
MQSeries Primer

MQSeries Enterprise Application Integration Center

October 1999MQ EAI Center

Dieter Wackerow

MQSeries Primer
MQSeries is IBM’s award winning middleware for commercial messaging and queuing. It is used
by thousands of customers in every major industry in many countries around the world. MQSeries
speeds implementation of distributed applications by simplifying application development and
test.

MQSeries runs on a variety of platforms. The MQSeries products enable programs to
communicate with each other across a network of unlike components, such as processors,
subsystems, operating systems and communication protocols. MQSeries programs use a
consistent application program interface (API) across all platforms.

Figure 1. MQSeries at Run Time

Figure 1 shows the main parts of an MQSeries application at run time. Programs use MQSeries
API calls, that is the Message Queue Interface (MQI), to communicate with a queue manager
(MQM), the run-time program of MQSeries. For the queue manager to do its work, it refers to
objects, such as queues and channels. The queue manager itself is an object as well.

The following provides a brief overview of MQSeries, including clients and servers.

What is Messaging and Queuing?

Message queuing is a method of program-to-program communication. Programs within an
application communicate by writing and retrieving application-specific data (messages) to/from
queues, without having a private, dedicated, logical connection to link them.

Messaging means that programs communicate with each other by sending data in messages and
not by calling each other directly.

Queuing means that programs communicate through queues. Programs communicating through
queues need not be executed concurrently.

Application
Program

MQSeries

MQI

Application
Program

MQSeries

MQI

NETWORK

MQ Objects MQ Objects
October 1999 MQSeries EAI Center Page 3

MQSeries Primer

ave
ponses

le. He

plication
rt to the

r. The
nection
ng or
ified
With asynchronous messaging, the sending program proceeds with its own processing without
waiting for a reply to its message. In contrast, synchronous messaging waits for the reply before it
resumes processing. For the user, the underlying protocol is transparent. The user is concerned
with conversational or data-entry type applications.

MQSeries is used in a client/server or distributed environment. Programs belonging to an
application can run in one workstation or in different machines on different platforms.
Applications can easily be moved from one system or platform to another. The programs can be
written in various programming languages, including Java. The same queuing mechanism is valid
for all platforms, and so are the currently 13 APIs.

Since MQSeries communicates via queues it can be referred to as using indirect program-to-
program communication. The programmer cannot specify the name of the target application to
which a message is sent. However, he or she can specify a target queue name; and each queue is
associated with a program. An application can have one or more “input” queues and may h
several “output” queues containing information for other servers to be processed, or for res
for the client that initiated the transaction.

The programmer does not have to worry about the target program being busy or not availab
or she isn’t even concerned about the server being down or having no connection to it. The
programmer sends messages to a queue that is associated with an application; and the ap
may or may not be available at the time of the request. MQSeries takes care of the transpo
target application and even starts it, if necessary.

If the target program is not available, the messages stay in a queue and get processed late
queue is either in the sending machine or in the target machine, depending whether the con
between the two systems can be established or not. Applications can be running all day lo
they can be triggered, that is, automatically started when a message arrives or after a spec
number of messages have arrived.

Figure 2. Messages and Queues

Queue

AA

BB

Queue
October 1999 MQSeries EAI Center Page 4

MQSeries Primer

 the

ce (API)
s said

sed

tion,
ame of

e.
 MB.

rge
ion to
nd on the

lit a

ssages

d build

 is

ith one

e
ging to
ic. The
Figure 2 on page 4 shows how two programs, A and B, communicate with each other. We see two
queues; one is the “output” queue for A and at the same time the “input” queue for B, while
second queue is used for replies flowing from B to A.

The squares between the queues and the programs represent the Message Queuing Interfa
the program uses to communicate with MQSeries’ run-time program, the queue manager. A
before, the API is a simple multi platform API consisting of 13 calls. The API will be discus
later.

About Messages

A message consists of two parts:
 1. Data that is sent from one program to another
 2. The message descriptor or message header

The message descriptor identifies the message (message ID) and contains control informa
also called attributes, such as message type, expiry time, correlation ID, priority, and the n
the queue for the reply.

A message can be up to 4 MB or 100 MB long, depending on the MQSeries version you us
MQSeries Version 5 (for distributed platforms) supports a maximum message length of 100

Message Segmenting and Grouping
In MQSeries Version 5, messages can be segmented or grouped. Message segmenting can be
transparent to the application programmer. If permitted, the queue manager segments a la
message when it does not fit in a queue. On the receiving end, the application has the opt
either receive the entire message in one piece or each segment separately. This may depe
buffer size available for the application.

A second method of segmenting leaves the programmer in control so that he or she can sp
message according to logical boundaries or buffer size available for the program. The
programmer puts each segment as a separate physical message; thus several physical me
build one logical message. The queue manager ensures that the order of the segments is
maintained.

To reduce traffic over the network, you can also group several small messages together an
one larger physical message. This message is then sent to the destination and is there
disassembled. Message grouping also guarantees that the order the messages are sent in
preserved.

Distribution Lists
Using MQSeries Version 5, you can send a message to more than one destination queue w
MQPUT call. This is done with a dynamic distribution list. A distribution list can be a file that is
read at the time an application starts. It can be modified any time. It contains a list of queu
names and the queue managers that own them. A message sent to multiple queues belon
the same queue manager is sent over the network only once and so reduces network traff
October 1999 MQSeries EAI Center Page 5

MQSeries Primer

ou

ew.
’t
s data.

e
D for
an save
am that
s the

ific
receiving queue manager replicates the messages and puts them into the destination queues. This
function is called late fan-out.

Message Types
MQSeries knows four types of messages:

Datagram: A message containing information for which no response is expected.
Request: A message for which a reply is requested.
Reply: A reply to a request message.
Report: A message that describes an event such as the occurrence of an error or a
 confirmation on arrival or delivery.

Persistent and Non-Persistent Messages
Application design determines whether a message must reach its destination under any
circumstances, or if it can be discarded when it cannot get there in time. MQSeries differentiates
between persistent and non-persistent messages. Delivery of persistent messages is assured; they
are written to logs to survive system failures. In an AS/400 these logs are Journal Receivers.
Non-persistent messages cannot be recovered after a system restart.

The Message Descriptor
The table below contains some interesting attributes of the message descriptor. We mention them
here because they explain some of the functions the queue manager provides for you.

Figure 3. Some Attributes of the Message Descriptor

• The version of the message descriptor depends on the MQSeries version and platform y
use. For the functions introduced with Version 5 additional fields were needed to keep
information about segments and their order and distribution list information, to name a f
This enlarged structure carries the version number 2. Other queue managers who don
support these functions (“Version 1 queue managers”) treat the additional information a

• Message and/or correlation ID are used to identify a specific request or reply message. Th
programmer can move a value in one or both fields or have MQSeries create a unique I
him or her. Before the programmer puts the request message in the queue he or she c
the ID(s) and use them in a subsequent get operation for the reply message. The progr
receives the request message copies this information into the reply message. This allow
originating program (the one that gets the reply) to instruct MQSeries to look for a spec
message in the queue instead of getting the first one in the queue.

