
Optimizing the development process
White paper
June 2009

Optimizing the development process:
merging model-driven development
and requirements-driven development
processes.
Bring sanity to the embedded and real time systems and software
development workflow to improve productivity and product quality

Andy Gurd, Senior Go-to-Market Manager, IBM Rational Software
Paul Urban, Senior Product Marketing Manager, IBM Rational Software

Optimizing the development process: merging model-driven development and requirements-driven development processes
Page 2

2 	 Overview

4 	 Introduction

4 	 Meeting requirements for success

7 	 Bringing RDD and MDD together

9 	 Managing change

10	 Conclusion

Contents
Overview

Today’s incredibly competitive embedded and real time systems and software

development market is not just increasingly competitive, but project complexity

and client expectations have expanded exponentially as well. With the pressure

to be first to market, and the cost of time-to-market delays often measurable by

hundreds of thousands of dollars, it comes as no surprise that managers are

looking for a solution that can help manage the diverse pressures of meeting

productivity goals while simultaneously assuring that deliverables meet cus-

tomer requirements.

While linking development to requirements is an intuitive notion, when put

into practice, managing the complexities of changing project requirements can

present significant challenges. Ineffective requirements management can lead

to poor communication between customers, project managers and developers,

creating inconsistencies that remain undiscovered until the final phase of

development, which is when the code is most difficult and most expensive to fix.

In the “rush to code,” development teams often lose sight that their ultimate

goal is to deliver what the customer needs and forget that mapping projects to

requirements is more than just busywork, it is the best way to guarantee project

success—delivering code on time that meets customer expectation—with the

ability to effectively manage the inevitable requirements changes customers

request as the project moves forward.

An increasingly competitive

marketplace encourages a “rush

to develop,” which makes it difficult

to adjust to changing client

requirements.

Optimizing the development process: merging model-driven development and requirements-driven development processes
Page 3

The wisdom of mapping projects to requirements is shown in everyday life

when one considers the tax filing process. Nearly every government requires

its citizens to file their taxes, with the threat of various penalties for failing to

file—including possible jail time. The tax code provides a set of requirements

defining what is owed, so each taxpayer can determine what they must pay. The

taxpayer wants to pay exactly what he or she owes and not a penny more, and

simultaneously avoid being audited and possibly punished. It comes as no

surprise the compliance rate for tax filing is very high, a real life example of

requirements driving the outcome; similarly, projects containing more than

500,000 lines of code would do well to follow the same paradigm (minus the jail

threat, of course). Today’s developers and engineers have a vast array of power-

ful environments to assist them in overcoming the challenge of keeping

complex projects with numerous requirements on course using integrated

modeling and requirements solutions.

Many embedded and real time engineers have accepted that working in a flexi-

ble, extensible Unified Modeling Language (UML) and Systems Modeling

Language (SysML) based Model Driven Development (MDD) environment is a

best practice in gaining a competitive market advantage. Additionally, teams

have also come to recognize that utilizing a powerful Requirements Driven

Development (RDD) solution is a best practice to assuring that the model, code

and requirements all meet the customer’s defined requirements. Until now,

however, the ability to obtain an optimized process that tightly integrates and

leverages the power of MDD and RDD in one easy to use, intuitive workflow has

been challenging. This paper will show how developers that access a cohesive

MDD and RDD solution are able to develop higher quality code, faster and with

assurances that their project progresses in-step with their changing client

requirements. The benefit of this approach is that design team and stakeholder

communication is enhanced, enabling engineers to manage complexity and

change in one easily understood format, helping to deliver higher quality prod-

uct in a shorter amount of time.

To create a more flexible and

responsive process, developers and

stakeholders must communicate

more effectively with one another,

clarifying changes and adjustments

during the development process.

Highlights

Optimizing the development process: merging model-driven development and requirements-driven development processes
Page 4

Introduction

In the November 2005 edition of CIO Magazine, an editor noted that “Analysts

report that as many as 71 percent of software projects that fail do so because of

poor requirements management, making it the single biggest reason for project

failure— bigger than bad technology, missed deadlines or change management

fiascoes.”

How does it all go so terribly wrong, even with potent technology solutions

available? One reason is that sometimes the stakeholders or analysts do not

clearly understand the requirements. Sometimes the requirements are poorly

expressed, or the quality assurance process misses a requirement in test cover-

age. On occasion, development simply misses or misunderstands a requirement.

Alternatively—and more commonly—a user requirement changes during the

development process and the impact on other requirements, the design and the

test process is not fully and immediately recognized. Irrespective of the cause,

the effect on the project can be devastating: Failure is expensive, bad for the

company’s reputation and the bottom line.

