
Software development through collaboration
White paper
October 2008

In tune with IBM Jazz and IBM
Rational Team Concert enterprise
development tools.
Jean-Yves Rigolet, software engineer, Rational software,
IBM Software Group

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 2

Contents

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 2

2 Discordant software

development

2 The crescendo of Jazz

3 Composing applications

on mainframe and mid-

range systems

5 Teams with different tunes

6 Harmonizing with Jazz

technology

7 The chords of Jazz

9 Jazz sets the tone for IBM

Rational Team Concert software

12 Rational Team Concert takes

the stage

15 Benefits for IBM i and System z

developers

16 About the author

Discordant software development

As enterprises adapt to evolving marketplaces, the evolution of business applica-
tions has had an ancillary effect of giving rise to disconnected or loosely linked
teams. Teams are often organized around run times, roles and technology, data, or
architecture, but not around the people who make up the team. The development
of business applications has never been easy, but projects shouldn’t fail because of
a lack of visible progress or a vast array of technology and development styles that
are too expansive to contain.

IBM started the IBM Jazz™ project to merge evolving business requirements
with the latest technological advances in social networking. In 2006, a group
of experienced IBM i and IBM System z® tool developers formed the Enterprise
Advanced Technology work group. The group’s goal was to explore ways in
which Jazz technology could add value to IBM enterprise tools and provide a
framework for organizing teams around people, artifacts and processes.

The crescendo of Jazz

Business application development began on the mainframe. Developers built
applications while sharing a common system where they could directly edit,
compile and deploy code. With the common system as the center for business
application development, project development workflows became the first col-
laborative development environment.

Soon, new sets of development tools based on new languages emerged to help
create PC applications. While developers’ productivity increased, so did system
complexity, since developers had to import and export artifacts between
tools, hindering teamwork and collaboration.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 3

In early 2000, a new form of integrated development environment (IDE) changed
all that: the multilanguage IDE. An extensible platform for building development
tools, Eclipse led the multilanguage IDE pack as an open source project avail-
able to the entire development community. The broadband boom helped Eclipse
gain popularity through the Internet and augmented two-way collaboration using
downloads and uploads. Soon, many new collaborative tools proliferated—includ-
ing instant messaging, Web conferencing, file sharing, wikis and blogs—making
teamwork easier and accelerating the software delivery cycle. These tools also
pushed new development trends and changed how the IT industry and developers
work today. Development teams that used to work at a single location are now col-
laborating as smaller teams that are geographically distributed around the globe.

The Enterprise Advanced Technology group has carefully monitored these
shifts and analyzed new business orientations. In response, IBM is building an
environment that can meet the needs of the individual and lift the constraints
on team productivity. With the Jazz project, developers can leverage teamwork
and interactive concepts to design and deliver products within a collaborative
development environment.

Composing applications on mainframe and midrange systems

Although many people are unfamiliar with mainframe and midrange systems,
we all rely on them every day. Do you know what’s happening behind the scenes
when you withdraw cash from an ATM, buy gasoline for your vehicle, or await
your monthly paycheck? These transactions are computing without interruption
on IBM i and System z servers all over the world, every day.

The multilanguage IDE ushered in

new collaboration tools and changed

how developers work today.

You may not be familiar with main-

frame and midrange systems, but

you rely on their functions every day.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 4

Over the years, developers added more applications and more power to these
systems to accommodate growing business demands. Such additions have resulted
in a huge variety of artifacts that were originally written to run on the first
computers but today coexist with the latest technologies—such as Java™ Platform,
Enterprise Edition (Java EE) applications, asynchronous JavaScript and XML
(AJAX) assets and Web 2.0 artifacts. A close examination of artifacts on a given
system can show us the entire IT history of a single company.

The lifetime of an application running on an IBM i or System z server can be
between 10 and 40 years. Your monthly payroll system may have been built on
programs that were written before you were even born. This can present real
maintenance challenges in terms of finding the history behind an application
and bringing new employees into the workforce.

