
#solconnect13 



#solconnect13 

2 

Les étapes de la migration 
mainframe vers RTC 

Nicolas Dangeville 

dangeville.n@fr.ibm.com 

 

mailto:dangeville.n@fr.ibm.com


#solconnect13 

What is Rational team Concert? 
  RTC is more than just an Software Configuration Management system 

‒ Process, Planning and Work items coupled with an integrated SCM 

provide a complete solution 

‒ Ability to manage distributed and z/OS source in the same repository 

makes for a more integrated SCM solution 

‒ Migrating your existing SCM to RTC is only part of the job 

‒ Migration gives you the chance to review your current process to see how 
RTC or the full CLM solution can help integrate all your processes into a 

single tool 

 



#solconnect13 

Rational Team Concert terminology 
 

Stream Collection of components used to organize work, coordinate collaboration and integration, and capture the active 
configuration of each component. Related to a level in a hierarchy   (e.g., promotion levels, releases, etc) 

Component Collection of related artifacts (i.e., sourcefiles are logically organized into components) that have the same lifecycle 

Used to control access rights, facilitate sharing and reuse 

Theoretical limit: 50000 files 

Recommended: 1000 – 2000 files / component 

Repository 
Workspace 

Workspace for 1 user synchronized with a Stream and the "Sandbox" 
Situated on the RTC server  

Sandbox Workspace on the hard disk (e.g. local eclipse workspace).  
Note: Through the build or CLI you have jazz metadata but no eclipse metadata. 

For ISPF Client a Sandbox is a collection of data sets with the same HLQ.MLQ 

Change Set Contains a collection of consistent changes made to a configuration of a component. Means for flowing file and 
folder changes between repository workspaces and streams. 

Work Item Captures the tasks and issues to be addressed by the team members 

Associated with change sets created by the developer. 
Automatically and dynamically populate plans and reports  

Baseline Non-editable version of a component capturing an interesting point in time 
The baseline is performed implicitly when a Snapshot is taken 
Can be done manually on a given component  

Snapshot Collection taken of all component baselines for a stream or repository workspace capturing an interesting point in 
time 



#solconnect13 

Rational Team Concert terminology 
(cont) 
 

Load Action that copies selected files and folders from the repository workspace to the sandbox (eclipse workspace or 
MVS data sets) 

Accept Action that allows for synching the repository workspace reference with changes delivered to the stream by other 
developers 

Load of the accepted changes into the sandbox is automatically performed 

Note – you can also accept change sets from a WI 

Check-in Action that allows to save local changes into the repository workspace, within a Change Set  

Deliver Action to push the workspace changes from the workspace to the Stream 



#solconnect13 

Migration planning 
  

 The migration from a legacy mainframe SCM system to RTC 
involves several steps before you have an operational system.  

‒ Pre-migration 

‒ During the migration 

‒ Post-migration  

 



#solconnect13 

Pre-migration 
 

 Install RTC! 

 Create project areas 

 Define the structure of your streams 

 Define the structure of components in your stream 

 Define the delivery flow between streams 

 Identify the nature of the programs and the main language definitions 
you will need for your IT system 

 Create system definitions for data set definitions, language 
definitions and translators 

 Set translator variables 



#solconnect13 

Planning your Rational Team Concert 
solution  

 Various aspects of your current workflow will influence your final 
stream strategy, for example:  

‒ How do you plan to do version/release maintenance 

‒ How do you want to handle emergency fixes  

‒ Do you you require different integration levels for different teams. 

 Keep it simple when you first start 

‒ As teams work in RTC and get familiar with how the SCM works, you can 

define new streams that will support additional needs.  



#solconnect13 

Planning your Rational Team Concert 
solution  
 Where are you going to host your server and repository? 

‒ The RTC server can run on a multitude of environments 
• Windows, Linux, AIX, Unix, zLinux, z/OS, IBMi  

‒ The repository database can be hosted on a multitude of environments 
• DB2 on LUW, DB2 on zLinux, DB2 on z/OS, Microsoft SQL Server, Oracle to name a few 

‒ The server can be run on one system with the data base on another 
• eg: Server running on zLinux and database running on DB2 on z/OS 

‒ You need to choose the best topology for the size and complexity of your 
implementation 

‒ What are your current server administration skills? 



