MQSeries Primer

MQSeries Enterprise Application Integration Center

Dieter Wackerow

MQ EAI Center October 1999

MQSeries Primer

MQSeriesisIBM’s award winning middleware for commercial messaging and queuing. It is used
by thousands of customersin every major industry in many countries around the world. MQSeries
speeds implementation of distributed applications by simplifying application development and
test.

MQSeries runs on avariety of platforms. The MQSeries products enable programs to
communicate with each other across a network of unlike components, such as processors,
subsystems, operating systems and communication protocols. MQSeries programs use a
consistent application program interface (API) across all platforms.

Application
Program

g8

Application
Program

-

_ MQ Objects MQ Objects
MQSeries MQSeries

NETWORK)

Figure 1. MQSeries at Run Time

Figure 1 shows the main parts of an MQSeries application at run time. Programs use MQSeries
API calls, that is the Message Queue Interface (MQI), to communicate with a qgueue manager
(MQM), the run-time program of MQSeries. For the queue manager to do itswork, it refersto
objects, such as queues and channels. The queue manager itself isan object aswell.

The following provides a brief overview of MQSeries, including clients and servers.

What is M essaging and Queuing?

Message queuing is a method of program-to-program communication. Programs within an
application communicate by writing and retrieving application-specific data (messages) to/from
gueues, without having a private, dedicated, logical connection to link them.

Messaging means that programs communicate with each other by sending datain messages and
not by calling each other directly.

Queuing means that programs communicate through queues. Programs communicating through
gueues need not be executed concurrently.

October 1999 MQSeries EAI Center Page 3

MQSeries Primer

With asynchronous messaging, the sending program proceeds with its own processing without
waiting for areply to its message. In contrast, synchronous messaging waitsfor thereply beforeit
resumes processing. For the user, the underlying protocol istransparent. The user is concerned
with conversational or data-entry type applications.

MQSeriesisused in aclient/server or distributed environment. Programs belonging to an
application can run in one workstation or in different machines on different platforms.
Applications can easily be moved from one system or platform to another. The programs can be
written in various programming languages, including Java. The same queuing mechanismisvalid
for all platforms, and so are the currently 13 APIs.

Since M QSeries communicates via queues it can be referred to as using indirect program-to-

program communication. The programmer cannot specify the name of the target application to

which amessage is sent. However, he or she can specify atarget queue name; and each queueis
associated with a program. An application can have one or more “input” queues and may have
several “output” queues containing information for other servers to be processed, or for responses
for the client that initiated the transaction.

The programmer does not have to worry about the target program being busy or not available. He
or she isn’'t even concerned about the server being down or having no connection to it. The
programmer sends messages to a queue that is associated with an application; and the application
may or may not be available at the time of the request. MQSeries takes care of the transport to the
target application and even starts it, if necessary.

If the target program is not available, the messages stay in a queue and get processed later. The
gueue is either in the sending machine or in the target machine, depending whether the connection
between the two systems can be established or not. Applications can be running all day long or
they can be triggered, that is, automatically started when a message arrives or after a specified
number of messages have arrived.

Figure 2. Messages and Queues

October 1999 MQSeries EAI Center Page 4

MQSeries Primer

Figure 2 on page 4 shows how two programs, A and B, communicate with each other. We see two
gueues; one is the “output” queue for A and at the same time the “input” queue for B, while the
second queue is used for replies flowing from B to A.

The squares between the queues and the programs represent the Message Queuing Interface (API)
the program uses to communicate with MQSeries’ run-time program, the queue manager. As said
before, the API is a simple multi platform API consisting of 13 calls. The API will be discussed
later.

About M essages

A message consists of two parts:
1. Data that is sent from one program to another
2. The message descriptor or message header

The message descriptor identifies the message (message ID) and contains control information,
also called attributes, such as message type, expiry time, correlation ID, priority, and the name of
the queue for the reply.

A message can be up to 4 MB or 100 MB long, depending on the MQSeries version you use.
MQSeries Version 5 (for distributed platforms) supports a maximum message length of 100 MB.

M essage Segmenting and Grouping

In MQSeries Version 5, messages casdgenented or grouped. Message segmenting can be
transparent to the application programmer. If permitted, the queue manager segments a large
message when it does not fit in a queue. On the receiving end, the application has the option to
either receive the entire message in one piece or each segment separately. This may depend on the
buffer size available for the application.

A second method of segmenting leaves the programmer in control so that he or she can split a
message according to logical boundaries or buffer size available for the program. The
programmer puts each segment as a separate physical message; thus several physical messages
build one logical message. The queue manager ensures that the order of the segments is
maintained.

To reduce traffic over the network, you can also group several small messages together and build
one larger physical message. This message is then sent to the destination and is there
disassembled. Message grouping also guarantees that the order the messages are sentin is
preserved.

Distribution Lists

Using MQSeries Version 5, you can send a message to more than one destination queue with one
MQPUT call. This is done with a dynandcstribution list. A distribution list can be a file that is

read at the time an application starts. It can be modified any time. It contains a list of queue
names and the queue managers that own them. A message sent to multiple queues belonging to
the same queue manager is sent over the network only once and so reduces network traffic. The

October 1999 MQSeries EAI Center Page 5

MQSeries Primer

receiving queue manager replicates the messages and puts them into the destination queues. This
function is called late fan-out.

M essage Types
MQSeries knows four types of messages:

Datagram: A message containing information for which no response is expected.

Request: A message for which areply is requested.

Reply: A reply to arequest message.

Report: A message that describes an event such as the occurrence of an error or a
confirmation on arrival or delivery.

Persistent and Non-Per sistent M essages

Application design determines whether a message must reach its destination under any
circumstances, or if it can be discarded when it cannot get there in time. MQSeries differentiates
between persistent and non-persistent messages. Delivery of persistent messages is assured; they
are written to logs to survive system failures. 1n an AS/400 these logs are Journal Receivers.
Non-persistent messages cannot be recovered after a system restart.

The M essage Descriptor

The table below contains some interesting attributes of the message descriptor. We mention them
here because they explain some of the functions the queue manager provides for you.

Version Return address

Message ID / Correllation ID Format

Persistent / non-persistent Sender application and type

Priority Report options / Feedback (COA, COD)
Date and time Backout counter

Lifetime of a message Segmenting / grouping information

Figure 3. Some Attributes of the Message Descriptor

» Theversion of the message descriptor depends on the MQSeries version and platform you
use. For the functions introduced with Version 5 additional fields were needed to keep
information about segments and their order and distribution list information, to name a few.
This enlarged structure carries the version number 2. Other queue managers who don't
support these functions (“Version 1 queue managers”) treat the additional information as data.

* Message and/orcorrelation ID are used to identify a specific request or reply message. The
programmer can move a value in one or both fields or have MQSeries create a unique ID for

him or her. Before the programmer puts the request message in the queue he or she can save
the ID(s) and use them in a subsequent get operation for the reply message. The program that
receives the request message copies this information into the reply message. This allows the
originating program (the one that gets the reply) to instruct MQSeries to look for a specific
message in the queue instead of getting the first one in the queue.

