
CICS Web Interface -
Templates In Memory, Improving performance

and Management

Version 1.0.2

31 October 2000

Edward McCarthy
DBDC System Specalist

IBM GSA
Canberra
Australia

Take Note!

Before using this report be sure to read the general information under "Notices".

Second Edition, October 2000

This edition applies to Version 1.0.2 of CICS Web Interface - Templates In Memory, Improving
performance and Management and to all subsequent releases and modifications unless otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 2000. All rights reserved. Note to US
Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

CICS Web Interface - Templates In Memory, Improving performance and Management

ii

Contents

11
Overview

- -

11
Introduction

- -

11Chapter 4 - CPSM Template Management -

10Chapter 3 - Helpful Programs for Encode Processing -

9Chapter 2 - DFHWBEP - Web Error Handling Program -

8
SCWIMAP

- -

8
SCWICOND

- -

8
SCWITDQI

- -

8
SCWIDYNI

- -

8
SCWIDYNC

- -

7
SCWIMEMI

- -

7
SCWIHRDR

- -

7
SCWIHLDR

- -

4
SCWIHREF

- -

4
Programs

- -

2
User Maintained Data Table

- -

1Chapter 1 - HTML in Memory -

viiBibliography -

viPreface -

vSummary of Ammendments -

ivNotices -

CICS Web Interface - Templates In Memory, Improving performance and Management

iii

Notices

References in this report to IBM products or programs do not imply that IBM intends to make these
available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is distributed
“asis”. The use of this information and the implementation of any of the techniques is the responsibility
of the reader. Much depends on the ability of the reader to evaluate these data and project the results
to their operational environment.

The performance data contained in this report was measured in a controlled environment and results
obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both:

� CPSM

� CICS

� IBM

� REXX

� MVS/ESA

� OS/390

� SupportPac

� Transaction Server

Other company, product, and service names may be trademarks or service marks of others.

CICS Web Interface - Templates In Memory, Improving performance and Management

iv

Summary of Amendments

Usage clarification added31 October 2000
Initial release11 May 2000

ChangesDate

CICS Web Interface - Templates In Memory, Improving performance and Management

v

Preface

To minimise the time taken to include HTML into a document when using the CICS DOCUMENT SET
TEMPLATE API, the HTML can be loaded into a CICS User Maintained Data Table, a UMDT. This
SupportPac explains how this is done using a set of programs developed by Edward McCarthy of IBM
Australia.

This document is spilt into four chapters covering the following topics:

� Chapter 1 - HTML in Memory

� Chapter 2 - DFHWBEP (Web Error Handling Program)

� Chapter 3 - Helpful Programs for Encode Processing

� Chapter 4- CPSM Template Management

CICS Web Interface - Templates In Memory, Improving performance and Management

vi

Bibliography

� CICS Internet Guide, SC34-5445

� CICS Application Programming Reference, SC33-1688

CICS Web Interface - Templates In Memory, Improving performance and Management

vii

Chapter 1 - HTML in Memory

Introduction

HTML is stored as members in a Partitioned Data Sets, PDS. This allows application development
staff to easily edit the HTML in the PDS using the standard ISPF editor. However if the CICS API that
inserts templates has to access the HTML in a PDS, this will involve a relatively long process, as the
data would be read from DASD.

By loading these HTML templates into memory, when the API inserts a template, the access will be to
memory, providing the fastest access possible.

Two CICS regions are used to provide a CICS Web Interface environment. One region executes the
actual CICS Web Interface code, while the second region is used to perform the process of loading
the HTML into the UMDT. This second region is also used to dynamically refresh the HTML in the
UMDT if the original member should be changed.

The second region is required as the process of loading and refreshing the HTML in the UMDT
involves calling a program which performs dynamic allocation. The dynamic allocation process
causes a wait in the region while it is processed, which would impact on any transactions that
happened to be running at the time. By having this process in a second region, the other region that is
running the CICS Web Interface is not affected.

A program is invoked during PLT whose task it is to load the HTML into the UMDT. This implies an
order in the way in which these two regions are started. The region that loads the HTML needs to be
started first, when it is has completed startup and all the HTML has been loaded, then the region that
runs the CICS Web Interface can be started.

With the HTML stored in a UMDT, a program is needed to read the HTML from the UMDT when the
API is used. The program that does this is the SCWIHRDR program. Each DOC type definition
installed in the region, specifies the SCWIHRDR program as the exit program to be invoked. When
the CICS DOCUMENT INSERT TEMPLATE API is called, CICS will check the DOC definition installed
in the region for the template and invoke program SCWIHRDR.

