
HSC.readme Page 1

High Speed Connector Driver readme

Copyright IBM Corporation 2019

US Government Users Restricted Rights − Use, duplication or disclosure restricted by

GSA ADP Schedule Contract with IBM Corp.

NOTE: Before using this information and the product it supports, read the general
information under "Notices" in this document.

Contents

This file includes the following information:

1.0 Introduction
2.0 Change history
3.0 Prerequisites
4.0 Installing the High Speed Connector Driver
4.1 Installing the Linux on Z Systems Server Driver
4.2 Installing the z/TPF Server Driver
4.3 Installing the z/TPF Client Driver
5.0 Customizing the High Speed Connector Driver
6.0 Running the High Speed Connector Driver
7.0 Known Problems and Workarounds
8.0 Other Sources of Information
9.0 Notices
9.1 Trademarks
9.2 Warranty

1.0 Introduction

 The purpose of this driver is to implement a server on the z/TPF system and on
 Linux on z Systems, and to provide an example of how to issue the
 tpf_send_message function, which is provided by high speed connector support.

 The driver package includes the following programs:
 connserver.c − Implements a basic Linux on Z server by creating a listener
 socket for incoming connections. When an incoming connection
 is accepted, a new thread is created to process send and read
 requests for that new accepted socket indefinitely until the
 socket is closed. Has options for SSL or non−SSL connections.
 Currently, does not support client authentication.

 qhsc.cpp − Implements a client driver for the z/TPF system that issues
 the tpf_send_message function.

 qhss.c − Implements a basic z/TPF server that opens a socket to listen
 for incoming connections and issues an activate_on_receipt
 function to program QHSR to send and receive messages for the
 incoming connection.

 qhsr.c − Issues a read and send request if a response is requested,
 and then issues an activate_on_receipt function to itself
 (program QHSR) to read and send messages, indefinitely on
 the socket until it is closed.

 qhsu.c − Implements a z/TPF server to listen for incoming connections
 similar to qhss.c, difference being that qhsu.c assumes an
 SSL session has been established, thus issues an SSL_aor to
 program QHST to send and receive messages for the incoming
 connection.

 qhst.c − Issues a SSL_read and SSL_write request if a response is
 requested, and issues an SSL_aor to itself (program QHST).
 Functions similarly to program QHSR.

 qhss.h − Header for use by qhss.c, qhsu.c, qhst.c

 qhsc.mak

HSC.readme Page 2

 qhss.mak
 qhsr.mak
 qhsu.mak
 qhst.mak
 connserver.mak
 conn.cntl
 config8500.cfg − Sample server configuration file for z/TPF server (QHSS).
 config8443.cfg − Sample server configuration file for z/TPF server (QHSU).
 eptgrp.ept.xml − Sample High Speed Connection group configuration file.
 csclissl.ept.xml − Sample High Speed Connection group configuration file
 with TLS on.
 csclissl.conf − Configuration file that has information related to the SSL
 connection such as certificates paths, ciphers, etc.

 Note: Configuration file containing information about the certificate,
 certificate authority, and keys corresponding connserver with SSL
 needs to be specified in csclissl.conf. For testing, the file was
 placed under /etc/ssl/csclissl.conf.

2.0 Change history

2016Oct26 Initial release
2018Aug27 Configured High Speed Connector drivers for SSL
2019Apr20 Updates to connserver

3.0 Prerequisites

The following list provides the required release levels:
z/TPF PUT 13 or later, with APAR PJ43832 (High Speed Connector) applied
APAR PJ45258 enables TLS for High Speed Connector along with ENH HTTP CLient,
and REST.

Dependencies: OpenSSL is required to build the High Speed Connector drivers
connserver.c, QHSU, and QHST. If the user chooses not to use connserver with SSL,
this can be specified using the −t flag option (see below) when issuing the command
on Linux to start up the connserver. However, OpenSSL is still required for a clean
compile. QHSU and QHST which are the SSL variants of QHSS and QHSR have OpenSSL as
a dependency − use the latter to use the High Speed Connector driver without SSL on
TPF. The OpenSSL version we used to build is version 1.0.2j.

