
��������	
�
����

������������

© Copyright IBM Corp. 2006

This page intentionally left blank.

Last Updated 6/16/2006

2 SOLD Driver User's Guide © Copyright IBM Corp. 2006

��������	

Shared Object Linkage Driver (SOLD) is a driver written specifically to test intra and inter
module calls between C Shared Objects (CSO), BAL shared objects (BSO) and ELF
executables (C program with main()). While a C program with main() can call other SOs, main()
cannot be called by other programs. The CSOs come in two variations. One is where a CSO
contains a single entry point. These are not meant to export any functions other than the
function by the name of the module. The second type is where a CSO is a library. These shared
objects export all functions defined within them that are not defined as static. The CSO with a
single entry point is linked (ld) the same way as other shared objects. But when the callers of
these programs are linked (ld), single entry CSOs are not provided as input libraries. These
calls are resolved at fetch time. Export of variables is not supported from any modules.

All modules can contain object code of one or more source files. The CSOs contain objects of
C source files or objects of BAL written C functions. Each object can contain more than one
function. BAL written C functions are assembled to generate a GOFF object and translated to
an ELF object. In z/TPF, linkage or parameter passing is same for C and C++. For linkage
testing, the only difference is in the way function names are identified. In C++, the function is
identified by the name and the parameters passed to it (to allow for overloading). The C
functions are identified by their names alone. One C++ test case exists for the purpose of
function trace verification.

Each BAL source file can only contain one BAL program. Each BSO can contain objects of
many source files and hence can contain many BAL programs. Each source file is assembled
to a GOFF object, converted to an ELF object and linked (ld) as a BSO.

The SOLD test cases cover calls between all program types. It also covers calls to functions via
function pointers and C function calls from BAL via the CALLC macro. In addition, there is an
option to cause a dump after a test case completes for dump verification and function trace
purposes.

The driver can run on any subsystem in either 1052 or NORM state, and it runs in multiple
I-streams. An error message is displayed if one attempts to run SOLD while the system is
cycling.

SOLD can run one test case at a time (with the user supplying the specific test case number),
or it can run in continuous mode. For continuous mode, the sequence is in no particular order
(i.e., it is not in numerical order by test case number).

Appropriate error messages are displayed to the terminal if an invalid test case number is
supplied or passed, there is a return to a segment that did an ENTDC or ENTNC, and the like.

Requirements and restrictions
None.

ZTEST SOLD

© Copyright IBM Corp. 2006 SOLD Driver User's Guide 3

Format
>>---ZTEST--+-----+-- --SOLD-- --+-CASE-xx--+-----------------+--+----><
 +- -i-+ | | .- -NODUMP-. | |
 '- -*-' | +-+----------+----+ |
 | | '- -DUMP---' | |
 | | .- -NOSHOWVER-. | |
 | '-+-------------+-' |
 | '- -SHOWVER---' |
 +-START-------------------------+
 +-STOP--------------------------+
 +-STATUS------------------------+
 +-HELP--------------------------+
 '-?-----------------------------'

i
indicates the specific I-stream in which the driver will be run. If i is not specified, the test
case(s) will be executed on the I-stream on which the command is entered.

*
specifies the driver will be invoked on all currently defined and available I-streams.

CASE-xx
indicates that one specific test case is to be executed. The xx variable is required with the
CASE parameter and specifies the test case number to be executed.

NODUMP
specifies that the driver will not dump after completion. This is the default setting.

DUMP
causes the driver to dump after completion.

NOSHOWVER
specifies that the driver will not display the program version and program variation number
when entering a segment. This is the default setting.

SHOWVER
displays the program version and program variation number when entering a segment.

START
specifies that the SOLD driver is to be run in continuous mode.

STOP
specifies that this driver halt continuous mode.

STATUS
displays the status of the running driver. The status may be requested for a specific I-stream
or for all defined I-streams.

HELP | ?
displays the correct syntax of the command.