October 1999 MQSeries EAI Center Page 6

MQSeries Primer

* We discussegersistent andnon-persistent messages earlier. Persistent messages always
arrive at their destination, even when the system fails. They are “hardened”, that is, saved on
disk. You can make a specific message persistent or all messages on a particular queue.

* You can assign priority to a message and so control the order in which it is processed.

* The queue manager stotese anddate when the MQPUT occurred in the message header.
The time is in GMT and the year has four digits and so is Y2K compliant.

* You can also specify asxpiration date. When this date is reached and an MQGET is issued,
then the message will be discarded. There is no “daemon” that checks queues for expired
messages. Expired messages can stay in a queue for weeks, until a program attempts to read it.

* The return address is very important for request/reply messages. You have to tell the server
program where to send the reply message. Clients and servers have a one-to-many
relationship and usually the server program cannot find out from the user data where the
request message came from. Therefore, the client providesplya¢o queue andreply-to
gqueue manager in the message header. The server uses this information when it performs the
MQPUT API call.

« In theformat field, the sender can specify a value that the receiver can use to decide whether
data conversion can be done or not. Itis also used to indicate that there is an additional
header (extension) present.

* The message also carries information about the sending application (program name and path)
and the platform it is running on.

* Report options andfeedback code are used to request information, such as confirmation on
arrival or delivery, from the receiving queue manager. For example, the queue manager can
send a report message to the sending application when it puts the message in the target queue
or when the application gets it off the queue.

» [Each time a message is backed outptukout counter is increased. An application can
check this counter and act on it, for example, send the message to a different queue where the
reason for the backout is analyzed by an administrator.

* Message segmenting and grouping has been mentioned earlier. The queue manager uses the
message header to store information about the physical message; for example, if it is a
message group, the first or last segment, or which one in between.

About the Queue M anager

The heart of MQSeries is the message queue manager (MQM), MQSeries’ run-time program. Its
job is to manage queues and messages for applications. It provides the Message Queuing
Interface (MQI) for communication with applications. Application programs invoke functions of
the queue manager by issuing API calls. For example, the MQPUT API call puts a message on a

October 1999 MQSeries EAI Center Page 7

MQSeries Primer

gueue to be read by another program using the MQGET API call. This scenarioisshown in
Figure 4.

Application Application
Program A Program B
Messages
PUT to Q1 ™ GET from Q1

Figure 4. Program-to-Program Communication - One System

A program may send messages to another program that runs in the same machine as the queue
manager (shown above), or to a program that runs in a remote system, such as a server or a host.
The remote system has its own queue manager with its own queues. This scenario isshownin
Figure 5.

Application Application

Program A Messages Program B

PUTto QL™ | Channel \ GET from Q1
Remote Queue Q1 Local Queue Q1

Figure 5. Program-to-Program Communication - Two Systems

The queue manager transfers messages to other queue managers via channels using existing
network facilities, such as TCP/IP, SNA or SPX. Multiple queue managers can reside in the same
machine. They also need channels to communicate.

Application programmers do not need to know where the program to which they are sending
messages runs. They put their messages on a queue and let the queue manager worry about the
destination machine and how to get the messages there. M QSeries knows what to do when the
remote system is not available or the target program is not running or busy.

For the queue manager to do its work, it refers to objects that are defined by an administrator,

usually when the queue manager is created or when a new application is added. The objects are

described in “About Queue Manager Objects” on page 11. The functions of a queue manager can
be summarized as follows:

* It manages queues of messages for application programs.

October 1999 MQSeries EAI Center Page 8

MQSeries Primer

» It provides an application programming interface, the Message Queue Interface (MQI).
Note: The Networking Blueprint identifies three communication styles:
1. Common Programming Interface - Communications (CPI-C)
2. Remote Procedure Call (RPC)
3. Message Queue Interface (MQI)

» It uses existing networking facilities to transfer messages to other queue managers when
necessary.

* It coordinates updates to databases and queues using a two-phase commit. Gets and puts from/
to queues are committed together with SQL updates, or backed out if necessary.

* It segments messages (if necessary) and assembles them. It also can group messages and send
them as one physical message to their destination where they are automatically disassembled.

e It can send one message to more than one destination with one API call using a user-defined
dynamic distribution list, thus reducing network traffic.

« It provides additional functions that allow administrators to create and delete queues, alter the
properties of existing queues, and control the operation of the queue manager. MQSeries for
Windows NT Version 5.1 provides graphical user interfaces; other platforms use the command
line interface or panels.

MQSeries clients do not have a queue manager in their machines. Client machines connect to a
gueue manager in a server. The queue manager manages the queues for all clients attached to it.

In contrast to MQSeries clients, each workstation that runs MQSeries for Windows (Version 2)
has its own queue manager and queues. MQSeries for Windows is a single-user queue manager
and is not intended to function as a queue manager for other MQSeries clients. This product is
designed for a mobile environment.

Note: MQSeries for Windows and MQSeries for Windows NT are two different products.

About Queue Manager Clusters

With MQSeries for MVS/ESA and Version 5.1 for distributed platforms, you can join queue
managers together in clusters. Queue managers that form a cluster can run in the same machine or
in different machines on different platforms. Usually, two of those “cluster queue managers”
maintain a repository that contains information about all gueue managers and queues in the
cluster. This is called a full repository. The other queue managers maintain only a repository of
objects they are interested in, a partial repository. The repository allows any queue manager in
the cluster to find out about any cluster queue and who owns it. The queue managers use special
cluster channels to exchange information.

Clustering also permits multiple instances of a queue (with the same name) on different queue

managers. This allows for workload distribution, that is, the queue manager can send messages to
different instances of an application.

October 1999 MQSeries EAI Center Page 9

MQSeries Primer

In normal distributed processing, we send messages to a specific queue owned by a specific queue

manager. All messages destined for that queue manager are placed in atransmission queue on the

sender’s side. This transmission queue has the same name as the destination queue manager. The
message channel agents move the messages across the network and place them into the
destination queues. Figure 6 shows the relationship between a transmission (Xmit) queue and the
target queue manager.

Remot Xmit Target
MQPUT ueue | —#=1 Queu /IW Queue) Qmgr

Figure 6. MQPUT to a Remote Queue

With clustering, you send a message to a queue with a specific name somewhere in the cluster, in
Figure 7 represented by a cloud. You specify the name of a target queue, not the name of a remote
queue definition. Clustering does not require remote queue definitions. They are only useful
when you send a message to a queue manager that is not a member of the cluster. You can also
specify a queue manager and direct the message to a specific queue, but very often it is left to the
gueue manager to determine where the queue is (or the queues are) and to which one to send the
message.

