
Portal software solutions
White paper

Evaluating the decision to buy
or build a portal.
The value of WebSphere Portal compared to a proprietary
portal in a J2EE technology-based environment.

August 2004

By Kevin P. Haiduk, IBM Business Consulting
Services, with contributing author Chris Kergaravat,
IBM Software Group

Evaluating the decision to buy or build a portal.

Page 2

Evaluating the decision to buy or build a portal.

Page 3

2 Executive summary

3 An overview of portal technology

4 The core functionality of

WebSphere Portal

5 Single sign-on capabilities

6 Profiling

8 Content management

11 Personalization

12 Messaging between portlets

15 Administrative functionality

17 Core functionality summary

17 Building portlets in the portal

19 Application integration portlet

23 Productivity portlet

27 Custom portlet application:

A simple example

31 Custom portlet: A complex example

34 Portlets summary

35 Maintenance comparisons

35 Maintaining and adding new portlets

36 Ongoing portlet development

37 Conclusion

39 Summary of efforts involved

40 For more information

41 Appendix 1. Customer case studies

41 Customer case study 1

42 Customer case study 2

43 Customer case study 3

44 Appendix 2. Key differences

Contents
Executive summary

Modern companies have invested a significant amount of time and

money over the years to develop complex intranet and extranet sites. These

companies now face Web site challenges, such as insufficient organization,

a lack of personalized navigation and inadequate search tools. Portal

technology was created in response to these problems—to serve as simple,

unified access points to Web applications. Most businesses understand the

value of a business portal to its users and—anticipating that it will be a large

investment—attempt to build a concrete business case to justify the costs.

They face a difficult decision: whether to base the case on an off-the-shelf

portal platform, like IBM® WebSphere® Portal software that can immediately

be put into service, or to custom-build the functionality that WebSphere

software products offer.

The purpose of this white paper is to evaluate the comparative efforts

(based on IT development and support time) that are required to build a

portal using WebSphere Portal software or to develop that same portal using

a custom Java™ 2 Platform, Enterprise Edition (J2EE) technology-based

framework approach.

To create a portal, you must build its portlets while considering two other

layers of functionality: the foundation layer holding services, and an

administation interface that can maintain the portlets in addition to the

overall look and feel and security of the portal. This white paper examines

each of the three functional areas and the different approaches you can use

to build them.

• Core functionality. The base functionality that is needed to personalize user

profiles, collect content, manage content and provide single sign-on, portlet

messaging and collaboration capabilities.

• Portlets. Portlets, the building blocks for Web applications within WebSphere

Portal, are the medium for content display and disparate application logic.

Portlets interact with the core portal functionality to deliver personalized content

and virtually seamless application integration.

• Maintenance. Maintenance is the effort required to maintain and to add

new functionality to the portal through portlets.

Evaluating the decision to buy or build a portal.

Page 2

Evaluating the decision to buy or build a portal.

Page 3

For each area of functionality, comparisons are made between the use

of WebSphere Portal (using appropriate development approaches) and

developing a custom portal application.1 Development time for the custom

approach is determined by examining the efforts in three customer case

studies (see Appendix 1) in which portlets of similar functionality were

developed. The comparative effort to build or maintain each capability is

summarized and time savings are tallied for each case. By multiplying the

time savings from each portlet type by the number of various portlet types

normally deployed in a typical, enterprise-portal implementation, a framework

can be established to estimate the value of WebSphere Portal. This white

paper includes a spreadsheet that helps calculate the savings with the number

of portlets of each type that will be deployed.

An overview of portal technology

Initially, portals provided a centralized access point for enterprise-related

functions, such as e-mail, company information, workgroup systems and

commonly used business applications. However, modern portals have evolved

to do much more. Portals today offer valuable capabilities, such as security,

search, collaboration and workflow. A well-designed portal can provide a

common user interface and content base that can be integrated and leveraged

across all portal applications (for example, portlets), to deliver a unified,

collaborative workplace. Undeniably, portals are the next-generation desktop,

delivering on demand business applications to many varieties of client devices,

and allowing users to customize their individual interfaces. In the future,

every conceivable Web application might need to be customizable by the user

to support a true on demand, dynamic workplace.

IBM customers using IBM WebSphere Application Server have long had

a scalable and flexible platform to develop and deploy Web applications.

With the addition of WebSphere Portal software, they can also use the portal

to provide commercial off-the-shelf (COTS) functions to develop many of

the components that are reused from application to application. The core

infrastructure and portlet application programming interface (API) in

WebSphere Portal deliver the platform and the tools to support virtually

all of the core requirements of a modern business portal.

Evaluating the decision to buy or build a portal.

Page 4

Evaluating the decision to buy or build a portal.

Page 5

In building a portal business case, various contributors to return on

investment (ROI) can be listed in five main categories:

• Cost savings

• Revenue generation

• Operational efficiency

• User satisfaction

• Strategy and transformation

This paper focuses on the cost savings benefit. By investigating the time needed

to develop and maintain portal features in both the build and the buy scenarios,

this white paper demonstrates that using the WebSphere Portal platform can

help significantly lower costs when compared to using a custom-built portal or

creating Web applications using traditional Web development tools without

WebSphere Portal.

The core functionality of WebSphere Portal

The core functionality of WebSphere Portal software is the foundation for

the portal itself. It provides a wide range of services to connect people to the

information they need. These services include the ability to support single

sign-on, profiling, content management, personalization, messaging and

administrative capabilities. This base functionality is where most customers

see the largest ROI, because custom coding these services would normally take

a significant amount of time. A commercial development tool, such as IBM

VisualAge® for Java or the IBM WebSphere Studio Application Developer

toolkit and API is an efficient way to reproduce these services in a custom-built

portal application.

Because not all customers use the complete range of functionality, this white

paper focuses on a few of the most common services. Figure 1 shows the

WebSphere Portal architecture, with blue areas depicting core services.

Evaluating the decision to buy or build a portal.

Page 4

Evaluating the decision to buy or build a portal.

Page 5

Single sign-on capabilities

One of the main objectives in building a portal is to enable application

integration, including nearly seamless authentication with back-end systems.

This authentication synchronization, called single sign-on is one of the most

important capabilities of a portal. Applications that are exposed through a

portal must submit credentials (for example, a user ID and a password) to

the back-end remote programs; otherwise, the user is forced to enter this

information for each application encountered through the portal.

Buy: Single sign-on with WebSphere Portal

If the remote applications use the same credentials as those used by WebSphere

Portal, the portlets can reuse the same credentials as well. Portlets can use the

Java Authentication and Authorization Service (JAAS) API to extract these

credentials, and submit them to remote applications.

However, it is not always possible for a remote application to use the same

credentials as those used by WebSphere Portal. Therefore, to enable a single

sign-on experience for the user, WebSphere Portal provides a credential vault

mechanism that portlets can use to set and retrieve credentials securely.2

You spend no development time to develop this credential vault mechanism.

