
On demand business solutions

White paper

Understanding Web services in an
enterprise service bus environment.

March 2005

By Stephen Todd, senior technical staff member,
WebSphere MQ Strategy, IBM Hursley Park laboratory

http://www.ibm.com/
http://www-306.ibm.com/software/info1/websphere/index.jsp

Understanding Web services in an enterprise service bus environment.
Page 2

Understanding Web services in an enterprise service bus environment.
Page 3

Introduction

This white paper explores Web-services considerations when operating

an enterprise service bus (ESB). It explains what an ESB is (in both

conceptual and practical terms), what Web services are and what Web

services bring to an ESB. It also includes typical Web services and ESB

scenarios to help illustrate these points.

What is an ESB?

An ESB is an architectural pattern that enables you to optimize the

distribution of information between different types of applications

across multiple locations. The ESB pattern is founded on and unifies

message-oriented, event-driven and service-oriented approaches to

integration. The core characteristics of an ESB (all of which should be

oriented toward a service-based infrastructure) provide:

• Standards-based application integration

• Support for Web services, message-based transport and publish-and-subscribe

(event-based) integration

• Transformation

• Intelligent routing

At a practical level, the term ESB describes a collection of distributed

integration servers (sometimes referred to as hubs) that work together

seamlessly to provide a variety of complementary services designed to

integrate applications that could not previously work together in flexible and

easily changeable ways. A conceptual view of the ESB is shown in Figure 1.

2 Introduction

2 What is an ESB?

4 What should an ESB deliver?

5 An ESB based on IBM products

6 What are Web services?

9 Web services and ESBs

10 Web services at work in an ESB context

12 From a Web-services point of view, what

advantages does an ESB offer?

14 How can applications running over an

ESB exploit Web services?

14 Possible Web services and ESB scenarios

17 Conclusion

19 For more information

Contents

http://www.ibm.com/ondemand

Understanding Web services in an enterprise service bus environment.
Page 2

Understanding Web services in an enterprise service bus environment.
Page 3

In this context, it is important to understand the following points about ESBs:

• The term enterprise does not necessarily have to encompass the whole of an

organization. One of the attractions of an ESB is that you can start small

(perhaps with only two to three physical instances) and expand to fit evolving

business circumstances.

• The term bus is used to convey the notion of information being carried between

originators and receivers, using different communications models and data formats,

to many different destinations. The bus provides a common backbone through which

applications can interoperate.

• There is no practical or meaningful difference between a bus and a collection of

hubs. The difference between a bus and a collection of hubs lies only in the way

each topology is drawn. In other words, a collection of hubs can be a bus and a

bus can be shown as a hub.

• An ESB should possess some degree of programming intelligence (for example,

to determine routing or persistence, or to implement rules or content processing).

• The term ESB is conceptual. It describes what, in practice, is typically delivered

through two or more instances of software. You do not buy an ESB. What you

purchase is the software for each node of an ESB. The combination of many

software instances working together is what delivers the ESB concept.

Figure 1. A conceptual view of an ESB

Portal service
SOAP

service request

Business-to-
business (B2B)

interactions

Service flow Data Existing
applications

New
service logic

Enterprise service bus
Common
run-time

environment

Understanding Web services in an enterprise service bus environment.
Page 4

Understanding Web services in an enterprise service bus environment.
Page 5

An important aspect of the ESB concept is that applications (and their

developers) do not need to be concerned about where services or permanent

resources (like applications, databases and queues) are in an infrastructure.

This capability means an ESB should make it easier (and, ideally, transparent)

to connect to these services and resources—and, in so doing, to reduce the

effort required to integrate heterogeneous environments. An ESB introduces

new options for interoperation and helps enable information to flow to the

people who need it, when they need it. In this way, an ESB can improve the

responsiveness and accuracy of decision making, and materially assist in the

delivery of on demand computing.

What should an ESB deliver?

Another way to look at an ESB is to consider what it should deliver. Ideally,

an ESB should describe (at a high, logical level) what is going on within an

enterprise, or subset of an enterprise. This description should be visual or

graphical so that both the available resources and the flows (from sources

to destinations) can be represented and depicted. For example, these ESB

capabilities have been available in IBM WebSphere® Business Integration

Message Broker for some years (see Figure 2).