Cluster

. p—
Xmit
Queue

Target —

MQPUT JQueue] .epl

Figure 7. MQPUT to a Cluster Queue

The vision of an MQSeries cluster is as the place where multiple instances of a queue can exist.
They come and go as an administrator requires in order to satisfy changing availability and
throughput requirements. This has to be achieved completely dynamically and without placing
the administrator under a great burden to configure and control. In addition, the programmer does
not have to think about multiple queues; he or she just treats them as if writing to a single queue.

This is not to say that there is no burden on the programmer or administrator. Enhanced levels of
availability and exploitation of parallelism do require some planning. The administrator or

system designer must ensure that there is enough redundancy in the configuration to meet their
needs. The application designer must ensure that messages are capable of being processed in
multiple places.

You create multiple instances of a queue by defining a queue with the same name on multiple
gueue managers that belong to the cluster. You must also name the cluster when you define the
gueue. Without this attribute the queue would only be known locally. When the application
specifies only the queue name, where is the message sent?

October 1999 MQSeries EAI Center Page 10

MQSeries Primer

MQPUT

Figure 8. Accessing Cluster Queues

Figure 8 gives you an idea. MQSeries distributes the messages round-robin. You can, however,
change this default action by writing your own workload balancing exit routine.

Figure 8 shows messages put in one of the three cluster queues named A. Each of the three queue
managers on the right owns a queue with this name. By default, the first message is placed in
queue A on queue manager 1, the next in queue A on queue manager 2, the third goes to queue
manager 3 and the fourth message to the queue on queue manager 1 again.

In another scenario involving queue B, we notice that the third queue manager is down and the
third instance of queue B is not available. The sending queue manager becomes aware of this
problem because it subscribed to information about all queue manager and queuesiit isinterested
in, that is, where it sends messages. As soon asit finds out that there is a problem with the third
instance of B, it distributes messages to the first two instances only. Special messages about
changes of the status of cluster objects are instantly published to all queue managers that
subscribed to that object.

About Queue Manager Objects

This section introduces you to queue manager objects, such as queues and channels. The queue
manager itself is an object, too. Usually, an administrator creates one or more queue managers
and their objects. A queue manager can use objects of the following types:

1. Queues
2. Process definitions
3. Channels

The objects are common across different MQSeries platforms. There are other objects that apply
to MV S systems only, such as the buffer pool, PSID, and storage class. AS/400 MQ objects are
known to the OS/400 operating system as object type * USRSPC (user space) inthe QM QM DATA
library.

October 1999 MQSeries EAI Center Page 11

MQSeries Primer

Queues

Message queues are used to store messages sent by programs. There arelocal queues that are
owned by the local queue manager, and remote queuesthat belong to adifferent queue manager.
Queues are described in more detail in the section “About Message Queues” on page 13.

Channdls

A channel is a logical communication link. In MQSeries, there are two different kinds of
channels:

1. Message channels
A message channel connects two queue managers via message channel agents (MCAs). Such
a channel is unidirectional. It comprises two message channel agents, a sender and a receiver,
and a communication protocol. An MCA is a program that transfers messages from a trans-
mission queue to a communication link, and from a communication link into the target queue.
For bidirectional communication you have to define two channel pairs consisting of a sender
and a receiver. Message channel agents are also referred to as movers.

2. MQI channels
A Message Queue Interface (MQI) channel connects an MQSeries client to a queue manager
in its server machine. Clients don’t have a queue manager of their own. An MQI channel is
bidirectional.

Figure 9 shows both channels types. You see four machines, two clients connected to their server
machine via MQI channels, and the server connected to another server or a host via two
unidirectional message channels. Some channels can be defined automatically by MQSeries.
There are different types of message channels, depending on how the session between the queue
managers is initiated and for what purpose they are used.

MQ
Client l

MQI Channels MQM Message Channels MQM

vo ¢ <

Client

Figure 9. MQSeries Channels

To transmit non-persistent messages, a message channel catwugpegds. fast and normal.
Fast channels improve performance, but (non-persistent) messages can be lost in case of a channel
failure.

A channel can use the following transport types: SNA LU 6.2, TCP/IP, NetBIOS, SPX and DEC
Net. Not all are supported on all platforms.

October 1999 MQSeries EAI Center Page 12

MQSeries Primer

MQSeries for Windows Version 2 uses message channels to connect to other machines. Since this
product is designed as a single user system, it does not support MQI channels. This product
supportsonly TCP/IP.

Process Definitions

A process definition object defines an application to a queue manager. For example, it contains
the name of the program (and its path) to be triggered when a message arrives for it.

About Message Queues

Queues are defined as objects belonging to a queue manager. M QSeries knows a number of
different queue types, each with a specific purpose. The queues you use are located either in your
machine and belong to the queue manager to which you are connected, or in your server (if you
areaclient). Figure 10 lists different queue types and their purposes. More detailed information
IS below.

Local queue is a real queue
Remote queue structure describing a queue
Transmission queue (xmitq) local queue with special purpose
Initiation queue local queue with special purpose
Dynamic queue local queue created "on the fly"
Alias queue if you don't like the name
Dead-letter queue one for each queue manager
Reply-to-queue specified in request message
Model queue model for local queues
Repository queue holds cluster information

Figure 10. Queue Types

Local Queue

A queueislocal if it is owned by the queue manager to which the application program is
connected. It isused to store messages for programs that use the same queue manager. For
example, program A and program B each has a queue for incoming messages and another queue
for outgoing messages. Since the queue manager serves both programs, all four queues are local.

Note: Both programsdo not have to run in the sameworkstation. Client workstations usually use
aqueue manager in a server machine.

Cluster Queue

A cluster queueisalocal queue that is known throughout a cluster of queue managers, that is, any
queue manager that belongs to the cluster can send messages to it without the need of aremote
definition or defining channels to the queue manager that ownsiit.

October 1999 MQSeries EAI Center Page 13

MQSeries Primer

Remote Queue

A queue is “remote” if it is owned by a different queue manager. A remote queue definition is the
local definition of a remote queue. A remote queue is not a real queue. It is a structure that
contains some of the characteristics of a queue hosted by a different queue manager.

The application programmer can use the name of a remote queue just as he or she can use the
name of a local queue. The MQSeries administrator defines where the queue actually is. Remote
gqueues are associated with a transmission queue.

Notes: - A program cannot read messages from a remote queue.
- You don't need a remote queue definition for a cluster queue.

Transmission Queue

This is a local queue with a special purpose. A remote queue is associated with a transmission
gueue. Transmission queues are used as an intermediate step when sending messages to queues
that are owned by a different queue manager.

Typically, there is only one transmission queue for each remote queue manager (or machine). All
messages written to queues owned by a remote queue manager are actually written to the
transmission queue for this remote queue manager. The messages will then be read from the
transmission queue and sent to the remote queue manager.

Using MQSeries clusters, there is only one transmission queue for all messages sent to all other
gueue managers in the cluster.

Transmission queues are transparent to the application. They are used internally by the queue
manager. When a program opens a remote queue, the attributes of the queue are obtained from
the transmission queue. Therefore, the results of a program writing messages to a queue will

be affected by the transmission queue characteristics.