Figure 1. WebSphere Portal architecture

Portal
database

Themes and
skins Transcoding

JSP tag
library Translation

Page aggregation

Authentication

LDAP
directory

User
profile

database

Porlet API

Portlet container and services

Content
access

Web
clipper

Search
Document
manager

Portlet
data

Collaboration

Administrative
functions

Credential
vault

Portlet
proxy

Single
sign-on

Content

J2EE

JCA JMS

Web
 services JDBC

EJB

Security

Servlet

Caching

Enterprise
data and

applications

Internet

Authentication

Web
services

Evaluating the decision to buy or build a portal.

Page 6

Evaluating the decision to buy or build a portal.

Page 7

Build: Single sign-on with a custom portal application

The effort to duplicate the functionality of the credential vault functionality

has been estimated for a custom portal application. The tasks and their

associated times are listed in Table 1.

Task Time (hours)

Plan and build data table for credential vault 16

Build credential vault core capability 440

Build credential vault interface 220

Test and document 65

Total 741

Profiling

In a profiling portal, users can specify attributes about themselves

to allow portal content to be targeted to their needs and interests

(also known as personalization).

Buy: Profiling with WebSphere Portal

WebSphere Portal includes a base profile system that enables users to

self-register and identify information about themselves, such as name,

e-mail, address, interests and other attributes that personalize their individual

experiences. The profile system might be extended by the portal administrator

to include as many elements as needed in the profile database. Alternatively,

the profile can be extended by the developer, by editing an XML file to map

the desired attributes to fields in a Lightweight Directory Access Protocol

(LDAP) directory.

One customer, a government entity (See “Customer case study 2” in

Appendix 1), extended the profile to two pages to gather more attributes

to personalize the user’s experience. The information was stored in

WebSphere Portal internal databases. The times taken to complete the

tasks are listed in Table 2.

Table 1. The tasks and associated times required to duplicate the credential vault functionality for a
custom portal application.

Evaluating the decision to buy or build a portal.

Page 6

Evaluating the decision to buy or build a portal.

Page 7

Build: Profiling with a custom portal application

Prior to using WebSphere Portal, the IBM portal (see “Customer case study 3”

in Appendix 1), included a registration page to gather information about

the user to determine which content to display. The profile page is shown

in Figure 3.

Table 2. The tasks and associated times required to build a base profile system using
WebSphere Portal.

Task Time (hours)

Extend registration page to two pages and add additional fields 25

Build confirmation page 12

Support for error-checking 7

Extra modifications for self-care page 10

Test and document 12

Total 66

Figure 3. Example of a customized portal profile page

Evaluating the decision to buy or build a portal.

Page 8

Evaluating the decision to buy or build a portal.

Page 9

The amount of information gathered in this scenario is similar to the

modified profile database in the buy scenario in Figure 3 (differences are

outlined in Appendix 2). The profile page built in this scenario consisted

of the following tasks listed in Table 3.

Table 3. The tasks and associated times required to build a profile page.

Task Time (hours)

Plan and build data table in IBM DB2® 5

Build profile page 230

Build confirmation page 128

Tie into main rules engine 230

Test and document 24

Total 617

Content management

Pertinent, accurate and timely content is key to the value realized by

portal users, and content can be targeted to specific users by the inclusion

of metatags. This section compares IBM WebSphere Portal Content

Publisher (included in IBM WebSphere Portal Extend and IBM WebSphere

Portal Experience) to custom content-management applications.

Buy: WebSphere Portal Content Publisher

WebSphere Portal Extend and WebSphere Portal Experience include a

content-management tool called WebSphere Portal Content Publisher.

This tool closely integrates with WebSphere Portal, allowing users to contribute

and approve content to the portal through an integrated workflow system.

Through the WebSphere Portal Content Publisher User and Content

models, developers can create content templates, based on publication rules

and workflow. Portal content can then be submitted and approved through

a portlet that exposes these templates. Figure 4 illustrates a sample of a

simple content template.

Evaluating the decision to buy or build a portal.

Page 8

Evaluating the decision to buy or build a portal.

Page 9

Figure 4. The WebSphere Portal Content Publisher input template

During a recent customer project (see “Customer case study 2” in Appendix 1),

WebSphere Portal Content Publisher was used to contribute content to a

state government’s intranet. The content passed through a simple workflow

consisting of a requestor, a contributor and an approver. This was performed

for three workflow cases. The times taken to accomplish the tasks to build

this setup with WebSphere Portal Content Publisher are listed in Table 4.

Task Time (hours)

Plan and build data tables in DB2 3

Build user resources from tables 16

Build content resources from tables 16

Build templates from resources 60

Test and document 8

Total 103

Table 4. The tasks and associated times required to contribute content to an intranet through
WebSphere Portal.

Evaluating the decision to buy or build a portal.

Page 10

Evaluating the decision to buy or build a portal.

Page 11

More robust content management tools are available that could potentially cut

this time even more. These tools offer greater benefits to the content creators

and approvers by providing additional functionality. These tools, which include

IBM Lotus® Workplace Web Content Management and third-party tools from

Interwoven, Inc., Stellent, Inc. and Fatwire, are preintegrated into WebSphere

Portal and, therefore, can be added easily.

Build: Content management with a custom portal application

Within a custom portal application, developers might still opt for off-the-shelf

content-management software, or they might choose to develop their own.

This white paper examines IBM’s own content-management system prior

to WebSphere Portal. The content-management system supported only a

small subset of the functionality that is now available in WebSphere Portal

Content Publisher.

IBM developers based this proprietary content-management system on

IBM Lotus Notes® software. The system allowed end users around the world to

add content to the portal. The content was published on an hourly basis to the

portal, and an on demand publishing agent was also available. The content

was published as an XML file, and tagged with metadata that allowed it to be

targeted to the correct audience. The tasks involved to build the application

and the associated times are shown in Table 5.

Task Time (hours)

Build base Notes database 190

Build support for seven different portlets 428

Build support for meta-tagging 140

Build publishing agent 76

Test and document 52

Total 886

Table 5. The tasks and associated times required to build a content-management application.

Evaluating the decision to buy or build a portal.

Page 10

Evaluating the decision to buy or build a portal.

Page 11

These estimates assume the use of Lotus Notes as a tool. Without this

application platform, which eases development of templates, workflow and

versioning, the time to create a content-management system truly from the

ground up could be much higher. The key differences between this custom-

developed content-management approach and WebSphere Portal Content

Publisher can be found in Appendix 2.

Personalization

Personalization, one of the major strengths of a portal platform, works with

profiling, to allow end users to receive relevant content aimed at personal

attributes, as specified in their user profiles. The user profile specifies the attri-

butes (such as job, title, geographic location and so on) that the personalization

service uses to direct relevant content.

Buy: Personalization with WebSphere Portal

The services available in WebSphere Portal allow personalization to be

abstracted to the appropriate business level. Administrators and developers can

change the personalization rules with configuration changes and without

writing code. Figure 5 is an example of how a developer might configure a rule.

Figure 5. Configuring a personalization rule.

Evaluating the decision to buy or build a portal.

Page 12

Evaluating the decision to buy or build a portal.

Page 13

A customer (see “Customer case study 1” in Appendix 1) personalized three

portlets using what is known as a spot, which uses the rules in portlets to

display content. The times to implement these portlets are listed in Table 6.