9HUVLRQ 5HWXUQ�DGGUHVV
0HVVDJH�,'�����&RUUHOODWLRQ�,')RUPDW
3HUVLVWHQW�����QRQ�SHUVLVWHQW 6HQGHU�DSSOLFDWLRQ�DQG�W\SH
3ULRULW\ 5HSRUW�RSWLRQV�����)HHGEDFN�����&2$��&2'�
'DWH�DQG�WLPH %DFNRXW�FRXQWHU
/LIHWLPH�RI�D�PHVVDJH 6HJPHQWLQJ���JURXSLQJ�LQIRUPDWLRQ
October 1999 MQSeries EAI Center Page 6

MQSeries Primer

ed on
e.

r.

d,
red
 read it.

rver

e

s the

ether
l

d path)

n
r can
t queue

ere the

ses the

m. Its

s of
e on a
• We discussed persistent and non-persistent messages earlier. Persistent messages always
arrive at their destination, even when the system fails. They are “hardened”, that is, sav
disk. You can make a specific message persistent or all messages on a particular queu

• You can assign a priority to a message and so control the order in which it is processed.

• The queue manager stores time and date when the MQPUT occurred in the message heade
The time is in GMT and the year has four digits and so is Y2K compliant.

• You can also specify an expiration date. When this date is reached and an MQGET is issue
then the message will be discarded. There is no “daemon” that checks queues for expi
messages. Expired messages can stay in a queue for weeks, until a program attempts to

• The return address is very important for request/reply messages. You have to tell the se
program where to send the reply message. Clients and servers have a one-to-many
relationship and usually the server program cannot find out from the user data where th
request message came from. Therefore, the client provides the reply-to queue and reply-to
queue manager in the message header. The server uses this information when it perform
MQPUT API call.

• In the format field, the sender can specify a value that the receiver can use to decide wh
data conversion can be done or not. It is also used to indicate that there is an additiona
header (extension) present.

• The message also carries information about the sending application (program name an
and the platform it is running on.

• Report options and feedback code are used to request information, such as confirmation o
arrival or delivery, from the receiving queue manager. For example, the queue manage
send a report message to the sending application when it puts the message in the targe
or when the application gets it off the queue.

• Each time a message is backed out, the backout counter is increased. An application can
check this counter and act on it, for example, send the message to a different queue wh
reason for the backout is analyzed by an administrator.

• Message segmenting and grouping has been mentioned earlier. The queue manager u
message header to store information about the physical message; for example, if it is a
message group, the first or last segment, or which one in between.

About the Queue Manager

The heart of MQSeries is the message queue manager (MQM), MQSeries’ run-time progra
job is to manage queues and messages for applications. It provides the Message Queuing
Interface (MQI) for communication with applications. Application programs invoke function
the queue manager by issuing API calls. For example, the MQPUT API call puts a messag
October 1999 MQSeries EAI Center Page 7

MQSeries Primer

er can
queue to be read by another program using the MQGET API call. This scenario is shown in
Figure 4.

Figure 4. Program-to-Program Communication - One System

A program may send messages to another program that runs in the same machine as the queue
manager (shown above), or to a program that runs in a remote system, such as a server or a host.
The remote system has its own queue manager with its own queues. This scenario is shown in
Figure 5.

Figure 5. Program-to-Program Communication - Two Systems

The queue manager transfers messages to other queue managers via channels using existing
network facilities, such as TCP/IP, SNA or SPX. Multiple queue managers can reside in the same
machine. They also need channels to communicate.

Application programmers do not need to know where the program to which they are sending
messages runs. They put their messages on a queue and let the queue manager worry about the
destination machine and how to get the messages there. MQSeries knows what to do when the
remote system is not available or the target program is not running or busy.

For the queue manager to do its work, it refers to objects that are defined by an administrator,
usually when the queue manager is created or when a new application is added. The objects are
described in “About Queue Manager Objects” on page 11. The functions of a queue manag
be summarized as follows:

• It manages queues of messages for application programs.

Application
Program A

PUT to Q1

Application
Program B

GET from Q1

Messages

Application
Program A

PUT to Q1

Application
Program B

GET from Q1

Messages

Channel

Remote Queue Q1 Local Queue Q1
October 1999 MQSeries EAI Center Page 8

MQSeries Primer

n

uts from/

 and send
embled.

efined

ter the
ies for
mand

ct to a
ed to it.

 2)
anager
ct is

chine or
”
e
ry of
er in

 special

eue
ages to
• It provides an application programming interface, the Message Queue Interface (MQI).
Note: The Networking Blueprint identifies three communication styles:

 1. Common Programming Interface - Communications (CPI-C)
 2. Remote Procedure Call (RPC)
 3. Message Queue Interface (MQI)

• It uses existing networking facilities to transfer messages to other queue managers whe
necessary.

• It coordinates updates to databases and queues using a two-phase commit. Gets and p
to queues are committed together with SQL updates, or backed out if necessary.

• It segments messages (if necessary) and assembles them. It also can group messages
them as one physical message to their destination where they are automatically disass

• It can send one message to more than one destination with one API call using a user-d
dynamic distribution list, thus reducing network traffic.

• It provides additional functions that allow administrators to create and delete queues, al
properties of existing queues, and control the operation of the queue manager. MQSer
Windows NT Version 5.1 provides graphical user interfaces; other platforms use the com
line interface or panels.

MQSeries clients do not have a queue manager in their machines. Client machines conne
queue manager in a server. The queue manager manages the queues for all clients attach

In contrast to MQSeries clients, each workstation that runs MQSeries for Windows (Version
has its own queue manager and queues. MQSeries for Windows is a single-user queue m
and is not intended to function as a queue manager for other MQSeries clients. This produ
designed for a mobile environment.

Note: MQSeries for Windows and MQSeries for Windows NT are two different products.

About Queue Manager Clusters

With MQSeries for MVS/ESA and Version 5.1 for distributed platforms, you can join queue
managers together in clusters. Queue managers that form a cluster can run in the same ma
in different machines on different platforms. Usually, two of those “cluster queue managers
maintain a repository that contains information about all queue managers and queues in th
cluster. This is called a full repository. The other queue managers maintain only a reposito
objects they are interested in, a partial repository. The repository allows any queue manag
the cluster to find out about any cluster queue and who owns it. The queue managers use
cluster channels to exchange information.

Clustering also permits multiple instances of a queue (with the same name) on different qu
managers. This allows for workload distribution, that is, the queue manager can send mess
different instances of an application.
October 1999 MQSeries EAI Center Page 9

MQSeries Primer

ger. The

and the

ster, in
 remote
ful
n also

ft to the
end the

 exist.

cing
r does
ueue.

vels of

 their
ed in

ple
ne the

In normal distributed processing, we send messages to a specific queue owned by a specific queue
manager. All messages destined for that queue manager are placed in a transmission queue on the
sender’s side. This transmission queue has the same name as the destination queue mana
message channel agents move the messages across the network and place them into the
destination queues. Figure 6 shows the relationship between a transmission (Xmit) queue
target queue manager.

