
On demand business solutions

White paper

Coupled or decoupled, and
heavyweight and lightweight
delivery considerations in an
enterprise service bus.

January 2005

By Andy Stanford-Clark, master inventor
and senior technical staff member, IBM Hursley
Park Laboratory

http://www.ibm.com/
http://www-306.ibm.com/software/info1/websphere/index.jsp

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 2

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 3

Introduction

This white paper explores coupled and decoupled, as well as lightweight

and heavyweight, delivery considerations when operating an enterprise

service bus (ESB). It describes what an ESB is (in both conceptual and

practical terms), then delves in to tightly and loosely coupled considerations.

A discussion of lightweight and heavyweight messaging considerations is

followed by a more detailed look at lighter-weight and lightweight messaging.

What is an ESB?

An ESB is an architectural pattern that enables you to optimize the

distribution of information among different types of applications

across multiple locations. The ESB pattern is founded on and unifies

message-oriented, event-driven and service-oriented approaches to

integration. The core characteristics of an ESB (all of which should be

oriented toward a service-based infrastructure) provide:

• Standards-based application integration

• Support for Web services, message-based transport,

and publish-and- subscribe (event-based) integration

• Transformation

• Intelligent routing

An ESB (shown in Figure 1) provides a logical mechanism that enables

separate information automation components to interact in flexible and

adjustable ways that traditionally weren’t possible without major financial

investment. These components were also often delivered in forms that

subsequently proved to be inflexible when other changes, improvements

or connections were needed (to keep the original costs down).

2 Introduction

2 What is an ESB?

5 ESBs and the physical dimension

7 An ESB based on IBM products

7 The service in an enterprise service bus

9 Tightly or loosely coupled considerations

in an ESB environment

11 Loosely coupled or asynchronous

considerations in an ESB environment

13 Lightweight and heavyweight messaging

considerations in an ESB

14 Lighter-weight messaging

16 Lightweight messaging

17 Conclusion

19 For more information

Contents

http://www.ibm.com/ondemand

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 2

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 3

If this explanation appears somewhat abstract—and the ESB concept

can be elusive—consider an analogy. Think of a double-decker bus.

Its purpose is to transport you from one place to another (in information

terms, it is to convey information from one place to another). But, whereas

a double-decker bus has only one entrance, an ESB can have a number of

different doors—with different entry and exit points. Each door might be

of a different style and even have different-sized porches—to accommodate

different sizes of people (information types) and the different ways they

might choose to board or exit the bus.

These porches are as important as the doors. The porches would ask what

language you prefer to speak (for example, “What protocol are you using?”).

When this is understood, each porch converts everything boarding the

bus to a common form. The same applies for exiting. Thus, something

arriving through one porch and door in one form can leave through any

other door and porch in another form. So, whatever can board the bus can

also disembark— even though the departure format and protocol may be

quite different to the arrival format and protocol. An ESB enables an application

Figure 1. A conceptual view of an ESB

Portal service

Simple Object
Access Protocol

(SOAP)
service request

Business-to-business
(B2B) interactions

Service flow Data Existing
applications

New
service logic

Enterprise service bus
Common
run-time

environment

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 4

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 5

that produces one form of output to submit this output to an ESB—and

know that other applications will be able to receive (and use) what the

original application created, without the originating application having

to actually understand the destination application.

But that is not all an ESB can do. Again, consider the double-decker bus.

It has two decks, or floors. The lower deck is where all the doorways and

porches are located. It manages the boarding process, the rendering of

information arriving into a common format and the subsequent disembarka-

tions. But more may be needed. By paying a little extra and going upstairs

to the upper deck, additional degrees of processing can be obtained—from

persistence, reliability, transformation and routing to encryption, rules and

content-based processing, and other value-add services. You might not want

all these services all the time. But certain passengers (or their patrons) might

choose to exploit these when necessary.

An ESB in practical terms

Ideally, an ESB is a modest-sized piece of software that you can deploy in

multiple instances around your organization, or even between organizations.

Each ESB instance is relatively lightweight, but with the inherent capability

to self-organize so that two or more ESBs can link together to form a logical

interconnection bus along which information can flow as required.

