put the socket in non-blocking mode. The
client will issue a connect to the server and begin sending the messages specified by the
user on the functional message using the send() and sendto() API. The message size
sent is also specified by the user. The number of resends on input to the application is
the number of times to resend a lost message before breaking the connection. Once all
of the messages have been sent and have been echoed back by the server and read using
the recvfrom() API, we will issue close() to clean up the connection. Other APIs that
may be issued: setsockopt(), shutdown(), close(), select()
SERVERS: ZTEST SOCK SERVER DATAGRAM NOBLOCK (port 5011)

12.

 Z/TPF TCP/IP SOCK Driver 12/14/10

ZTEST SOCK CLIENT DATAGRAM NOCONN < IP ADDR > < PORT # > < # MSGS >
< MSG SIZE > < NO. RESEND > - segment QXYY

This application creates a UDP socket and issues a bind(), which will bind the socket to
the system’s default IP address and the next client port in the port number range (1024
- 5000). The client will not issue a connect to the server, which causes the
communication to be connectionless. The client will begin sending the messages
specified by the user on the functional message using the sendto() API. The message
size sent is also specified by the user. The number of resends on input to the application
is the number of times to resend a lost message before breaking the connection. Once all
of the messages have been sent and have been echoed back by the server and read using
the recvfrom() API, we will issue close() to clean up the connection. Other APIs
that may be issued: setsockopt(), getsockname(), select()
SERVERS: ZTEST SOCK SERVER DATAGRAM NOAOR (port 5001)

 ZTEST SOCK SERVER DATAGRAM AOR (port 5002)
 ZTEST SOCK SERVER DATAGRAM SELECT (port 5005)

ZTEST SOCK CLIENT DATAGRAM NOBIND < IP ADDR > < PORT # > < # MSGS >
< MSG SIZE > < NO. RESEND > - segment QXYZ

This application creates a UDP socket. A bind() is not issued causing the socket to be
bound under the covers when sending the first message. The client will not issue a
connect to the server, which causes the communication to be connectionless. The client
will begin sending the messages specified by the user on the functional message using the
sendto() API. The message size sent is also specified by the user. The number of resends
on input to the application is the number of times to resend a lost message before
breaking the connection. Once all of the messages have been sent and have been echoed
back by the server and read using the recvfrom() API, we will issue close() to clean up
the connection. Other APIs that may be issued:setsockopt(), getsockname(), select(),
poll().
SERVERS: ZTEST SOCK SERVER DATAGRAM NOAOR (port 5001)

 ZTEST SOCK SERVER DATAGRAM AOR (port 5002)
 ZTEST SOCK SERVER DATAGRAM SELECT (port 5005)

13.

 Z/TPF TCP/IP SOCK Driver 12/14/10

ZTEST SOCK CLIENT STREAM OOB < IP ADDR > < PORT # > < # MSGS > < MSG SIZE >
- segment QXZB

 This application creates a TCP socket and issues a bind(), which will bind the socket to
the system’s default IP address and the next client port in the port number range (1024
- 5000). The client will issue a connect to the server and begin sending the messages
specified by the user on the functional message using the send() API. These messages
will contain OOB data that the server will have to parse out. The message size sent is
also specified by the user. Once all of the messages have been sent and have been
echoed back by the server and read using the recv() API, we will issue close() to clean up
the connection. Other APIs that may be issued: setsockopt(), select()
SERVERS: ZTEST SOCK SERVER STREAM OOB (port 5012)

ZTEST SOCK CLIENT NSTREAM BLOCK <ip> <port> < # msg > < msg size > <function >
ZTEST SOCK CLIENT NSTREAM NONBLOCK <ip> <port> < # msg > < msg size > <function >
ZTEST SOCK CLIENT NDATAGR BLOCK <ip> <port> < # msg > < msg size > <function >
ZTEST SOCK CLIENT NDATAGR NONBLOCK <ip> <port> < # msg > < msg size > <function >

SEGMENT - QXY7
These clients connect to many different types of servers. Based on the client driver being
NSTREAM or NDATAGR will determine if socket is TCP or UDP, respectively. Then
there is the BLOCK or NONBLOCK format, which determines if the client will run in
blocking or non-blocking mode. The parameters are:
<ip> - IP address of server to connect to
<port> - Port of server to connect to
<#msg> - Number of messages to send to server
<msg size> - Size of messages to send to server
<function> - Can be one of the following:

SEND-ONLY - Client just sends messages to server; does not read any messages in
from server

SENDONLY1 - Client sends TCP formatted messages, server uses either
tpf_read_TCP_message or activate_on_receipt_of_TCP_message

SENDONLY2 - Client sends TCP format 2 messages, server uses either
tpf_read_TCP_message2 or
activate_on_receipt_of_TCP_message2

READ-ONLY - Client just reads messages from server, does not send any
messages to the server

READONLY1 - Client just reads formatted messages from the server using
tpf_read_TCP_message, does not send any messages to the server

READONLY2 - Client just reads format 2 messages from the server using
tpf_read_TCP_message2, does not send any messages to the server

PING-PONG - Server and Client ping-pong messages between them.
PINGPONG1 - Server and Client ping-pong messages between them, using TCP

formatted messages.
PINGPONG2 - Server and Client ping-pong messages between them, using TCP

format 2 messages.

14.

	1.0 Introduction
	2.0 Syntax Information