#solconnect13 

Define your projects areas 
  Project Area structure 

‒ 1 Project Area per line of business or application 
• This depends on the team structure & relationships between applications of 

the same LOB 

‒ 1 Common Project Area 
• To pool the RTC setting  

– Roles and Process, .. 

• To pool the shared definitions 
– System Definitions (Language Defs, Dataset Defs, etc.) 
– Build engines (?) 

• Propagation by inheritance to other PA  

• Defines the stream that publishes common components & frameworks 

• Access control  
– Read/write to Admins only  
– Read-only for all team members 



#solconnect13 

Define the structure of the streams 
 

 The stream maps to an application for an environment 

 A stream must be complete  

‒ That means that it contains all the dependencies needed by all the 

programs in the stream 

‒ Including common elements (framework)  

‒ Can include Components from another stream (from same or another 

Project Area) 

 



#solconnect13 

Hierarchy and Integration 
 



#solconnect13 

Project Area 

T0 

Stream Development 

version N + 1 

Stream Dev  

Team Appl1 

Stream Dev 

Team Appl2 

Stream Dev 

Team Appln 

T1 

Development Integration Quality Assurance 

Load 
Dev 

Load 
Int 

Load 
QA 

Timeline 
management 

Possibility of 

Automation 

Build 
Build 

Evolution of the streams over time 
 



#solconnect13 

Project Area 

Stream maintenance  

Prod  

version N 

Stream Development  

version N + 1 

Stream Dev 

Team Appl1 

Stream Dev 

Team Appl2 

Stream Dev 

Team Appln 

Project Area 

Stream  

Maintenance  

Prod  

version N 

Stream Development  

version N + 2 

Stream Dev 

Team Appl1 

Stream Dev 

Team Appl2 

Stream Dev 

team Appln 

Stream Maintenance 

Prod  

version N + 1 
Rename 

Project Area 

Stream Maintenance 

Prod  

version N + 1 

Evolution of the streams over time 
 

Stream Dev 

Team Appl1 

Stream Dev 

Team Appl2 

Stream Dev 

team Appln 

Stream Development  

version N + 2 



#solconnect13 

Components 
  Which logical units make up the applications (components)? 

‒ Put related artifacts or projects together so components make sense from code 

reuse, application build operations and team sharing perspective 

 What are the common source elements used across several 
applications/modules? 

‒ Define components to be reused across applications, so they can be maintained by 

certain teams, or to be shared for all teams within a project area. 

 Your development teams will work on a set of components for which 
they are responsible. 

‒ When structuring the components along with architectural details bear also in mind 

the organizational structure that will support it. 

 



#solconnect13 

The component 
  Corresponds to a part of an application  

‒ Divided by a topology of component types 

 Component is owned by a team  

 Single Platform 
‒ Simple grouping criteria 

‒ Stream by Platform / Team 

‒ A lot of components if dealing with a complex system 

 Multi-Platform 
‒ No de-synchronization between client and server 

‒ Forces the same lifecycle for all technologies  

 Focus of attention for the copybooks 
‒ Copy for public interface  

• By public interface we mean …Copy used by an application to call another application modules  
‒ Copy framework (cross-cutting) 

• By framework we mean … copy such as authentication or security related, not owned by a particular 
application 



#solconnect13 

Common Stream 

API-1* 

API-2 

API-3 

Stream Appl1 

API -1* 

Pgm for 1 

Copy frame 

Public Interface 

Private  

Implementation 

Stream Appl2 

API-2 

Pgm for 2 

Copy frame 

API-1 

Stream Appl3 

API-3 

Pgm for 3 

Copy frame 

API-1 

Publish of the 
new baseline of 

API-1 

Notify teams of 
changes of API-1 

Copy frame 

Project Area, Stream and Component Structure 
 Workflow for publishing & adopting shared components 



#solconnect13 

Common Stream 

API-1* 

API-2 

API-3 

Stream Appl1 

API -1* 

Pgm for 1 

Copy frame 

Public Interface 

Private  

Implementation 

Stream Appl2 

API-2 

Pgm for 2 

Copy frame 

API-1 

Stream Appl3 

API-3 

Pgm for 3 

Copy frame 

API-1 

Publish of the 
new baseline of 

API-1 

Notify teams of 
changes of API-1 

Copy frame 

 Project Area set up 

Common Project Area 

Project Area Area 1 Project Area Area 2 

Project Area, Stream and Component Structure 



#solconnect13 

Common Stream 

API-1 

API-2 

API-3 

Stream Appl1 

API -1 

Pgm for 1 

Copy frame 

Stream Appl2 

API-2 

Pgm for 2 

Copy frame 

API-1 

Stream Appl3 

API-3 

Pgm for 3 

Copy frame 

API-1 

Copy frame 

 Ownership of components 

Common Project Area 

Project Area Area 1 Project Area Area 2 

Project Area, Stream and Component Structure 



#solconnect13 

20 

 Data set definitions describe data sets 
involved in the build process 
– E.g., a COBOL compiler data set definition contains the 

name of the actual compiler PDS and member  

 Translators define a single step in the build 
process.  
 