In contrast to a double-decker bus, which proceeds along fixed routes

and at set times (traffic permitting), an ESB’s value increases as it provides

ever greater flexibility. By being able (in an ideal world) to install an ESB

instance at any point convenient to an application (that needs to talk to

another application), the combination of self-organizing ESB instances

enables anything boarding at one ESB instance to be delivered through

another ESB instance. The underlying communications connections

between all ESB instances are delivered through a local area network (LAN),

a wide area network (WAN) or combinations of these. You can also size and

locate different ESB instances to suit specific requirements—at functional,

departmental, enterprise or inter-enterprise levels.

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 4

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 5

The key capability that an ESB must deliver, therefore, is to link multiple

ESB instances. An ESB delivers its value by operating across a network

cloud, which provides the interconnections between applications and systems.

Too often in the past, these connections could work together only with

expensive and rigid point-to-point connections or they remained in isolation—

with people acting as the middleware (the connecting mechanism) between

applications. The attraction of ESBs is that they can provide automated

entrance and exit doors across a logical network.

Another way of illustrating the attraction of the ESB concept is when

you need to take advantage of the upper deck’s value-added services.

It is not necessary to locate every transformation or routing instruction

on every ESB instance. Instead, high-volume, value-added services might

be replicated in many places to maximize performance or throughput,

whereas other value-added services might only be located in one or two

places. These places can then be accessed through the self-organizing,

intercommunicating ESB instances.

As a result, the inherent advantage of an ESB is that the location of all

ESB instances can be arranged in a topology that is optimized to particular

requirements. This can be at the functional, departmental, enterprise or

inter-enterprise level–or combinations of these levels–as needed. This

also enables you to deliver workload balancing, scalability and resilience.

By implementing enough ESB instances, you introduce operational, as well

as logical, flexibility where it is needed. In so doing, you can subsume the

rigidities of, for example, dedicated point-to-point connections (for integration)

into the broader ESB concept without losing the capabilities that traditional

point-to-point solutions can deliver.

ESBs and the physical dimension

Talking of an ESB is correct, but can (unintentionally) be misleading.

As described before, an ESB is most often a collection of physical ESB

instances that self-organize to work together, to know about each other.

What many find confusing is the contrast between a logical ESB and many

physical ESB instances. You do not buy an ESB. What you purchase is

the software for each ESB instance. The combination of many software

instances working together is what delivers the ESB concept.

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 6

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 7

Conceptually, the purchase of one ESB instance can provide a logical ESB.

But the practical nature of a successful ESB is that it can become mission

critical. You can implement one huge, single ESB instance—running, for

example, on one large centralized system—and, as a result, possess a logical

ESB. However, this approach might not make operational sense. If that

instance fails, so do all the connections that flow through it. Just as if the

only double-decker bus on a route were to break down, that route would

cease to carry passengers until that bus is repaired or replaced.

In practice, operational implementations of the ESB concept consist of

several or many individual ESB instances, located around a network.

Each possesses different entry and exit combinations of doors and porches,

upper-deck, value-added services and the ability to communicate (among

the various ESB instances). The appeal for your organization is that many

ESB instances can combine to become a flexible, connected intermediary.

In some cases, you might find it appropriate to accomplish this by incorporating

ESB instances near centralized facilities. Alternatively, you might choose

to distribute instances and facilities. Or you might implement the particular

combination of these extremes that best suits your business requirements.

This is the beauty of the ESB concept. Physically it can be implemented

to deliver just what you need. Logically, it is a self-organizing group of

physical instances that deliver the ESB concept. For example, in broad

messaging terms, an ESB can support:

• For boarding—the push model (I want to board) and the pull model (the driver

stops and tells me when to board).

• For exiting—the pull model (I want to get something off the bus) and the push

model (the driver tells me when, where and how to disembark).

• Variations in between—from publish-and-subscribe to point-to-point connections

to Web services support, as well as synchronous attachment and disconnection.