Last Updated 6/16/2006

4 SOLD Driver User's Guide © Copyright IBM Corp. 2006

Source code information
The SOLD driver consists of the following program segments:

Header Files

This header file was created to hold all C++ SOLD definitions.cpp_sold.hpp

This header file was specifically created to hold all SOLD prototypes and
various definitions.

c_sold.h
DescriptionHeader File

BSOs

31-bit BAL segment with a program base
register and no transfer vectors.

qswp.asmqswp.makQSWP

Standard 31-bit BAL segment with QSBE
entry point.

qsbe.asmqsbe.makQSBE

Standard 64-bit BAL segment with QSB7
entry point.

qsb7.asm

31-bit BAL segment with 2 transfer
vectors (QSBC and QSBD).

qsbc.asmqsbc.makQSBC

31-bit BAL segment that is greater than
4K in size and with multiple base
registers. QSBB is the entry point.

qsbb.asm

31-bit BAL segment with QSBA entry
point.

qsba.asmqsba.makQSBA

31-bit BAL segment with no base register
and QSBF entry point.

qsbf.asm

64-bit BAL segment with no base register
and QSB9 entry point.

qsb9.asm

Standard 64-bit BAL segment with QSB8
entry point.

qsb8.asmqsb8.makQSB8

64-bit BAL segment with 3 transfer
vectors (QSB5, QSBZ, and QSB6). QSBZ
is a dummy transfer vector not meant to
be used. The tracegroup for QSB5 is
TRG_4.

qsb5.asmqsb5.makQSB5

64-bit BAL segment that is greater than
4K in size and has multiple base registers.
QSB4 entry point.

qsb4.asm

64-bit BAL segment with 2 transfer
vectors (QSB2 and QSB3).

qsb2.asm

Standard 64-bit BAL segment with QSB1
entry point. The tracegroup for QSB1 is
TRG_2.

qsb1.asmqsb1.makQSB1
DescriptionSegmentMakefileModule

ZTEST SOLD

© Copyright IBM Corp. 2006 SOLD Driver User's Guide 5

CSOs

Contains functions to test long function
names including boundary conditions.

qscd99.c

Contains functions to test long function
names that have greater than 2000
characters.

qscd98.c

Contains utility functions that are used to
print common messages to the screen.

qscd.cqscd.makQSCD

Contains the functions that execute the
individual test cases.

qscc.cqscc.makQSCC

Affinity of QSCB has to be set to
PROGRAM in order to start/stop continuous
mode on a specific I-stream.

Operates the driver in continuous mode.

qscb.cqscb.makQSCB

Affinity of QSCA has to be set to
PROGRAM in order to start/stop continuous
mode on a specific I-stream.

Points to the driver, which parses the
arguments and then invokes the appropriate
function. The qsca.c prolog contains a more
detailed description of the test cases.

qsca.cqsca.makQSCA
DescriptionSegmentMakefileModule

SOLD Driver Infrastructure

C++ ELF executable with various accessory
functions for function trace verification.

qme4.cppqme4.makQME4
ELF executable with an accessory function.qme3.cqme3.makQME3
Standard ELF executable.qme2.cqme2.makQME2
ELF executable with accessory functions.qme1.cqme1.makQME1
DescriptionSegmentMakefileModule

ELF Executables (main()) Code

Contains a simple C function.qsc3b.c
Contains a simple C function.qsc3a.cqsc3.makQSC3
Contains a simple C function.qsc2b.c
Contains a simple C function.qsc2a.cqsc2.makQSC2

Contains C functions for function trace
verification.

qsc1trace.c
Contains a simple C function.qsc1b.c
Contains a simple C function.qsc1a.cqsc1.makQSC1
DescriptionSegmentMakefileModule

CSO Libraries

Last Updated 6/16/2006

6 SOLD Driver User's Guide © Copyright IBM Corp. 2006

Standard CSO with QCE3 entry point. The
tracegroup for QCE3 is TRG_1.

qce3.cqce3.makQCE3
Tests PRLGC 31/64 bit support.qce210.asm

Standard CSO with an accessory function
and QCE2 entry point. The tracegroup for
QCE2 is TRG_2.

qce2.cqce2.makQCE2

CSO with a static variable, accessory
function and QCE1 entry point. The
tracegroup for QCE1 is TRG_3.

qce1.cqce1.makQCE1
DescriptionSegmentMakefileModule

CSOs with Single Entry Point

Note: We may need more QSBx segments as you can not have more than one BAL program in
each file (BEGIN/FINIS can only be called once for each file).