Figure 6. MQPUT to a Remote Queue

With clustering, you send a message to a queue with a specific name somewhere in the clu
Figure 7 represented by a cloud. You specify the name of a target queue, not the name of a
queue definition. Clustering does not require remote queue definitions. They are only use
when you send a message to a queue manager that is not a member of the cluster. You ca
specify a queue manager and direct the message to a specific queue, but very often it is le
queue manager to determine where the queue is (or the queues are) and to which one to s
message.

Figure 7. MQPUT to a Cluster Queue

The vision of an MQSeries cluster is as the place where multiple instances of a queue can
They come and go as an administrator requires in order to satisfy changing availability and
throughput requirements. This has to be achieved completely dynamically and without pla
the administrator under a great burden to configure and control. In addition, the programme
not have to think about multiple queues; he or she just treats them as if writing to a single q

This is not to say that there is no burden on the programmer or administrator. Enhanced le
availability and exploitation of parallelism do require some planning. The administrator or
system designer must ensure that there is enough redundancy in the configuration to meet
needs. The application designer must ensure that messages are capable of being process
multiple places.

You create multiple instances of a queue by defining a queue with the same name on multi
queue managers that belong to the cluster. You must also name the cluster when you defi
queue. Without this attribute the queue would only be known locally. When the application
specifies only the queue name, where is the message sent?

MQPUT
 Xmit
Queue

Target
Queue Qmgr

Remote
Queue

MQPUT
Cluster
 Xmit
Queue

Target
Queue
October 1999 MQSeries EAI Center Page 10

MQSeries Primer
Figure 8. Accessing Cluster Queues

Figure 8 gives you an idea. MQSeries distributes the messages round-robin. You can, however,
change this default action by writing your own workload balancing exit routine.

Figure 8 shows messages put in one of the three cluster queues named A. Each of the three queue
managers on the right owns a queue with this name. By default, the first message is placed in
queue A on queue manager 1, the next in queue A on queue manager 2, the third goes to queue
manager 3 and the fourth message to the queue on queue manager 1 again.

In another scenario involving queue B, we notice that the third queue manager is down and the
third instance of queue B is not available. The sending queue manager becomes aware of this
problem because it subscribed to information about all queue manager and queues it is interested
in, that is, where it sends messages. As soon as it finds out that there is a problem with the third
instance of B, it distributes messages to the first two instances only. Special messages about
changes of the status of cluster objects are instantly published to all queue managers that
subscribed to that object.

About Queue Manager Objects

This section introduces you to queue manager objects, such as queues and channels. The queue
manager itself is an object, too. Usually, an administrator creates one or more queue managers
and their objects. A queue manager can use objects of the following types:

 1. Queues
 2. Process definitions
 3. Channels

The objects are common across different MQSeries platforms. There are other objects that apply
to MVS systems only, such as the buffer pool, PSID, and storage class. AS/400 MQ objects are
known to the OS/400 operating system as object type *USRSPC (user space) in the QMQMDATA
library.

MQPUT

B

A

A

A

B1

2

3

October 1999 MQSeries EAI Center Page 11

MQSeries Primer

s). Such
eceiver,
ans-
eue.
nder

nager
l is

r server

ies.
e queue

 channel

EC
Queues
Message queues are used to store messages sent by programs. There are local queues that are
owned by the local queue manager, and remote queues that belong to a different queue manager.
Queues are described in more detail in the section “About Message Queues” on page 13.

Channels
A channel is a logical communication link. In MQSeries, there are two different kinds of
channels:

1. Message channels
A message channel connects two queue managers via message channel agents (MCA
a channel is unidirectional. It comprises two message channel agents, a sender and a r
and a communication protocol. An MCA is a program that transfers messages from a tr
mission queue to a communication link, and from a communication link into the target qu
For bidirectional communication you have to define two channel pairs consisting of a se
and a receiver. Message channel agents are also referred to as movers.

2. MQI channels
A Message Queue Interface (MQI) channel connects an MQSeries client to a queue ma
in its server machine. Clients don’t have a queue manager of their own. An MQI channe
bidirectional.

Figure 9 shows both channels types. You see four machines, two clients connected to thei
machine via MQI channels, and the server connected to another server or a host via two
unidirectional message channels. Some channels can be defined automatically by MQSer
There are different types of message channels, depending on how the session between th
managers is initiated and for what purpose they are used.

Figure 9. MQSeries Channels

To transmit non-persistent messages, a message channel can run at two speeds: fast and normal.
Fast channels improve performance, but (non-persistent) messages can be lost in case of a
failure.

A channel can use the following transport types: SNA LU 6.2, TCP/IP, NetBIOS, SPX and D
Net. Not all are supported on all platforms.

MQ
Client

MQM

MQ
Client

MQMMQI Channels Message Channels
October 1999 MQSeries EAI Center Page 12

MQSeries Primer
MQSeries for Windows Version 2 uses message channels to connect to other machines. Since this
product is designed as a single user system, it does not support MQI channels. This product
supports only TCP/IP.

Process Definitions
A process definition object defines an application to a queue manager. For example, it contains
the name of the program (and its path) to be triggered when a message arrives for it.

About Message Queues

Queues are defined as objects belonging to a queue manager. MQSeries knows a number of
different queue types, each with a specific purpose. The queues you use are located either in your
machine and belong to the queue manager to which you are connected, or in your server (if you
are a client). Figure 10 lists different queue types and their purposes. More detailed information
is below.

Figure 10. Queue Types

Local Queue
A queue is local if it is owned by the queue manager to which the application program is
connected. It is used to store messages for programs that use the same queue manager. For
example, program A and program B each has a queue for incoming messages and another queue
for outgoing messages. Since the queue manager serves both programs, all four queues are local.

Note: Both programs do not have to run in the same workstation. Client workstations usually use
a queue manager in a server machine.

Cluster Queue
A cluster queue is a local queue that is known throughout a cluster of queue managers, that is, any
queue manager that belongs to the cluster can send messages to it without the need of a remote
definition or defining channels to the queue manager that owns it.

Local queue is a real queue

Remote queue structure describing a queue

Transmission queue (xmitq) local queue with special purpose

Initiation queue local queue with special purpose

Dynamic queue local queue created "on the fly"

Alias queue if you don’t like the name

Dead-letter queue one for each queue manager

Reply-to-queue specified in request message

Model queue model for local queues

Repository queue holds cluster information
October 1999 MQSeries EAI Center Page 13

MQSeries Primer

is the
t

e the
emote

sion
o queues

e). All

 the

 other

eue
d from
will

e
ds.
tore

to the
ing it
Remote Queue
A queue is “remote” if it is owned by a different queue manager. A remote queue definition
local definition of a remote queue. A remote queue is not a real queue. It is a structure tha
contains some of the characteristics of a queue hosted by a different queue manager.

The application programmer can use the name of a remote queue just as he or she can us
name of a local queue. The MQSeries administrator defines where the queue actually is. R
queues are associated with a transmission queue.

Notes: - A program cannot read messages from a remote queue.
- You don’t need a remote queue definition for a cluster queue.

Transmission Queue
This is a local queue with a special purpose. A remote queue is associated with a transmis
queue. Transmission queues are used as an intermediate step when sending messages t
that are owned by a different queue manager.