Table 6. The tasks and associated times required to implement personalization portlets.

Task Time (hours)

Build base portlets 34

Add spot to portlets 6

Build rules 1

Test and document 4

Total 45

Build: Personalization with a custom portal application

In another customer study, the developers created a custom content-

management system to tag content with metadata. The portlets were written

to include Structured Query Language (SQL) calls to pull the pertinent data.

(An inherent problem with this approach is that code must be changed when-

ever rules change. See Appendix 2 for key differences in this custom approach

compared to the WebSphere Portal approach.) The tasks and their associated

times are listed in Table 7.

Table 7. The tasks and associated times required to build a custom content-management system.

Task Time (hours)

Build base portlets 18

Add logic and rules to portlets 88

Test and document 14

Total 120

Messaging between portlets

In a portal application it is often necessary for one portlet to share data with

another portlet. For instance, one portlet might show a customer’s list of

accounts with some contact data, and another portlet might show account

balance data for a specific account. Rather than always keying in the account

number to the second portlet, it can be more efficient to automatically send

Evaluating the decision to buy or build a portal.

Page 12

Evaluating the decision to buy or build a portal.

Page 13

the account number to the second portlet, and refresh it with the current data

for that customer whenever an action is taken in the first portlet. The user can

then click the icon for an account, and the second portlet shows the balance.

This capability is called portlet messaging.

Buy: Messaging between portlets with WebSphere Portal

Messaging between portlets in WebSphere Portal is accomplished through a

mechanism called click to action. With click to action, developers can easily

place messaging capabilities in portlets. To use the click-to-action feature,

developers must declare it in the portlet descriptor and add a few lines of code

in the portlet JavaServer Pages (JSP). Figure 6 shows an example of a code

snippet to show a received message.

Figure 6. A portlet messaging code fragment.

The account balance portlet example described before was used to determine

development time for this effort. Actual back-end systems were not integrated;

a simple call to a database was used. The tasks and their associated times are

shown in Table 8.

Table 8. The tasks and associated times required to build an account balance portlet.

Task Time (hours)

Build base portlets 22

Add click to action capabilities to portlets 1

Test and document 10

Total 33

Evaluating the decision to buy or build a portal.

Page 14

Evaluating the decision to buy or build a portal.

Page 15

Bowstreet Portlet Factory, a third-party tool, also supports portlet-to-portlet

communication through the WebSphere Portal messaging API (click to action,

see Figure 7). This is accomplished by first adding a WebSphere Portal event-

declaration builder to each model.

Figure 7. Bowstreet approach to a click-to-action portlet.

The portlet that handles the event also requires an event-handler builder to

specify an action to be called when a message was received. The portlet that

sends the message uses a link builder to trigger the event and pass the customer

number as an argument.

Build: Messaging between portlets with a custom portal application

As a result of the open, expandable portlet functionality and API in WebSphere

Portal, portlets are separated into specific applications and do not share the

same session. In custom portal applications, on the other hand, all portlets

normally reside in the same application, and so they all share the same session.

Messaging between portlets can be as simple as putting an object in the session

for another portlet to retrieve; thus, methods to transmit messages between

portlets in custom portal applications might at first seem quite easy to develop.

However, complications can arise from naming when the same portlet is placed

on a single page multiple times, which happens often.

Evaluating the decision to buy or build a portal.

Page 14

Evaluating the decision to buy or build a portal.

Page 15

For the purposes of this paper, the account balance scenario described is

built in a custom portal application, adding the support for messaging to

the individual portlets, thereby creating a one-off situation in each portlet.

If this were an actual portal, best practices would be followed and the

messaging functionality would probably have been added to the base portal

itself, an effort estimated at over 500 hours. Again, actual back-end systems

were not integrated; a simple call to a database was used.

Table 9. The tasks and associated times required to build a custom portal application.

Task Time (hours)

Build base portlets (noninclusive) (20)

Add additional base infrastructure support for portlet messaging 20

Add send and receive messaging capabilities to portlets 6

Test and document 8

Total 34

Administrative functionality

A well-structured portal enables required administrative tasks, such as user

administration, rules administration, security administration and presentation

administration to be performed inside the software.

Buy: Administrative functionality in WebSphere Portal

WebSphere Portal uses its own portlets to deliver administrative functions.

Therefore, there is virtually no development effort involved to support

this function in WebSphere Portal, unless customizations are necessary.

Figure 8 shows one such administrative function, the portlet with which

the administrator applies security to pages and portlets.

Evaluating the decision to buy or build a portal.

Page 16

Evaluating the decision to buy or build a portal.

Page 17

Build: Administrative functionality in a custom portal application

For comparison, this white paper examines the case of delivering the same

security in a portal as shown above. One customer managed portal security

in a simple XML file. To change security, the XML file had to be updated

manually and the portal restarted to read in the changes. (See Appendix 2

to view the key differences in this functionality compared to the functionality

that is delivered in WebSphere Portal software.)

Figure 8. Administrating portal security.

Table 10. The tasks and associated times required to provide administrative functionality.

Task Time (hours)

Administrating a portlet3 250

Administrating a user 180

Administrating security4 110

Test and document 44

Total 584

Evaluating the decision to buy or build a portal.

Page 16

Evaluating the decision to buy or build a portal.

Page 17

Core functionality summary

After exploring the main categories of core functionality involved with a portal,

the times needed to build the functionality highlighted in this white paper are

summarized in Table 11.

Table 11. A summary of the times needed to build core portal functionality.

Functionality Time
(custom portal)

Time
(WebSphere Portal)

Time savings

Single sign-on 741 0 741

Profiling 617 66 551

Content management 886 103 783

Personalization 120 45 75

Administrative functionality 584 0 584

Portlet messaging 34 33 1

Total 2982 247 2735

Building portlets in the portal

WebSphere Portal develops the window (through which the actual content

or application is seen) in portlets, which are small portal applications, usually

depicted as small boxes in a Web page. Portlets are reusable components that

provide access to applications, Web-based content and other resources. Web

pages, Web services, applications and syndicated content feeds can all be

accessed through portlets.

Portlets can be very simple or very complex, and can connect to back-end

systems. This white paper examines the full spectrum—from basic function-

ality portlets, to complex application integration and productivity portlets.

For comparison, assume that the custom-built base portal is exactly equivalent

to WebSphere Portal Server.

There are several different approaches to building portlets, each appropriate

in a different scenario. Where applicable, this paper looks at as many as four

different approaches: using ready-made portlets from the IBM WebSphere

Portlet Catalog7; development of portlets on IBM WebSphere Portal Server

with IBM WebSphere Studio Application Developer; development of portlets

using Bowstreet Portlet Factory; and by raw code development.

Evaluating the decision to buy or build a portal.

Page 18

Evaluating the decision to buy or build a portal.

Page 19

Basic functionality portlets

This example compares the deployment of two different simple portlets from

the portlet catalog– the Links portlet and the Web clipping portlet–with the

functionally similar, custom-built portlets that were used internally in IBM

prior to the release of WebSphere Portal software.