Figure 2. Graphical descriptions in an ESB in IBM WebSphere Business Integration
Message Broker

Understanding Web services in an enterprise service bus environment.
Page 4

Understanding Web services in an enterprise service bus environment.
Page 5

This graphical concept can be extended. Besides describing the flows between

the various nodes (sources, destinations, databases, local ESB processing

and so on), an ESB should enable you to lay on top of these resources the

particular constraints associated with how flows are actually deployed and

used. Indeed, the more an ESB can describe, the more capabilities can be

automated. If applicable resources are described, network bandwidths set,

systems located and transaction boundaries defined, you can then determine

where potential problems might occur—and how these problem areas might

be avoided or resolved. There should be a clear distinction between what is

to be achieved, and how it is to be achieved (from a high, logical level).

In one sense, this approach envisions applications as existing on the edge

of an ESB. The first step you should take is to integrate each application

with an ESB. Having done this for several applications (and you should

only need to do this once for each application, instead of the many times

necessary in traditional peer-to-peer connections), you can now create new,
logical combinations of applications out of the definitions of existing ones.

An ESB’s flow capability effectively enables new combinations to be derived

and implemented without opening up or rewriting the source or destination

applications themselves. It is the intermediary logic on the ESB that enables

such new combinations.

Thus, in an ideal ESB environment, you should be able to define the

applications and flows that shape your organization. You should also be

able to add new combinations of applications and flows—or modify existing

ones—easily.

An ESB based on IBM products

An ESB can be implemented today using existing IBM products. IBM

WebSphere MQ can provide the base for an ESB with point-to-point

messaging, some publish-and-subscribe capability and clustering function.

IBM WebSphere MQ Everyplace® software complements WebSphere MQ

with reduced-footprint message handling for small devices like personal

digital assistants (PDAs). Higher in the ESB function stack, IBM WebSphere

Business Integration Event Broker and IBM WebSphere Business Integration

Message Broker provide value-added services, such as routing, transformations

and rules-definition handling, as well as fan-in and fan-out capabilities.

Understanding Web services in an enterprise service bus environment.
Page 6

Understanding Web services in an enterprise service bus environment.
Page 7

If you need tight links to the Java™ development and run-time environments,

IBM WebSphere Application Server can provide these links, as well as

advanced Web-services capabilities.

What are Web services?

Web services are standards that enable disparate systems to communicate

by providing well-defined interfaces. An ESB provides an infrastructure

that enables varied and distributed applications and systems to exchange

information. Combining Web services standards with an ESB can potentially

deliver the broadest connectivity between systems. An ESB supports Web

services by enabling a flexible mix and match of the new aspects of Web

services with more-established application-integration techniques—enabling

the power of the new to be combined with the reach of the old (see Figure 3).

Figure 3. An ESB that supports Web services

Binary message over
WebSphere MQ

ESB

SOAP over
WebSphere MQ

SOAP over
HTTP

Understanding Web services in an enterprise service bus environment.
Page 6

Understanding Web services in an enterprise service bus environment.
Page 7

In this context, Web services are a collection of open standards—developed

and endorsed by many companies in the IT industry, including IBM,

Microsoft, Oracle and others—that permit interoperation between

heterogeneous infrastructures (see Figure 4). The basic standards include:

• Simple Object Access Protocol (SOAP), an XML-based standard for one-way

and request-response messaging.

• Web Services Description Language (WSDL), an XML-based standard for

storing service definitions, including details of what format or signature a

particular service provides, how that service is to be invoked and where it

is located.

• Universal Description, Discovery and Integration (UDDI), a standard for

repositories of information about services (designed to assist people and

applications to find Web services).

A number of other, complementary Web-services standards cover other aspects

of IT—including transactions, security, reliability and so on—and are shown in

Figure 4.

Figure 4. Selected Web-services standards

Business Process Execution Language Business
processes

Quality
of service

Description
and discovery

Messaging
and encoding

TransportTransports

XML, XML infoset

SOAP, SOAP attachments

WSDL WS-Policy UDDI

Other protocols and
other services

WS-Reliable
messaging

WS-Security
family of

specifications

WS-Coordination

WS-Transactions

Understanding Web services in an enterprise service bus environment.
Page 8

Understanding Web services in an enterprise service bus environment.
Page 9

Web services use SOAP (a transport-neutral protocol) to exchange structured

data. SOAP consists of three parts:

• An envelope that defines a framework for describing what is in a message

and how to process the message

• A set of encoding rules for expressing instances of application-defined data types

• A convention for representing remote procedure calls and responses

SOAP is designed to be used with a variety of transport protocols to deliver

information with metadata (descriptions of the structure and semantics in

a message) between two participants. In this way, SOAP helps programs

running in truly heterogeneous environments to interoperate. For example,

a Microsoft® .NET application and WebSphere Application Server can

consume each other’s hosted Web services.