Typically, there is only one transmission queue for each remote queue manager (or machin
messages written to queues owned by a remote queue manager are actually written to the
transmission queue for this remote queue manager. The messages will then be read from
transmission queue and sent to the remote queue manager.

Using MQSeries clusters, there is only one transmission queue for all messages sent to all
queue managers in the cluster.

Transmission queues are transparent to the application. They are used internally by the qu
manager. When a program opens a remote queue, the attributes of the queue are obtaine
the transmission queue. Therefore, the results of a program writing messages to a queue
be affected by the transmission queue characteristics.

Dynamic Queue
Such a queue is defined "on the fly" when the application needs it. Dynamic queues may b
retained by the queue manager or automatically deleted when the application program en
Dynamic queues are local queues. They are often used in conversational applications, to s
intermediate results. Dynamic queues can be:

• Temporary queues that do not survive queue manager restarts
• Permanent queues that do survive queue manager restarts

Alias Queue
Alias queues are not real queues but definitions. They are used to assign different names
same physical queue. This allows multiple programs to work with the same queue, access
under different names and with different attributes.
October 1999 MQSeries EAI Center Page 14

MQSeries Primer

ue
. This is

e are

ch a
l

sed in
and
Model Queue
A model queue is not a real queue. It is a collection of attributes that are used when a dynamic
queue is created.

Initiation Queue
An initiation queue is a local queue to which the queue manager writes a trigger message when
certain conditions are met on another local queue, for example, when a message is put into an
empty message queue or in a transmission queue. Such a trigger message is transparent to the
programmer. Two MQSeries applications monitor initiation queues and read trigger messages,
the trigger monitor which starts applications and the channel initiator which starts the
transmission between queue managers.

Note: Applications do not need to be aware of initiation queues, but the triggering mechanism
implemented through them is a powerful tool to design and write asynchronous applications.

Reply-to-Queue
A request message must contain the name of the queue into which the responding program must
put the reply message. This can be considered the “return address”. The name of this que
together with the name of the queue manager that owns it is stored in the message header
the responsibility of the application program.

Dead-Letter Queue
A queue manager must be able to handle situations when it cannot deliver a message. Her
some examples:

 • The destination queue is full.

 • The destination queue does not exist.

 • Message puts have been inhibited on the destination queue.

 • The sender is not authorized to use the destination queue.

 • The message is too large.

 • The message contains a duplicate message sequence number.

When the above conditions are met, the messages are written to the dead-letter queue. Su
queue is defined when the queue manager is created. It will be used as a repository for al
messages that cannot be delivered.

Repository Queue
Repository queues have existed since Version 5.1 and Version 2.1 for OS/390. They are u
conjunction with clustering and hold either a full or a partial repository of queue managers
queue manager objects in a cluster (or group) of queue managers.
October 1999 MQSeries EAI Center Page 15

MQSeries Primer

mand

ple:
Creating a Queue Manager
You may create as many queue managers as you like and have them running at the same time.
You create a queue manager with the command crtmqm; to make it the default, specify the
parameter /q.
The following command creates the default queue manager MYQMGR (in a Windows NT
environment):

crtmqm /q MYQMGR

Note: Queue manager names are case-sensitive.

There are default definitions for objects every queue manager needs, such as model queues. These
objects are created automatically. Most certainly, you will have to create other objects that pertain
to the applications you run. Usually, those application specific objects are kept in a script file,
such as mydefs.in. You apply them to a newly created queue manager with the command:

runmqsc < mydefs.in

MQSeries for Windows NT Version 5.1 provides a graphical user interface to create and
manipulate queue managers and their objects.

A dead-letter queue is not automatically created. To create one when you create the queue
manager, specify it as shown in the following example:

crtmqm /q /u system.dead.letter.queue MYQMGR

To start the queue manager issue the command:

strmqm

Manipulating Queue Manager Objects

MQSeries for distributed platforms provides the utility RUNMQSC to create and delete queue
manager objects and to manipulate them. The queue manager must be running when you use the
utility. RUNMQSC works in two ways:

• You can type the commands.
• You can create a file containing a list of commands and use this file as input.

The commands in Figure 11 on page 17 start the default queue manager (which is already
running, as the response indicates) and create the local queue QUEUE1 for it. Another com
alters the queue manager properties to define a dead-letter queue.

To start the utility in an interactive mode, type runmqsc. To end it, type end. Another way to
create MQSeries objects is by using an input file instead of typing the commands; for exam
October 1999 MQSeries EAI Center Page 16

MQSeries Primer

r and
eral of
r to

ially in a
runmqsc < mydefs.in > a.a

where mydefs.in is the script file that contains the commands and a.a is the file that will contain
the responses from the RUNMQSC utility, so that you can check if any error occurred. The
output can either appear in the window or can be redirected to a file.

Figure 11. Manipulating Objects Using Control Commands

Clients and Servers

MQSeries distinguishes clients and servers. Before you install MQSeries on a distributed
platform you have to decide if the workstation will be an MQSeries client, an MQSeries server, or
both. With MQSeries for Windows a new term was introduced, the leaf node (described later).
There are two kinds of clients:

• Slim client or MQSeries client
• Fat client

Fat clients have a local queue manager; slim clients don't.

When a slim client cannot connect to its server it cannot work, because the queue manage
queues for a slim client reside in the server. Usually, an MQSeries client is a slim client. Sev
these clients share MQSeries objects, and the queue manager is one of them, in the serve
which they are attached.

Note: The MQSeries Client for Java is a slim client.

In some cases it may be advantageous to have queues in the end user's workstation, espec
mobile environment. That allows you to run your application when a connection between

C:\strmqm
MQSeries queue manager running.

runmqsc
84H2001,6539-B42 (C) Copyright IBM Corp. 1994, 1997. ALL RIGHTS RESERVED
Starting MQSeries Commands.

define qlocal(’QUEUE1’) replace descr (’test queue’)
 1 : define qlocal(’QUEUE1’) replace descr (’test queue’)
AMQ8006: MQSeries queue created.
alter qmgr deadq(system.dead.letter.queue)
 2 : alter qmgr deadq(system.dead.letter.queue)
AMQ8005: MQSeries queue manager changed.
end
 3 : end
2 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

C:\
October 1999 MQSeries EAI Center Page 17

MQSeries Primer

bjects

e

anager
r.
ot
lim"

 other
w
ay
ent
client and server does not (temporarily) exist.

You may install client and server software in the same system and use it as an end user’s
workstation. If your operating system is Windows NT you can install MQSeries for Windows NT
V5.1 or MQSeries for Windows V2.1 (also called MQWin). If your operating system is Windows
95 use MQWin V2.1. This product has been designed for end users and uses fewer resources.

The difference between an end user’s workstation that is a client and one that has a queue manager
is the way messages are sent. The queues reside either in the end user’s workstation or in the
server.

Figure 12. MQI and Message Channels

Figure 12 shows again the use of MQI and message channels.

• MQI channels connect clients to a queue manager in a server machine. All MQSeries o
for the client reside in the server. MQI channels are faster than message channels.