All the REXX/CICS EXECs supplied in the SupportPac must be placed in a PDS under the CICEXEC
DDname. For example, if they are placed in a PDS called MYNAME.CA8GPDS then the JCL should
be as follows:

//CICAUTH DD DISP=SHR,DSN=CICSTS13.REXX.SCICCMDS
//CICEXEC DD DISP=SHR,DSN=CICSTS13.REXX.SCICEXEC
// DD DISP=SHR,DSN=MYNAME.CA8GPDS
//CICUSER DD DISP=SHR,DSN=CICSTS13.REXX.SCICUSER

CICS Web Interface - Templates In Memory, Improving performance and Management

1

User Maintained Data Table

This data table used to store the HTML requires a typical CICS file definition, for example:

 Name SCWIHTML Version 2

 Description CWI - HTML - User Table - Test

 Time Stamps Created: 1999/07/26 10:48 Changed: 1999/07/26 10:48

 User Data

VSAM Parameters

 Dsname Data set name

CICSTS13.CICS.RUNTIME.CWI.TEST.SCWIHTML

Password User access password

 Rlsaccess NO CICS opens files in RLS mode (YES,NO)

 Lsrpoolid 1 Local shared resource pool (1-8, NONE, blank)

 Readintegrity UNCOMMITTED Read level(UNCOMMITTED,CONSISTENT,REPEATABLE)

 Dsnsharing ALLREQS Dataset sharing (ALLREQS,MODIFYREQS)

 Strings 20 Concurrent file requests (1 - 255, blank)

 Nsrgroup Group name for VSAM data set

 Remote Attributes

 Remotename Remote file name

 RemoteSystem SYSIDENT for Remote System

 Remote and CF Datatable Parameters

 Recordsize 20000 Record size (1 - 32767, blank)

 Keylength 12 Key length (1 - 255, blank)
(1 - 16 for CF Tables)

 Initial Status

 Status ENABLED Status (ENABLED,DISABLED,UNENABLED)

 Opentime FIRSTREF Open time (FIRSTREF, STARTUP)

 Disposition SHARE File disposition (SHARE, OLD)

 NSR Buffers

 Databuffers 21 Number of data buffers (2-32767, blank)

 Indexbuffers 20 Number of index buffers (1-32767, blank)

CICS Web Interface - Templates In Memory, Improving performance and Management

2

 Datatable Parameters

 Table USER Data table type (NO, CICS, USER, CF)

 Maxnumrecs 5000 Max entries in data table ...
(NOLIMIT or 1-99,999,999)

 CF Datatable Parameters

 CFDTpool Name of coupling facility data table pool

 Tablename Data table name

 Updatemodel LOCKING Update model (LOCKING or CONTENTION)

 Loadtype NO Whether file loads table (YES or NO)

 Record Format

 Recordformat VARIABLE Record format (VARIABLE, FIXED)

Operations

 Add YES Records can be added to file (YES,NO)

 Browse YES Records retrieved sequentially (YES,NO)

 Delete YES Records can be deleted (YES,NO)

 Read YES Records can be read (YES, NO)

 Update YES Records can be updated (YES,NO)

Auto Journalling

 Journal NO Journal number (NO, 1-99, blank)

 Jnlread NONE Read ops in jrnl (NONE,ALL,READONLY,UPDATEONLY)

 Jnlsyncread NO Auto journalling for read (YES,NO)

 Jnlupdate NO Rewrite/Delete oprs record on jrnl (YES,NO)

 Jnladd NONE Add ops recorded on jrnl(NONE,AFTER,ALL,BEFORE)

 Jnlsyncwrite NO Auto journalling for write (YES,NO)

 Recovery Parameters

 Recovery NONE Type of recovery (NONE,ALL,BACKOUTONLY)

 Fwdrecovlog NO Journal Name used for recovery (NO, 1-99, blank)

 Backuptype STATIC CICS VSAM file backup type (STATIC,DYNAMIC)

 Security

 Ressecnum Resource security value (0-24,PUBLIC,blank)

CICS Web Interface - Templates In Memory, Improving performance and Management

3

Programs

SCWIHREF

Language: Assembler

This program is the primary driver of the process to load HTML into the UMDT. It is used in two ways.
The first way is from PLT to cause all HTML to be loaded into the UMDT. The second way is from a
CICS transaction called SWHR, to allow for one of more HTML members in the UMDT to be
refreshed.