The function of the Links portlet (see Figure 9) is to show a set of links

based on user profiles, and to allow the users to further customize the

links themselves.

Figure 9. Essential Links portlet.

Web clipping allows portal administrators to build portlets that consume

external content and filter it to present a view of only the relevant portions

of that content. Examples include weather feeds and stock feeds.

Buy: Basic functionality portlet with WebSphere Portal using available portlets

Companies using WebSphere Portal can create their own portlets or select

from a catalog that includes hundreds of portlets created by IBM and IBM

Business Partners. Many basic functionality portlets are included with

WebSphere Portal and are regularly updated and available through the Portal

Catalog. In the cases of both the Links portlet and the Web-clipping portlet,

no development is involved because they are provided with WebSphere Portal;

administrators simply deploy the portlet to users. The only tasks required

are deploying and configuring the portlet, and the total time to do either is

approximately 30 minutes, under normal circumstances.

Evaluating the decision to buy or build a portal.

Page 18

Evaluating the decision to buy or build a portal.

Page 19

Build: Basic functionality portlet with a custom portal application.

Writing the code required for the Links portlet involves accessing various

business objects and user profiles. The tasks and the associated time to

complete this portlet are shown in Table 12.

Table 12. The tasks and associated times required to build a custom portlet.

Task Time (hours)

Build portlet 15

Build edit page 35

Build core logic 30

Test and document 18

Total 98

Building the Web-clipping portlet functionality is a more complicated task,

because it must navigate all security functions, such as cookies, proxies,

firewalls and so on.

Internally, IBM deployed a portlet that supported a subset of a Web-clipping

portlet. The portlet had the ability to clip part of a page with the limitations

of not being able to specify a clip on the fly, no proxy support or support for

cookies. The tasks and the associated times are shown in Table 13.

Table 13. The tasks and associated times required to build a custom portlet.

Task Time (hours)

Build portlet (display and edit) 50

Add additional support for functionality in Web-clipping portlet 298

Test and document portlet 40

Total 388

Application integration portlet

The case of a customer relationship management (CRM) portlet is a good

example of a midlevel portlet that connects to a back-end enterprise system.

The example for this case is that of connecting to PeopleSoft doftware to

obtain a customer contact list.

Evaluating the decision to buy or build a portal.

Page 20

Evaluating the decision to buy or build a portal.

Page 21

Buy: WebSphere Portal CRM portlet using available portlets

WebSphere Portal has many out-of-the-box CRM portlets for several leading

CRM vendors. For this case, by using the PeopleSoft CRM suite of portlets,

there is no development needed for these portlets beyond simple configuration

and deployment. Figure 10 shows an example of a user’s PeopleSoft contact list.

Figure 10. PeopleSoft CRM portlet.

The tasks and times associated to configure and deploy the portlet are shown

in Table 14.

Table 14. The tasks and associated times required to configure and deploy a custom portlet.

Task Time (hours)

Configure portlet 0.5

Deploy portlet to users 0.2

Total 0.7

Evaluating the decision to buy or build a portal.

Page 20

Evaluating the decision to buy or build a portal.

Page 21

Buy: Creating a WebSphere Portal CRM portlet using WebSphere Studio

Application Developer

Not all versions of all CRMs are supported by the portlets in the catalog.

Customers using not supported products and versions must build their own

portlets. The WebSphere Portal platform ships with WebSphere Studio

Application Developer and a portal toolkit. Together, they allow developers

to easily build, modify and maintain portlets by using a portlet wizard to

quickly create the foundations for various portlets.

Building the CRM portlet with WebSphere Studio Application Developer

involves several tasks: creating an edit page (so that an administrator can

configure the display of the data), the actual display page itself, and a Simple

Object Access Protocol (SOAP) call to the back-end system.

This approach involves several calls using PeopleSoft EIP Web services to

obtain the needed information through the PeopleSoft enterprise integration

points feature.6

The tasks and their associated times to build this portlet from the ground up

are shown in Table 15.

Table 15. The tasks and associated times required to build a custom portlet.

Task Time (hours)

Build base portlet 10

Build portlet edit page 14

Integrate appropriate Web services calls 15.5

Test and document portlet 18

Total 57.5

Buy: Creating a WebSphere Portal CRM portlet using Bowstreet Portlet Factory

Customers can also use Bowstreet Portlet Factory for WebSphere to augment

WebSphere Portal with tools and technology that are used to rapidly create,

customize, deploy and maintain portlets (see Figure 11). By pulling together a

sequence of highly adaptive, reusable software components called Builders,

Evaluating the decision to buy or build a portal.

Page 22

Evaluating the decision to buy or build a portal.

Page 23

novice Java developers can assemble these Builders into models, similar to

the way they would build a spreadsheet model by snapping together formulas.

These models are then started at run time to dynamically generate application

code, including JSP, Java classes and XML documents, as well as all of the

low-level artifacts that make up the portlet application.7 This way, developers

can quickly and easily create multiple, highly customized portlets from one

code base, without requiring additional code changes or redeployment.

Figure 11. Bowstreet Portlet Factory.

The CRM portlet is straightforward, using the Bowstreet tool. Developing

this portlet involves using the Data View Portlet Builder to call the SOAP

Web service, and to generate the JSP for presentation in the portlet.

The Portlet Customizer Builder was used to create an edit page that allows the

end user to personalize the columns that appear in the table and the number

of rows to see in the table.

Evaluating the decision to buy or build a portal.

Page 22

Evaluating the decision to buy or build a portal.

Page 23

The tasks and their associated times are shown in Table 16.

Table 16. The tasks and associated times required to create an edit page.

Task Time (hours)

Create portlet using Data View Portlet Builder 0.5

Build edit page 0.5

Test and document portlet 15

Total 16

Build: Creating a WebSphere Portal CRM

Unlike the scenario before, if the portal is custom-built, few or no tools are

available for developers. In this case, all portlet code must be written. The

tasks and their associated times to complete the portlet are shown in Table 17.

Table 17. The tasks and associated times required to build a custom portlet.

Task Time (hours)

Build base portlet 40

Build portlet edit page 44

Integrate appropriate Web services calls 25.5

Test and document portlet 20

Total 129.5

Appendix 2 describes key differences in the capabilities of the custom

portal when compared to those available in WebSphere Portal.

Productivity portlet

Productivity portlets normally support desktop applications, such as IBM

Lotus Notes or Microsoft® Exchange in a portal environment. This can be

very useful and can help realize the portal as the desktop. It can also be

helpful as traveling employees access their e-mail and calendars through

kiosks. People awareness, or the ability to know who is currently available,

using online methods, (also referred to as contextual collaboration), is an

essential feature of a portal. One of the leading instant messaging tools is

Lotus Instant Messaging. The ability to tie this capability with a portal adds

high value.

Evaluating the decision to buy or build a portal.

Page 24

Evaluating the decision to buy or build a portal.