4.0 Installing the High Speed Connector Driver

 1) Use FTP to transfer the tar file (conn.tar.gz) to your Linux on z system.
 This file can be placed in any directory as a holding location,
 for example, /tmp/ztpftar
 2) Create a root directory to hold the unpacked files, for example, /ztpfdrvs
 3) Extract the source code from the tar file by entering the following commands:
 cd tmp/ztpfdrvs
 tar −xvzf conn.tar.gz −C ztpfdrvs

 The driver source files will be extracted in the following directory
 structure:

 conn/connserver.c
 conn/connserver.mak
 conn/qhsc.cpp
 conn/qhsc.mak
 conn/qhss.c
 conn/qhss.mak
 conn/qhss.h
 conn/qhsr.c
 conn/qhsr.mak
 conn/qhsu.c
 conn/qhsu.mak
 conn/qhst.c
 conn/qhst.mak

HSC.readme Page 3

 conn/conn.cntl
 conn/config8443.cfg
 conn/config8500.cfg
 conn/eptgrp.ept.xml
 conn/csclissl.ept.xml
 conn/csclissl.conf

 4) Create a maketpf.cfg file with the following contents:

 APPL_ROOT := /ztpfdrvs
 TPF_ROOT := /ztpf
 TPF_BSS_NAME := BSS
 #TPF_SS_NAME := WP
 #USER_VERSION_CODE :=

 a) Set APPL_ROOT to the directory that contains the driver source code
 extracted.
 b) Set TPF_ROOT to the directory that contains the z/TPF source code.
 c) Set TPF_BSS_NAME to the basic subsystem name of your TPF system. By
 default, this is set to BSS.
 d) Optional: Set the TPF_SS_NAME to the subsystem name.
 e) Optional: Set USER_VERSION_CODE to any desired two−character string for
 user version code for the shared objects built. By default, this value
 is set to null.

 For more information about these variables, enter man maketpf on your Linux
 on z build system.

 5) Build the USRSTUB program after adding the CONN driver control file to your
 user control file.

 a) Add the following line to your user control file base/cntl/usr.cntl:

 include conn/conn.cntl

 b) Build the USRSTUB program to generate stubs for the driver programs using
 the following command:

 maketpf USRSTUB −f

 6) Run the maketpf tool with the accompanied control file (conn.cntl) to
 assemble, compile, and link the driver programs:

 bldtpf /ztpfdrvs/conn/conn.cntl

4.1 Installing the Linux on z Server Driver

 1) Move the connserver executable file to the Linux on z directory of your
 choice.

 2) Start the driver. See section 6.0.

4.2 Installing the z/TPF Server Driver

 1) Use the standard load procedure to transfer and load the following driver
 programs to the z/TPF system:

 QHSS.so QHSR.so (for non−SSL)
 QHSU.so QHST.so (for SSL)

 For more information about building and loading programs to the z/TPF
 system, see the Program management topic in the z/TPF product documentation
 in IBM Knowledge Center.

 2) Use FTP to transfer a server configuration file with the sample format in the

 config8500.cfg file to the etc/conn directory on the z/TPF system.

 3) Enter the following z/TPF command. This example uses port 8500/8443 and

HSC.readme Page 4

 HSCServ as the example server name:

 (non−SSL)
 Step 1: Add the server
 zinet add s−HSCServ port−8500 prot−tcp pgm−qhss model−aoa2 state−cras
 act−auto

 Step 2: Start the server
 zinet start s−HSCServ

 (SSL)
 Step 1: Add the server
 zinet add s−HSCServ port−8443 prot−tcp pgm−qhsu model−ssl state−cras
 act−auto

 Step 2: Update/Modify configuration file
 INETD configuration file in /etc/inetd/servername.conf needs to be updated
 to include SSL information pertaining to ciphers, certificate and key
 location, key type, and more.

 Step 3: Start the server
 zinet start s−HSCServ

4.3 Installing the z/TPF Client Driver

 1) Use the standard load procedure to transfer and load the following driver
 programs to the z/TPF system:

 QHSC.so

 Additionally, client endpoints should be configured and loaded to the
 z/TPF system as well. Sample endpoint files are provided (csclient.ept.xml,
 csclissl.ept.xml).

 For more information about building and loading programs to the z/TPF system,
 see the Program management topic in the z/TPF product documentation in IBM
 Knowledge Center.

5.0 Customizing the High Speed Connector Driver
__

 1) You can modify the QHSS or QHSU program to specify a different directory for
 the server configuration files.
 You can modify the QHSC, QHSS, QHSU, and connserver programs to alter the
 default values for the required parameters.
 You can modify the values specified in the .cfg files. To use a different
 port than the example provided, you must rename the configXXXX.cfg file
 where XXXX is the port number you choose. When running the server program,
 specify this port as a parameter so the program knows to look for this .cfg
 file.

 2) Update the base/rt/cvzz.asm program (or the tool that executes driver
 programs) to make an entry for this driver. The shared object QHSC is the
 main entry point for this driver.