When this program is invoked it determines if it has been called during PLT. If it has been called
during PLT it will use the CICS API to determine all the DOC type definitions that are installed in the
region. The name of each DOC definition is written to a temporary storage queue. The program then
called a REXX program called SCWIHLDR. Note that the REXX program is invoked by building a
commarea with the name of the REXX in it, and then linking to a program called CICREXR. The
REXX program SCWIHLDR then controls the process of loading the HTML into the UMDT.

If the program was not called from PLT, it assumes that it is called via a CICS transaction. The
transaction name is SWHR, and when used is invoked with a parameter specifying the names of the
HTML members to be refreshed. For example typing:

SWHR CIRGA*

means that all HTML templates that start with the characters CIRGA are to be refreshed. Note there
is a check in the REXX program which requires that at least three specific characters be entered, that
is, SWHR * will not work.

When the program is called from the SWHR transaction, it still writes to temporary storage queue the
names of all installed DOC templates to a temporary storage queue. The queue name and the mask
value are passed to the REXX. When control returns from the REXX, the program displays a map
showing the result of the refresh.

Note that when SWHR is run from a CICS region, it is not likely to be run in the same region that
actually loaded the HTML into the UMDT. Typically the SWHR transaction would be run in a region
that a user could logon to normally. Thus when the SCWIHREF program is invoked this way, it does
not LINK to CICREXR, but rather LINKs to program SCICREXR. A program definition is required for
SCICREXR which specifies that this a distributed program link to program CICREXR in another CICS
region. Also, this implies that all the DOC definitions are installed into the region where SWHR is run,
as when program SCWIHREF runs, it will be using the API to determine what DOC type definitions
exist in the region.

Sample program defintion for SCICREXR is shown below:

CICS Web Interface - Templates In Memory, Improving performance and Management

4

Name SCICREXR Version 1

 More: +
Description CICS - Remote routing for REXX

Time Stamps Created: 1999/06/09 15:53 Changed: 1999/07/26 12:16

User Data

Language ASSEMBLER ASSEMBLER,C,COBOL,LE370,LEVSE,PLI,RPG,N/A

Reload NO New copy of program loaded (NO, YES)

Resident NO Resident status (NO, YES)

Usage NORMAL Storage release (NORMAL, TRANSIENT)

UseLPAcopy NO Program used from LPA/SVA (NO, YES)

Status ENABLED Program status (ENABLED, DISABLED)

Cedf YES CEDF available (YES, NO)

Datalocation ANY Data location (BELOW, ANY)

Execkey CICS Program key (USER, CICS)

Executionset FULLAPI Program run mode (FULLAPI, DPLSUBSET)

Remotesystem AW09 CICS region for shipped DPL request

Remotename CICREXR Program name in remote CICS region

Transid SDIW Tranid for remote CICS to attach

Rsl Resource security value(0-24,PUBLIC,blank)

Dynamic NO Dynamic routing (NO, YES)

Concurrency N/A Concurrency (N/A, QUASIRENT, THREADSAFE)

JVM NO Java Virtual Machine (NO, YES, DEBUG)

JVMClass Java Virtual Machine Class

Name SDIW Version 1

 Description CICS - CWI - Dyn Aloc via REXX

 Time Stamps Created: 1998/09/09 12:35 Changed: 1998/09/09 12:35

 User Data

CICS Web Interface - Templates In Memory, Improving performance and Management

5

Sample transaction defintion for SDIW is shown below:

Program DFHMIRS Name program to process transaction

 Twasize 4096 Transaction work area size (0-32767, blank)

 Profile RUIER5 Profile definition name

 Partitionset Application partition set (name, KEEP, OWN)

 Status ENABLED Transaction status (ENABLED, DISABLED)

 Taskdataloc ANY Task storage location (BELOW, ANY)

 Taskdatakey USER Task storage key (USER, CICS)

 Storageclear NO Clear task life-time storage (YES, NO)

 Runaway SYSTEM Max tasktime (SYSTEM, 0-2700000, blank)

 Shutdown DISABLED Status during shutdown (DISABLED, ENABLED)

 Isolate YES Isolate user storage (YES, NO)

Sample output from running the SWHR trans is show below:

------------------------ HTML Instorage Refresh ------------------------

 HTML Refresh Result:

HICHR001I HTML Refresh for: ACSSNP*

6 matches refreshed

ACSSNPE1 ACSSNPE2 ACSSNPI1 ACSSNPI2 ACSSNPT1 ACSSNP12

CICS Web Interface - Templates In Memory, Improving performance and Management

6

SCWIHLDR

Language: REXX

This program expects to be passed a commarea. The commarea will contain the name of a
temporary storage queue. The temporary storage queue contains the names of all templates installed
in the region. The commarea will also contain a mask which in effect specifies what HTML members
are to be refreshed.