Page 25

Buy: Productivity portlet with WebSphere Portal using available portlets

Included in the many productivity portlets shipped with WebSphere Portal

is the Lotus Notes Mail portlet (see Figure 12). There is virtually no

development necessary to deploy this portlet, and little time (0.3 hours total)

to configure and deploy it. If you also deploy Lotus Instant Messaging, the

mail portlet is preconfigured to show people awareness.

Figure 12. Lotus Notes e-mail portlet

Buy: Creating a productivity portlet with WebSphere Portal

The effort required to create the Notes Mail portlet is estimated by using the

time it took to build a portlet for a view onto a Notes database, abstracting only

certain information and building a custom input form.

In WebSphere Portal, adding people awareness to any portlet is

straight-forward. WebSphere Portal Extend and WebSphere Portal

Experience ship with Lotus Instant Messaging, Lotus Team Workplace

and Lotus Collaborative Components. These components, also known as

collaborative services (CS), provide Java API methods and tags for JSP.

Application developers can use collaborative components to design and

implement portlets that incorporate the features of IBM Lotus Domino®,

IBM Lotus QuickPlace® and IBM Lotus Sametime® software. Figure 13

shows the ease of use in adding people awareness to a portlet.

Evaluating the decision to buy or build a portal.

Page 24

Evaluating the decision to buy or build a portal.

Page 25

Table 18 shows the tasks and their associated times.

Figure 13. Adding people awareness capabilities to a portlet

Table 18. The tasks and associated times required to build a custom portlet.

Task Time (hours)

Build base portlet with view of Notes data 22

Build customized input form 24

Build core functionality 22

Test and document 4

Total 72

Buy: Creating a productivity portlet with Bowstreet Portlet Factory

Building a portlet to access an existing Lotus Notes database is quick and

easy with Bowstreet Portlet Factory. A new portlet is created to access any

Lotus Notes database by configuring the Domino View & Form Builder.

The Builder generates a page displaying the View data, and also pages to view,

edit, create and delete documents in the View (see Figure 14). The same amount

of work must be done to implement people awareness as before. All of these

pages are rendered within the portlet, without launching IBM Lotus Domino.

Evaluating the decision to buy or build a portal.

Page 26

Evaluating the decision to buy or build a portal.

Page 27

These pages can then be customized to create a custom portlet that matches the

look and feel of the portal. Table 19 shows the tasks and the associated times.

Figure 14. Building a Domino View portlet

Table 19. The tasks and associated times required to customize a portlet.

Task Time (Hours)

Build base portlet with view and forms 0.1

Customize HTML for document view, edit, and create pages 1

Test and document 3

Total 4.1

Build: Creating a productivity portlet with a custom portal application

Implementing a Lotus Notes e-mail portlet in a custom portal application

involves working directly with the Lotus Notes API through Domino Internet

Inter-ORB Protocol (DIIOP). This type of implementation involves a medium

amount of coding. Without Lotus Instant Messaging, which is bundled with

some versions of WebSphere Portal, achieving people awareness in this portlet

would be a formidable task.

Evaluating the decision to buy or build a portal.

Page 26

Evaluating the decision to buy or build a portal.

Page 27

Because Lotus Instant Messaging is easy to integrate with other programs,

this example includes the time it takes to integrate Lotus Instant Messaging

into this custom application.

Note: This does not comply with the previous rules regarding custom

development.

Table 20 shows the tasks and the associated times needed to code a portlet

supporting Lotus Notes e-mail in a custom portal application.

Table 20. The tasks and associated times required to code a portlet.

Task Time (hours)

Build portlet display 80

Build portlet edit page 82

Build core logic 154

Test and document portlet 12

Total 328

Custom portlet application: A simple example

In most portal applications, there are no out-of-the box portlets to solve

certain problems. Inevitably, portlets must be built from the ground up.

In a recent customer project, a county government (see “Customer case

study 2” in Appendix 1) deployed several custom-built portlets that read

abstract content from a database and displayed it according to rules

established on the edit pages.

This section examines this customer’s news portlet. The news portlet

reads the title and abstract of news articles from an IBM DB2® database,

which then obeys the rules established on the edit page to determine the

display, filtering and sorting rules. Figure 15 shows the news portlet as seen

by a user, and Figure 16 shows the actual edit page of the portlet available

to administrators.

Evaluating the decision to buy or build a portal.

Page 28

Evaluating the decision to buy or build a portal.

Page 29

Figure 15. News portlet seen by users.

Figure 16. Edit page of news portal available to administrators.

Evaluating the decision to buy or build a portal.

Page 28

Evaluating the decision to buy or build a portal.

Page 29

Administrators can configure the portlet using the following parameters:

• Number of articles to display (1 to 25)

• The type of content (10 different types of content)

• Affinity (business, employee, visitor, resident or, if the user is logged in,

which of these four affinities the user chose in the user profile, denoted as

Personal Preference)

• Three levels of sorting

• Ability to show access translation services (using IBM WebSphere

Translation Server)

The edit page shows one of the major strengths of the portlet. It is easily

configurable and can be used on many pages of the portal using the same code

base. The portlet was simply placed on many pages throughout the portal and

configured for the page instance.

Buy: Simple custom portlet with WebSphere Portal

This portlet was built in WebSphere Studio Application Developer software

using the portal toolkit plug-in. Data read in from the outside database was

automatically saved to the portal databases with simple API calls, so that it

could be placed on any of the pages, using configuration parameters to retrieve

the appropriate news stories.

See Table 21 for the tasks and the associated times to complete this portlet.

Table 21. The tasks and associated times required to build a custom portlet.

Task Time (hours)

Build portlet edit page 4

Build logic and display page 10

Build action listeners 8

Test and document the portlet 10

Total 32

Evaluating the decision to buy or build a portal.

Page 30

Evaluating the decision to buy or build a portal.

Page 31

Buy: Simple custom portlet with Bowstreet Portlet Factory

To build this portlet in Bowstreet Portlet Factory, a SQL call builder was

used to select headlines from the database. The query’s result set data was

mapped to a tabular presentation using a data page builder. The statement

parameters, such as the news category and sort-by information, were exposed

for customization in the portlet’s edit screen. This edit panel was built using

a portlet customizer builder to provide a custom user interface, including

drop-down lists with appropriate choices.

The tasks and their associated times are shown in Table 22.

Table 22. The tasks and associated times required to build a custom portlet.

Table 23. The tasks and associated times required to build a custom portlet.

Task Time (hours)

Build news portlet 0.5

Create custom edit page 0.5

Test and document 8

Total 9

Build: Simple custom portlet with a custom portal application

Building the custom news portlet in a custom portal doesn’t require much

more work than the portal with WebSphere Portal. The major disadvantage

of not using WebSphere Portal is that data stored on the edit page in this case

is not automatically saved to the portal databases, so the developers must be

concerned with mapping the data of a particular portlet instance to a specific

table, while keeping track of the portlet instance. For example, this portlet is

on the business page so it is identified as such, and it does not read configura-

tion data from the same portlet on the employee page). The tasks and their

associated times are shown in Table 23.

Task Time (hours)

Plan and built database tables 4

Build portlet edit page 33

Build logic and display page 49

Test and document the portlet 18

Total 104

Evaluating the decision to buy or build a portal.