It’s in the translator that you specify that the build will 
perform a compilation, link-edit, etc. 

– E.g., a COBOL compilation translator contains a 
reference to the compiler data set definition, default 
compiler options, required DD concatenation and 
allocations, and a maximum successful return code 
 

 Language definitions order the steps in the 
build process 
– E.g., a language definition for a main program contains 

references first to the COBOL compilation translator and 
second to the link-edit translator 

Language definition 

(How to build a file) 

Translator 

(Build step) 

Data set definitions 

(Data from/to for build) 

Create System Definitions 
 



#solconnect13 

Translator comparison to JCL using data set definitions 
JCL Line Corresponding data 

set definition name 

COBOL    EXEC PGM=IGYCRCTL,REGION=2048K, COBOL Compiler 

XX            PARM=('EXIT(ADEXIT(ELAXMGUX))', 

XX            'ADATA', 

XX            'LIB', 

XX            'TEST(NONE,SYM,SEP)', 

XX            'LIST', 

XX            'FLAG(I,I)'&CICS&DB2&COMP) 

No DSD 

XXSTEPLIB  DD DISP=SHR, 

… 

..JCL - DISP=SHR,DSN=COBOL.V4R2.SIGYCOMP 

…JCL- DISP=SHR,DSN=RDZ.V8R0M3.SFEKLOAD 

…JCL-  DISP=SHR,DSN=CICSTS.V4R1.CICS.SDFHLOAD 

…JCL- DISP=SHR,DSN=DB2.DB40.SDSNLOAD 

 

 

COBOL.SIGYCOMP 

WDZ.SFEKLOAD 

CICS.SDFHLOAD 

DB2.SDSNLOAD 

COBOL.SYSLIB DD DISP=SHR, 

        DSN=F057699.TEST.RTC.COPY 

Copybooks 

COBOL.SYSIN DD DISP=SHR, 

          //        DSN=F057699.TEST.RTC.COBOL(EPSCMORT) 

<INPUT> represents the source 
file associated with the language 
definition being built  

//COBOL.SYSLIN DD DSN=&&OBJ,SPACE=(TRK,(3,3)), 

//             UNIT=SYSDA, DISP=(NEW,PASS) 

//             DCB=(RECFM=FB,LRECL=256,BLKSIZE=2560) 

Temporary file (object deck) 

SYSUT1   DD UNIT=SYSALLDA,SPACE=(CYL,(1,1)) 

SYSUT2   DD UNIT=SYSALLDA,SPACE=(CYL,(1,1)) 

SYSUT3   DD UNIT=SYSALLDA,SPACE=(CYL,(1,1)) 

SYSUT4   DD UNIT=SYSALLDA,SPACE=(CYL,(1,1)) 

SYSUT5   DD UNIT=SYSALLDA,SPACE=(CYL,(1,1)) 

SYSUT6   DD UNIT=SYSALLDA,SPACE=(CYL,(1,1)) 

SYSUT7   DD UNIT=SYSALLDA,SPACE=(CYL,(1,1)) 

Temporary file 



#solconnect13 

Translator Variables 
 

 Variable overrides 

 



#solconnect13 

Migration 
 

 Define the baselines that you want to import so you can capture 
history in the RTC SCM 

 Import a baseline from the legacy system and dispatching them to 
the right component or project 

‒ Methods of migration, zimport, ISPF Client 

 Iterate to capture the needed history till the current version 

 Initially migrate a subset of modules that cover all the different types 
of source code 

‒ Use this subset to test your builds to make sure language definitions are 

correctly defined and that everything that needs to be built actually does 



#solconnect13 

Migrating your source code to Rational 
Team Concert 

 RTC provides an import utility called zimport 

‒ The zimport SCM command line tool (aka “mass import tool”) imports 
your PDS members directly into the repository 