The program reads through the temporary storage queue to determine if the name in the queue item
matches the mask passed in the commarea. If the name is a match then the REXX performs the
following logic:

Call program SCWIMEMI to determine which dataset allocated to SCWIHTML contains the
HTML member to be loaded
Call program SCWITDQI to free TD Queue defn
Call program SCWIDYNC to invoke program SCWIDYNI

Program SCWIDYNI dynamically allocates the dataset and member
Call program SCWITDQI to dynamically define a TD Queue defnition which points to the DD
dynamically allocated
Uses a Do loop to read the HTML member from the TD Queue defn

The HTML is read into a buffer with a maximum length of 10000 bytes
Should the buffer fill, it is written to the UMDT
As many records of 10000 bytes as needed to store the HTML are written to the
 UMDT

When all the HTML for that member has been read from the PDS, a header record is written
to the UMDT. The header record specifies the total length of the HTML and how many
records in the UMDT are used to store the HTML for that member.

The REXX program will load each HTML member into the UMDT that matches the mask specified in
the passed commarea. If an error should occur, for example, there is no member in the PDS for a
specified DOC definition, then this halts the loading process. The REXX program passes back
information on the success of the HTML loading process to the calling program via the commarea.

SCWIHRDR

Language: Assembler

This program is invoked by CICS when the CICS DOCUMENT INSERT TEMPLATE API is called.
The commarea passed to it is documented in the CICS Web Interface manual. The commarea
passed will contain the name of the HTML template that is be inserted into the Document. This
program will then use this name as a key to read the UMDT to locate the HTML that corresponds to
this member.

SCWIMEMI

Language: Assembler

This program is called by the SCWIHLDR REXX. It is passed a commarea containing the name of
PDS member to be searched for. This program assumes that the PDSs to be searched are allocated
to DD SCWIHTML. The program builds a DCB for this DD card, then uses a BLDL macro call to
locate the dataset that contains the specified member, if any. It returns via the commarea the name of
the PDS containing the member.

CICS Web Interface - Templates In Memory, Improving performance and Management

7

SCWIDYNC

Language: Assembler

This program is called by the SCWIHLDR REXX program. It is passed a commarea containing
information about a dataset that is be dynamically allocated. This program then ‘calls’ the program
SCWIDYNI, note it does not EXEC CICS LINK to the SCWIDYNI program. It passes to SCWIDYNI
the commarea it was passed.

SCWIDYNI

Language: Assembler

This program is passes a commarea containing information about a dataset to be dynamically
allocated. Note the dataset information can be either for just a physical sequential dataset or for a
member of a partitioned dataset. This program builds the control blocks necessary to perform
dynamic allocation and then invokes SVC 99 to perform the dynamic allocation.

This program MUST be compiled as a normal Assembler language program (and NOT as a CICS
command level program).

SCWITDQI

Language: Assembler

The REXX program needs to be able to dynamically allocate and unallocate TD Queue definitions.
However REXX does not support the CICS API that perform this function. This program was written to
perform this function. It is called by the SCWIHLDR REXX. The commarea passed contains
information which specifies what is required. This program does the following:

Delete a TQ Queue defn
Define a TD Queue defn
Open a TQ Queue
Close a TD Queue

SCWICOND

Language: Assembler

This is a copy lib containing various Dsects used in the above programs.

SCWIMAP

Language: BMS Map

This is a BMS Map. It is used to display the results of a refresh request when the SWHR transaction
is used to drive the SCWIHREF program.

CICS Web Interface - Templates In Memory, Improving performance and Management

8

Chapter 2 - DFHWBEP - Web Error Handling Program

The IBM supplied web error handling program, DFHWBEP, is invoked by the CICS Web Interface
when it detects an error during processing of a request it has received. The supplied IBM sample
produces a very basic message.