To some developers, SOAP is not attractive because it can seem like a

heavyweight format. Its need for parsers and serializers can be cumbersome,

and it dramatically increases object sizes compared to binary data. Many

users need a binary-equivalent standard to SOAP. Yet to others, SOAP is

attractive because it is actually a lightweight format and protocol for

exchanging information in a decentralized, distributed environment.

Its attractions are enhanced by its use of XML.

The default transport mechanism for SOAP messages is HTTP. However,

SOAP can be used in combination with a variety of transport protocols,

such as Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP)

and so on. HTTP has its weaknesses, including its lack of guaranteed and

reliable (once-and-once-only) delivery, as well as the need for the back-end

service to be available online for any request to be received. By substituting

HTTP with a different message-delivery option, such as SOAP over

WebSphere MQ (see Figure 5), you can provide a transport for SOAP

messages that possesses excellent security, reliability and asynchronicity

(store-and-forward) delivery.

Understanding Web services in an enterprise service bus environment.
Page 8

Understanding Web services in an enterprise service bus environment.
Page 9

Web services and ESBs

One way to understand where Web services fit into an ESB environment is

to consider WebSphere MQ. At its simplest, WebSphere MQ knows about

moving data from one place to another. But it does not know anything about

the format of the data that is carried in its messages. Fundamentally, early

Web-services standards, especially SOAP, were principally concerned with the

format of what was being carried (and less about the mechanism of carriage).

Web services were essentially remote procedure calls (RPCs) or one-way call

formats. These services did not indicate how the data would be carried to

the other end. You could assume that it would be by HTTP, but there was no

discussion about different kinds of quality of service or other attributes that

might be applicable.

The presumption was that any connection would be synchronous and that

any asynchronous properties would have to be built, as required, on top of

the synchronous connection by using a work-around. Therefore, you can see

an obvious marriage between:

• WebSphere MQ—to provide reliable, once-only assured transport.

• Web services— to look after data content and formats.

Figure 5. SOAP over WebSphere MQ and SOAP over HTTP

Client
application

SOAP
layer

HTTP

WebSphere MQ
sender

HTTP
server

JavaServer
Pages (JSP)

interface

WebSphere MQ
listener

SOAP
layer

Target
object

SOAP-
enabled
client

SOAP-
deployed
service

User SOAP WebSphere MQ

Key

Understanding Web services in an enterprise service bus environment.
Page 10

Understanding Web services in an enterprise service bus environment.
Page 11

This situation fostered the genesis of the SOAP over WebSphere MQ

implementation. Through this implementation, you can benefit from

improved ease of use at the development stage (through the extensive

Web-services development tools). And you can have confidence in middleware

delivery because of the proven capabilities of WebSphere MQ. The result

is that you can leverage your entire infrastructure—from Eclipse to Microsoft

.NET and existing WebSphere MQ networks—far more effectively.

What was, and continues to be, even more attractive about the marriage

of WebSphere MQ and Web services is that Web-services experts need to

know little about the WebSphere MQ infrastructure, and WebSphere MQ

owners need to know equally as little about what is being transported in

the SOAP message that is carried over WebSphere MQ. An added attraction

comes with WebSphere MQ clustering capabilities. Using WebSphere MQ

clustering offers an excellent way to autoconfigure WebSphere MQ—and

to provide self-sustaining, self-recovering workload balancing and even

autonomic properties on a significant scale.

Web services at work in an ESB context

As earlier described, a Web service is something very limited. It is a

well-defined set of formats and interfaces. The basic infrastructure for

these formats and interfaces is defined by SOAP and WSDL. The details

for a particular service are defined by the person who writes that Web

service, often just by writing lines of code that embrace XML running over

SOAP, so the developer can say, “This is a Web service and it is now available.”

Web services become interesting at several levels—particularly when

Web services start to interact with each other. However, you must remember

that not every application is written as a Web service. Valuable legacy

applications will almost certainly be in use. Product extensions like

IBM CICS® Web Services Bridge can help in these situations by enabling

Web services and legacy applications to connect. These situations are where

the ESB concept can come into focus. An ESB offers a means by which modern

Understanding Web services in an enterprise service bus environment.
Page 10

Understanding Web services in an enterprise service bus environment.
Page 11

Web-services applications and valuable legacy applications can make

the most of each other—and your developers don’t have to create new

applications to carry out the functions of the familiar ones that couldn’t be

connected. In essence, an ESB facilitates the combining of the old and the new.