If we look at the payroll example—the application that may have been coded
before you were born—it is likely that the requirements for your locale have
evolved since your payroll application was first coded, compiled and deployed
by your company. It is also likely that your company experienced structural or
IT infrastructural changes. All the changes that occurred over time inevitably
had an impact on the application’s original source code, which means your
company ended up with thousands of interrelated resources that all needed to
be managed simultaneously. This endeavor is monumental in itself.

But to make developers’ work even more complex, the applications they have to
work with have evolved over time. And even when developers are using the same
language, they encounter a plethora of code organizations in which current and
former developers have kept their artifacts according to need or design. The
variety makes it difficult to find artifacts and maintain them.

Applications that were originally

written to run on first-generation

computers are attempting to coexist

with the latest technologies.

Even when developers are using

the same language, they still

have to navigate one another’s

organizational systems.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 5

Another problem developers have to face is a variety of data organizations and
file systems. When partitioning large projects into smaller components accord-
ing to people, geography or development platform, project managers have to
coordinate the work with teams and team members.

If all of the problems mentioned above exist in a small development context,

they exist in an enterprise development context—but they’re bigger.

Teams with different tunes

When it comes to building and running business applications, there is always
the challenge of matching the right people to the right work. In some cases
there is a division between people with business knowledge and people with
technical expertise. For development, further divisions frequently occur
around the system structure.

Although companies vary dramatically according to size, culture, history and
other criteria, IBM has identified four primary organizational tendencies that
affect the way development teams are organized (or disorganized, in some cases).

Organizing around run time

Despite the emergence of new ways to limit friction between run times—like
using model-driven architecture, platform-agnostic languages like Java, or
business-oriented languages like Enterprise Generation Language (EGL)—
application developers continue to be grouped according to the systems
they build on. Education and experience naturally link people together, but
creating teams based on these commonalities can make it difficult to adapt
to emerging technologies.

The development problems that

exist in a small-enterprise context

also exist in a large-enterprise

context, but they’re bigger.

Development teams are often organ-

ized around run time, roles and

technology, data, or architecture.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 6

Organizing around roles and technology

Whether the role is development, quality assurance, building and deployment,
or a combination of all three, the tools, languages and platforms that have to
be mastered can be very different and are often handled by separate teams,
sometimes even in different locations.

Organizing around data

In cases where data has evolved over time—like from a traditional System z
file system to an advanced relational database—the way to access the data,
and even the access routines, is usually handled by another individual or team
that is strictly dedicated to data.

Organizing around architecture

Stacks of applications, using different technologies and running on different
platforms, need to be constantly verified and maintained. To manage verifica-
tion and maintenance, teams are often organized around architecture and
their modernization approaches.

Harmonizing with Jazz technology

IBM i and System z platforms are extremely powerful and can efficiently and
reliably support large and diverse development organizations. Nonetheless,
these platforms can present challenges. Jazz technology addresses these chal-
lenges from within the tools used by team members involved in enterprise
application lifecycles.

The intent of this paper is not to give an in-depth view of Jazz technology itself,
but rather to reveal how this technology can help overcome the challenges of
enterprise application development. Because successful enterprise application
development requires that the people, the artifacts and the processes work
together, in concert.

IBM Jazz technology can help

enterprises address the challenges

of developing on the IBM i or

System z platform.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 7

The chords of Jazz

Jazz provides the technology to address many IBM i and System z challenges.
By offering an extensible framework that dynamically integrates and synchro-
nizes people, artifacts and processes, Jazz can create cohesion and facilitate
improved and accelerated software development projects.

In developing the Jazz platform, the Enterprise Advanced Technology group
first investigated the entire enterprise development stack in the IBM Rational®
Software Delivery Platform to determine how the new technology could add
value. This investigation involved digging inside some of IBM’s most important
development tools, such as IBM Rational Business Developer, IBM Rational
Application Developer, IBM Rational Developer for System z and IBM Rational
Developer for IBM System i™ software.

Next, the team considered the developers themselves. A new technology would
need to help maintain individual developers’ productivity while still support-
ing their team roles and their collaboration with dispersed team members. It
would also have to support the way developers work today but still provide
a framework that would allow them to adapt and enhance their unique pro-
cesses over time.