• A message channel connects a queue manager to another queue manager. The queu
manager can reside in the same or in a different machine.

The following summarizes the three workstation types:

MQSeries Client
A client workstation does not have a queue manager of its own. It shares a queue m
in a server with other clients. All MQSeries objects, such as queues, are in the serve
Since the connection between client and server is synchronous, the application cann
work when the communication is broken. You could refer to such workstations as "s
clients.

MQSeries Server
A workstation can be a client and a server. A server is an intermediate node between
nodes. It serves clients that have no queue manager and manages the message flo
between its clients, itself and other servers. In addition to the server software you m
install the client software, too. This configuration is used in an application developm
environment.

MQ
Client

MQM

MQ
Client

MQMMQI Channels Message Channels
October 1999 MQSeries EAI Center Page 18

MQSeries Primer
Leaf Node
MQSeries for Windows was designed for use by a single user. It has its own "small
footprint" queue manager with its own objects. However, it is not an intermediate node
between other nodes. It is called a leaf node. You could also refer to it as a "fat" client.
This product is able to queue outbound messages when connection to a server or host is
not available, and inbound messages when the appropriate application is not active.

How MQSeries Works

Figure 13. MQSeries - Parts and Logic

Figure 13 shows the parts and architecture of MQSeries. The application program uses the
Message Queue Interface (MQI) to communicate with the queue manager. The MQI is described
in more detail later. The queuing system consists of the following parts:

• Queue Manager (MQM)
• Listener
• Trigger Monitor
• Channel Initiator
• Message Channel Agent (MCA) or mover

System Init Q

MQI

Program 1

MCA MCA

Program 2

MQI

Channel
Initiator

PUT

Remote Q

Xmit Q

Ch Init
 Q

monitors

starts

starts starts

Trigger
Monitor

Local Q

monitors

starts

P
r
o
c
e
s
s

GET

B
A.B

A.B

Listener

Network

Qmgr A Qmgr B

starts
October 1999 MQSeries EAI Center Page 19

MQSeries Primer
When the application program wants to put a message on a queue it issues an MQPUT API call.
This invokes the MQI. The queue manager checks whether the queue referenced in the MQPUT is
local or remote. If it is a remote queue, the message is placed into the transmission (xmit) queue.
The queue manager adds a header that contains information from the remote queue definition,
such as destination queue manager name and destination queue name.

Note: Each remote queue must be associated with an xmit queue. Usually, all messages destined
for one remote machine use the same xmit queue.

Transmission is done via channels. Channels can be started manually or automatically. To start a
channel automatically, the xmit queue must be associated with a channel initiation queue. Figure
13 on page 19 shows that the queue manager puts a message into the xmit queue and another
message into the channel initiation queue. This queue is monitored by the channel initiator.

The channel initiator is an MQSeries program that must be running in order to monitor initiation
queues. When the channel initiator detects a message in the initiation queue, it starts the message
channel agent (MCA) for the particular channel. This program moves the message over the
network to the other machine, using the sender part of the unidirectional message channel pair.

On the receiving end, a listener program must have been started. The listener, also supplied with
MQSeries, monitors a specified port, by default, the port dedicated to MQSeries, 1414. When a
message arrives, it starts the message channel agent. The MCA moves the message into the
specified local queue using the receiver part of the message channel pair.

Note: Both channel definitions, sender and receiver, must have the same name. For the reply, you
need another message channel pair.

The program that processes the incoming message can be started manually or automatically. To
start the program automatically, an initiation queue and a process must be associated with the
local queue, and the trigger monitor must be running.

When the program starts automatically, the MCA puts the incoming message into the local queue
and a trigger message into the initiation queue. This queue is monitored by the trigger monitor.
This program invokes the application program specified in the process definition. The application
issues an MQGET API call to retrieve the message from the local queue.

Communication between Queue Managers

In this section, we discuss what you have to define to send messages to a queue manager that
resides in another system. We use message channels for communication between queue managers
as shown in Figure 12 on page 18.

The logic is illustrated in Figure 14 on page 22 and the necessary MQSeries definitions are shown
in Figure 15 on page 22.
October 1999 MQSeries EAI Center Page 20

MQSeries Primer

 to a

hannel

her
).

A in
y the

stem

defined

one
ueue
Each machine has a queue manager installed and each queue manager manages several local
queues. Messages destined for a remote queue manager are put into a remote queue. A remote
queue is not a real queue; it is the definition of a local queue in the remote machine. A remote
queue is associated with a transmission (xmit) queue, which is a local queue. Usually, there is one
xmit queue for each remote queue manager.

A transmission queue is associated with a message channel. Message channels are unidirectional,
meaning that you have to define two channels for a conversational type of communication. Also,
you have to define each channel twice, once in the system that sends the message (sender channel)
and once in the system that receives the message (receiver channel). Each channel pair (sender
and receiver) must have the same name. This scenario is elucidated in Figure 14 on page 22.
Next, let us find out how we get this to work.

How to Define a Connection between Two Systems
Figure 14 on page 22 shows the required MQSeries objects for connecting two queue managers.
In each system we need:

• A remote queue definition that mirrors the local queue in the receiver machine and links
transmission queue (Q1 in system A and Q2 in system B).

• A transmission queue that holds all messages destined for the remote system until the c
transmits them (QMB in system A and QMA in system B).

• A sender channel that gets messages from the xmit queue and transmits them to the ot
system using the existing network (QMA.QMB in system A and QMB.QM.A in system B

• A receiver channel that receives messages and puts them into a local queue (QMB.QM
system A and QMA.QMB in system B); receiver channels can be started automatically b
queue manager when Channel Auto Definition (CHAD) is enabled.

• A local queue from which the program gets its messages (Q2 in system A and Q1 in sy
B).

In each system, you must define the appropriate queue manager objects. The objects are
in the two script files shown in Figure 15 on page 22.

Notes:
When you use clustering you don’t have to define transmission queues. There is only
transmission queue per queue manager, and that is created automatically when the q
manager is created.

You also don’t have to define channels, neither sender or receiver channels; they are
automatically created when needed.
October 1999 MQSeries EAI Center Page 21

MQSeries Primer
Figure 14. Communication between Two Queue Managers

Figure 15. MQSeries Objects Defining Connection between Two Queue Managers

System A System B

XmitQ
QMB

Remote Q2

N

E

T

W

O

R

K

Channel
QMA.QMB
Sender

Program 1

put

get

get

put

Local Q1Remote Q1

Local Q2

Program 2

Qmgr QMA Qmgr QMB

XmitQ
QMA

Channel
QMA.QMB
Receiver

Channel
QMB.QMA
Sender

Channel
QMB.QMA
Receiver

(CHAD)

(CHAD)

System A (QMA) System B (QMB)
DEFINE QREMOTE(Q1) +
 RNAME(Q1) RQMNAME(QMB) +
 XMITQ(QMB)

DEFINE QLOCAL(Q1)

DEFINE QLOCAL(QMB) +
 USAGE(xmitq)
DEFINE CHANNEL(QMA.QMB) +
 CHLTYPE(sdr) +
 XMITQ(QMB) +
 TRPTYPE(tcp) +
 CONNAME(9.24.104.123)