Meeting requirements for success

The problem may be the way that the human brain operates. We are visual

creatures, and the most effective way to understand a concept is visualizing it.

Despite this, the common practice is to map out requirements in a textural

fashion, leaving lots of room for interpretation and contextual error to creep

into the process. Figure one shows a typical requirements list:

Optimizing the development process: merging model-driven development and requirements-driven development processes
Page 5

2 Functional Requirements

2.1 Power car

2.1.1 Move car

2.1.1.1 Move forwards

The car shall be able to move forwards at all speeds from 0 to 200 kilometers per

hour on standard flat roads with winds of 0 kilometers per hour, with 180 BHP.

2.1.1.2 Move backwards

The car shall be able to move backwards to a maximum speed of 20 Kilometers per

hour on standard flat roads with winds of 0 kilometers per hour, with 180 BHP.

2.1.2 Accelerate car

The car shall be able to accelerate from 0 to 100 Kilometers per hour in 10 seconds

on standard flat roads with winds of 0 kilometers per hour.

The car shall be able to accelerate from 100 to 150 kilometers per hour at a rate of

5 kilometers per second on standard flat roads with winds of 0 kilometers per hour.

The car shall be able to accelerate from 150 to 200 kilometers per hour at a rate of

3 kilometers per second on standard flat roads with winds of 0 kilometers per hour.

2.2 Control car

2.2.1 Switch on car

The car shall be able to discriminate which authorized people shall be able to switch

on and operate the car.

2.2.2 Control speed

The car shall have a foot mechanism to control the speed of the car. The speed

control shall be infinitely variable from zero to maximum speed The speed of the

car shall be controllable by automatic means.

2.2.3 Brake car

The car shall be able to stop from 10 kilometers per hour to 0 kph in 2 seconds.

The car shall be able to stop from 30 kilometers per hour to 0 kph in 6 seconds.

The car shall be able to stop from 100 kilometers per hour to 0 kph in 30 seconds.

The car shall be able to stop from 200 kilometers per hour to 0 kph in 45 seconds.

Figure 1: Example listing of textural requirements for an automotive application

Textural requirements mapping does

not intuitively inform the development

process and is subject to contextual

errors and misinterpretation.

Highlights

Optimizing the development process: merging model-driven development and requirements-driven development processes
Page 6

Imagine if this information could be captured in a picture. The picture could

replace a thousand words of description and convey more information, with

much more impact and clarity. However, this method has its pitfalls too, as

evidenced by the graphic below.

Figure 2: The rope swing picture paints a thousand words, but hides a thousand requirements.

Visual (or descriptive) development

mapping clearly communicates

intent, but cannot effectively

communicate requirements details.

Highlights

Optimizing the development process: merging model-driven development and requirements-driven development processes
Page 7

Although the design intent for the rope swing is clear, the list of

requirements is not. For example, the picture alone does not indicate

the following:

•	 The swing shall be able to support a weight of 100 lbs.

•	 The swing should be large enough to carry 2 small children.

•	 The swing shall never be lower than 0.5 meters from the ground.

•	 The swing shall be not be able to swing through more than 180 degrees.

•	 The swing rope shall have an elasticity of _____.

•	 The swing shall comply with the following safety standards______.

•	 The swing shall…

Bringing RDD and MDD together

Fortunately, developers and engineers have powerful MDD and RDD

environments to work in, and in the case of IBM® Rational® Rhapsody®

and IBM Rational DOORS®, a tightly integrated solution chain that can

manage both sides of the issue. By leveraging a development approach

that layers both MDD and RDD, project managers can harness a work-

flow that assures that both development and requirements are linked to

each other, in a clearly understood and flexible way. This is achieved by

using the modeling environment to bridge the layers of requirements.

For example, a design specification would be mapped to performance

modeling, the system requirements would map to this and to functional

modeling, and stakeholder requirements would map to goal or usage

modeling, with the statement of need being the ultimate definition of the

requirements and all these elements are interlaced with each other to

prevent creating “silos” in the design process.

IBM Rational Rhapsody and IBM

Rational DOORS products integrate

to create a unified MDD-RDD

environment that combines intuitive

visual communication with detailed

requirements mapping.

Highlights

Optimizing the development process: merging model-driven development and requirements-driven development processes
Page 8

Ensuring that requirements are being met becomes an enormous challenge

when dealing with large, complex designs that have frequently changing

requirements, but by using an integrated MDD and RDD solution, this thorny

problem is easily conquered. Because the user requirement is tightly mapped

to the system, subsystem and software requirements, the design element that

creates the software component can be clearly and easily traced back to the

requirement. This process provides a clear path between the requirements and

the code that extends to the test process, where test cases can be clearly linked

to elements in the process and provide an integration test case that verifies

that the requirements are met in the code.