The IBM group explored developers’ current challenges and sought to solve
them. To understand some of the challenges, consider again our monthly
payroll system example.

Creating cohesion and facilitating

improved software development

projects, Jazz can help maintain

individual developers’ productivity

while supporting cross-

organizational collaboration.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 8

The simplified system contains three main components: one to deal with updat-
ing employee absences, another to calculate actual payroll, and the third to
handle legal declarations. Let’s say that the first component—the one that updates
employee absences—was recently developed using a Java EE Web application.
This application runs on distributed servers that access back-end services created

in EGL with data stored in an IBM DB2® relational database that employees can
access to edit and display their absences. Absences-related data and inputs from
other sources are then used by the payroll calculation process that is executed on
the System z platform and launched monthly by a job command language (JCL)
batch script using COBOL code. At the end of this process, paychecks are printed
and some payroll information is collected and provided to a midrange IBM i appli-
cation in charge of collecting tax declarations.

With that development context in mind, consider what happens in a typical day
for the team in charge. After receiving a request from one of the application
stakeholders to delete an absence-related code, the project manager identifies
the affected parts of the system and the different teams responsible for them. To
do so, he or she first uses an impact analysis tool like IBM Rational Asset Analyzer
software to discover the potential effects. Then, according to the results, he or she
informs the teams in charge of the affected components that those assets have
been impacted.

This kind of complicated structure for delivering software is vulnerable to many

errors, mostly human. On top of that, the coordination of the work being done
can be another source of problems. Even assuming there is only one team working
on the Web application with a team leader who will distribute the work, the task
of deleting the absence-related code from the Web application can still involve
many team members. And to make their collaboration even more difficult, team
members might use different development tools, different bug tracking systems
and different code repositories. This lack of standardization and transparency
requires the team leader to be extra vigilant and follow the different aspects of the
work carefully.

In our payroll example, we can see

how a development system with

many moving parts and multiple

stakeholders can create a software

delivery cacophony.

Extra vigilance is required if an

organization is going to overcome

the lack of standardization and

transparency in its software

development and delivery system.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 9

After successfully removing the absence-related code from the Web application,
team members must update the rest of the payroll system to align with this new
business requirement. There are no direct dependences between these two com-
ponents, so both operations could be done concurrently, but does anyone on the
team know about the changes? Again, lack of transparency means knowledge of

changes is uncertain.

Changes can continue in the same erratic way for a long time until someone
tries to build the newly updated payroll system. This is when problems that
were lying dormant in the system might be discovered. Many types of prob-
lems could arise: from a record-length definition incompatibility between
a COBOL program and a JCL calling the program, to any other integration
problem within the entire system.

Jazz sets the tone for IBM Rational Team Concert software

Enterprise applications have to handle many different artifacts, and the tools
provided to developers must operate efficiently and transparently. Handling enter-
prise development styles means that Jazz technology–based products like IBM
Rational Team Concert software can store traditional artifacts (such as COBOL,
RPG, PL/I and High Level Assembler [HLASM] programs, and JCL and Control
Language [CL] batch scripts) as well as more recent artifacts (such as EGL pro-
grams; HTML, JavaServer Pages [JSP] or JavaServer Faces [JSF] Web pages; Web
Services Definition Language [WSDL] or any Java EE artifacts) in one place and
share them between teams and team members. And Rational Team Concert can
store these artifacts in a way that is independent of the tool being used.

Without an efficient tracking system,

individual developers can continue

to make changes to an application

without anyone knowing.

IBM Rational Team Concert stores

traditional artifacts and more

recent artifacts in one place,

enabling team members to easily

access and share them.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 10

This aspect of enterprise development also helps build applications. Rational
Team Concert enables developers to build applications that execute on IBM i
and System z platforms, independent of where the Rational Team Concert
server resides.