Dynamic Queue

Such a queue is defined "on the fly" when the application needs it. Dynamic queues may be
retained by the queue manager or automatically deleted when the application program ends.
Dynamic queues are local queues. They are often used in conversational applications, to store
intermediate results. Dynamic queues can be:

« Temporary queues that do not survive queue manager restarts
« Permanent queues that do survive queue manager restarts

Alias Queue

Alias queues are not real queues but definitions. They are used to assign different names to the
same physical queue. This allows multiple programs to work with the same queue, accessing it
under different names and with different attributes.

October 1999 MQSeries EAI Center Page 14

MQSeries Primer

Model Queue

A model queueisnot areal queue. Itisacollection of attributes that are used when a dynamic
gueue is created.

Initiation Queue

Aninitiation queue is alocal queue to which the queue manager writes atrigger message when
certain conditions are met on another local queue, for example, when amessage is put into an
empty message queue or in atransmission queue. Such a trigger message is transparent to the
programmer. Two MQSeries applications monitor initiation queues and read trigger messages,
the trigger monitor which starts applications and the channel initiator which starts the
transmission between queue managers.

Note: Applications do not need to be aware of initiation queues, but the triggering mechanism
implemented through themisapowerful tool to design and write asynchronous applications.

Reply-to-Queue

A request message must contain the name of the queue into which the responding program must

put the reply message. This can be considered the “return address”. The name of this queue
together with the name of the queue manager that owns it is stored in the message header. This is
the responsibility of the application program.

Dead-L etter Queue

A queue manager must be able to handle situations when it cannot deliver a message. Here are
some examples:

* The destination queue is full.

The destination queue does not exist.

Message puts have been inhibited on the destination queue.

The sender is not authorized to use the destination queue.

The message is too large.

The message contains a duplicate message sequence number.

When the above conditions are met, the messages are written to the dead-letter queue. Such a
queue is defined when the queue manager is created. It will be used as a repository for all
messages that cannot be delivered.

Repository Queue

Repository queues have existed since Version 5.1 and Version 2.1 for 0S/390. They are used in
conjunction with clustering and hold either a full or a partial repository of queue managers and
queue manager objects in a cluster (or group) of queue managers.

October 1999 MQSeries EAI Center Page 15

MQSeries Primer

Creating a Queue Manager

You may create as many queue managers as you like and have them running at the same time.
You create a queue manager with the command crt ngm to make it the default, specify the
parameter /q.

The following command creates the default queue manager MY QMGR (in aWindows NT
environment):

crtmgm /g MYQVGR
Note: Queue manager names are case-sensitive.

There are default definitions for objects every queue manager needs, such as model queues. These
objects are created automatically. Most certainly, you will have to create other objectsthat pertain
to the applications you run. Usually, those application specific objects are kept in a script file,
such as mydefs.in. You apply them to a newly created queue manager with the command:

runngsc < nydefs.in

MQSeries for Windows NT Version 5.1 provides a graphical user interface to create and
manipulate queue managers and their objects.

A dead-letter queue is not automatically created. To create one when you create the queue
manager, specify it as shown in the following example:

crtmgm /g /u system dead. | etter. queue MYQVGR
To start the queue manager issue the command:

st rngm

M anipulating Queue Manager Objects

MQSeries for distributed platforms provides the utility RUNMQSC to create and del ete queue
manager objects and to manipulate them. The queue manager must be running when you use the
utility. RUNMQSC works in two ways:

* You can type the commands.
* You can create a file containing a list of commands and use this file as input.

The commands in Figure 11 on page 17 start the default qgueue manager (which is already
running, as the response indicates) and create the local queue QUEUEL for it. Another command
alters the queue manager properties to define a dead-letter queue.

To start the utility in an interactive mode, typenngsc. To end it, typeend. Another way to
create MQSeries objects is by using an input file instead of typing the commands; for example:

October 1999 MQSeries EAI Center Page 16

MQSeries Primer

runngsc < nydefs.in > a.a

where mydefs.in is the script file that contains the commands and a.aisthe file that will contain
the responses from the RUNMQSC utility, so that you can check if any error occurred. The
output can either appear in the window or can be redirected to afile.

C\strngm
MXEeri es queue nmanager runni ng.

r unngsc
84H2001, 6539-B42 (Q Qopyright IBMQorp. 1994, 1997. ALL R GITS RESERVED
Sarting MEeri es Gonmands.

define gl ocal (" QBEL) replace descr ('test queue’)
1: define gl oca (' QBEUEL) replace descr ('test queue’)
AMBO06: MEeries queue creat ed.
alter gnyr deadq(systemdead. | etter. queue)
2 : alter gnyr deadq(systemdead. | etter. queue)
AMBO05: MEeries queue nanager changed.
end
3: end
2 MXBC commands read.
0 conmands have a syntax error.
0 commands cannot be processed.

C\
.

Figure 11. Manipulating Objects Using Control Commands

Clientsand Servers

MQSeries distinguishes clients and servers. Before you install MQSeries on a distributed
platform you have to decide if the workstation will be an MQSeries client, an MQSeries server, or
both. With MQSeries for Windows a new term was introduced, the leaf node (described later).
There are two kinds of clients:

e Slim client or MQSeries client
* Fatclient

Fat clients have a local queue manager; slim clients don't.

When a slim client cannot connect to its server it cannot work, because the queue manager and
queues for a slim client reside in the server. Usually, an MQSeries client is a slim client. Several of
these clients share MQSeries objects, and the queue manager is one of them, in the server to
which they are attached.

Note: The MQSeries Client for Java is a slim client.

In some cases it may be advantageous to have queues in the end user's workstation, especially in a
mobile environment. That allows you to run your application when a connection between

October 1999 MQSeries EAI Center Page 17

MQSeries Primer

client and server does not (temporarily) exist.

You may install client and server software in the same system and use it as an end user’s
workstation. If your operating system isWindows NT you caninstall MQSeriesfor Windows NT
V5.1 or MQSeriesfor Windows V2.1 (also called MQWin). If your operating system is Windows
95 use MQWin V2.1. This product has been designed for end users and uses fewer resources.

The difference between an end user’s workstation that isaclient and one that has a queue manager
Isthe way messages are sent. The queues reside either in the end user's workstation or in the

Server.
MQ
Client

MQI Channels MQM Message Channels MQM

Vo ¢ <

Client

Figure 12. MQI and Message Channels

Figure 12 shows again the use of MQI and message channels.

* MQI channels connect clients to a queue manager in a server machine. All MQSeries objects
for the client reside in the server. MQI channels are faster than message channels.

* A message channel connects a queue manager to another queue manager. The queue
manager can reside in the same or in a different machine.

The following summarizes the three workstation types:

MQSeries Client
A client workstation does not have a queue manager of its own. It shares a queue manager
in a server with other clients. All MQSeries objects, such as queues, are in the server.
Since the connection between client and server is synchronous, the application cannot
work when the communication is broken. You could refer to such workstations as "slim"
clients.