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 6

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 7

An ESB based on IBM products

IBM WebSphere® MQ can provide the base for an ESB with point-to-point

messaging, some publish and subscribe, and clustering. IBM WebSphere

MQ Everyplace® complements WebSphere MQ with lower-level and reduced-

footprint message handling. Higher in the ESB function stack, IBM WebSphere

Business Integration Event Broker and IBM WebSphere Business Integration

Message Broker add the upper-deck services referred to previously, like

routing, transformations and rules-based processing, as well as fan-in and

fan-out capabilities. If you need tight links to the Java™ development and

run-time environments, IBM WebSphere Application Server can provide

these links, as well as synchronous possibilities.

The service in an enterprise service bus

The term enterprise is well understood. Similarly, the notion of a network

bus has been described earlier. Often one other problem emerges when

people try to understand what an ESB is—namely, what does service

encompass? Possibly the simplest way to explain service is to convey that

there are three complementary dimensions to service in an ESB. The first

dimension refers to the idea that a service is a well-defined, stable, loosely

coupled communications interface provided by an application or software

component to other applications running within a business process. This

aspect of service is closely aligned with the concept of a service-oriented

architecture, or SOA, as a means of building flexible business systems.

You can also learn more about this concept by visiting ibm.com/software/

solutions/webservices/.

The second dimension involves the translation service between

different protocols. In a sense, this translation service is an elementary

(but sophisticated) part of the first hop on, and last hop off of an ESB. After

something arrives on the ESB (whether through HTTP, WebSphere MQ,

Java Message Service [JMS] or so on), it must be translated into the selected

language that operates on that ESB—perhaps XML, extended Structured

Query Language (eSQL) or whatever else might be appropriate.

http://www.ibm.com/software/solutions/webservices/
http://www.ibm.com/software/solutions/webservices/
http://www.ibm.com/software/solutions/webservices/
http://www.ibm.com/software/solutions/webservices/
http://www.ibm.com/software/solutions/webservices/

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 8

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 9

The important point here is that an ESB should not force you to translate

information in a certain way. Instead, you should be able (within reasonable

limits) to do more or less what you want; choices aren’t imposed on you.

One factor of service is that an ESB offers the choice as to what form a

message should arrive in; the ESB’s intertranslation service then converts

that information into your chosen generic format, as well as translating it

as needed to go out to your chosen destination.

The third dimension to service is associated with upper-deck, value-added

possibilities. These services are relevant when information moving through

an ESB requires additional work to get the results you need, such as:

• Persistence

• Reliability

• Replay (as it relates to archiving)

• Transformation (in the programmatic sense, like Fahrenheit to centigrade,

or kilos to pounds)

• Message enrichment–accessing databases (as you can do in WebSphere

Business Integration Message Broker) to look up names and addresses

from a customer number, before adding this data to the original message

The essence of this third dimension to service is that activities can be

automated on your behalf. Rather than have a person receive an e-mail order

and print it several times, or create and send several copy e-mails to distribute

an order to many required destinations, an ESB can automate these tasks.

Value-added services can automate persistence or even filing. An ESB service

can provide any or all of these services—whether in a database or working with

an e-mail server, for example.

An upper-deck service in an ESB can perform activities where it makes

little sense to have a person involved. However, a distinction should

be drawn between the processing that an ESB broker delivers, where the

logic to be applied is intentionally lightweight and repetitive, and the

processing an application server (like WebSphere Application Server) offers,

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 8

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 9

where the logic is heavier duty. For this reason, an ESB is not a substitute

or an alternative for the heavier-duty application logic that an application

server is designed to deliver. An ESB should not attempt to do the work

of an application server. And an application server might be overkill for

ESB activities.

An ESB should facilitate the supply of data to and from the applications

running on an application server. Another way to decide what should be

on your ESB is to work out if processing is on the fly or not. If it is, then

using an ESB is probably the appropriate approach. If it requires more work,

like interacting with a customer, that element should be handed off to

an application.

Tightly or loosely coupled considerations in an ESB environment

The key distinction between tightly and loosely coupled considerations

in an ESB can be summarized by the differences between IBM WebSphere

MQ Telemetry Transport, and WebSphere MQ or WebSphere MQ Everyplace

(for example). In a tightly coupled, or synchronous, program model, the

application has to be aware of whether it has a connection to the far end.

