
Model-driven architecture

White paper

June 2009

Model-driven architecture,
embedded developers and
IBM Rational Rhapsody.

Rick Boldt

http://www.ibm.com/us/

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 2

2 Executive summary

3 MDA overview

4 IBM Rational Rhapsody key tech-

nologies for embedded developers

overview

4 Visual modeling with UML 2.0

6 The MDA and Rhapsody

10 Conclusion

Contents
Executive summary

Model-driven architecture (MDA) is a software development approach that uses

models to perform tasks such as specification writing and application

development. The approach enables developers to separate system functionality

and behavior from implementation details.

With MDA, developers first create one or more platform independent models

(PIM) which are later translated into one or more platform-specific models

(PSM). This approach enables applications to be more easily ported from one

environment to another.

The MDA approach is evolving to include a broad range of design concepts that

may be applied to numerous kinds of software projects spanning many

industries, including electronic commerce, financial services, healthcare,

aerospace and transportation. Embedded developers must tailor their solutions

to help maximize the benefits of MDA while meeting the special needs of their

environment such as: realtime performance, compact code, safety, reliability

and specialized hardware control.

IBM® Rational® Rhapsody® software’s key enabling technologies focus on the

needs of embedded developers. Rhapsody software enables embedded

developers to easily separate functionality and behavior from implementation

detail in order to get more out of the MDA process.

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 3

Highlights

MDA enables developers to create

platform-independent models (PIM)

that later may be easily translated to

various platform-specific models

(PSM).

MDA overview

In the development world today, there is a proliferation of component and

distribution infrastructure environments, an ongoing evolution to new source-

level programming languages and different modeling standards.

Operating in such a diverse and rapidly-changing environment creates a

multitude of problems: How can you design a system that can successfully

integrate disparate technologies? How can you build a system that will be robust

and stable today and in the future when new technologies comes into use?

MDA exists to answer these questions through the application of modeling

technology. The MDA is an approach aimed at developing applications that

integrate today and in the future. In MDA, you can develop a platform-

independent Unified Modeling Language (UML) model of your application.

This PIM is then mapped to one or a set of appropriate infrastructure and

implementation environments, such as Common Object Requesting Broker

Architecture (CORBA), Component Object Model (COM) or the realtime

operating system (RTOS) to create a PSM.

MDA is based on the sound principle that separating the specification of the

systems operation from the details of how it will use its platform enables the

portability, interoperability and reusability of the initial application. This

architectural separation is achieved using the following approach:

•	 Create a system specification (PIM) without knowledge of the intended execution

platform.

•	 Define the platform to be used.

•	 Transform the system specification into one for the selected platform (PSM).

By first creating a model that focuses on the functionality and the behavior of

the application and then later translating that model into one that contains the

details of the target, realtime operating system (RTOS), middleware and

communication mechanisms, the original model may be more easily targeted

for different environments. This is the promise of MDA.

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 4

Highlights

IBM Rational Rhapsody helps

companies create robust,

integrated applications that can adapt

to changing technology and

infrastructure requirements.

With its support of UML 2.1,

Rhapsody software offers developers

an effective tool for creating, testing,

debugging and managing a wide

variety of complex models.

Rhapsody software’s key technologies for embedded developers

IBM Rational Rhapsody is a UML 2.1 model-driven development (MDD)

solution built around a series of enabling technologies that can provide you

with highly effective means of producing systems and software-intensive

designs. Rhapsody software focuses on the needs of the embedded developer

and supports the concepts of MDA. The robust support of UML 2.0 within IBM

Rational Rhapsody is particularly suited to bridging the functional and object-

oriented gap in one environment, thereby facilitating an extremely flexible

design approach. For effective MDD, Rhapsody software creates a design

environment that helps keep you in constant communication with the system’s

behavior through execution and validation based on the graphical design.

Visual modeling with UML 2.0

The model-driven environment in IBM Rational Rhapsody is based upon

standard UML 2.0 implementation combined with structural modeling such as

block diagramming, creating a comprehensive systems and software

environment.

Figure 1: UML 2.0 architectural views

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 5

Highlights

The key development technologies in

Rhapsody software offer visual,

executable and dynamic model

creation capabilities as well as tools to

enable change management

automation, targeting, testing and

team collaboration.

Executable models

Execution of the graphical environment helps give you a visualization and

understanding of how the system behaves at run time, even on the target.

Dynamic model/code associativity

Dynamic model/code associativity (DMCA) can allow you to freely work within

the source files, and helps ensure that changes made at the source level are

dynamically updated in the model, so the model and code can stay in sync.