 3) Build and load the updated CVZZ program to the z/TPF system.

6.0 Running the High Speed Connector Driver
__

 To start the QHSS server, enter the following command:

 zinet add s−connXXXX port−XXXX prot−tcp pgm−qhss model−aoa2 state−cras
 act−auto

 s−connXXXX specifies the server name, where XXXX is a 4−digit number that
 represents the server's port number in the configXXXX.cfg configuration file

 name, and the cfg file contains the server's parms and is located in the
 etc/conn directory. To start analogous QHSU server, replace pgm−qhss with

HSC.readme Page 5

 pgm−qhsu and model−aoa2 with model−ssl.

 To issue QHSC commands, enter the following command:

 ztest conn ENDGroup−u+++++++ Read−a REQuest−d++++++++ REQSize−d++++++
 [RESPSize−d++++++] [RRobin−a] Timeout−d++++++ SYSBUFF−a

 Required parameters description:
 ENDGroup−The 8 alphanumeric character name of the endpoint group to send

 messages to
 Read−[Y/N], Should the client listen for a response
 (if Y, RESPSize must be specified)
 REQuest−[1−999999999] Number of requests to send
 REQSize−Number of bytes each request will be
 Timeout−[1−600000] Milliseconds to timeout
 Sysbuff−[Y/N], If response requested, specify Y if system will provide
 response buffer, N if user
 Optional parameters description:
 RESPSize−Number of bytes of the response message
 RRobin−[Y/N] request that the server uses round robin when using
 endpoints to respond

 To start connserver, enter the following command:
 nohup ./connserver <OPTIONS> &

 Where options contains:
 −i SERVER_ADDRESS
 Where SERVER_ADDRESS is a valid IPv4 address.
 Default value is 0.0.0.0
 −p PORT
 Where PORT is the port for the server to listen on
 0 <= PORT <= 65535
 This option is REQUIRED.
 −d RESPONSE_DELAY
 Must be an integer between 0 and 600000, inclusive
 Default value is 0.
 −s SEND_BUFFER_SIZE
 Size of buffer in bytes in which messages are sent.
 Only used if RESP_REQ=1
 Default value is 8192.
 Must be an integer between 512 and 1048576, inclusive.

 −r RCV_BUFFER_SIZE
 Size of buffer in bytes in which messages are received from the
 tpf_send_message function.
 Default value is 8192.
 Must be an integer between 512 and 1048576, inclusive.

 −q RESP_REQ
 Defines whether or not this server will send a response when a
 message is received.
 Default value is 0.
 Must be either 0 or 1 −− 0 or no, 1 for yes.
 −m RESP_MSG_SIZE
 The size, in bytes, of the response message sent by connserver if
 RESP_REQ=1.
 Default value is 4096.
 −t
 Having this flag will turn SSL on.
 By default, without the −t flag SSL is off.

 To use connserver with SSL, it is necessary to have a valid
 certificate/key pair placed on Linux and pointed to by connserver.c.
 To change the server key pair to point to your own, update the
 pathnames for HOME, CERT_FILE, KEY_FILE in source file connserver.c.

 Such change may require a change to KEY_PASSWD as well, if the key
 has a password. An additional update to CIPHER_LIST may also be
 necessary.

7.0 Known problems and workarounds

HSC.readme Page 6

None

8.0 Other sources of information

z/TPF product documentation in IBM Knowledge Center

9.0 Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, ore) Optional: Set USER_VERSION_CODE to
any desired two−character string features discussed in this document in other
countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program,
or service may be used. Any functionally equivalent product, program, or service
that does not infringe any IBM intellectual property right may be used instead.
However, it is the user's responsibility to evaluate and verify the operation of any
non−IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD−NC119
Armonk, NY 10504−1785
US

For license inquiries regarding double−byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19−21, Nihonbashi−Hakozakicho, Chuo−ku
Tokyo 103−8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON−INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non−IBM websites are provided for convenience
only and do not in any manner serve as an endorsement of those websites. The
materials at those websites are not part of the materials for this IBM product and
use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Director of Licensing

HSC.readme Page 7

IBM Corporation
North Castle Drive, MD−NC119
Armonk, NY 10504−1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

9.1 Trademarks

IBM, the IBM logo, and ibm.com are trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. A current list of IBM trademarks is
available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

9.2 Warranty

This package is provided on an "as is" basis. There are no warranties, express or
implied, including the implied warranties of merchantability and fitness for a
particular purpose. IBM has no obligation to provide service, defect correction,
or any maintenance for the package. IBM has no obligation to supply any updates or
enhancements for the package to you even if such are or later become available.