• Automatically creates the proper zComponent project structure 

• Automatically creates a data set definition based on characteristics of data set on host 

• Automatically (optionally) associates language definitions with each member 

‒ You can build a source code version history of your major releases by 

running a series of zimports with the same repository workspace 

 You can also use the RTC ISPF Client to import a new PDS 



#solconnect13 

Migrating your source code to Rational 
Team Concert 

 zimport preparation of data 
‒ By Component  

• Separate out by type into a PDS 
– Cobol 

– Cobol/DB2 

– Assembler 

‒ Line numbers if they exist must be stripped before import If they are getting re-gened in 
PDS – also it look cleaner  

• Cobol 
– 72-80 can leave if there are comments you want to keep 

– 1-7    

– Others? 

‒ zimport will scan the entire catalog looking for the datasets you define   
• Make them a unique HLQ - Userid as HLQ for example 

‒ Gotchas 
• Zimport will try to recall dataset from HSM. When it scans the catalog and does not find 

the dataset - It will fail over and over 
• Line numbers will cause RTC merge to fail 

 



#solconnect13 

Migrating your source code to Rational 
Team Concert 
 What to import? 

‒ All source, recommendation is that the production baseline versions are 

imported 

 Cobol, PL/I, JCL, Procs, etc 
• Adding in all versions will be very costly and time consuming 

– If the IBM services team is engaged they have additional tools to help 

» For example - A procedure has been developed to off load older versions that 
can be viewed through ISPF when necessary 

‒ SCLM Language definitions, Endevor processors or Changeman 
skeletons need to be converted to RTC definitions 

• Language Definitions 

• Translators 



#solconnect13 

Migrating your source code to Rational 
Team Concert 

 Once zimport has been complete you can set up the rest of your 
system definitions 

‒ Create any additional Data set definitions 

• zimport will have created data set definitions for “inputs” 
– COBOL, PL/I, ASM, JCL 

• Use RTC dialogs to create data set definitions for “outputs” 
– OBJ, DBRM, LOAD 

• Also create data set definitions for temporary files 



#solconnect13 

Migrating your source code to Rational 
Team Concert 

 Once you have all your translators and language definitions defined, 
you can assign them to the relevant files if you didn’t do that in zimport 



#solconnect13 

Post-migration 
 

 Migrate your builds 

 Tune the system definitions by running builds on a representative 
subset of your applications 

‒ You need to ensure all your code can be built and your language 
definitions are correctly defined 

 Prepare the system to trigger dependency builds that involve only the 
new developments in RTC: 

 Run combination of builds and simulation builds to create the build 
maps 

 Populate your stream hierarchy 

 Populate the build maps in your stream hierarchy 

 



#solconnect13 

Migrating your build to Rational Team 
Concert  

 RTC supports capabilities for the operations of building, promoting 
your code, packaging and deploying it, as such; 

‒ You will need to understand the current build process of your 

applications: what are different technologies in use for building your 

applications and how you build them. 

‒ “Stages” of your source code and where do you build applications, just at 
DEV or at various levels of the hierarchy 

‒ How are your applications deployed, with all the details of your target 

deployment locations and your runtime locations 



#solconnect13 

Migrating your build to Rational Team Concert 
 Build Definition 

‒ Contains the build characteristics  
• Repository workspace that flows to team stream containing the source 

code 
– Repository workspace must be readable by the build user 

• What do I want to build? Whole repository workspace or subset of 
programs 

• Language definitions to be built 

• Sandbox location 

 

 Build Engine 
‒ RTC representation of a process running on a build machine that 

executes build requests 

 

 Build Agent 
‒ Executes the build 

‒ Located on z/OS (for mainframe) 

‒ Accesses RTC to retrieve source code and other information 

 

 Build request and build result 
‒ Representations of the request to run a build and the output from the 

build run 



#solconnect13 

How it all hangs together 

Build  
Definition 

1,N 

Build 
 Workspace 

PDS HLQ 

Stream 
(flow) 

Build Engine 

1,N 

1,1 

1,1 

1,1 
Language  
definition 

File Extension 

Data Set  
definition 

1,N 0,N 

0,N 

Tasks run on the host, such 

as compilation. A build can 

handle several different tasks 

in the order shown. 