In the IBM i and System z contexts, IT people have established elaborate, con-

solidated processes over the years to support software configuration management
(SCM). To accommodate these processes and extend the capabilities of the team,
Rational Team Concert features integrated work items, developer builds and SCM
tools that think and work in unison. The Rational Team Concert SCM component
allows artifacts to be developed locally in the development environment client
using IBM Rational Developer for System z or System i software, or it allows
artifacts to be developed remotely on the enterprise file system using the client for
management only. The SCM component can also be used during all phases of the
artifact lifecycle, including editing, testing, building and debugging in a cross-
platform development context.

Providing the base technology and infrastructure to define process-aware opera-
tions, Jazz technology can be easily extended to fulfill the needs of an enterprise
development environment. And new components can provide enterprise-specific
work items, such as tasks, defects, enhancements and plan items, as well as the
processes for creating them. Enterprise stakeholders can create work items using
the technological entry forms and templates that enable those users to get a
more transparent view of complex IT systems and their original developments.

Rational Team Concert features work

items, developer builds and SCM

tools that think and work in unison.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 11

At the heart of Jazz is a process infrastructure tightly linked to all the Jazz
components that help development teams follow well-defined processes. Part
of this infrastructure is the process adviser framework, where tool develop-
ers can extend the Jazz platform to implement their company’s or team’s own
development practices and business policies. Building these controls can be a

challenge for tool developers because the programming languages provided
by the development platforms are generally not accessible to developers for
testing. And when they are accessible, there is no common way to build and
provide these controls to the platform.

Rational Team Concert offers a framework that can ease the development
of process adviser tools to allow users to implement controls over enterprise
languages. To make things easier, Rational software furnishes adviser examples
based on programming guidelines for the most common enterprise program-
ming languages, such as COBOL, RPG, PL/I and EGL.

As enterprise development organizations create artifacts, they generate large
volumes of documents detailing which artifacts are being promoted, which are
being deployed and which are being removed from production. These documents
casually flow between teams, but their information is critical, particularly when it
needs to be used to address security or legal compliance regulations.

The solution is to provide a simple but persistent method for creating, provid-
ing versions of, and exchanging the documents between teams and among
team members. The Rational Team Concert SCM component can handle the
document versioning, and the software’s process infrastructure can handle the
different flows.

The process adviser framework

in Rational Team Concert allows

tool developers to implement

their company’s or team’s unique

development practices.

To help teams communicate

the status of artifacts, Rational

Team Concert provides tools

for creating, versioning and

exchanging update information.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 12

Rational Team Concert takes the stage

Let’s look back at our payroll example. The work could be simplified by using
a new set of tools based on Jazz technology and designed for enterprise devel-
opment. First, the project manager starts with the requirement for removing
an absence-related code. In spite of the fact that it is a simple requirement, it
would be inappropriate to make the request through an informal, untracked
communication method such as e-mail or instant messaging.

Instead, using Rational Team Concert, the requirement details can be fully
explained in the context of the request. The request details can include related
tasks along with the deadline for when the new code needs to be operating in
production. To do so using Rational Team Concert, the project manager creates
one or more work items directly within the client that could involve an applica-
tion like IBM Lotus Notes® software or a simple Web browser.

While using the same tool, the project manager asks another team member to
provide more details about the payroll system components that would be affected
by the changes. The project manager then reassigns the associated work items to
the teams responsible for the various updates.

Via enterprise development tools based on Rational Team Concert, e-mail
notifications inform the teams of their newly assigned work items and of updates
to existing items. The developer or team leader in charge of EGL code learns of
the new task and reviews the team workload displayed on the team central view.
He or she then reassigns the work item to the appropriate developer. By know-
ing the entire context of the assigned task, the EGL developer can quickly start
working on it. Upon reading the task description, the developer has access to
references—presented through hyperlinks—to the EGL program and to records
that need to be updated.

Tools based on Jazz technology

can be used to simplify the

process of updating the code in

our payroll example.