MQSeries Server
A workstation can be a client and a server. A server is an intermediate node between other
nodes. It serves clients that have no queue manager and manages the message flow
between its clients, itself and other servers. In addition to the server software you may
install the client software, too. This configuration is used in an application development
environment.

October 1999 MQSeries EAI Center Page 18

MQSeries Primer

Leaf Node
MQSeries for Windows was designed for use by asingle user. It hasits own "small
footprint” queue manager with its own objects. However, it is not an intermediate node
between other nodes. It is called aleaf node. You could also refer to it asa "fat” client.
This product is able to queue outbound messages when connection to a server or host is
not available, and inbound messages when the appropriate application is not active.

How MQSeries Works

Program 1 Program 2
PUT #
Qmgr A| Qmgr B GET 5
MQI MQI r
0
Remote Q Local Q c
s LT
A.B s
startg | s
—l monitors ﬁ?t?gtr:)?]
hIni starts e
o) Vstarts Monitor
MCA MCA monitors
‘ starts y /Lstarts _|l,_
Xmit Q } > 5(]\r
\\Q\ a System Init Q

B

Figure 13. MQSeries - Parts and Logic

Figure 13 shows the parts and architecture of MQSeries. The application program uses the
Message Queue Interface (MQI) to communicate with the queue manager. The MQI is described
in more detail later. The queuing system consists of the following parts:

Queue Manager (MQM)

Listener

Trigger Monitor

Channel Initiator

Message Channel Agent (MCA) or mover

October 1999 MQSeries EAI Center Page 19

MQSeries Primer

When the application program wants to put a message on a queue it issues an MQPUT API call.
Thisinvokesthe MQI. The queue manager checks whether the queue referenced inthe MQPUT is
local or remote. If it isaremote queue, the message is placed into the transmission (xmit) queue.
The queue manager adds a header that contains information from the remote queue definition,
such as destination queue manager name and destination queue name.

Note: Each remote queue must be associated with an xmit queue. Usually, all messages destined
for one remote machine use the same xmit queue.

Transmission isdone via channels. Channels can be started manually or automatically. To start a
channel automatically, the xmit queue must be associated with a channel initiation queue. Figure
13 on page 19 shows that the queue manager puts a message into the xmit queue and another
message into the channel initiation queue. This queue is monitored by the channel initiator.

The channél initiator is an MQSeries program that must be running in order to monitor initiation
gueues. When the channel initiator detects a message in the initiation queue, it starts the message
channel agent (MCA) for the particular channel. This program moves the message over the
network to the other machine, using the sender part of the unidirectional message channel pair.

On the receiving end, a listener program must have been started. The listener, also supplied with
MQSeries, monitors a specified port, by default, the port dedicated to MQSeries, 1414. When a
message arrives, it starts the message channel agent. The MCA moves the message into the
specified local queue using the receiver part of the message channel pair.

Note: Both channel definitions, sender and receiver, must have the same name. For the reply, you
need another message channel pair.

The program that processes the incoming message can be started manually or automatically. To
start the program automatically, an initiation queue and a process must be associated with the
local queue, and the trigger monitor must be running.

When the program starts automatically, the MCA puts the incoming message into the local queue
and atrigger message into the initiation queue. This queue is monitored by the trigger monitor.
This program invokes the application program specified in the process definition. The application
issues an MQGET API call to retrieve the message from the local queue.

Communication between Queue Managers

In this section, we discuss what you have to define to send messages to a queue manager that
resides in another system. We use message channels for communication between queue managers
as shown in Figure 12 on page 18.

Thelogicisillustrated in Figure 14 on page 22 and the necessary M QSeries definitions are shown
in Figure 15 on page 22.

October 1999 MQSeries EAI Center Page 20

MQSeries Primer

Each machine has a queue manager installed and each queue manager manages several local
gueues. Messages destined for aremote queue manager are put into a remote queue. A remote
queueis not areal queue; it isthe definition of alocal queuein the remote machine. A remote
gueueis associated with atransmission (xmit) queue, which isalocal queue. Usually, thereisone
xmit queue for each remote queue manage.

A transmission queue is associated with a message channel. Message channels are unidirectional,
meaning that you have to define two channels for a conversational type of communication. Also,
you have to define each channel twice, oncein the system that sends the message (sender channel)
and once in the system that receives the message (receiver channel). Each channel pair (sender
and receiver) must have the same name. This scenario is elucidated in Figure 14 on page 22.
Next, let us find out how we get this to work.

How to Define a Connection between Two Systems

Figure 14 on page 22 shows the required M QSeries objects for connecting two queue managers.
In each system we need:

* A remote queue definition that mirrors the local queue in the receiver machine and links to a
transmission queue (Q1 in system A and Q2 in system B).

» Atransmission queue that holds all messages destined for the remote system until the channel
transmits them (QMB in system A and QMA in system B).

* A sender channel that gets messages from the xmit queue and transmits them to the other
system using the existing network (QMA.QMB in system A and QMB.QM.A in system B).

» Areceiver channel that receives messages and puts them into a local queue (QMB.QMA in
system A and QMA.QMB in system B); receiver channels can be started automatically by the
queue manager when Channel Auto Definition (CHAD) is enabled.

e Alocal queue from which the program gets its messages (Q2 in system A and Q1 in system
B).

In each system, you must define the appropriate queue manager objects. The objects are defined
in the two script files shown in Figure 15 on page 22.

Notes:
When you use clustering you don’t have to define transmission queues. There is only one
transmission queue per queue manager, and that is created automatically when the queue
manager is created.

You also don't have to define channels, neither sender or receiver channels; they are
automatically created when needed.

October 1999 MQSeries EAI Center Page 21

MQSeries Primer

System A
Qmgr QMA Qmgr QVMB System B
Program 1 Program 2
put — " Remote Q1 | LocalQ1 > get
Y
- Channel Channel
Xrlcl'éQ ~QMA.QMB|- -y~ |QMA.QmB| (CHAD)
Q Sender Receiver
E
T Remote Q put
W XmitQ
o QMA
Channel R Channel
(CHAD) omB.oMA- -~ = - QOMB.QMA
Receiver Sender
K
get = Local Q2

Figure 14. Communication between Two Queue Managers

System A (QMA)

System B (QMB)

DEFINE QREMOTE(Q1) +
RNAME(Q1) ROMNAME(QMB) +
XMITQ(QMB)

DEFINE QLOCAL(Q1)

DEFINE QLOCAL(QMB) +
USAGE(xmitq)

DEFINE CHANNEL(QMA.QMB) +
CHLTYPE(sdr) +
XMITQ(QMB) +
TRPTYPE(tcp) +
CONNAME(9.24.104.123)

DEFINE CHANNEL(QMA.QMB) +
CHLTYPE(rcvr) +
TRPTYPE(tcp)

DEFINE QLOCAL(Q2)