How does this work? In the case described in this white paper, the first action

is to decide to use CICS over Web services. The existing CICS applications

have known interfaces that are already defined—the inputs and outputs that

the CICS application requires. From this data, the necessary paths can be

generated—in particular the WSDL code that tells people in the outside world

what the application needs. CICS Web Services Bridge (see Figure 6) generates

the entry and exit doors into and out of the CICS application.

Figure 6. CICS Web Services Bridge

SOAP
for

CICS

Web
services

XML data

XML data

XML data

XML data

XML data

XML data

XML data

XML data

Binary data

Binary data

Binary data

Binary data

Binary data

Binary dataDriver
ACTDSOAP

Driver
CSTDSOAP

Inbound
SOAP

message

Outbound
SOAP

message

Inbound
SOAP

message

Inbound
converter
ACTDCNVI

Outbound
converter

ACTDCNVO

Inbound
converter
CSTDCNVI

Outbound
converter

CSTDCNVO

DB2

Account
details

DFH0ACTD

Customer
details

DFH0CSTD

CICS system

Outbound
SOAP

message

Understanding Web services in an enterprise service bus environment.
Page 12

Understanding Web services in an enterprise service bus environment.
Page 13

The second set of actions involves the client on the other end (that you

want to connect) and the development tools you use to support Web-services

application creation, whether with .NET, Eclipse or some other development

tooling. You specify to the tooling function what Web service should be

targeted (the CICS application) and where the relevant WSDL definitions

can be found (probably, but not necessarily, using UDDI). The code at

the client places the relevant call. The connection between a new-style

application and a legacy-style CICS application has been implemented.

Old and new applications have been integrated—using Web services.

The client itself can be a user interface (UI)— like one provided through

a Web browser—or it can be an application with no overt UI. The choice

depends on the circumstances, but either is possible.

What an ESB adds is a common intermediary point (or points) where the

rigidities of individual point-to-point connections can be avoided. In this

instance, an ESB is effectively a switch for connecting multiple Web-services

applications and legacy applications—or even other resources, like databases

or application servers.

From a Web-services point of view, what advantages does an ESB offer?

As already explained, the default transport for Web services is HTTP.

Although HTTP provides a specific transport mechanism that is relatively

easy to set up and use, it does not provide industrial-strength reliability

and management. An ESB adds the strengths of WebSphere MQ and

WebSphere Business Integration Message Broker, for example, to a

Web-services environment, providing assured message delivery and a

managed infrastructure.

In a typical scenario, Web services-based applications can be deployed to

exploit an ESB with little or no modification to the application. The consumer

and provider of the Web service need to access only the ESB infrastructure.

The changes required to enable the ESB to provide the Web-services transport

are made at deployment setup. In this context, an ESB implementation based

on WebSphere Business Integration Message Broker provides a Web-services

Understanding Web services in an enterprise service bus environment.
Page 12

Understanding Web services in an enterprise service bus environment.
Page 13

A benefit of Web services in an ESB context is that they enable you to

take an architectural approach to decomposing IT solutions into pieces

that can be reused. This helps increase efficiency because it makes the

delivery of agile information systems that are responsive to changing

business demands easier. Similarly, loosely coupled, federated reuse of

existing assets is made possible by combining the standardization inherent

in Web services with the flexibility inherent in an ESB. The ESB offers the

capability to support a wide range of devices, from PDAs and cell phones,

to telemetry devices, to mainframes. The ESB can also support applications,

from new Web services-based applications to legacy applications—and enables

them to work together as peers in a distributed environment.

Figure 7. WebSphere Business Integration Message Broker as a Web-services proxy

proxy for interoperation with existing (legacy) applications—because the

ESB can act as an intermediary (see Figure 7). It decouples consumers

from providers in ways that SOAP alone cannot (because SOAP is based

on a tightly coupled model). By decoupling consumers and providers,

consumers can take advantage of new services (or they can be shielded

from changes to existing services) by exploiting the routing and other

capabilities available in the ESB.

WebSphere
Business

Integration
Message Broker

SOAP over
WebSphere MQ

or JMS

Custom
formats over

WebSphere MQ
or JMS

Legacy
application

SOAP
service

requester

Queue

Queue

Queue

Queue

Understanding Web services in an enterprise service bus environment.
Page 14

Understanding Web services in an enterprise service bus environment.
Page 15

How can applications running over an ESB exploit Web services?