Such awareness can be considered good or bad. The people who think it is

bad tend to be adherents of the loosely coupled, or asynchronous, model.

Conversely, people who think this awareness is good tend to be adherents of

the synchronous model.

However, IBM experience has shown that the key distinguishing element

boils down to the difference between attended and unattended operations.

If you have an unattended device, like a telemetry device, it is valuable

(and often essential) to know if connectivity exists. The application needs

to do more than simply send or receive data that might one day arrive.

For example, in a factory, if a temperature reading goes over a certain level,

it is important to inform someone, so that actions can be taken. It is of little

use if the warning is sent promptly, but only received at some point in the

future, or in a way that does not facilitate an appropriate action. In unattended

operation, the goal is to use the existing network connection. If this doesn’t

work, alternatives must be tried until a connection is successfully established.

If all attempts fail, the device might have to make the autonomic decision to

shift to a fail-safe operation.

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 10

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 11

Part of the price paid for synchronous or tightly coupled communication

is that it increases the application developer’s workload. The developer must

be aware of all the possible scenarios and then create solutions to address

selected ones. This makes applications larger and more complex, because

different combinations of retries are attempted according to the sequence

coded into the application. For example, the first connection might be through

the normal internal LAN, the second might use a dial-up connection, the

third connection could be by satellite and the last through Global Packet

Radio Service(GPRS).

The issue is that handling all these alternatives produces extra work for

the application writer. But, if you are an engineer working with a production

plant and machinery, omitting them could result in disaster—a chemical

plant catching fire, a refinery leaking or a food-processing system producing

contaminated products. In these situations you want to avoid handing messages

to an opaque middleware layer where you do not know when information might

arrive. Instead, you want to process the information through a transparent

middleware layer where you have sufficient control to know for certain that

this mission-critical information has been delivered.

In this context, another dimension that an ESB must offer is the ability to

let people choose to take direct responsibility for their data. Any ESB must

be able to provide tightly coupled, or synchronous, capabilities to address

such requirements, even if that means an external (to the ESB) application

(monitored by a person or prompting an action by a person) must take the

responsibility for the action. And you must also consider whether the status

of the connection needs to be known across the ESB.

For example, a source application might deliver a message of some form

in a synchronous or tightly coupled manner to an ESB like WebSphere

Business Integration Message Broker. However, after it’s inside WebSphere

Business Integration Message Broker, the tightly coupled link (even if it is

from a synchronous protocol like WebSphere MQ Telemetry Transport) is

effectively lost when WebSphere Business Integration Message Broker accepts

the input. If you need a continuous connection across the ESB (in this case,

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 10

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 11

WebSphere Business Integration Message Broker), from source through

to destinations, then other considerations apply— like the destination

application sending back a confirmation message along the reverse route

saying your message was received.

Loosely coupled or asynchronous considerations in an ESB environment

The underlying appeal of loosely coupled, or asynchronous, solutions is

that they reduce the amount of work required of application developers

to make these solutions behave as intended. Rather than having to consider

every circumstance and coding for the relevant ones, decoupling enables

different parts of an overall process to be created by different activities.

The source application need not know anything about the nature of the

destination application (and vice versa). This has always been true with

WebSphere MQ, which is one reason WebSphere MQ is a popular solution

for large enterprises.

Adding an ESB introduces still greater flexibility. A source need only

know about an ESB (like WebSphere Business Integration Message Broker)—

and not all of an ESB’s destinations. Similarly a destination does not

need to know about individual details of every source. The ESB is the

destination as far as the source is concerned (or the source where a

destination is concerned).

After it has received a submission, the ESB can look after routing the

source information to the one or many destinations to which it should

be sent. Continuing the double-decker bus analogy, the ESB’s processing

capability can exploit upper-deck services to enhance, apply rules-based

routing to and persist messages. The destination applications

then receive the information (through the appropriate outbound doors

and porches, as applicable).