DEFINE QREMOTE(Q2) +
RNAME(Q2) ROMNAME(QMA) +
XMITQ(QMA)

DEFINE QLOCAL(QMA) +
USAGE(xmitq)

DEFINE CHANNEL(QMB.QMA) +
CHLTYPE(rcvr) +
TRPTYPE(tcp)

DEFINE CHANNEL(QMB.QMA) +
CHLTYPE(sdr) +
XMITQ(QMA) +
TRPTYPE(tcp) CONNAME(ABC1)

Figure 15. MQSeries Objects Defining Connection between Two Queue Managers

October 1999

MQSeries EAI Center

Page 22

MQSeries Primer

How to Start Communication Manually

First, the objects have to be known to the queue managers. You use RUNMQSC to create the
objects. Make sure that the queue manager isrunning. Next, start the listeners and the channels.
You need to start only the sender channel in each system. MQSeries starts the receiver channel.
The commands to start listener and channel for queue manager QMA are:

st rngm QVA

start runnglsr -t tcp -mQVA -p 1414
runngsc

start channel (QVA. QVB)

end

With the first command you start queue manager QMA. The next command starts the listener. It
listens on behalf of QMA on port 1414. Astransmission protocol TCP/IPisused. Thethird
command starts runmgsc in interactive mode. The channel QMA.QMB is started under control of
runmasc. For the other queue manager you issue equivalent commands. You also have to start the
applicationsin both systems.

How to Start Communication Automatically

You can use the channd initiator to start channels. Instead of the commands shown above enter
the following commands (for Windows NT, UNIX and OS/2):

start runnglsr -t tcp -mQVA -p 1414
start runngchi

With the first command you start the listener and with the second the channel initiator program.
The channel initiator monitors a channel initiation queue and starts the proper channel to read in
the message. The default initiation queueis SY STEM.CHANNEL.INITQ.

You may also start the channel initiator from RUNMQSC (Windows NT, UNIX and OS/2). The
command is:

start chinit
--OR--
start chinit initq(SYSTEM CHANNEL. | NI TQ

To have the transmission queue triggered, add three more parameters (below shown in bold):

DEFI NE QLOCAL(A. TO. B) REPLACE +
USAGE(xnitq) +
TRI GGER
TRI GTYPE(every) +
I NIl TQ{ SYSTEM CHANNEL. | NI TQ +
DESCR(’ Xmit Queue’)

October 1999 MQSeries EAI Center Page 23

MQSeries Primer

The queue manager can trigger the process that starts the channel program in three ways:

When the first message is put into the transmission queue
Every time a message is put into the xmit queue
When the queue contains a specified number of messages

MQM
Message Trigger Message
v ¥V Defatf object
XmitQ Channel Init Q
read mon“orl
v start .
MCA Channel Initiator
move | [6]
v
Channel

Figure 16. Triggering Channels

Figure 16 shows the logic behind triggering:

1.

The program issues an MQPUT to a remote queue and a message is placed into the transmis-
sion queue.

When the queue manager puts a message into the transmission queue, it checks the trigger
type specified in the queue definition. Depending on that definition and on how many mes-
sages are in the queue, it may put an additional message in the channel initiation queue. This
“trigger message” is transparent to the user.

Since the channel initiator was started earlier, for example, at boot time, it monitors the chan-
nel initiation queue and removes the trigger message.

The channel initiator starts the message channel agent (also called mover).

The channel program gets the message off the transmission queue and invokes any channel
exit routines, if specified.

The message is then moved over the network to its destination.

October 1999 MQSeries EAI Center Page 24

MQSeries Primer

How to Trigger Applications

This section describes how to trigger an application program that runsin the server machine. Both
triggering and triggered applications can run under the same or different queue managers.

Note: MQSeriesfor Windows V2.1 does not support triggering.

Program A Application MQM Program B
Queue
1 6
MQPUT > MQGET
A-Q A-Q

Process
Definition

cecccccccccccc- >

Initiation
Queue

Figure 17. Triggering an Application

Figure 17 showsthelogic of triggering. Here Program A sends a message to A-Q to be processed
by Program B. The MQSeries triggering mechanism is as follows:

1.

2.

Program A issues an MQPUT and puts a message into A-Q for Program B.

The queue manager processes this APl call and puts the message into the application queue.
It also finds out that the queue istriggered. It creates atrigger message and looksin the
Process Definition to find the name of the application and putsit in the trigger message. The
trigger message is put into the initiation queue.

The trigger monitor gets the trigger message from the initiation queue and starts the program
specified.

The application program starts running and issues an MQGET to retrieve the message from
the application queue.

October 1999 MQSeries EAI Center Page 25

MQSeries Primer

The definitions necessary to trigger an application are as follows:

* The target queue must have “triggering” specified as shown in bold below:

DEFI NE QLOCAL(A-Q REPLACE +
TRI GGER
TRI GTYPE(first) +
I NI TQ(SYSTEM DEFAULT. | NI TI ATI ON. QUEUE) +
PROCESS(pr oc1)
DESCR(' This is a triggered queue’)

» The process definition associated with the target queue can be this:

DEFI NE PROCESS(procl) REPLACE +
DESCR(’ Process to start server program) +
APPLTYPE(W NDOWSNT) +
APPPLICID(c:\test\nmyprog. exe’)

What trigger type to use depends on how the application is written. You have three choices:

MQGET MQGET WAIT
timeout?
exit
Queue is|empty
exit
* EVERY Every time a message is put in the target queue a trigger message is also put in

the initiation queue. Use this when your program exits after processing one
message or transaction, as shown above on the left.

* FIRST A trigger message is put in the initiation queue only when the target queue has
been empty. Use this when the program exits only then when there are no more
messages in the queue, as shown on the right.

e nmessages A trigger message is put in the initiation queue when there are n messages in the

target queue. For example, you can start a batch program when the queue holds
1000 messages.

October 1999 MQSeries EAI Center Page 26

MQSeries Primer

Communication between Client and Server

Below we discuss what you have to do to define and test the connection between an MQ client and
its MQ server. A more detailed description is provided in the publication MQSeries Clients,
GC33-1632.

How to Define a Client/Server Connection

Client Machine Server Machine

Application |Link with Link with Application
PP e MQIC o MQM PP

{} ® Java Client @ Java Bindings {}

Is

. P ; MQSeries
Communication Link
Mgﬁ::tes < > Queue Manager

Client Connection

Server Connection
Figure 18. Client/Server Connection
Figure 18 shows that the MQSeries Client product isinstalled in the client machine. We said
before that clients and servers are connected with MQI channels. An MQI channel consists of a

sender/receiver pair, called Client Connection (CLNTCONN) and Server Connection (SVCONN)
channel.

You have to know what transmission protocol is used (for example, TCP/IP), the port the listener
listens to (1414 is the default), and the address of the systems to which you want to connect. For
an address you can specify an LU name, a host name or machine name, or a TCP/IP address.
The client connection channel is defined as an environment variable, such as:

set MQSERVER=CHANL/TCP/9.24.104.206(1414)

where:
« MQSERVER is the name of the environment variable.