A developer can write new applications for an ESB using the Web-services

development infrastructure provided by products like IBM WebSphere

Studio Application Developer or Microsoft Visual Studio .Net. These tools:

• Provide the means to define the SOAP message formats.

• Help you easily enable disparate consumers and providers of services to

interact properly.

• Enable the application programmer to see the service as a standard method

definition, and then call that service using a standard remote method call

(the benefit being that the programmer does not need to be involved in details

of format or transport).

Where existing service applications are running on an ESB, the message-

broker component can be configured to wrap these applications as

Web services. In this situation, the ESB generates WSDL for the specific

Web service and provides the run-time environment that hosts the

wrapping. Alternatively, you can use an ESB to permit programs that

do not understand Web services (most often, legacy applications) to call

Web services. The standard features of an ESB, such as transformation,

routing, warehousing and auditing, can be applied to all forms of messages,

including Web-services messages.

Possible Web services and ESB scenarios

Combining Web services and the ESB concept is a powerful pairing. Many

different possible scenarios exist. The following section briefly describes

some of the more-common possibilities.

One of the simplest possibilities is to enable a .NET application to use

a CICS service. The CICS workload is prepared as a Web service that is

deployed on the ESB. The WSDL that defines this Web service generates

a proxy on the ESB. The .NET application is then written to exploit the proxy

on the ESB. Thus, the .NET application sees the CICS service as a simple

call that is delivered by the ESB.

Understanding Web services in an enterprise service bus environment.
Page 14

Understanding Web services in an enterprise service bus environment.
Page 15

In a more-complex scenario, an IBM IMS™ transaction can be wrapped

as a Web service using the message-broker component of an ESB (such as

WebSphere Business Integration Message Broker). The broker capability

converts incoming message requests, which are in SOAP format, into the

COBOL Copybook format. These messages are then forwarded to the relevant

IMS transaction. On the reverse route, the COBOL Copybook format response

is converted back to SOAP format by the broker function on the ESB, and

the results are returned to the calling application. The calling application

is written in the same way as it was in the first CICS scenario. The broker can

also be configured to identify high-value transactions (content processing).

These transactions can simultaneously be converted to a different SOAP

format and forwarded to a different application that is collecting details

about high-value transactions for marketing purposes.

For Web-services development for an ESB, application developers can

use development techniques in the same way as they would for HTTP

Web services. The deployment process identifies the services that are to

run over the ESB. This action generates the appropriate ESB-related

infrastructure (for example, queue and channel definitions), as well as

the associated Web-services elements (WSDL and any associated proxies).

Using the broker capabilities in an ESB in more-advanced scenarios

requires setting up the appropriate message flows and defining format

transformations. Much of the work of defining format transformation is

provided automatically by the message repository manager (MRM) of

WebSphere Business Integration Message Broker. The MRM can use

both the WSDL definitions of the SOAP formats used in Web services

and other formats that are used by more traditional (or legacy) applications

(copybooks, electronic data interchange [EDI], WebSphere MQ messages

and so on). The attraction of an ESB is that it can automate the processing

of a COBOL Copybook definition and then generate a WSDL definition

for a SOAP-equivalent format, along with the transformation needed to

convert a SOAP message to a COBOL Copybook structure.

Understanding Web services in an enterprise service bus environment.
Page 16

Understanding Web services in an enterprise service bus environment.
Page 17

Another example of the use of Web services in an ESB environment is where

an external Web service is invoked as part of the processing of a broker flow.

This flow is illustrated in Figure 8.

Figure 8. Accessing an external Web service as part of a broker flow

The scenario depicted in Figure 9 pulls more capabilities together to reflect

a more-advanced ESB scenario. A basic service is made available to different

kinds of Web-services clients. The various clients have different quality-of-

service needs. Simple clients work well with SOAP over HTTP, whereas more

reliability is provided for SOAP over WebSphere MQ clients. In either case,

the input is a SOAP message that is logged in the warehouse for auditing or

data mining. The requests are then filtered. Low-value and query requests are

routed by SOAP over HTTP to services implemented on low-value hardware

using basic Web-services implementations. High-value requests are decoded

from SOAP to its internal format and routed over WebSphere MQ to a high-

quality back-end service, such as CICS or IMS.

