
By the Pool (with the Kids)

Andy Ward
Principal Software Consultant – BMC Software



Agenda

› The benefits of well tuned buffer pools

› Size isn’t everything

› Useful IFCIDS

› Collecting the data

› Analysing the data



Caveats

› DB2 V7
– Unless otherwise stated

› Not concentrating on individual methods to collect data
– Too many monitors and methodologies

› Concentrating on local pools

› This is an overview
– 45 minutes is too short a time to explore every area



Why Tune Pools?



Pool Tuning – The Benefits

› A reduction in IO
– Hopefully!

› A reduction in IO wait times
– In turn leading to a reduction in response times and greater throughput

› A reduction in CPU
– Asynchronous IO charged to DB2
– Synchronous IO charged to the application

› A potential increase in throughput

› Potentially smaller pools delivering better performance
– Possible paging reduction



Benefits – The Evidence 1



The Wait Time in Real Terms

› Imagine a microsecond (us) equates to 1KM

› You are driving to see a friend
– Taking the 100% hit ratio example you need to drive 59KM
– When the hit ratio is 0% you would need to drive 132000KM

That’s over 3 times round the world!



Benefits – The Evidence 2



The CPU Cost of an I/O

› An excellent presentation contains information on this subject
– Akira Shibamiya – IDUG 2002 – Session G3

› Using the previous examples

› The average CPU time for a 0% hit ratio was 157us for 18 fetches
– That equates to 2826us

› The average CPU time for a 100% hit ratio was 41us for 18 fetches
– That equates to 738us

› Each select executed 21 synchronous reads
– However the 0% hit ratio select also read 89 prefetch pages



The CPU Cost of an I/O cont’d

› The only difference between the two queries was physical I/O

› Here is the maths…
– The fetch I/O CPU difference

• 2826us – 738us = 2088us
– Minus I/O CPU time for the asynchronous I/O

• 2088us – (7us * 89) = 1465us
– Divide this figure by the 21 synchronous I/O’s

• 1465us / 21 = 69.76us per synchronous I/O

› The accepted figure (z900) is 33us per synchronous I/O (4K page)

› Test this at your shops for a busy transaction and calculate the figure
– With this information true monetary savings can be calculated



Smarter Tuning



Size Is Not Everything…

› Although it is important

› Other factors critical to well tuned pools

– Grouping similarly accessed objects together
• The rest of this presentation will concentrate on how to gather and analyse data to 

allow you to do this
– Setting sensible thresholds
– Collecting valid and pertinent data

• Don’t just tune your pools for online access
• Before and after comparison

– Not taking your eye off the ball
– Isolate new objects

• Have development teams provide good CRUD analysis 



The DB2 Administration Guide

“You might want to put tables and indexes that are updated 
frequently into a buffer pool with different characteristics from 
those that are frequently accessed but infrequently updated.”

› So why not expand on this?
– Become more granular in object placement
– Isolate

• Large and small objects
• Randomly accessed objects
• Sequentially accessed objects
• Heavily updated objects
• Indexes and Tablespaces
• Combinations of the above

› IBM certainly give us enough pools to do this
– But how do I analyse access patterns?



DSNWMSGS

› Member found in hilvl.DSNSAMP

– Contains details of IFCID content

– Some very useful pool tuning information

– Information on how to load description data into DB2 tables for easy access



Useful IFCIDS

› 199 – Buffer pool dataset statistics
– Monitor trace or Statistics class 8
– Same information as displayed with –DIS BP LSTATS command
– Interval controlled by ZPARM DSSTIME (default 5 mins.)

› 6 – Beginning of a read I/O operation
– Monitor trace or Performance class 4
– Details pool and type of I/O

› 7 – End of read I/O operation
– Monitor trace or Performance class 4
– Number of pages read, can be 0 (100% hit ratio) 



Useful IFCIDS cont’d

› 8 – Beginning of a synchronous write
– These should be avoided at all costs
– Usually indicates IWTH (97.5% in use pages) has been exceeded

› 10 – Start of an asynchronous write
– For both IFCID 8 & 10 you can collect IFCID 9 (write completion) for completeness if 

required

› 3 - DB2 accounting record
– A host of elapsed and CPU time thread information

› 2 – DB2 Statistics record
– Accumulated values since DB2 start time
– Buffer Manager data section
– Interval controlled by ZPARM STATIME (default 30 mins.)



Useful IFCIDS cont’d

› 198
– Exceptionally useful for pool tuning
– Not associated with any trace class

• Need to specifically list it
– Records every getpage – be wary of overhead

• Also notes where the getpage was resolved from
– Good for calculating working set size

• More on this later



Thresholds

› DMTH
– 95% full
– I/O issued for each row retrieved

› IWTH
– 97.5% full
– Synchronous writes to log and disk

› VPSEQT
– Number of buffers available for prefetch
– Skip sequential problems? 
– Default 80%

› DWQT
– Default 50%
– Percentage of in use pages prior to deferred write being initiated



Thresholds

› VDWQT
– Default 10%
– Number of in-use pages for a single object prior to DW being initialised
– Checkpointing!!



What to Collect?