* CHANL1 is the name of the channel to be used for communication between client and server.
This channel is defined in the server. MQSeries will automatically create it should it not exist.
» TCP denotes that TCP/IP is to be used to connect to the machine with the address following

the parameter.

e 1414 is the default port number for MQSeries. You may omit this parameter if the listener on

the server side uses this default, too.

October 1999 MQSeries EAI Center Page 27

MQSeries Primer

The definition of the server is asfollows:

DEFI NE CHANNEL(’ CHANL') CHLTYPE(SVRCONN) REPLACE +
TRPTYPE(TCP) MCAUSER(’ ')

For the MQSeries Client for Java, the environment variables are set in the applet code. An applet
can run in any machine, such as a network station, and it has no access to environment variabl es.
The example below shows what statements to include in your Java program:

i mport comibm ng. *;

MXEnvi ronnent . host nane = "9. 24. 104. 456";
MQEnvi ronnent . channel = "CHANL";
MXEnvi ronment . port = 1414;

How a Client/Server Connection Works

Now we describe how to trigger an application program that runsin the server machine. Since
there are MQI channels of the type server connection between clients and server, all clients use
the queue manager in the server machine. When a client puts a message on a queue it has to be
read and processed by a program. This program can be started when the server starts

or the queue manager can start it when needed by using the M QSeries triggering mechanism.

Figure 19 on page 29 shows two clients connected to a server. Both clients request services from
the same program (Appl S1). Since that application runs in the same system as the queue
manager, we have only local queues. Some queues are specifically for a particular client, for
example, QA1 isthereply queue for client A and QA2 isthe reply queue for client B. Other
queues are used by both clients and server. For example, QS1 is used as output queue for both
clients and as input queue for the server program.

Next, we describe the MQSeries objects and API call sequencesin both client and server.

How a Client Sends a Request

The client starts a program that puts a message on a queue. For this function five MQSeries API
calls are executed:

* MQCONN to connect to the queue manager in the server
* MQOPEN to open the message queue QS1 for output

« MQPUT to put a message in the queue

* MQCLOSE to close the queue QS1

* MQDISC to disconnect from the queue manager

Of course, the program can put many messages in the queue before it closes it and disconnects.
Closing the queue and disconnecting from the queue manager can be done when the application
ends because there are no more messages to process.

The MQSeries client code that runs in the client machine processes the API calls and routes them
to the machine defined in the environment variable.

October 1999 MQSeries EAI Center Page 28

MQSeries Primer

Request and Reply Server
Client A
Queue Manager
Appl 1
Objects for
put Client A Application
S1
get - QAL
‘ get
Client B et
bjects f put
Appl_1 et
put X
get - QB1

Figure 19. Clients and Server Communicating

How the Server Receives a Request
In the server machine, the following queue manager objects are needed:

A channel of the type server connection.

A local queue, QS1, into which the clients put their messages.

An initiation queue into which the queue manager puts a trigger message when a request for
gueue QS1 arrives. You can use the default initiation queue.

A process definition that contains the name of the program to be started when the trigger event
occurs (S1).

One or more queues in which the program puts the reply messages (QA1 and QB1).

In the server machine, two programs have to be started: the listener and the trigger monitor. The
listener listens for messages on the channel and puts them on the queue QS1. Since QS1 is
triggered, the MQM puts a trigger message on the trigger queue each time a message is put on
QS1. When a message is placed on the trigger queue, the trigger monitor starts the program
defined in the process.

The server program S1 connects to the queue manager, opens the queue QS1 and issues an
MQGET to read the message.

October 1999 MQSeries EAI Center Page 29

MQSeries Primer

How the Server Sends a Reply

After processing arequest the server puts the reply in the reply queue for the client. To do thisit
has to open the output queue (QA1 or QB1) and issue an MQPUT.

Since several clients use the same server application, it is advisable to give the server a"return
address,” that is, the names of the queue and the queue manager that will receive the reply
message. These fields are in the header of the request message, containing the reply-to-queue
manager and reply-to-queue (here, QA1 or QB1). It isthe responsibility of the client program to
specify these values.

Usually, the server program stays active and waits for more messages, at least for a certain time.
For how long can be specified in the wait option of the MQGET API.

How the Client Recelves a Reply

The client program knows the name of itsinput queue, here QA1 or QB1. The application can use
two modes of communication:

» Conversational
If the application uses this mode of communication with the server program, it waits for the
message to arrive before it continues processing. This means, the reply queue is open and an
MQGET with wait option has been issued.

The client application must be able to deal with two possibilities:

* The message arrives in time.
* The timer expires and no message is there.

* True asynchronous
When using this mode, the client does not care when the request message arrives. Usually, the
user clicks a push button in a menu window to activate a program that checks the reply queue
for messages. If a message is present, this or another program can process the reply.

The M essage Queuing Interface (MQI)

A program talks directly to its local queue manager. It resides in the same processor or domain
(for clients) as the program itself. The program uses the Message Queuing Interface (MQI). The
MQI is a set of API calls that request services from the queue manager.

Note: When the connection between a client and its server is broken, no API calls can be
executed, since all objects reside in the server.

There are 13 APIs. They are shown in Figure 20 on page 31.

October 1999 MQSeries EAI Center Page 30

MQSeries Primer

MQCONN Connect to a queue manager
MQDISC Disconnect from a queue manager
MQOPEN Open a specific queue

MQCLOSE Close a queue

MQPUT Put a message on a queue
MQGET Get a message from a queue
MQPUT1 MQOPEN + MQPUT + MQCLOSE
MQINQ Inquire properties of an object
MQSET Set properties of an object
MQCONNX Standard or fastpath bindings
MQBEGIN Begin a unit of work (database coordination)
MQCMIT Commit a unit of work

MQBACK Back out

Figure 20. MQSeries APIs

The most important ones are MQPUT and MQGET. The other calls are used less frequently.
Comments regarding several APIsfollow:

MQCONN establishes a connection with a queue manager using the standard bindings.

MQCONNX establishes a connection with a queue manager using fastpath bindings. Fastpath
puts and gets are faster, but the application must be well behaved, that is, well tested. Application
and gueue manager run in the same process. When the application crashesit takes the queue
manager down withit. ThisAPI cal isnew in MQSeries Version 5.

MQBEGIN begins a unit of work that is coordinated by the qgueue manager and that may involve
external XA-compliant resource managers. This API has been introduced with MQSeries Version
5. It isused to coordinate transactions that use queues (MQPUT and MQGET under syncpoint)
and database updates (SQL commands).

MQPUT1 opens a queue, puts a message on it and closes the queue. Thisis acombination of
MQOPEN, MQPUT and MQCLOSE.

MQINQ requests information about the queue manager or one of its objects, such as the number
of messagesin a queue.

MQSET changes some attributes of an object.