The ability to trace the requirements clearly to the code offers powerful perfor-

mance and compliance checks, so that stakeholders can easily check that the

requirements are satisfied by the design and no design elements exist without

linked requirements. Most critically, the requirements layers are validated via

simulation, offering a much stronger set of requirements and code cohesion

through every layer of the design, from the highest level to the most granular

aspect. Moreover, the process enables a fast and complete impact analysis,

assessing the full impact of a change on the design before it is made, with the

assurance that an approved change is fully implemented as well.

Optimizing the development process: merging model-driven development and requirements-driven development processes
Page 9

Managing change

Managing change is a critical flexibility feature that helps propel the effective-

ness of the MDD-RDD process. When a requirement changes, the DOORS

solution tracks the changes (called suspect links) down the various layers of the

requirements hierarchy. The solution flags the changes in the requirements so

that the conflict in the design can be resolved, and determine what the change

itself will impact in the design. The development team can assess the impact of

the change and make an informed decision whether the change should be

made or not, based on the upstream and downstream impact that implementa-

tion of the change will have on the overall engineering process.

Model-code associativity enables the design team and the stakeholders to

see that the changes are made on all the critical levels on the design,

facilitating enhanced communications. This is a tremendous benefit:

the combined MDD and RDD process improves communications, quality

and customer satisfaction, allowing for visualization, early validation and over-

all better understanding of the entire design and requirements.

Using this process, design teams can rapidly prototype instead of using the old

fashioned “build and break” process. It is no secret that fixing issues in the

requirements and design phase is much less expensive, but harnessing a solu-

tion that can provide this capability has been elusive.

Now, with the integration of MDD and RDD, developers and engineers can

verify that the design will meet requirements early in the design process,

finding and fixing problems sooner, when they are the easiest and least expen-

sive to fix. Delivering prototypes and simulation results to stakeholders and

customers provides key insights into whether the design is on track to meet the

design objectives. Developers can also quickly react to changes in require-

ments, determine the design elements impacted and assess the effort required.

IBM Rational DOORS tracks

requirements changes through the

requirements hierarchy, facilitating

assessment of upstream and

downstream impact of change

implementation.

Highlights

Optimizing the development process: merging model-driven development and requirements-driven development processes
Page 10

Conclusion

From this proposed process, one can derive a list of best practices that would

include the following:

•	 Trace requirements between multiple requirement layers throughout the design

lifecycle

•	 Use requirement scenarios to validate the design

•	 Assess project status with stakeholders using early prototypes

•	 Simulate to verify that model is correct

	 -Avoid errors

	 -Reduce costly rework

	 -Increase quality

•	 Virtual prototype / Panel graphics support

	 -Ideal communications aid for design reviews and to share information.

The net effect is a powerful combination that drives project success. The model

simulation enables problems to be found and fixed early and requirements

more easily validated. Traceability features from the requirements to the

design models aids conformance and impact analysis. The ability to model the

design aids in the understanding and decomposition of requirements; more-

over, the requirements provide the context for the designers and developers.

In short, better communications facilitates faster, more accurate development

which, in turn, results in more successful projects and more satisfied clients.

To learn more about how IBM Rational software can help you, contact your

IBM representative or IBM Business Partner, or visit:

ibm.com/software/rational

An integrated MDD-RDD process

helps to improve accuracy and

efficiency, ultimately resulting in

greater project success and more

satisfied clients.

Highlights

http://ibm.com/software/rational

© 	Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
June 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, DOORS, and Rational are
trademarks or registered trademarks of International
Business Machines Corporation in the United
States, other countries, or both. If these and other
IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time
this information was published. Such trademarks may
also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available
on the Web at “Copyright and trademark information” at
ibm.com/legal/copytrade.

Other company, product, or service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this document is provided
for informational purposes only and provided “as is”
without warranty of any kind, express or implied. In
addition, this information is based on IBM’s current
product plans and strategy, which are subject to
change by IBM without notice. Without limiting the
foregoing, all statements regarding IBM future direction
or intent are subject to change or withdrawal without
notice and represent goals and objectives only.
Nothing contained in this documentation is intended to,
nor shall have the effect of, creating any warranties or
representations from IBM (or its suppliers or licensors),
or altering the terms and conditions of the applicable
license agreement governing the use of IBM software.

IBM customers are responsible for ensuring their own
compliance with legal requirements. It is the customer’s
sole responsibility to obtain advice of competent legal
counsel as to the identification and interpretation of any
relevant laws and regulatory requirements that may
affect the customer’s business and any actions the
customer may need to take to comply with such laws.

RAW14136-USEN-00

http://ibm.com/legal/copytrade