Automatic application synthesis

Create a build environment for virtually any RTOS right inside the model,

including the generated code, legacy code, third-party libraries, other model

components and so on. A key component of this functionality is the realtime

framework that allows a Rhapsody model to be automatically targeted to the

platform that the realtime framework has been ported to.

Design-level debug and test

Exercise the model in a stepwise fashion and view the behavior to see if it

conforms to the specifications, as well as automatically test and validate your

system with the requirements.

Figure 2: Design-level debugging through realistic panel

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 6

Highlights

Rhapsody software works with UML 2.1

to create platform-independent models

with extended functionality such as the

ability to create enhanced sequence

diagrams, information flows and other

components critical to embedded

design.

Scalable team collaboration

Connect with nearly any configuration management infrastructure to help

small and large teams work seamlessly together on projects, whether the team is

local or distributed throughout the world. Take advantage of advanced model-

level differencing and merging capability.

The MDA and IBM Rational Rhapsody

The usual starting point within an MDA-based process is to create a UML model

of your application that is platform independent. This model is referred to as a

PIM and is meant to allow the designer to focus on the functionality and

behavior of the application without having to worry about the implementation

details such as what RTOS, hardware and middleware will be used.

Rhapsody software uses mechanisms supported by the MDA Guide Version

1.0.1 available from the Object Management Group (OMG) to help achieve

platform independence with its realtime framework. You can create a PIM using

UML and then simply select the desired implementation of the realtime

framework for your target and transform the PIM into a PSM.

Many solutions are currently available that will enable you to capture a UML

model. However, not all solutions are created equally. To help ensure you can

achieve the full benefits of MDA, make sure you know how each potential

solution measures up against the following key elements: amount of UML

support, XML Metadata Interchange (XMI) support, textual language choice

and the ability to debug and test the behavior and functionality of the PIM.

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 7

UML has become a de facto standard for modeling software

applications and is widely considered to be the modeling language to

use in an MDA process. A major focus of OMG’s newly revised and

enhanced UML version 2.1 is the ability to create a systems model. A

UML 2.0 systems model maps well to an MDA PIM model. UML 2.1

provides several enhancements that both aid in creating models that

are platform independent and are especially important when creating

embedded designs. These include enhanced sequence diagrams,

ports, tags, enhanced activity diagrams, information flows, statechart

inheritance and structured classes.

Ports can be used to define the essential interfaces in the system.

Providing well-defined interfaces is key to enabling the reuse of

system elements, both within the current project and throughout the

company for other projects. Sequence diagram enhancements enable

lifeline decomposition and the referencing of scenarios within a

sequence diagram. This capability allows you to capture more complex

scenarios within your system or application by making them more

readable. Using flows, you can explicitly show what pieces of

information move between elements. This information enables you to

create a comprehensive picture of the interfaces between elements.

Tags, and the ability to create profiles, allow you to assign values such

as weight, reliability, size, material, security level and cost to system

elements. This enables you to describe the elements of a system beyond

the architectural, structural, behavioral and functional definitions

that the graphics provide using items such as: activity diagrams, which

support unrestricted concurrency; statechart inheritance, which

enables easy reuse of the behavioral parts of the model; and composite

classes with parts, providing for easy hierarchal decomposition. IBM

Rational Rhapsody supports all of these important UML 2.1 concepts

that aid in creating a robust, comprehensive and efficient PIM.

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 8

Highlights

Solutions that enable developers

to use standard programming

languages to define PIM model

triggers, methods and algorithms

offer greater flexibility and portability

than those that require proprietary

language use.

Textual language considerations

The graphics of UML are not enough to completely capture the functionality

and behavior of the PIM model. A textual language is also needed to define, at a

minimum, the triggers and actions that will occur. The textual language may

also be used to define methods and algorithms within the model. One

important requirement is that the textual language must contain semantics

that are formal enough to translate into a PSM. UML 2.1 has defined semantics

for this language, but it does not specify the syntax of this language.

Solution vendors offer two different choices when it comes to this textual

language. Some solutions have their own proprietary language, while others

allow developers to use a standard programming language. The potential

benefits of using a standard language include: a shorter learning curve, greater

portability from one user to another, increased language flexibility, and the

abundance of third-party solutions that may be used to augment the modeling

solution’s capabilities.

The benefits of using a proprietary language are somewhat ambiguous. Some

vendors will claim that a proprietary language enables the simulation of the

model. While it may be true that solutions with proprietary languages enable

simulation, the same results can be achieved using a standard programming

language. Another argument is that the model is not truly platform

independent unless implementations can be generated in different languages.

This is a false argument for two reasons. First, it doesn’t matter if you use a

standard text language or a proprietary text language; you can generate an

implementation in a different language using rules-based code generation

technology. Second, even the MDA guide does not necessarily consider the

programming language to be platform specific.