Linkage information
This section contains the linkage information for the SOLD driver.

Notes:
� Please see the qsca.c segment for a more detailed description of the test cases and for the

exact paths between the modules for each test case.

� As far as possible, all test case calls should have some parameters, preferably 6 or more.
From caller to called, there should be a way to verify if the parameters are received
correctly. One way is to pass parameters that add up to zero. Have some signed and some
unsigned. Same applies for calls to BAL programs. Pass some values in registers
(TPF_regs - with values for some of registers 0-7) and have a way to verify. Pass signed as
well as unsigned.

� Keep one CSO without any writable static variables. In other CSOs, define and use static
variables in alternate source files.

C to C: (test case range 1-25)
1) C entry � C entry � C function (intra) � C function (inter) � return all the way back.

2) C entry � C function (inter) and pass a function pointer (intra) � call passed function �
return all the way back.

3) C entry � C function (inter) and pass a function pointer (inter from a 3rd module) � call
passed function � return all the way back.

4) C entry � C function (intra) and pass a function pointer (inter from a 3rd module) � call
passed function � return all the way back.

5) C (main) � C function (intra) and pass a function pointer (intra) � call passed function �
return all the way back.

6) C (main) � C entry � C function (intra) � C function (inter) � return all the way back.

7) C (main) � C function (intra) � C entry � C function (inter) � return all the way back.

8) C (main) � C function (inter) � C entry � return all the way back.

9) C (main) � C function (inter) and pass a function pointer (intra) � call passed function �
return all the way back.

ZTEST SOLD

© Copyright IBM Corp. 2006 SOLD Driver User's Guide 7

10) C (main) � C function (inter) and pass a function pointer (inter from a 3rd module) � call
passed function � return all the way back.

11) Test user-defined errno values.

12) Test ENTRC with new options.

13) Test long function names, including boundary conditions.

14) Test long function names using names greater than 2000 characters.

15) Test BSO calls QQQQ.

16) Test CSO calls QQQQ.

17) Test BSO calls data program QXAX.

18) Test CSO calls data program QXAX.

19) Test BSO calls GTAL.

20) Test CSO calls GTAL.

21) Test CSO calls nonexistent function.

22) Run test case 15-21.

23 to 25 unused.

Note: Above test cases can be repeated for C++ but may not be of great value. In z/TPF, there
is very little difference between C and C++ unless C++ features are used. C team will add any
test cases that test C++ features separately. C team will also cover test cases that call CTAL
style functions (C functions written in BAL).

BAL to BAL: (test case range 26-50)
Note: Programs in BSO can be either 32-bit or 64-bit. There will be one function (BAL program)
that matches the BSO name. The file names do not have to match the program name. So the
entry function can be in BSO name source file. Other functions in the same BSO can be in file
names with BSO prefix. Make some of the BAL programs greater than 4K and with multiple
base registers. Some BAL programs will be base-less.

26) BAL (entry) � BAL (intra) � BAL (inter, base-less) � BAL TV inter � return all the way
back.

27) BAL (entry) � BAL (intra >4K >1 base) � BAL (inter) � BAL TV inter � return all the way
back

28) BAL64 (entry) � BAL64 (intra) � BAL64 inter TV � BAL64 (inter, base-less) � return all
the way back.

29) BAL64 (entry) � BAL64 (intra, >4K >1 base) � BAL64 inter TV � BAL64 (inter) � return
all the way back.

30) BAL (entry) � BAL64 (entry) � BAL64 intra TV � BAL64 (inter TV) � return all the way
back.