Allow you to 

automatically 

associate a 

behavior with a 

type of file in the 

RTC repository 

Corresponds to a STEP 

in the process to run on 

the host 

Contributes to the step 

to execute. 

Corresponds to  

programs / files / PDS 

lines used by EXEC, 

DD, SYSIN,… as in JCL  
 

0,N 

Translator 

Component 

     zProject 

           zOSSRC 

               zFolder 

                      zFile1 

                      zFile2 

                 

0,N 

1,1 

ATTENTION 
The name of the 

directory on USS 

must be unique 

to each build 

definition. 

USS Load  
Directory 

1,1 



#solconnect13 

Simulation Build 
   When you initially migrate you may not want to rebuild all your 

source 

‒ This is a time consuming task 

‒ If you rebuild you really need to retest 

 You only want to build things that have changed since your migration 

 Simulation build will go through your code and create/update build 
maps so that the code you migrate looks current 

 Any subsequent changes will then force a rebuild of just the changed 
modules   

New in  
RTC 4.0.4 



#solconnect13 

Additional Considerations 
  Security 

‒ https://jazz.net/wiki/bin/view/Main/ZosBuildAgentSec  

‒ http://publib.boulder.ibm.com/infocenter/clmhelp/v3r0m1/index.jsp?topic=%2Fcom.i
bm.team.build.doc%2Ftopics%2Fr_antz_security.html 

‒ https://jazz.net/wiki/bin/view/Main/DependencyBuildScenarioOpenSSLSetup 

 ISPF Client set up 
‒ https://jazz.net/help-

dev/clm/topic/com.ibm.jazz.install.doc/topics/c_client_ispf_installation.html 

 Promotion 

 Deployment 

 RDz Integration 

https://jazz.net/wiki/bin/view/Main/ZosBuildAgentSec
http://publib.boulder.ibm.com/infocenter/clmhelp/v3r0m1/index.jsp?topic=%2Fcom.ibm.team.build.doc%2Ftopics%2Fr_antz_security.html
http://publib.boulder.ibm.com/infocenter/clmhelp/v3r0m1/index.jsp?topic=%2Fcom.ibm.team.build.doc%2Ftopics%2Fr_antz_security.html
https://jazz.net/wiki/bin/view/Main/DependencyBuildScenarioOpenSSLSetup
https://jazz.net/help-dev/clm/topic/com.ibm.jazz.install.doc/topics/c_client_ispf_installation.html
https://jazz.net/help-dev/clm/topic/com.ibm.jazz.install.doc/topics/c_client_ispf_installation.html
https://jazz.net/help-dev/clm/topic/com.ibm.jazz.install.doc/topics/c_client_ispf_installation.html


#solconnect13 

Additional Resources 
  Jazz.net 

‒ https://jazz.net/library/ 

• Articles, videos, tips, documentation, and more 

‒ https://jazz.net/library/#type=video&project=rational-team-concert 

• Videos on various RTC features. Just search for keywords 

 zimport additional resources 
‒ System z mass import tool overview (Information Center) 

‒ Getting my MVS files into the RTC repository (and getting them back out again) 

 Developerworks resources on migration 
‒ http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-

zos-application-development/index.html 

 

 

https://jazz.net/library/
https://jazz.net/library/
https://jazz.net/library/
https://jazz.net/library/
https://jazz.net/library/
https://jazz.net/library/
http://pic.dhe.ibm.com/infocenter/clmhelp/v3r0m1/index.jsp?topic=%2Fcom.ibm.team.scm.doc%2Ftopics%2Fc_RTCz_massimpovervu.html
https://ryehle.wordpress.com/2012/04/04/getting-my-mvs-files-into-the-rtc-repository-and-getting-them-back-out-again/
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html
http://www.ibm.com/developerworks/rational/library/migrate-rational-team-concert-zos-application-development/index.html


#solconnect13 

© Copyright IBM Corporation 2013.  All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, 
express or implied.  IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials.  Nothing contained in these materials is intended to, nor shall have 
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement  governing the use of IBM 
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.  Product release dates and/or capabilities 
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future  
product or feature availability in any way.  IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services  
are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product,  
or service names may be trademarks or service marks of others. 

http://www.ibm.com/software/fr/rational/ 

http://www.ibm.com/software/fr/rational/


#solconnect13 

Inscrivez-vous vite ! 

www.ibm.com/software/fr/rational/technicalsu
mmit  

http://www.ibm.com/software/fr/rational/technicalsummit