DEFINE CHANNEL(QMA.QMB) +
 CHLTYPE(rcvr) +
 TRPTYPE(tcp)

DEFINE QLOCAL(Q2)
DEFINE QREMOTE(Q2) +
 RNAME(Q2) RQMNAME(QMA) +
 XMITQ(QMA)

DEFINE QLOCAL(QMA) +
 USAGE(xmitq)

DEFINE CHANNEL(QMB.QMA) +
 CHLTYPE(rcvr) +
 TRPTYPE(tcp)

DEFINE CHANNEL(QMB.QMA) +
 CHLTYPE(sdr) +
 XMITQ(QMA) +
 TRPTYPE(tcp) CONNAME(ABC1)
October 1999 MQSeries EAI Center Page 22

MQSeries Primer
How to Start Communication Manually
First, the objects have to be known to the queue managers. You use RUNMQSC to create the
objects. Make sure that the queue manager is running. Next, start the listeners and the channels.
You need to start only the sender channel in each system. MQSeries starts the receiver channel.
The commands to start listener and channel for queue manager QMA are:

strmqm QMA
start runmqlsr -t tcp -m QMA -p 1414
runmqsc
start channel (QMA.QMB)
end

With the first command you start queue manager QMA. The next command starts the listener. It
listens on behalf of QMA on port 1414. As transmission protocol TCP/IP is used. The third
command starts runmqsc in interactive mode. The channel QMA.QMB is started under control of
runmqsc. For the other queue manager you issue equivalent commands. You also have to start the
applications in both systems.

How to Start Communication Automatically
You can use the channel initiator to start channels. Instead of the commands shown above enter
the following commands (for Windows NT, UNIX and OS/2):

start runmqlsr -t tcp -m QMA -p 1414
start runmqchi

With the first command you start the listener and with the second the channel initiator program.
The channel initiator monitors a channel initiation queue and starts the proper channel to read in
the message. The default initiation queue is SYSTEM.CHANNEL.INITQ.

You may also start the channel initiator from RUNMQSC (Windows NT, UNIX and OS/2). The
command is:

start chinit

--OR--
start chinit initq(SYSTEM.CHANNEL.INITQ)

To have the transmission queue triggered, add three more parameters (below shown in bold):

DEFINE QLOCAL(A.TO.B) REPLACE +
 USAGE(xmitq) +
 TRIGGER
 TRIGTYPE(every) +
 INITQ(SYSTEM.CHANNEL.INITQ) +
 DESCR(’Xmit Queue’)
October 1999 MQSeries EAI Center Page 23

MQSeries Primer

ansmis-

igger
es-

e. This

 chan-

annel
The queue manager can trigger the process that starts the channel program in three ways:

• When the first message is put into the transmission queue
• Every time a message is put into the xmit queue
• When the queue contains a specified number of messages

Figure 16. Triggering Channels

Figure 16 shows the logic behind triggering:

1. The program issues an MQPUT to a remote queue and a message is placed into the tr
sion queue.

2. When the queue manager puts a message into the transmission queue, it checks the tr
type specified in the queue definition. Depending on that definition and on how many m
sages are in the queue, it may put an additional message in the channel initiation queu
“trigger message” is transparent to the user.

3. Since the channel initiator was started earlier, for example, at boot time, it monitors the
nel initiation queue and removes the trigger message.

4. The channel initiator starts the message channel agent (also called mover).

5. The channel program gets the message off the transmission queue and invokes any ch
exit routines, if specified.

6. The message is then moved over the network to its destination.

MQM

XmitQ

MCA Channel Initiator

Channel Init Q

Channel

Message Trigger Message

monitor

start

read

move

 1 2

 3

 4

 5

 6

Default object
October 1999 MQSeries EAI Center Page 24

MQSeries Primer
How to Trigger Applications

This section describes how to trigger an application program that runs in the server machine. Both
triggering and triggered applications can run under the same or different queue managers.

Note: MQSeries for Windows V2.1 does not support triggering.

Figure 17. Triggering an Application

Figure 17 shows the logic of triggering. Here Program A sends a message to A-Q to be processed
by Program B. The MQSeries triggering mechanism is as follows:

1. Program A issues an MQPUT and puts a message into A-Q for Program B.

2. The queue manager processes this API call and puts the message into the application queue.

3. It also finds out that the queue is triggered. It creates a trigger message and looks in the
Process Definition to find the name of the application and puts it in the trigger message. The
trigger message is put into the initiation queue.

4. The trigger monitor gets the trigger message from the initiation queue and starts the program
specified.

5. The application program starts running and issues an MQGET to retrieve the message from
the application queue.

MQGET
I-Q

MQPUT
A-Q

MQGET
A-Q

 Process
Definition

Application
Queue

Initiation
Queue

MQM

1

2

3

4

5

6

Program A Program B
October 1999 MQSeries EAI Center Page 25

MQSeries Primer

 put in
e

 has
 more

s in the
 holds
The definitions necessary to trigger an application are as follows:

• The target queue must have “triggering” specified as shown in bold below:

DEFINE QLOCAL(A-Q) REPLACE +
 TRIGGER
 TRIGTYPE(first) +
 INITQ(SYSTEM.DEFAULT.INITIATION.QUEUE) +
 PROCESS(proc1)
 DESCR(’This is a triggered queue’)

• The process definition associated with the target queue can be this:

DEFINE PROCESS(proc1) REPLACE +
 DESCR(’Process to start server program’) +
 APPLTYPE(WINDOWSNT) +
 APPPLICID(‘ c:\test\myprog.exe’)

What trigger type to use depends on how the application is written. You have three choices:

• EVERY Every time a message is put in the target queue a trigger message is also
the initiation queue. Use this when your program exits after processing on
message or transaction, as shown above on the left.

• FIRST A trigger message is put in the initiation queue only when the target queue
been empty. Use this when the program exits only then when there are no
messages in the queue, as shown on the right.

• n messages A trigger message is put in the initiation queue when there are n message
target queue. For example, you can start a batch program when the queue
1000 messages.

...
MQGET
...
...
exit

...
MQGET WAIT
 timeout?
...
...

 exit

Queue is empty
October 1999 MQSeries EAI Center Page 26

MQSeries Primer

rver.
exist.
wing

er on
Communication between Client and Server

Below we discuss what you have to do to define and test the connection between an MQ client and
its MQ server. A more detailed description is provided in the publication MQSeries Clients ,
GC33-1632.

How to Define a Client/Server Connection

Figure 18. Client/Server Connection

Figure 18 shows that the MQSeries Client product is installed in the client machine. We said
before that clients and servers are connected with MQI channels. An MQI channel consists of a
sender/receiver pair, called Client Connection (CLNTCONN) and Server Connection (SVCONN)
channel.

You have to know what transmission protocol is used (for example, TCP/IP), the port the listener
listens to (1414 is the default), and the address of the systems to which you want to connect. For
an address you can specify an LU name, a host name or machine name, or a TCP/IP address.