Web service SOAP
over HTTP

SOAP
or

legacy
application

SOAP
or

legacy
requester

WebSphere Business Integration Message Broker

Understanding Web services in an enterprise service bus environment.
Page 16

Understanding Web services in an enterprise service bus environment.
Page 17

Conclusion

The adoption of Web-services standards is growing. Over time, it is likely that

more and more applications will be written to exploit Web-services standards.

As a consequence of this trend, you might assume that new developments will

have less and less need for the conversion and wrapping capabilities of an ESB.

This conclusion is mistaken for two reasons. The first relates to the realities of

maintaining investments in business systems. And the second relates to the

need for tools to manage Web-services interactions, even when those services

are implemented to Web-services standards.

Figure 9. Web services in a more-advanced ESB scenario

HTTP
input node

WebSphere MQ
input node

Filtering node
for routing

Warehousing
node

SOAP over
HTTP output

WebSphere MQ
outputSOAP decode

node

SOAP over
WebSphere MQSOAP

client

SOAP
client

Service
requester

Service
requester

SOAP over
HTTP

Service
requester

Service
provider

Service
provider

Other service
provider

Web-service
provider

HTTP
SOAP-XML

WebSphere MQ
(any)

 WebSphere Business
Integration Message Broker

Understanding Web services in an enterprise service bus environment.
Page 18

Understanding Web services in an enterprise service bus environment.
Page 19

The key word here is new. One lesson learned, time and time again over

the past three decades (or more), is that old applications do not disappear

quickly. They persist because they work. If this continues (and there is

little reason to suppose otherwise), the need for the flexibility of an ESB in

performing the transformations, routing and interconnection between legacy

and new (Web services-based) applications is unlikely to disappear. Indeed,

the relevance of an ESB should become ever more important as business

demands become more and more dynamic. Even with pure Web services,

discrepancies can occur between clients and services. These can readily be

resolved using the transformation capabilities of a broker within an ESB.

What will change is that there will be closer integration of Web services

with ESBs, as well as closer integration with application servers. This tight

integration has positive benefits for application server-based applications.

You can use an ESB for Web-services delivery (whether as service consumer,

provider or intermediate), while also improving implementation efficiency.

For these reasons, adopting Web services in conjunction with an ESB can

help preserve your software (and hardware) investments. New applications

can be written more easily using Web services, because of modern development

tooling and its improved usability. At the same time, these new capabilities can

be combined, or integrated, with existing IT infrastructure and applications.

As a result, an ESB can enable you to continue exploiting past investments in

infrastructure and applications. Similarly, new investment in Web services-

based applications is preserved as your organization’s infrastructure evolves.

As such, ESBs can become critical if you need to change the way existing

applications connect to each other, or you need to introduce new applications.

The challenge of connecting applications in a flexible, maintainable way

will continue well into the future. Making this integration ever easier,

and cheaper, is of paramount importance to most companies. While the

challenge of enabling application X to talk to application Y is achievable,

the bigger gains come when X (or Y) can talk to N other applications as well.

Making this function even more straightforward to define and then make

operational is key to building a successful ESB.

Understanding Web services in an enterprise service bus environment.
Page 18

Understanding Web services in an enterprise service bus environment.
Page 19

What matters in an ESB is that it possesses the flexibility to enable

software components to work together. For your organization, what

matters is middleware transparency. With an ESB, you don’t have to

worry about the detailed middleware implementations that knit the

parts together. Definitions can be described at a high level and then

implemented at a low level.

Relational databases were successful in the early days by separating

logical and physical models. ESBs can be successful for business-process

integration—helping organizations to separate high-level tasks and

low-level tasks. The business value comes through the reduction in the

amount of costly, skilled manual intervention required.

For more information

To learn more about the enterprise service bus, contact your IBM

representative or IBM Business Partner, or visit:

ibm.com/software/integration/esb

http://www.ibm.com/software/integration/esb
http://www.ibm.com/software/integration/esb

G224-9192-00

© Copyright IBM Corporation 2005

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
03-05
All Rights Reserved

CICS, Everyplace, IBM, the IBM logo, IMS, the On Demand
Business logo and WebSphere are trademarks of International
Business Machines Corporation in the United States, other
countries or both.

Microsoft is a trademark of Microsoft Corporation in the
United States, other countries or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries or both.

Other company, product and service names may be trademarks
or service marks of others.

This information contained in this document is provided AS
IS. Any person or organization using the information is solely
responsible for any and all consequences of such use. IBM
accepts no responsibility for such consequences.

All statements regarding IBM future direction or intent are subject
to change or withdrawal without notice and represent goals and
objectives only.