What to Collect?

› In an ideal world ‘everything pertinent’
– Bufferpools are generally speaking ‘a subsystem wide resource’

› Overhead is a big consideration though
– If collecting everything is just not practical

• Concentrate on critical applications first
– Isolate by plan

• Decide on the level of your tuning effort
– More detail, more benefits, more time, more overhead

› For effective tuning before and after statistics are required
– Simple bufferpool displays can be extremely useful for assessing tuning 

success



Data Collection Overhead

› Virtually impossible to give a ball park figure
– Overhead dramatically varies depending on throughput, SQL, number of objects, 

IFCIDS being selected, filtering etc.

› A monitor trace is preferred
– Only a single trace
– Output to a flat file
– No SMF/GTF overhead
– It requires a DB2 monitor or user written program
– Use class 30-32 to enable specification of only the IFCIDS required

› If using a monitor trace…
– IFCID 3 provides:

• Field QIFAAIET – accumulated elapsed time for IFI calls
• Field QIFAAITT – accumulated elapsed CPU for IFI calls



What The IFCIDS Give You

› IFCID 3 can help post tuning
– Doesn’t offer the granularity required for effective tuning
– Should see improvements in wait times, especially I/O

› IFCID 2 useful subsystem wide figures
– Again no granularity 
– Bear in mind the majority of these values are accumulated from DB2 start
– Good ball park figures

• Positive tuning should see I/O per getpage (syncIO/Getpages) decreasing

› IFCID 6
– No prefetch I/O if trace restricted by plan or authid

• However async I/O doesn’t generally impact applications
– Reread percentage
– Type of I/O’s



What The IFCIDS Give You

› IFCID 7
– In conjunction with IFCID 6 can be used to determine time between rereads, 

this is useful for page residency time goals

› IFCID 8
– There should ideally be none of these
– Cheaper to monitor for them in IFCID 2

• However IFCID 8 will highlight DBID & OBID which may indicate a problem space

› IFCID 198
– Probably the most important IFCID for this type of tuning
– Provides getpage, relpage, BP hit and update information



Managing the Collection

› Use trace classes 30-32 and specify only the IFCIDS required

› Define periods of interest
– Include both online and batch
– Don’t neglect unusual periods (i.e. month end)

› Collect as much data as possible prior to analysis
– 5-6 weeks of your chosen intervals is recommended

› Consider sampling
– i.e. Tracing for 30 seconds every 10 minutes
– The downside – sampling always relies on extrapolation

› Load the data into DB2 tables for analysis



Hints for Loading the Data

› See IBM Redbook SG24-2244-00 – DB2 for OS/390 Capacity Planning
– Appendix C – Bufferpool Tuning
– The book is a little old but the theory is good

› Takes raw DB2 PM report output and loads pertinent data into a table
– Theory could be applied to any vendors reports



Using the Data



Average Object Working Set Size

› Indicates the amount of buffers required, for a given period, to reduce 
physical I/O to 0

› More realistic for predominately randomly accessed objects

› High number – object likely to benefit from bring backed by HP
– In extreme cases own VP and HP

› Use collected IFCID 198 data

› To calculate
– Select the SUM of a count of the UNIQUE page numbers for a specific object 

over a time period



Object Access Patterns

› To effectively group objects in separate pools look at
– Level of sequential access

• By definition this tells us whether the object is predominately randomly or 
sequentially accessed

– General activity levels
– Update rate
– Size

› Apply a three tier setting for each of these key indicators
– High
– Medium
– Low



Object Access Patterns cont’d.

› Gather this information from IFCID 198 records
– Load collection interval into a DB2 table
– Summarize the data into a further table for each interval

• Total getpages
• Total sequential requests
• Total times the page was found in the pool
• Total updates

› What’s High for getpages and updates?
– In relation to YOUR biggest values

• Analyse YOUR data – an average of the top 10 may be better
– 33% or less is low
– 33% - 66% is medium
– 66%-100% is high



Object Access Patterns cont’d.

› Calculating
– Use the summarised data for a set period

• Ideally 5-6 weeks
– Calculate the maximums

• Either absolute or averages
– Use case statements to translate numbers into HI, MED and LOW
– Order by case output

• This gives groups of objects that would benefit from residing in the same pool with 
thresholds/sizes set for that specific access



In Summary



A Final Round-Up

› Smarter Tuning
– Aim to group like accessed objects together in their own pools
– Consider relevant pool thresholds

› Data Collection
– Collect as much pertinent information as overhead will allow
– Load the data into DB2 tables for ease of reporting
– Use tools you already own
– Before and after

› Using the Data
– Find the like accessed objects (analyse IFCID 198 data)
– Get an idea of bufferpool size requirements, working set size

• Are Hiperpools required?
› Finally, Alter the objects, thresholds and size

– Don’t forget to reclaim freed up space in existing pools



Speak to Your Vendors

› Tools may be available to help with the task

› Advice on how to use monitors to best effect
– Which reports show the data required
– Information/examples of how to load data into tables

› Your company is paying for support and maintenance
– Get your money’s worth!!! 



Questions?

Andrew_ward@bmc.com