The client connection channel is defined as an environment variable, such as:

set MQSERVER=CHAN1/TCP/9.24.104.206(1414)

where:
• MQSERVER is the name of the environment variable.
• CHAN1 is the name of the channel to be used for communication between client and se

This channel is defined in the server. MQSeries will automatically create it should it not
• TCP denotes that TCP/IP is to be used to connect to the machine with the address follo

the parameter.
• 1414 is the default port number for MQSeries. You may omit this parameter if the listen

the server side uses this default, too.

Client Connection
Server Connection

Communication Link

Application

MQSeries
Client

APIs

Client Machine

Application

MQSeries
Queue Manager

APIs

Server Machine

Link with
MQIC
Java Client

Link with
MQM
Java Bindings
October 1999 MQSeries EAI Center Page 27

MQSeries Primer

nects.
ication

s them
The definition of the server is as follows:

 DEFINE CHANNEL(’CHAN1’) CHLTYPE(SVRCONN) REPLACE +
 TRPTYPE(TCP) MCAUSER(’ ’)

For the MQSeries Client for Java, the environment variables are set in the applet code. An applet
can run in any machine, such as a network station, and it has no access to environment variables.
The example below shows what statements to include in your Java program:

import com.ibm.mq.*;

MQEnvironment.hostname = "9.24.104.456";
MQEnvironment.channel = "CHAN1";
MQEnvironment.port = 1414;

How a Client/Server Connection Works
Now we describe how to trigger an application program that runs in the server machine. Since
there are MQI channels of the type server connection between clients and server, all clients use
the queue manager in the server machine. When a client puts a message on a queue it has to be
read and processed by a program. This program can be started when the server starts
or the queue manager can start it when needed by using the MQSeries triggering mechanism.

Figure 19 on page 29 shows two clients connected to a server. Both clients request services from
the same program (Appl S1). Since that application runs in the same system as the queue
manager, we have only local queues. Some queues are specifically for a particular client, for
example, QA1 is the reply queue for client A and QA2 is the reply queue for client B. Other
queues are used by both clients and server. For example, QS1 is used as output queue for both
clients and as input queue for the server program.

Next, we describe the MQSeries objects and API call sequences in both client and server.

How a Client Sends a Request
The client starts a program that puts a message on a queue. For this function five MQSeries API
calls are executed:

• MQCONN to connect to the queue manager in the server
• MQOPEN to open the message queue QS1 for output
• MQPUT to put a message in the queue
• MQCLOSE to close the queue QS1
• MQDISC to disconnect from the queue manager

Of course, the program can put many messages in the queue before it closes it and discon
Closing the queue and disconnecting from the queue manager can be done when the appl
ends because there are no more messages to process.
The MQSeries client code that runs in the client machine processes the API calls and route
to the machine defined in the environment variable.
October 1999 MQSeries EAI Center Page 28

MQSeries Primer

st for

r event

r. The
 is
ut on
m

 an
Figure 19. Clients and Server Communicating

How the Server Receives a Request
In the server machine, the following queue manager objects are needed:

• A channel of the type server connection.
• A local queue, QS1, into which the clients put their messages.
• An initiation queue into which the queue manager puts a trigger message when a reque

queue QS1 arrives. You can use the default initiation queue.
• A process definition that contains the name of the program to be started when the trigge

occurs (S1).
• One or more queues in which the program puts the reply messages (QA1 and QB1).

In the server machine, two programs have to be started: the listener and the trigger monito
listener listens for messages on the channel and puts them on the queue QS1. Since QS1
triggered, the MQM puts a trigger message on the trigger queue each time a message is p
QS1. When a message is placed on the trigger queue, the trigger monitor starts the progra
defined in the process.

The server program S1 connects to the queue manager, opens the queue QS1 and issues
MQGET to read the message.

Server

Queue Manager

Objects for
Client A

QA1

QS1

Objects for
Client B

QB1

Application
S1

Client A

Appl_1

put

get

Client B

Appl_1
put

get

get

put

Request and Reply

?

October 1999 MQSeries EAI Center Page 29

MQSeries Primer

the
 and an

ally, the
 queue

ain
. The
How the Server Sends a Reply
After processing a request the server puts the reply in the reply queue for the client. To do this it
has to open the output queue (QA1 or QB1) and issue an MQPUT.

Since several clients use the same server application, it is advisable to give the server a "return
address," that is, the names of the queue and the queue manager that will receive the reply
message. These fields are in the header of the request message, containing the reply-to-queue
manager and reply-to-queue (here, QA1 or QB1). It is the responsibility of the client program to
specify these values.

Usually, the server program stays active and waits for more messages, at least for a certain time.
For how long can be specified in the wait option of the MQGET API.

How the Client Receives a Reply
The client program knows the name of its input queue, here QA1 or QB1. The application can use
two modes of communication:

• Conversational
If the application uses this mode of communication with the server program, it waits for
message to arrive before it continues processing. This means, the reply queue is open
MQGET with wait option has been issued.

The client application must be able to deal with two possibilities:

 • The message arrives in time.

 • The timer expires and no message is there.

• True asynchronous
When using this mode, the client does not care when the request message arrives. Usu
user clicks a push button in a menu window to activate a program that checks the reply
for messages. If a message is present, this or another program can process the reply.

The Message Queuing Interface (MQI)

A program talks directly to its local queue manager. It resides in the same processor or dom
(for clients) as the program itself. The program uses the Message Queuing Interface (MQI)
MQI is a set of API calls that request services from the queue manager.

Note: When the connection between a client and its server is broken, no API calls can be
executed, since all objects reside in the server.

There are 13 APIs. They are shown in Figure 20 on page 31.
October 1999 MQSeries EAI Center Page 30

MQSeries Primer
Figure 20. MQSeries APIs

The most important ones are MQPUT and MQGET. The other calls are used less frequently.
Comments regarding several APIs follow:

MQCONN establishes a connection with a queue manager using the standard bindings.

MQCONNX establishes a connection with a queue manager using fastpath bindings. Fastpath
puts and gets are faster, but the application must be well behaved, that is, well tested. Application
and queue manager run in the same process. When the application crashes it takes the queue
manager down with it. This API call is new in MQSeries Version 5.

MQBEGIN begins a unit of work that is coordinated by the queue manager and that may involve
external XA-compliant resource managers. This API has been introduced with MQSeries Version
5. It is used to coordinate transactions that use queues (MQPUT and MQGET under syncpoint)
and database updates (SQL commands).

MQPUT1 opens a queue, puts a message on it and closes the queue. This is a combination of
MQOPEN, MQPUT and MQCLOSE.

MQINQ requests information about the queue manager or one of its objects, such as the number
of messages in a queue.

MQSET changes some attributes of an object.

MQCMIT specifies that a syncpoint has been reached. Messages put as part of a unit of work are
made available to other applications. Messages retrieved as part of a unit of work are deleted.