31) BAL64 (entry) � BAL TV � BAL64 (intra) � BAL (inter) � BAL64 (intra) � return all the
way back

32) BAL (entry) � ENTDC to � BAL TV inter � ENTNC to � BAL TV intra � EXIT

33) BAL64 (entry) � ENTNC to � BAL64 TV intra � ENTNC to � BAL64 TV inter � EXIT

Last Updated 6/16/2006

8 SOLD Driver User's Guide © Copyright IBM Corp. 2006

34) BAL (entry) BSS � CROSC to � BAL TV WP � return
Note: Case 34 used also to validate save/restore of PBI across CROSC ENTxC

35-50) Unused

Mixed: (C, BAL, C(main)): (test case range 51-75)
51) C entry � BAL64 (entry) � C entry � BAL (entry) � return all the way

52) C entry � BAL � C entry � BAL64 � return all the way

53) BAL (entry) � C entry � BAL64 TV � C entry � BAL TV � return all the way

54) BAL64 � C entry � BAL64 TV � C entry � BAL TV � return all the way

55) C (main) � BAL64 � C entry � BAL � return all the way

56) C (main) � BAL � C entry � BAL64 � return all the way

57) C (main) � BAL64 TV � C entry � BAL � return all the way

58) BAL64 � via CALLC CALL a C function � Called function � BAL � return all the way

59) BAL64 � via CALLC CALL a C function � Called function � BAL64 � return all the way

60) BAL � via CALLC call a C function � called function � C entry � return all the way

61) C(main) � C entry �|C entry � BSO � returns all the way

 �|C entry � BSO64 � returns all the way

62) ECB Trace test case: C entry � BAL64 � C entry � BAL64 � return all the way
Note: This test is not included when the driver is run in continuous mode.

63) ECB Trace test case: C entry � BAL64 � C entry � BAL64 � C entry � return all the
way
Note: This test is not included when the driver is run in continuous mode.

64-75) Unused

Function Trace Tests: (C(main), C++(main)): (test case range 100-125)
100) C++ entry � various C++ functions (intra) � return all the way

101) C entry � C functions to test char (inter) � return all the way

102) C entry � C functions to test unsigned char (inter) � return all the way

103) C entry � C functions to test short (inter) � return all the way

104) C entry � C functions to test unsigned short (inter) � return all the way

105) C entry � C functions to test int (inter) � return all the way

106) C entry � C functions to test unsigned int (inter) � return all the way

107) C entry � C functions to test long (inter) � return all the way

108) C entry � C functions to test unsigned long (inter) � return all the way

109) C entry � C functions to test long long (inter) � return all the way

110) C entry � C functions to test unsigned long long (inter) � return all the way

111) C entry � C functions to test float (inter) � return all the way

112) C entry � C functions to test double (inter) � return all the way

113) C entry � C functions to test long double (inter) � return all the way

ZTEST SOLD

© Copyright IBM Corp. 2006 SOLD Driver User's Guide 9

114) C entry � C functions to test variable parameters (inter) � return all the way

115) C entry � C functions to test void parameters (inter) � return all the way

116) C entry � C functions to test tpf_trace_info() (inter) � return all the way

117) C entry � C functions to test tpf_trace_info() (inter) � return all the way

118) C entry � C functions to test tpf_trace_info() (inter) � return all the way

119) C entry � C functions to test tpf_trace_info() (inter) � return all the way

120) C entry � C functions to test tpf_trace_info() (inter) � return all the way

121) C entry � C functions to test typedef (inter) � return all the way

122) C entry � C functions to test structures in registers (inter) � return all the way

123) C entry � C functions to test structures in registers (inter) � return all the way

124 - 125) Unused

Additional information
None.

Examples
The following examples will display the help menu:

ZTEST SOLD HELP
ZTEST SOLD ?