MQCMIT specifiesthat a syncpoint has been reached. Messages put as part of a unit of work are
made available to other applications. Messages retrieved as part of a unit of work are deleted.

October 1999 MQSeries EAI Center Page 31

MQSeries Primer

MQBACK tells the queue manager to back out all message puts and gets that have occurred since
the last syncpoint. Messages put as part of a unit of work are deleted. Messages retrieved as part
of aunit of work are reinstated on the queue.

Notes:

« MQDISC implies the commit of a unit of work. Ending the program without disconnecting
from the queue manager causes a rollback (MQBACK).

* MQSeries for AS/400 does not use MQBEGIN, MQCMIT or MQBACK. The commit control
operation codes of the AS/400 language are used.

A Code Fragment

The code fragment below shows the APIs to put a message on one queue and get the reply from
another queue.

Note: The fields CompCode and Reason will contain completion codes for the APIs. You can
find them in the Application Programming Reference

Comments:

This statement connects the application to the queue manager with the name MYQMGR. If
the parameter QMName does not contain a name, then the default queue manager is used. MQ
stores the handle of the queue manager in the variable HCon. This handle must be used in all
subsequent APIs.

A To open a queue the queue name must be moved into the object descriptor that will be used for
that queue. This statement opens QUEUEL for output only (open option MQOO_OUTPUT).
The handle to the queue and values in the object descriptor are returned. The handle Hobjl
must be specified in the MQPUT.

MQPUT places the message assembled in a buffer on a queue. Parameters for MQPUT are:
*The handle of the queue manager (from MQCONN)
*The handle of the queue (from MQOPEN)
*The message descriptor
*A structure containing options for the put (refer to the Application Programming Reference)
*The message length
*The buffer containing the data

Bl This statement closes the output queue. Since the queue is predefined no close processing
takes place (MQOC_NONE).

B This statement opens QUEUE2 for input only using the queue-defined defaults. You could
also open a queue for browsing, meaning that the message will not be removed.

October 1999 MQSeries EAI Center Page 32

MQSeries Primer

MHIONN Hon; /1 Qonnection handl e

MHBI HXj1; /] oject handl e for queue 1
MHBI HXj 2; /] oject handl e for queue 2
MLONG (onpCode, Reason; /1 Return codes

MLONG options;
MDD odl = {MQD DEFALLT}; // (bject descriptor for queue 1
MDD od2 = {MY®D DEFALLT}; // (bject descriptor for queue 2

MMD nmd = {MM DEFALLT}; // Message descriptor
MPMD pno = {MPMD DEFALLT}; // Put nessage options
MOBW gno = {MPMD DEFALLT}; // Get nessage options

}/ Gonnect application to a queue nanager .
strcpy (QWMNane, " MYQUR') ;
MOONN (QMNane, &HDon, &onpCode, &Reason) ;

// B Qpen a queue for output
strcpy (odl. bj ect Nane, " QUELEL");
MICPEN (HOon, &od1, MJOD QUTPUT, &bbj 1, &onplode, &Reason);

/1l Put a nmessage on the queue
MPUT (HDon, Hobjl, &, &no, 100, &uffer, &pnpGode, &Reason);

// [Qose the output queue
MYLCEE (H3on, &bbj 1, MO NNE &onpGode, &Reason);

/1 B Qpen input queue

options = MIOD | NPUT_AS Q O,

strcpy (od2. oj ect Nane, "QER");

MXOPEN (HXDon, &od2, options, &bbj2, &onpGode, &Reason);

/I @ Gt nessage

gno. otions = MGVD NOWAIT;

bufl en = sizeof (buffer - 1);

nencpy (nd. Msgl d, MM _NONE, si zeof (ndl. Msgl d) ;
nenset (nd. Gorrel 1d, 0x00, sizeof (MBYTE24));

MXET (Hoon, Hobj 2, &, &no, buflen, buffer, 100, &bnpCde, &Reason);

/1l Qdose the input queue
options = 0;
MIOLCBE (HDon, &bhj 2, options, &bnpGode, &Reason);

// B Dsconnect fromqueue manager
MO SC (Hn, &pnpGde, &Reason);

Figure 21. A Code Fragment

[For the get, the nowait option isused. The MQGET needs the length of the buffer as an input
parameter. Since thereis no message ID or correlation ID specified, the first message from the
queueisread. You may specify await interval (in milliseconds) here. You can check the return

code to find out if the time has expired and no message arrived.

This statement closes the input queue.

B The application disconnects from the queue manager.

October 1999 MQSeries EAI Center

Page 33

MQSeries Primer

October 1999 MQSeries EAI Center Page 34

	What is Messaging and Queuing?
	About Messages
	1. Data that is sent from one program to another
	2. The message descriptor or message header
	Message Segmenting and Grouping
	Distribution Lists
	Message Types
	Persistent and Non-Persistent Messages
	The Message Descriptor

	About the Queue Manager
	1. Common Programming Interface - Communications (CPI-C)
	2. Remote Procedure Call (RPC)
	3. Message Queue Interface (MQI)

	About Queue Manager Clusters
	About Queue Manager Objects
	1. Queues
	2. Process definitions
	3. Channels
	Queues
	Channels
	1. Message channels A message channel connects two queue managers via message channel agents (MCA...
	2. MQI channels A Message Queue Interface (MQI) channel connects an MQSeries client to a queue ma...

	Process Definitions

	About Message Queues
	Local Queue
	Cluster Queue
	Remote Queue
	Transmission Queue
	Dynamic Queue
	Alias Queue
	Model Queue
	Initiation Queue
	Reply-to-Queue
	Dead-Letter Queue
	Repository Queue
	Creating a Queue Manager

	Manipulating Queue Manager Objects
	Clients and Servers
	How MQSeries Works
	Communication between Queue Managers
	How to Define a Connection between Two Systems
	How to Start Communication Manually
	How to Start Communication Automatically
	1. The program issues an MQPUT to a remote queue and a message is placed into the transmission qu...
	2. When the queue manager puts a message into the transmission queue, it checks the trigger type ...
	3. Since the channel initiator was started earlier, for example, at boot time, it monitors the ch...
	4. The channel initiator starts the message channel agent (also called mover).
	5. The channel program gets the message off the transmission queue and invokes any channel exit r...
	6. The message is then moved over the network to its destination.

	How to Trigger Applications
	1. Program A issues an MQPUT and puts a message into A-Q for Program B.
	2. The queue manager processes this API call and puts the message into the application queue.
	3. It also finds out that the queue is triggered. It creates a trigger message and looks in the P...
	4. The trigger monitor gets the trigger message from the initiation queue and starts the program ...
	5. The application program starts running and issues an MQGET to retrieve the message from the ap...

	Communication between Client and Server
	How to Define a Client/Server Connection
	How a Client/Server Connection Works
	How a Client Sends a Request
	How the Server Receives a Request
	How the Server Sends a Reply
	How the Client Receives a Reply

	The Message Queuing Interface (MQI)
	A Code Fragment