MQCONN Connect to a queue manager
MQDISC Disconnect from a queue manager
MQOPEN Open a specific queue
MQCLOSE Close a queue
MQPUT Put a message on a queue
MQGET Get a message from a queue
MQPUT1 MQOPEN + MQPUT + MQCLOSE
MQINQ Inquire properties of an object
MQSET Set properties of an object
MQCONNX Standard or fastpath bindings
MQBEGIN Begin a unit of work (database coordination)
MQCMIT Commit a unit of work
MQBACK Back out
October 1999 MQSeries EAI Center Page 31

MQSeries Primer

g

rol

y from

an

R. If
ed. MQ
d in all

sed for
UT).
obj1

T are:

nce)

sing

uld
MQBACK tells the queue manager to back out all message puts and gets that have occurred since
the last syncpoint. Messages put as part of a unit of work are deleted. Messages retrieved as part
of a unit of work are reinstated on the queue.

Notes:
• MQDISC implies the commit of a unit of work. Ending the program without disconnectin

from the queue manager causes a rollback (MQBACK).
• MQSeries for AS/400 does not use MQBEGIN, MQCMIT or MQBACK. The commit cont

operation codes of the AS/400 language are used.

A Code Fragment

The code fragment below shows the APIs to put a message on one queue and get the repl
another queue.

Note: The fields CompCode and Reason will contain completion codes for the APIs. You c
find them in the Application Programming Reference

Comments:

1 This statement connects the application to the queue manager with the name MYQMG
the parameter QMName does not contain a name, then the default queue manager is us
stores the handle of the queue manager in the variable HCon. This handle must be use
subsequent APIs.

2 To open a queue the queue name must be moved into the object descriptor that will be u
that queue. This statement opens QUEUE1 for output only (open option MQOO_OUTP
The handle to the queue and values in the object descriptor are returned. The handle H
must be specified in the MQPUT.

3 MQPUT places the message assembled in a buffer on a queue. Parameters for MQPU
•The handle of the queue manager (from MQCONN)
•The handle of the queue (from MQOPEN)
•The message descriptor
•A structure containing options for the put (refer to the Application Programming Refere
•The message length
•The buffer containing the data

4 This statement closes the output queue. Since the queue is predefined no close proces
takes place (MQOC_NONE).

5 This statement opens QUEUE2 for input only using the queue-defined defaults. You co
also open a queue for browsing, meaning that the message will not be removed.
October 1999 MQSeries EAI Center Page 32

MQSeries Primer
Figure 21. A Code Fragment

6 For the get, the nowait option is used. The MQGET needs the length of the buffer as an input
parameter. Since there is no message ID or correlation ID specified, the first message from the
queue is read. You may specify a wait interval (in milliseconds) here. You can check the return
code to find out if the time has expired and no message arrived.

7 This statement closes the input queue.

8 The application disconnects from the queue manager.

MQHCONN HCon; // Connection handle
MQHOBJ HObj1; // Object handle for queue 1
MQHOBJ HObj2; // Object handle for queue 2
MQLONG CompCode, Reason; // Return codes
MQLONG options;
MQOD od1 = {MQOD_DEFAULT}; // Object descriptor for queue 1
MQOD od2 = {MQOD_DEFAULT}; // Object descriptor for queue 2
MQMD md = {MQMD_DEFAULT}; // Message descriptor
MQPMO pmo = {MQPMO_DEFAULT}; // Put message options
MQGMO gmo = {MQPMO_DEFAULT}; // Get message options
:
// 1 Connect application to a queue manager.
strcpy (QMName,"MYQMGR");
MQCONN (QMName, &HCon, &CompCode, &Reason);

// 2 Open a queue for output
strcpy (od1.ObjectName,"QUEUE1");
MQOPEN (HCon,&od1, MQOO_OUTPUT, &Hobj1, &CompCode, &Reason);

// 3 Put a message on the queue
MQPUT (HCon, Hobj1, &md, &pmo, 100, &buffer, &CompCode, &Reason);

// 4 Close the output queue
MQCLOSE (HCon, &Hobj1, MQCO_NONE, &CompCode, &Reason);

// 5 Open input queue
options = MQOO_INPUT_AS_Q_DEF;
strcpy (od2.ObjectName, "QUEUE2");
MQOPEN (HCon, &od2, options, &Hobj2, &CompCode, &Reason);

// 6 Get message
gmo.Options = MQGMO_NO_WAIT;
buflen = sizeof(buffer - 1);
memcpy (md.MsgId, MQMI_NONE, sizeof(md.MsgId);
memset (md.CorrelId, 0x00, sizeof(MQBYTE24));
MQGET (HCon, Hobj2, &md, &gmo, buflen, buffer, 100, &CompCode, &Reason);

// 7 Close the input queue
options = 0;
MQCLOSE (HCon, &Hobj2,options, &CompCode, &Reason);

// 8 Disconnect from queue manager
MQDISC (HCon, &CompCode, &Reason);
October 1999 MQSeries EAI Center Page 33

MQSeries Primer

October 1999 MQSeries EAI Center Page 34

	What is Messaging and Queuing?
	About Messages
	1. Data that is sent from one program to another
	2. The message descriptor or message header
	Message Segmenting and Grouping
	Distribution Lists
	Message Types
	Persistent and Non-Persistent Messages
	The Message Descriptor

	About the Queue Manager
	1. Common Programming Interface - Communications (CPI-C)
	2. Remote Procedure Call (RPC)
	3. Message Queue Interface (MQI)

	About Queue Manager Clusters
	About Queue Manager Objects
	1. Queues
	2. Process definitions
	3. Channels
	Queues
	Channels
	1. Message channels A message channel connects two queue managers via message channel agents (MCA...
	2. MQI channels A Message Queue Interface (MQI) channel connects an MQSeries client to a queue ma...

	Process Definitions

	About Message Queues
	Local Queue
	Cluster Queue
	Remote Queue
	Transmission Queue
	Dynamic Queue
	Alias Queue
	Model Queue
	Initiation Queue
	Reply-to-Queue
	Dead-Letter Queue
	Repository Queue
	Creating a Queue Manager

	Manipulating Queue Manager Objects
	Clients and Servers
	How MQSeries Works
	Communication between Queue Managers
	How to Define a Connection between Two Systems
	How to Start Communication Manually
	How to Start Communication Automatically
	1. The program issues an MQPUT to a remote queue and a message is placed into the transmission qu...
	2. When the queue manager puts a message into the transmission queue, it checks the trigger type ...
	3. Since the channel initiator was started earlier, for example, at boot time, it monitors the ch...
	4. The channel initiator starts the message channel agent (also called mover).
	5. The channel program gets the message off the transmission queue and invokes any channel exit r...
	6. The message is then moved over the network to its destination.

	How to Trigger Applications
	1. Program A issues an MQPUT and puts a message into A-Q for Program B.
	2. The queue manager processes this API call and puts the message into the application queue.
	3. It also finds out that the queue is triggered. It creates a trigger message and looks in the P...
	4. The trigger monitor gets the trigger message from the initiation queue and starts the program ...
	5. The application program starts running and issues an MQGET to retrieve the message from the ap...

	Communication between Client and Server
	How to Define a Client/Server Connection
	How a Client/Server Connection Works
	How a Client Sends a Request
	How the Server Receives a Request
	How the Server Sends a Reply
	How the Client Receives a Reply

	The Message Queuing Interface (MQI)
	A Code Fragment