The following example will run test case 7 on I-stream 1:

ZTEST SOLD CASE-7

The following example is the same as above, but dumps after running the test:

ZTEST SOLD CASE-7 DUMP

The following example shows the program version when entering a segment (excludes test
cases 15-22):

ZTEST SOLD CASE-7 SHOWVER

The following example will run test case 12 on I-stream 2:

ZTEST 2 SOLD CASE-12

The following example will run test case 99 on all I-streams:

ZTEST * SOLD CASE-99

The following example will execute the driver in continuous mode on I-stream 3:

ZTEST 3 SOLD START

Last Updated 6/16/2006

10 SOLD Driver User's Guide © Copyright IBM Corp. 2006

The following example stop the driver in continuous mode on all defined I-streams:

ZTEST * SOLD STOP

The following example will display the status of executed test cases on I-stream 2:

ZTEST 2 SOLD STATUS

The following example will display the status of executed test cases on all I-streams:

ZTEST SOLD STATUS

Messages
Below is a list of the SOLD driver messages:

SOLD0001I SOLD IS STARTING IN CONTINUOUS MODE ON ISTREAM x

Explanation: The operator entered ZTEST SOLD START and the SOLD driver is starting in
continuous mode. Enter ZTEST SOLD STOP to stop continuous mode.

SOLD0002I SOLD STATUS

Explanation: SOLD status message.

SOLD0003I TEST CASE d HAS STARTED

Where
d test case number entered by ZTEST SOLD CASE-xx

Explanation: Test case d was requested through the ZTEST SOLD CASE-xx command.
Execution of the test case has started.

SOLD0004I TEST CASE d HAS COMPLETED

Where
d test case number entered by ZTEST SOLD CASE-xx

Explanation: Test case d was requested through the ZTEST SOLD CASE-xx command.
Execution of the test case has completed.

SOLD0005I STOPPING ALL INSTANCES OF SOLD ON ISTREAM x

Explanation: The operator entered ZTEST SOLD STOP and the SOLD is in the process of
stopping all instances of the SOLD driver on I-stream x.

ZTEST SOLD

© Copyright IBM Corp. 2006 SOLD Driver User's Guide 11

SOLD0006I SOLD STOPPED ON ISTREAM x

Explanation: All instances of the SOLD driver on I-stream x are stopped.

SOLD0007I SOLD IS IN THE PROCESS OF STOPPING

Explanation: The SOLD driver is in the process of being stopped.

SOLD0010I SOLD SYNTAX:

 ZTEST i SOLD CASE-xx ((NO)DUMP|(NO)SHOWVER)
 Execute one test case.
 ZTEST i SOLD START
 Start continuous operation.
 ZTEST i SOLD STATUS
 Display status of running driver.
 ZTEST i SOLD STOP
 Stop SOLD in continuous mode

PARAMETERS:
 i : I-STREAM NUMBER
 xx: TEST CASE NUMBER, 1-125
 DUMP: CAUSE THE DRIVER TO DUMP AFTER COMPLETION
 SHOWVER: DISPLAY THE PROGRAM VERSION AND VARIATION NUMBER

Explanation: Help message for SOLD driver invoked through ZTEST SOLD HELP or ZTEST
SOLD ?.

SOLD0086W SYSTEM BELOW LODIC BATCH SHUTDOWN LEVELS - SOLD IN DEFER
LOOP

Explanation: SOLD is running in continuous mode and is unable to start new test cases
because the system is currently running below the BATCH shutdown levels. To keep the
system from running out of resources, SOLD has put itself into a defer loop. Stop the SOLD
driver or increase system resources.

SOLD0087E UNABLE TO START - SOLD IS STOPPING

Explanation: SOLD START was entered, but the driver was in the process of stopping. A new
instance of the driver is not started.

SOLD0088E ERROR GETTING SYSTEM HEAP FOR CONTROL BLOCK

Explanation: SOLD START was entered, but was unable to obtain system heap for the SOLD
control structure. START processing is aborted.

Last Updated 6/16/2006

12 SOLD Driver User's Guide © Copyright IBM Corp. 2006

SOLD0089E xxxx: BASE REGISTER NOT RESTORED CORRECTLY

Where
xxxx: 4-character name of segment issuing the error message

Explanation: Segment xxxx did not correctly restore a base register after making a function
call.