The version of DFHWBEP supplied here, an assembler program, provides a more informative display
should an error occur. For example, if the user is not authorised to run a transaction, this version of
DFHWBEP display a message to that effect. The displays from this version of DFHWBEP are not just
a one line type error message, but rather a full HTML type page.

CICS Web Interface - Templates In Memory, Improving performance and Management

9

Chapter 3 - Helpful Programs for Encode Processing

The process of building a document to send back to a browser typically involves inserting HTML into
the document and the setting of symbols and their values to allow for symbol substitution. It is not
uncommon for these API calls to fail because for example the template is not defined or the symbol
data passed on the API call is invalid.

To assist in development and debugging, the encode program I used for building documents would
check the response code from the API calls. Where appropriate the encode program would link to a
program called SCWICOEH.

This program would attempt to recover gracefully from API failures. If for example the API to call to
insert a HTML TEMPLATE failed because there was no definition for the TEMPLATE installed in the
region, then a program called SCWICDOC would be called to dynamically create a definition in the
region for the missing template.

If the API call that failed was due to bad data passed for a symbol substituion call, then the
SCWICOEH would build a HTML display showing the commarea passed to the encode routine. This
HTML display would then be passed back to the encode program for it to display on the browser.

The code for SCWICOEH and SCWICDOC is supplied with this documentation.

CICS Web Interface - Templates In Memory, Improving performance and Management

10

Chapter 4 - CPSM Template Management

Introduction

CICS Transaction Server for OS/390 R1.3 supplied new APIs to allow the insertion of templates into
documents. This, however, required that for each template being used, that a DOC type definition
exist within the region. The DOC definition tells the CICS Web Interface how to access the template.

It does not take long for the number of templates to grow and this could become another definition that
CICS system programmers need to define manually, like transaction definitions.

This section describes a process that was setup to automatically manage the doc definitions.

Overview

This description assumes that CPSM is being used to manage the DOC type definitions in the CICS
environment.

There where four separate CICS environments involved referred to as Dev, Test, User and
Production.

Dev was the environment used by application programming staff to develop and test their programs.

Test was the environment used by testing staff to test that the programs developed by the application
staff met the requirements set out by the business area.

User was the environment used by the business staff to test the programs developed by applications,
just prior to their promotion to production.

Production is the production environment.

Each environment has it’s own HTML dataset. For example, if a programmer created a HTML
member called ABCDHOME, he would put it in the dev HTML PDS. It would then be copied to the test
HTML PDS, then the user HTML PDS and finally the production HTML PDS.

Programs where written in REXX, which used the CPSM APIs, to automate the management of the
DOC definitions in the CICS environment. Within CPSM, a Resgroup was defined to which all
DOCDEFs would be connected. These DOCDEFs where then installed by CPSM into every CICS
region via RASGNDEFs. Flags in the description area of each DOCDEF are used to control which
DOCDEFs should be installed into the dev, test, user and production environments.

In the description area of each DOCDEF in CPSM, the first five bytes are set as follows:

Byte 1 - Always E

Byte 2 - Set to P if member exists in the prod HTML PDS

Byte 3 - Set to U if member exists in the user HTML PDS

Byte 4 - Set to T if member exists in the test HTML PDS

CICS Web Interface - Templates In Memory, Improving performance and Management

11

Byte 5 - Set to D if member exists in the dev HTML PDS

Every morning at approximately 4am, a batch job is run. This batch job runs TSO in batch and
invokes a REXX called SCPSMDOC.

This REXX, SCPSMDOC, analyses the contents of each HTML PDS. It builds up a profile of each
member, determining which PDS the member belongs to. The REXX then uses the CPSM APIs to
determine what DOCDEFs are currently defined in CPSM. The REXX then reconciles the two
environments. This may entail adding new DOCDEF definitions, updating the description flags in the
DOCDEF definitions, or deleting a DOCDEF definition if the member no longer exists within any HTML
PDS.

This batch job thus fully automates the maintenance of the DOCDEFs with the CICS environments.

Other REXX programs called by SCPSMDOC are:

SCPSMGTH - used to get a CPSM thread

SCPSMGDD - used to get DOCDEF names currently defined to CPSM

SCPSMDID - used to get DOCINDEFs currently defined to CPSM

SCPSMDDM - used to add and delete DOCDEFs and DOCINDEFs

--- End of Document --

CICS Web Interface - Templates In Memory, Improving performance and Management

12