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 9

Highlights

Don’t be locked into a solution

that requires you use a specific

tool or vendor. Rhapsody software

supports PIM model development

using C++, C, Ada or Java as the textual

language.

Rational Rhapsody supports a newer

testing and debugging methodology

that tests the actual code generated

instead of relying on model

interpretation. This method provides

better insight into application

functionality and behavior.

IBM Rational Rhapsody enables you to use either the C++, C, Ada or Java™

language as the textual language. In each case, you can simulate the model as a

PIM to help ensure that the functionality and behavior are correct at the model

or specification level. You also have the option to use rules-based code

generation to generate an implementation with a different programming

language, in the rare case that this is desired.

The key principle in creating a PIM is that it be independent of any platform,

including any solutions that you may use to create the model. In fact, what good

is a PIM if it traps you into using a specific tool or vendor? XMI is the XML-

based standard used to exchange model information between UML solutions.

Rhapsody software supports the XMI standard, which enables you to easily

export Rhapsody software models and import them from other solutions,

facilitating comprehensive PIM development.

Testing and debugging capabilities

Creating a model is important, but it’s even more important in a model-driven

development process to ensure the model correctly depicts the intended

functionality and behavior of the application. In order to do this, you must

thoroughly test and debug the model.

Tool vendors often present two choices when it comes to debugging the PIM.

The older method is based on interpreting the model, whereas the newer

method allows you to debug the model using the actual code generated.

Though the older method allows you to debug the entire model, including the

graphics, there is no guarantee that the actual generated code will act in the

same way as that in the interpreted model.

The newer method enables you to debug the actual code in conjunction with

the model. This method is more powerful, especially when doing embedded

development, because it allows you to test the algorithms as they will be

deployed.

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 10

Highlights

With the flexibility to easily

target and retarget PIMs to PSMs,

Rhapsody software helps companies

stay agile in today’s complex ever-

changing development environment.

Another factor that can increase the accuracy of debugging is the ability to

include the same services and scheduling that the RTOS, middleware and

hardware will provide in the simulation.

To help achieve platform independence, Rhapsody follows the common

technique to target a system model for a technology-neutral virtual machine. It

uses this approach with its realtime framework and model execution

technology, helping enable the PIM behavior and functionality to be debugged

on the host platform.

Defining the target environment

The PIM is the starting point of the MDA process, but the translation process

and the ability to define the target environment or platform are also critical to

the process’ success. When doing an embedded design, these tasks are

especially important.

With IBM Rational Rhapsody, you can define the target environment using the

realtime framework. This capability is extremely powerful because it enables

you to easily retarget the PIM to a different PSM. Additionally, whether you

have a commercial RTOS or your own scheduling environment, Rhapsody

software helps test and debug the application at the design or PIM level while

still taking into account the standard scheduling concepts used in typical

embedded designs.

Conclusion

The MDA initiative responds to the burgeoning complexity of today’s systems

and system environments. It helps answer questions about how to best protect

and reuse intellectual property in the face of shifting infrastructure and

evolving language technology. Using standardized infrastructures to

implement PIMs created in UML enables you to migrate your systems to new

technology as it becomes available. It also enables you to integrate systems

constructed with widely divergent technology, including today’s complex,

component-based distributed systems. IBM Rational Rhapsody offers robust

PIM application generation and testing capabilities to help meet your needs

today and into the future.

Model-driven architecture, embedded developers and IBM Rational Rhapsody
Page 11

For more information

To learn more about IBM Rational Rhapsody, contact your

IBM representative or IBM Business Partner, or visit:

ibm.com/software/rational

http://ibm.com/software/rational

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
June 2009
All Rights Reserved

IBM, the IBM logo, ibm.com and Rational are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both. If these and other IBM trade-
marked terms are marked on their first occurrence
in this information with a trademark symbol (® or ™),
these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered
or common law trademarks in other countries. A current
list of IBM trademarks is available at
ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are
trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product, or service names may be
trademarks or service marks of others.

References in this publication to IBM products and
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation is
provided for informational purposes only. While efforts
were made to verify the completeness and accuracy
of the information contained in this documentation, it is
provided “as is” without warranty of any kind, express
or implied. In addition, this information is based on
IBM’s current product plans and strategy, which are
subject to change by IBM without notice. IBM shall
not be responsible for any damages arising out of the
use of, or otherwise related to, this documentation or
any other documentation. Nothing contained in this
documentation is intended to, nor shall have the effect
of, creating any warranties or representations from
IBM (or its suppliers or licensors), or altering the terms
and conditions of the applicable license agreement
governing the use of IBM software.

RAW14072-USEN-01

http://www.ibm.com/legal/copytrade.shtml