SOLD0090E xxxx: STATIC VARIABLE HAS WRONG VALUE FOR TEST CASE d

Where
xxxx: 4-character name of segment issuing the error message
d: test case number

Explanation: Segment xxxx did not find the correct value of a static variable for test case d.

SOLD0091E xxxx: BAD RETURN VALUE FROM yyyy FOR TEST CASE d

Where
xxxx: 4-character name of segment issuing the error message
yyyy: 4-character name of segment that is being returned from
d: test case number

Explanation: Segment xxxx did not receive the correct return values from segment yyyy for
test case d.

SOLD0092E xxxx: PARAMETER PASSING ERROR IN TEST CASE d

Where
xxxx: 4-character name of segment issuing the error message
d: test case number

Explanation: Segment xxxx received invalid input parameters for test case d.

SOLD0093E xxxx: INVALID TEST CASE NUMBER d

Where
xxxx: 4-character name of segment issuing the error message
d: test case number

Explanation: Segment xxxx received was called for test case number d, but should not get
called for this particular test case.

SOLD0094E INVALID TEST CASE NUMBER d
 SEE QSCA.C FOR THE COMPLETE LIST OF VALID
 SOLD DRIVER TEST CASE NUMBERS

Where

ZTEST SOLD

© Copyright IBM Corp. 2006 SOLD Driver User's Guide 13

d: test case number

Explanation: An invalid test case number was entered on the ZTEST SOLD CASE-xx
command. See segment qsca.c for a list of valid test case numbers.

SOLD0095E SOLD IS NOT RUNNING

Explanation: The STOP or STATUS command was entered but the SOLD driver is not
currently running.

SOLD0096E SOLD CONTROL BLOCK NOT FOUND

Explanation: The driver expected to find the SOLD control block, but a NULL pointer was
returned by tpf_fsysc. The driver exits.

SOLD0097E SOLD IS ALREADY STOPPING ON ISTREAM x

Explanation: Multiple STOP requests have been defined while the original STOP request is
still being handled. A single STOP request stops all instances of the SOLD driver on that
specific I-stream.

SOLD0098E SYSTEM IS CYCLING - SOLD CANNOT BE RUN

Explanation: The system is cycling to another state. Wait until system cycle is completed
before issuing the ZTEST SOLD command.

SOLD0099E You entered ZTEST SOLD with invalid syntax.
Enter ZTEST SOLD HELP to display the correct syntax.

Explanation: Invalid syntax was entered for the ZTEST SOLD command.

SOLD0100E QSWP: CROSC SS ERROR FOR TEST CASE ..

Explanation: UATBC returned an error when QSWP attempted to retrieve the SS name.

SOLD0101I QSWP: CURRENT SS

Explanation: Informational display to track the subsystem hop.

SOLD0093I QCE2: CASE 61 PSW Check OK..

Explanation: Test of PSW for 31-bit mode is verified.

SOLD0093I QCE2: CASE 61 PSW Check FAILED.

Explanation: Test of PSW for 31-bid mode has failed.

Last Updated 6/16/2006

14 SOLD Driver User's Guide © Copyright IBM Corp. 2006

SOLD0093I QCE2: CASE 61 TESTING PRLGC 31-BIT mode.

Explanation: Informational display to indicate start of test case.

SOLD0093I QCE2: CASE 61 MALLOC FAILED.

Explanation: Request for malloc space failed.

SOLD0093I QCE2: CASE 61 STACK FAILED.

Explanation: Stack pointer save/restore over CALLC failed.

SOLD0093I QCE2: CASE 61 STACK OK.

Explanation: Stack pointer save/restore over CALLC validated.

SOLD0093I QCE2: CASE 61 TESTING PRLGC 64-BIT mode.

Explanation: Informational display to indicate start of test case.

References
For more information about reading syntax diagrams, also referred to as railroad diagrams, see
Accessibility information in the TPF Product Information Center.

ZTEST SOLD

© Copyright IBM Corp. 2006 SOLD Driver User's Guide 15