Another of the decoupled services that an ESB can offer is confirmation

of delivery. The source can receive a response or message indicating

that delivery to the ultimate endpoint has occurred. This is important,

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 12

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 13

because applications exist that need explicit confirmation that a message

has moved from source to ultimate destination. This confirmation shows

that the middleware has worked as intended. Decoupled environments

are ideal for organizations that don’t want (or need) to handle large amounts

of confirmation. Within this environment, the worry of whether sent

messages are received is removed, because you can trust your ESB to

complete the delivery.

An ESB can provide these capabilities–particularly in the attended

application space. Instead of spending time worrying about the nuances

of network connectivity (as is the case with unattended systems), the

focus can be on interacting with the user and preparing the message to

be sent. This applies to applications talking to each other, such as a

personal digital assistant (PDA) transmitting the details of an insurance

claim or a laptop computer placing an order.

In such instances, the key issue is usually not whether the claim or

order has been submitted yet. Rather, it is whether you can be confident

that it will occur reliably. As far as the user is concerned, pressing the

submission button means that that person has completed his or her part.

It is the responsibility of the ESB to help ensure that the rest happens.

The application gives the message to the middleware, which passes it

to the next part of the ESB. The ESB determines what should happen

next—using, for instance, the content routing logic in WebSphere Business

Integration Message Broker—and then helps assure delivery to the appropriate

destinations. The source application does nothing more than provide the

appropriate verb to entrust the message to the middleware, from which all

else happens as the message is passed to its destination.

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 12

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 13

In contrast to the tightly coupled case, users in a loosely coupled example

take less responsibility for message transmission. The infrastructure is

there to support the programmer’s instructions in tightly coupled instances.

In the decoupled case, the programmer expects to hand over transmission

and delivery responsibilities to the infrastructure that (using something

like an ESB) is capable of handling these tasks.

Lightweight and heavyweight messaging considerations in an ESB

When considering lightweight and heavyweight messages, the first step

is to understand the weight of a message. Different communication

environments require different solutions. On a modern enterprise LAN,

you are likely to have a gigabit Ethernet. If the task is to send a message about

a US$500 million transfer, you must ensure that the message arrives once

and once only. To achieve this, you must use heavyweight messaging because

it has many facilities associated (from persistence and once-only delivery

to transactional capabilities and logging). Even though this message might

take only a tiny proportion of the gigabit Ethernet, and even though a large

overhead might be associated with relevant protocol exchanges, the value of

the transaction is so great that assured end-to-end delivery in the correct

manner is paramount. To lose or duplicate such a message could be hugely

expensive. Yet the network cost is trivial, the delivery is high speed and

latency is low.

So, in this instance, enterprise-strength messaging is practical—and

preferable. It can be made heavyweight, even if the actual requirements

are lightweight—because the network cost is negligible within the context

of the enterprise WAN or LAN. Also, any messaging features that increase

the weight— longer fields, more-informative date stamps or space for future

enhancements — don’t materially add to the cost per message. The cost

can be entirely justified by the operational savings achieved through a

consistent approach to messaging.

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 14

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 15

Most messaging has been heavyweight in the past, because it operated

within an enterprise environment where the networking cost was not

significant. On a per-message basis, this has meant that the characteristics

and requirements associated with heavyweight messaging have been

accepted as the norm. However, these habits can prove expensive, as well as

inappropriate, if the real need is for lightweight messaging. This leads to a

parallel conclusion. The need for lightweight messaging might, in practice,

be more common than has been appreciated in the past. Why? Because

lightweight messaging is applicable to a wide range of application scenarios—

even if it can be more difficult or expensive (primarily through unfamiliarity)

to achieve.

Lighter-weight messaging

The advent of the Internet, along with the arrival of messaging systems

optimized for small, pervasive devices, changed the overall picture

to favor lighter-weight and lightweight messaging. Across the Internet,

bandwidth tends to be limited at the endpoints. And the basic nature of

the Internet involves multihop connections from source to destination.

You only have to do a trace-route search to understand just how many

hops are involved. This means that if you are sending small messages,

a large overhead per message is associated with submission through to

delivery. This can be both expensive and undesirable, primarily because

you have to wait for a long time for the messages to be transmitted. A verbose
protocol means that the latency is much higher as the verbosity has to be

handled at every one of the Internet’s many hops.