Page 30

Evaluating the decision to buy or build a portal.

Page 31

Custom portlet: A complex example

This section examines the effort required to build a more complex portlet—

pulling information from many disparate systems and aggregating it to a

single view. What seems to be a simple, convenient view of information to

the end user is, in fact, data from several systems gathered using different

protocols from different locations.

In this scenario, the portlet (see Figure 17) displays information to a sales

manager, who sees data regarding employees and their related sales. The

portlet shows several pieces of key information, aggregated from many

different systems by the portlet. The manager can click the table cells to see

more detailed information. The data in the columns can also be sorted by

clicking the column header.

Figure 17. Complex portlet

Data element System Transport

Region
Sales professional
Title
Top seller
E-mail
Total sales

HR system
LDAP
LDAP
Inventory system
LDAP
CRM System

IBM MQSeries®

LDAP
LDAP
Web service
LDAP
JDBC

Table 24. The data and the respective originating sources

Table 24 shows the data and the respective originating sources.

Evaluating the decision to buy or build a portal.

Page 32

Evaluating the decision to buy or build a portal.

Page 33

Figure 18 shows a logical view of the systems and the respective protocols.

Figure 18. Logical view of systems involved in a complex portlet

Buy: complex custom portlet with WebSphere Portal

Development of this type of complex portlet is normally hindered by the

reliance on the disparate subsystems and timely responses, requiring complex

caching mechanisms to be written. However, the WebSphere Portal platform

enables developers to more efficiently build parts of the portlet by taking

advantage of the existing infrastructure.

The tasks involved and their corresponding efforts are shown in Table 25.

Task Time (hours)

Build base portlet (including sorting action) 55

Create MQ calls 22

Create LDAP calls 8

Create SOAP calls 18

JDBC access calls 6

Aggregation and sorting logic 15

Caching techniques and handling timeouts 65

Testing and documentation 15

Total 204

Table 25. The tasks and associated times required to build a custom portlet.

HR system Inventory system

LDAP server cluster CRM system

Portlet

Portal

MQ pub/sub SOAP call

LDAP JDBC

Evaluating the decision to buy or build a portal.

Page 32

Evaluating the decision to buy or build a portal.

Page 33

Buy: Complex custom portlet with Bowstreet Portlet Factory

Building this portlet on WebSphere Portal through Bowstreet Portlet

Factory requires a similar design to access data in each back-end system.

However, Bowstreet Portlet Factory provides a framework for sorting, paging

through data and caching, which results in less design work and coding for

the developer. Additionally, creating the base portlet and user interface is

considerably faster as a result of builders such as Data Page, which can

automatically generate a presentation and formatting for the displaying

and editing with the data.

Table 26. The tasks and associated times required to build a custom portlet.

Task Time (hours)

Build base portlet (including sorting action) 10

Create MQ calls 22

Create LDAP calls 8

Create SOAP calls 18

JDBC access calls 6

Aggregation and sorting logic 9

Caching techniques and handling timeouts 45

Testing and documentation 15

Total 133

Build: A complex custom portlet with a custom portal application

Management of the portal’s cache requires specialized skills and

experience. This is compounded in a portal application where several

portlets on one page might be making Web service calls and knowledge of

different caching techniques is required. Handling these techniques adds

to the overall development effort. The tasks and their associated times to

develop the complex portlet in an environment other than a WebSphere

Portal environment are shown in Table 27.

Evaluating the decision to buy or build a portal.

Page 34

Evaluating the decision to buy or build a portal.

Page 35

Portlets summary

Through ready-made catalog portlets, rich development tools and an

intelligent infrastructure, the WebSphere Portal platform can provide more

efficient portlet development than using a custom portal application. The

scenarios and their associated development times described in this section

are summarized below.

Table 27. The tasks and associated times required to build a custom portlet.

Task Time (hours)

Build base portlet (including sorting action) 125

Create MQ calls 26

Create LDAP calls 22

Create SOAP calls 18

JDBC access calls 22

Aggregation / sorting logic 45

Caching techniques / handling timeouts 210

Total 468

Table 28. A summary of portal development scenarios.

 Portlet Custom
application

WebSphere Portal
with WebSphere
Studio Application
Developer and
available portlets

WebSphere Portal
with WebSphere
Studio Application
Developer

WebSphere Portal
with Bowstreet
Portal Factory

Savings—WebSphere
Portal compared
to custom portal

Basic functionality 98 0.1 n/a n/a 97.9

Web clipping 288 0.3 n/a n/a 387.7

CRM 129.5 0.7 57.5 16.0 128.8

Productivity 328 0.3 72 4.1 327.7

Custom portlet - simple 104 n/a 32 9.0 72.0

Custom portlet - complex 468 n/a 204 133.0 264.0

Total 1515.5 1.4 365.5 162.1 1278.1

Evaluating the decision to buy or build a portal.

Page 34

Evaluating the decision to buy or build a portal.

Page 35

Maintenance comparisons

Maintenance of a portal involves several areas, including maintenance

of the base infrastructure, adding new function and upgrading existing

function. These areas of the portal can be the most difficult areas for which

to quantify an accurate cost-savings realization. This section focuses on

adding and maintaining portlet applications in the portal.

Maintaining and adding new portlets

One of the major benefits of WebSphere Portal compared to a custom

portal application is the ability to install new portlet applications in a

running portal. This can save a vast amount of time in maintenance and

zero downtime for users. All code is packaged as Web Application Archive

(WAR) files, which saves administrators from deploying multiple code sets

(such as Java class files, Java Archive [JAR] files and JSP). In the custom

portal application at IBM, it was necessary to update JAR files and JSPs

manually, and then restart the application server to read in the packaged code.

Figure 19. Installing or updating a portlet in WebSphere Portal.

Looking at a continuing maintenance and development environment,

these seemingly small differences in times quickly add up. The times shown

represent the requirements to update ten different portlets per day, in a

maintenance environment.

Task Task detail WebSphere
Portal

Custom portal
application

Install new and update existing portlet Add or update
portlet

0.1 0.25

Total 0.1 0.25

Task Task detail WebSphere
Portal

Custom portal
application

Install new and update existing portlet Add or update
portlet

1 2.5

Total 1 2.5

Table 29. The tasks and associated times required to update or install 10 portals per day.

Evaluating the decision to buy or build a portal.

Page 36

Evaluating the decision to buy or build a portal.

Page 37

Assuming there are roughly 255 working days8, and maintenance is

performed on one-quarter of these days, a time savings of roughly 96

hours per person is possible9. If the average development and maintenance

team for an enterprise portal consists of on average four people, the estimated

yearly savings is 384 hours.

Ongoing portlet development

In all enterprise-portal applications, new functions are continually

added to evolve the portal. For example, in a business-to-employee (B2E)

portal application, new lines of business can add their own specific function-

ality to the portal. Depending on the situation, additional portlet development

might be compounded proportionally to the growth of the portal. Based on

customer case studies and other experience, the number of portlets added for

an average enterprise-portal deployment over a one-year period is estimated in

Table 30; they are categorized in the portlet scenarios listed in this section.

Table 30. Savings using WebSphere Portal available portlets and coded portlets versus a custom portal application for
one-year maintenance period.

Portlet Number of
portlets deployed
per year

Estimated hourly
savings in hours

Total hourly
savings in hours
(rounded)

Miscellaneous yearly maintenance savings 384

Basic functionality 3 47.9 144

Web clipping 4 197.7 791

CRM (application integration) 3 78.8 236

Productivity portlet 2 73.7 147

Portlet messaging 2 21 42

Custom portlet—simple 4 31 124

Custom portlet—complex 3 60 180

2048Total portlet development hourly savings over a one-year period

Evaluating the decision to buy or build a portal.

Page 36

Evaluating the decision to buy or build a portal.

Page 37

Conclusion

Although it is difficult to quantify all of the efforts involved in different

development approaches, this white paper compared each scenario using

cumulative expertise and experience. When portal decision makers are ready

to decide whether to invest in a commercial off-the-shelf portal infrastructure,

or to build their own, they must weigh many factors, including development

efforts, the pros and cons of each, their own development and deployment

environments, the skills and experiences of their development teams, standards

in place at their companies and their unique business requirements.

The analysis shows a dramatic time and cost reduction when using the

WebSphere Portal platform compared to a custom portal application. This

analysis represents an opportunity for lower total cost of ownership (TCO),

as well as an opportunity for faster time to value and quicker adaptation of

the portal to changing business needs.

The comparisons described in this paper are used to estimate the value

of a portal, and to develop and deploy 30 portlets of various types that are

typical of enterprise-portal deployments. In this example, detailed in the

conclusion of the paper, the savings are dramatic—an estimated five-year

savings of US$1.4 million for the portal project that uses WebSphere Portal,

compared to building a portal using custom Java 2 Platform, Enterprise

Edition (J2EE) technology.

These savings result from the consideration of development time alone

and do not include required components of an IT project, such as project

management, requirements definition, training and testing. Nor do the savings

reflect any incremental value of additional portal function potentially provided

in the WebSphere Portal solution, or the value of faster implementation.

Evaluating the decision to buy or build a portal.

Page 38

Evaluating the decision to buy or build a portal.

Page 39

Considerations for each scenario
Build: Custom portal approach

+ Allows maximum flexibility for the portal environment and the freedom to build the portlet API and portal framework.

– Is difficult to maintain and upgrade; IT staff supporting proprietary system may require more of a learning curve for new resources

– Requires IT to custom-build all portlets because of proprietary API and architecture; no public portlets available

– Lacks larger technical support community and best practices from other implementation experiences

Buy: Using WebSphere Portal and the Portal Toolkit

+ Delivers reliability and scalability as an enterprise application

+ Offers quick deployment and configuration

+ Provides an open architecture and API; portlets containing a plethora of functionality are available and regularly maintained

+ Delivers excellent support for communities, a function that is hard to duplicate in a proprietary environment

– Requires reliance on a set API and architecture that might create more work when building unsupported capabilities

Buy: Using a third-party tool (Bowstreet Portlet Factory)

+ Allows users that have little Java experience, and little or no understanding of the portal API, to build many custom portlets

+ Provides many out-of-the-box builders that enable end users to put together functionality instead of writing code

+ Allows easy portlet customization for varying constituencies or contexts without the need to code condition logic or copy or paste
new code bases

– Sometimes requires portions of portlet applications to be developed outside of the tool for complex functionality

Table 31. Pros and cons of a custom portal, WebSphere Portal and a third-party approach.

Evaluating the decision to buy or build a portal.

Page 38

Evaluating the decision to buy or build a portal.

Page 39

Summary of efforts involved

Table 32. A summary of portal functionality development efforts.

Functionality Custom application WebSphere Portal
with WebSphere
Studio Application
Developer

Single sign-on 741 0

Profiling 617 66

Content management 886 103

Personalization 120 45

Administrative functionality 584 0

Portlet messaging 34 33

Total 2982 247

Base functionality time comparisons

Custom application WebSphere Portal

Figure 20. The total time required to build the base infrastructure.

Table 33. The time to develop the portlets in the scenarios described in this white paper (with best
approaches shown in green).

Portlet Custom
application

WebSphere Portal
with WebSphere
Studio Application
Developer and
available portlets

WebSphere Portal
with WebSphere
Studio Application
Developer

WebSphere
Portal with
Bowstreet

Basic functionality 98 0.1 n/a n/a

Web clipping 388 0.3 n/a n/a

CRM 129.5 0.7 57.5 16

Productivity 328 0.3 72 4.1

Custom Portlet—simple 104 n/a 32 9

Custom Portlet— complex 468 n/a 204 133

Total 1515.5 1.4 152.5 162.1

Evaluating the decision to buy or build a portal.

Page 40

Evaluating the decision to buy or build a portal.

Page 41

From the data gathered in this study, WebSphere Portal saved 1015.1 hours10

of time for developing just four portlets over a custom portal application. With

just five portlets developed for WebSphere Portal, the Bowstreet Portlet Factory

tool saved an additional 205.8 hours. Most portals consist of many more portlets

than developed as described in this paper. With the information gathered here,

a loose formula for developing an overall savings realization value of using

WebSphere Portal rather than a custom portal application can be established

(see Table 34).

Table 34. Savings using WebSphere portal available portlets and coded portlets versus a custom portal application.

Portlet Number of
portlets deployed

Estimated hourly
savings in hours

Total savings
in hours
(rounded)

2735

Basic functionality 5 97.9 490

Web clipping 5 387.7 1939

CRM (application integration) 4 128.8 515

Productivity portlet 5 327.7 1639

Custom portlet-simple 5 72.0 360

Custom portlet-complex 3 264.0 792

5734

2048

10517

75

788775

153623

5

1403265

Total portlet development savings in hours

Total base infrastructure hourly savings

Total maintenance savings (one-year period)

Five-year savings

Total savings in hours

Assumed cost of development in hours

Total portlet cost savings — year one

Ongoing cost savings (per year)

Assumed number of years

For more information

For more information on the cost savings that you can realize through

WebSphere Portal software, visit:

 ibm.com/software/genservers/portal

Evaluating the decision to buy or build a portal.

Page 40

Evaluating the decision to buy or build a portal.

Page 41

Appendix 1. Customer case studies

Customer case studies helped support this white paper. The approach involved

gathering actual data from customers in various phases of portal deployment.

The final data and conclusions were then validated with the customers before

appearing here.

Customer case study 1

The customer in the first case study is a large insurance company in the

U.S. Midwest where a portal has been deployed in a pilot phase. The

development team has been gathering feedback from users to help improve

the experience. The customer developed approximately 30 portlets using

various methods. The information from the various methods was gathered

to help build timelines for each approach. The team has had experience

building portlets for WebSphere Portal with both WebSphere Studio

Application Developer (using WebSphere Portal Toolkit) and the Bowstreet

Portlet Factory tool. The team also estimated how long it would take to

build the base infrastructure for the portion of functionality they were using

in WebSphere Portal. The customer was not using any of the personalization

or profiling features of WebSphere Portal at the time, so these features were

not estimated in the time-saving values. WebSphere software with included

portlets was used to baseline the effort. Figure 21 shows the cost savings in

each scenario evaluated.