Limited bandwidth and minimizing latency mean that a heavyweight

messaging protocol might not be appropriate. This is not to imply that

heavyweight messaging is impossible over the Internet, but it is frequently

less than optimal. In other words, the assumptions that continue to underpin

WebSphere MQ in an enterprise WAN or LAN environment (such as exactly

once-only delivery in all circumstances) are not necessarily appropriate to

many Internet connections. So, if there are circumstances where the full rigor

of heavyweight messaging is not needed, then lightweight alternatives,

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 14

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 15

with less capability (and overhead) are a suitable option. For example,

when you buy a book from a retailer over the Web, losing a connection is

not the end of the world. You just reconnect and start again. Similarly, in

a securities-trading environment, losing a price tick does not matter if

another one is coming along shortly after. Just enough is good enough.

The Internet creates new opportunities to communicate with tens or

hundreds of thousands of applets running in Web browsers. For such

applications, there is a need for lighter-weight protocols that can be scalable

and use fewer resources. (Heavyweight messaging tends to be less scalable

because of the size of messages, along with all the protocol handling, logging,

enabling of persistence and automated recovery, and so on) Instead, on the

Internet, scale counts. For example, 450 000 people might want to be watching

live Wimbledon tennis scores. They want the latest score as soon as it happens,

as soon as possible. However, if they miss a point, it doesn’t really matter,

because the next point scored supersedes the previous score, such as moving

from 40–15 to 40–30.

To obtain rapid delivery, in as near real time as the inherent latency of

the Internet permits, you need each piece of transmitted information

to have as little overhead as possible. The lighter-weight the message

(if possible within a single TCP/IP network packet), the less time it takes

to transmit it across the Internet. And any bandwidth constraints at the

receiving end (like a slow modem connection) will matter less. There is

a chance that a score or a stock tick will not be delivered at all, but the

next update supersedes the message that did not arrive.

The IBM WebSphere MQ Real Time protocol was created for this reason.

It enhances the capabilities of an ESB by enabling lighter-weight messages

to be created and received—without the impositions required by heavier-weight

WebSphere MQ. A single message can be published to the Internet and it might

then be seen by 10000 or 450000 or even 10000000 people. Not only is this

more efficient for the publisher (who does not need to create individually

addressed messages for transmission), but it is better for the Internet as a

whole, because the network impact of these major events is reduced.

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 16

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 17

Lightweight messaging

Lightweight messaging is driven almost entirely by the existence of small

pervasive computing devices installed in anything from machinery, cars

and trucks, sensors on transmission lines or pumps, and even in domestic

products, such as refrigerators, air conditioners and oil tanks (see Figure 2).

The key difference is in the quality of service and scaling—with the additional

problem that the available bandwidth can be both low and very expensive.

Typically, a 9600-baud modem is pretty much the industry average. If satellites

are being used (from remote or inaccessible locations where telephone lines

are not available), the cost might be as much as five cents per byte transmitted

or received.

The good news is that the data to be sent or received tends to be much

smaller—not a person’s banking profile (of several thousand bytes), but a

simple command to turn something on or off, a report of a temperature

reading or an alert that a known condition has changed. This means that

the data to be sent should be small—and the overhead associated with

sending it needs to be as small as practical. There is little point in sending

two bytes of data if this has 10KB of routing and other overhead.

Figure 2. Lightweight messaging with WebSphere MQ Telemetry Transport

WebSphere MQ
Telemetry Transport

Enterprise
service bus

Report by
exceptionBilling and

scheduling
Vendor A

command center

Supply chain
management

Onsite field
support

Real-time event
monitoring

New applications
able to be plugged
in and switched

at will

Sensors and
controllers
from many

vendors

Vendor B
command center

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 16

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 17

As already discussed, one of the things that makes an ESB appealing is that

it can support the capability to receive and send out many different forms

of messaging through its differing doors and porches. In the context of

lightweight to heavyweight messages, the following represent the minimum

message header sizes.