Figure 21. Case study 1 time savings

Cu
st

om
 p

or
ta

l
ap

pl
ic

at
io

n

W
eb

Sp
he

re

Po
rt

al

W
eb

Sp
he

re

Po
rt

al
 T

oo
lk

it

W
eb

Sp
he

re
 P

or
ta

l-
Bo

w
St

re
et

 P
or

tle
t

Fa
ct

or
y

H
ou

rs
 s

pe
nt

2000

1600

1200

800

400

0

-400

Time saved (hours) —case study

Evaluating the decision to buy or build a portal.

Page 42

Evaluating the decision to buy or build a portal.

Page 43

Customer case study 2

The second customer case study involves a large county government that

deployed a personalized portal for constituents, employees and businesses.

Users are able to profile themselves and receive personalized content based

on their profile. The client also implemented a content management system

that integrated with the portal using Interwoven, Inc. software products.

This case study focuses on the personalization, profiling and content

management in this white paper. Information from the customer was used

to gather the effort involved to build a personalized profile in WebSphere

Portal, as well as personalization concepts. Figure 22 shows a screen

capture of the finalized portal.

Figure 22. Personalized government portal

Table 34 shows the estimated time savings to provide new functionality

and maintain WebSphere Portal in addition to the previous custom portal

application for a one-year period.

Evaluating the decision to buy or build a portal.

Page 42

Evaluating the decision to buy or build a portal.

Page 43

Task Time (hours)

Create new portlet applications (10 new portlets per year) 150

Deploy new portlet applications (10 new portlets per year) 100

Maintain users and groups (per year) 260

Administer security 200

Administer look and feel of the portal (per year) 80

Total 790

Customer case study 3

The third customer case study involves IBM’s own experience in deploying a

customer portal application prior to the release of WebSphere Portal. The

IBM intranet has been migrated to WebSphere Portal and serves more than

300000 IBM employees as a dynamic workplace.

The former custom portal included a lightweight portal engine, rules engine

and aggregation engine. Additionally, a profiling page and portal layout page

was added to support personalization. Figure 23 shows a personalized view

of the portal.

Table 34. Estimated time savings to provide new functionality and maintain WebSphere Portal
for a one-year period.

Figure 23. Personalized IBM portal

Evaluating the decision to buy or build a portal.

Page 44

Evaluating the decision to buy or build a portal.

Page 45

Table 35. The time needed to build the IBM Intranet portal and the associated portlets.

Task Time (hours)

Build main portal engine 540

Build rules engine 100

Build profile page 617

Build portal layout edit page 138

Build portlets (7) 1038

Total 2003

Table 35 lists the complete times for building the portal and the

associated portlets.

Today, the IBM On Demand Workplace is powered by WebSphere Portal

software and has truly revolutionized the way people work within IBM.

Appendix 2. Key differences

Key differences in custom-profile page compared to WebSphere Portal profile page

Several differences can be seen in the custom-profile page approach that

has been taken within IBM compared to the profiling system that is available

in WebSphere Portal. These differences are not drastic from a development

standpoint, but do impact maintainability.

• The profile page is highly extendable in WebSphere Portal. New fields are

automatically stored in the database or mapped to LDAP. The custom approach

requires manual database changes and cannot be mapped to LDAP

as is.

• The custom profile page does not provide the ability to have multiple languages.

Key differences in custom content management system compared to WebSphere

Portal Content Publisher

There are some significant differences in the capabilities of the custom

content-management system described and WebSphere Portal Content

Publisher, which is available with WebSphere Portal. WebSphere Portal

Content Publisher provides a robust set of tools for content management

and workflow.

Evaluating the decision to buy or build a portal.

Page 44

Evaluating the decision to buy or build a portal.

Page 45

• WebSphere Portal Content Publisher provides unlimited levels of workflow.

The custom content-management system provides no workflow.

• Extensively more work was required to add functionality to the custom

content-management system than would be the case with WebSphere Portal

Content Publisher.

• Because the WebSphere Portal Content Publisher system is a J2EE application,

it is much more scalable.

Key differences in personalization in a custom portal application compared

to WebSphere Portal

The personalization approach in the custom portal application differs in many

areas from that of WebSphere Portal.

• Using the personalization in WebSphere Portal allows the rules of personalization

to be extrapolated to a business level. The custom approach requires changing

code or property files.

• Changes to the personalization rules can be made on the fly in WebSphere Portal.

The custom approach requires a restart of the application.

• No campaign management is available in the custom personalization approach.

Key differences in administration of the custom portal application compared to

WebSphere Portal

Differences also exist in the administrative functionality available in the

custom application portal cited in this white paper when compared to

WebSphere Portal. WebSphere Portal provides a rich out-of-the-box set

of administrative tools.

• The custom portal application does not have a facility to add new portlets.

Portlets have to be added manually, configured in an XML file and the

application restarted.

• The custom portal application has no administrative interface to handle the layout

of pages, places or portlets.

• The custom portal application has no capability to apply skins or themes.

• The custom portal application has no interface to apply security to users or groups.

G224-7335-00

© Copyright IBM Corporation 2004

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
08-04
All Rights Reserved

DB2, Domino, IBM, the IBM logo, Lotus, Lotus Notes, MQSeries,
Notes, the On Demand Business logo, QuickPlace, Sametime,
VisualAge and WebSphere are trademarks of International Business
Machines Corporation in the United States, other countries or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries or both.

Microsoft, Windows and Windows NT are trademarks of Microsoft
Corporation in the United States, other countries or both.

Other company, product and service names may be trademarks
or service marks of others.

This information is for planning purposes only. The information
contained in this document is provided AS IS. Any person or
organization using the information is solely responsible for any
and all consequences of such use. IBM accepts no liability for
such consequences.

1 The estimates for development efforts made in this white
paper examine only the time for application programming.
These estimates:

 • Assume that a complete development environment is
 already installed.

 • Do not include portal strategy development, user requirement
 gathering, design time or project management.

 • Assume that developers are trained and moderately experienced
 on the tools being used.

2 Using “Credential Vault to Provide Single Sign-on for Portlets.”
Sukumar Konduru, September, 2002.

3 The portlet is to be added to system, added to the XML file and
the application server restarted.

4 Security was administered by manually updating a user database.

5 The Portal Catalog is available at on the WebSphere Portal Zone
at ibm.com /wsdd/zones/portal/

6 PeopleSoft Enterprise Integration Points (EIPs) are Web service
connections that allow PeopleSoft applications to work smoothly
with third-party systems or software and with other PeopleSoft
applications.

7 Bowstreet delivers RAD for WebSphere portlets.

8 65 days per year - 104 (weekend days per year) = 261 – 6 holidays =
~255 working days per year

9 1.5 hours saving x (255 days/4)

10 780.5 total hours for custom application minus 1.4 hours for deploy-
ing available portlets plus an additional 236 hours for developing
portlets that are not available out of the box in WebSphere Portal.