• For WebSphere MQ Telemetry Transport: 2 bytes

• For WebSphere MQ Everyplace: 18 bytes

• For WebSphere MQ Real Time: 24 bytes

• For WebSphere MQ: 480 bytes

If a satellite or similar connection is being paid for on a per-byte basis,

the attractions of a WebSphere MQ Telemetry Transport or WebSphere MQ

Everyplace message are apparent (assuming other associated constraints

are acceptable). An ESB enables an enterprise to choose what to use where

and to obtain the best of all relevant options. The actual choice between

lightweight, lighter-weight or heavyweight messaging will emerge from

a consideration of function, as well as the underlying resilience and

bandwidth of the various communications options. But, with an ESB,

combinations of options are possible—which is why flexibility is improved.

Conclusion

It is true that with lightweight messaging, you can’t do everything.

For example, you can’t readily bracket transactions across multiple

messages, although it is possible to program ways to address such a

requirement when using lightweight messaging. At the same time, using

heavyweight messaging to deliver tennis or golf scores, or to carry traffic

from remote sensors using a satellite is too expensive in practice (although,

again, it is possible). The benefit of an ESB is that the best of each form of

messaging can be selected and combined to produce solutions that do not

require an expensive, custom-developed or rigid infrastructure.

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 18

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 19

With an ESB you could even designate most of your messages as lightweight,

but when the occasional important or valuable one appears, the ESB can

decide to communicate it—because of its content—using a heavyweight

mechanism, like WebSphere MQ rather than WebSphere MQ Telemetry

Transport. Similarly, loosely and tightly coupled components can be brought

together as required. An ESB enables different styles and approaches so

that you can satisfy your organization’s immediate requirements in the

first instance, and then modify or improve the components as business

circumstances evolve or change.

In much the same way, the notion that an ESB is an overall concept made

up of one or many physical ESB instances working together to automate

what previously required human intervention, is attractive. While an ESB

does not try to do everything, and should not (levels of business processing

above an ESB exist, such as workflow and process choreography, as found

in IBM WebSphere Business Integration Server), an ESB can automate the

routine integration of applications, systems and sensors in a way that wasn’t

possible before.

Many argue that an ESB is the full expression of the true value proposition

of middleware—because it is the intermediary that delivers flexibility

between applications. An ESB enables integration between applications,

which is what most organizations are looking for because they can no longer

tolerate the inability of their existing and new IT investments to work together

unless people are involved. If systems and applications can work together

to do the repetitive and regular tasks, people can be free to concentrate on

higher-skilled activities with higher returns.

In more technical terms, introducing an ESB removes the need to worry

about the granular detail of how connections are made between applications.

Just as TCP/IP and its protocols are the backbone of the Internet, because

they route all your requests (whether from a Web browser, e-mail or instant

messaging) to the selected destination, an ESB moves this to a higher and

more sophisticated plane. The broad concept is the same although what is

produced can be much more valuable.

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 18

Coupled or decoupled, and heavyweight and lightweight delivery considerations in an enterprise service bus.
Page 19

Using an ESB, organizations start to eliminate today’s common scenario

of static links that have to be physically administered (from definition

through configuration and maintenance) by people. This is too expensive,

as well as too inflexible, to meet today’s business needs. Instead, an ESB is

the realization of the value proposition in which function is placed above

wire connectivity (TCP/IP) to provide increased and automated dependability

and flexibility between applications.

For more information

To learn more about the enterprise service bus, visit:

ibm.com/software/integration/esb

http://www.ibm.com/software/integration/esb
http://www.ibm.com/software/integration/esb

G224-9149-00

© Copyright IBM Corporation 2005

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
01-05
All Rights Reserved

Everyplace, IBM, the IBM logo, the On Demand Business logo and
WebSphere are trademarks of International Business Machines
Corporation in the United States, other countries or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries or both.

Other company, product and service names may be trademarks
or service marks of others.

This information contained in this document is provided AS IS.
Any person or organization using the information is solely
responsible for any and all consequences of such use. IBM
accepts no responsibility for such consequences.

All statements regarding IBM future direction or intent are subject
to change or withdrawal without notice and represent goals and
objectives only.