To help communicate the status of

application updates, tools based

on Rational Team Concert trigger

e-mail notifications to inform team

members of their individual tasks.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 13

Using these hyperlinks to load and open the EGL editor on the program, the
developer can now begin his or her work. From this perspective, the EGL
developer is in a familiar environment where content assistance and other code
productivity tools can help him or her complete the task. And after clearly
documenting the EGL code update performed in the task editor, the developer

changes the work item status to resolved to reflect its completion.

Now that it is associated to the task, the EGL code update waits to be delivered
to the other members of the EGL team. It is presented in the pending changes
view until the developer requests delivery.

During delivery of the pending update, the process mechanism applicable to the
EGL development team at this stage of the project is executed automatically. And
the rules and controls defined are processed against the code being delivered.
Through the automated adviser, the control settings can warn the developer that
one of the programs is incorrectly named and should be changed. This can save
the development team from having to later correct the naming and repeat steps.

For all the teams involved in this update, the work is almost finished. The project
manager, who subscribed to the different work items involved in this project, is
notified of every change. Rational Team Concert, through an Eclipse client or a
browser-based interface, provides a set of tools that augment the visibility of the
project—from simple notifications to highly specialized dashboards and reports.
The most used feature is the iteration plan, where all contributors can see the
exact status of the work for an entire project.

Rules and controls established in

Rational Team Concert can warn the

developer that one of the programs

is flawed and must be corrected.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 14

The newly updated system is about to be integrated into one cohesive unit; it
will then be compiled and tested before being deployed to the requested systems
on which the components will run. To simplify this highly complex process,
the construction of a heterogeneous and cross-platform system is directed by a
single conductor, Rational Team Concert.

Scheduled or manually requested, the integration build performed by Rational
Team Concert in our payroll example takes all the updated component code
from a single stream, provides a coherent functional map of the entire payroll
system, and lists the programming languages used (COBOL, EGL and JSP).
The affected applications are recompiled and unit tested, and, before they’re
deployed to either an IBM i, a System z or a distributed system, the build
results are automatically delivered to the subscribed contributors. During this
operation, the functional system map makes snapshots for a later use, like for
code maintenance or recovery.

Rational Team Concert takes all the

updated code from a single stream

and provides a functional map of

the entire payroll system.

Highlights

In tune with IBM Jazz and IBM Rational Team
Concert enterprise development tools.
Page 15

Benefits for IBM i and System z developers

By leveraging Jazz and Rational Team Concert technology inside the enter-
prise space, siloed developers can collaborate; share and exchange data with
their colleagues to ease the software delivery process; control what they
deliver; and get early feedback on what they plan to deliver.

Jazz can help consolidate multiplatform development, including IBM i and
System z technology, by potentially improving IT governance, reducing develop-
ment and maintenance costs, and enhancing the quality of delivered software.
And Rational Team Concert for IBM i or System z features can be used out of
the box or tuned to fit enterprise development styles, governance and IT infra-
structure without breaking current operating procedures.

By using Rational Team Concert to manage and share all development artifacts
in a common and transparent way between teams, team members and stakehold-
ers, you can more effectively leverage the strength and scalability of your IBM i
or System z development architecture, regardless of your staff’s global location or
time zone. These platforms offer robust quality of service to help make work more
effective with multidisciplinary teams and business partners.

You can take better advantage of

your IBM i and System z platforms

by using Rational Team Concert to

manage and transparently share

development artifacts.

As Jazz technology–based products are deployed for enterprise environments,
application development in large organizations has the potential to become
streamlined and transparent, and software delivery can be made more predict-
able than ever before.

For more information

To learn more about IBM Rational Team Concert software, contact your IBM
representative or IBM Business Partner, or visit:

ibm.com/software/awdtools/rtc

To learn more about IBM Jazz technology, visit:

www.jazz.net

About the author

Jean-Yves Rigolet is a software engineer with more than 18 years of application
and development tools shipping experience in a variety of programming envi-
ronments and platforms. He is currently working at the IBM France Software
Laboratory on Rational Team Concert for IBM i and System z. You can reach
Jean-Yves at rigolet.j@fr.ibm.com.

© Copyright IBM Corporation 2008

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
October 2008
All Rights Reserved

IBM, the IBM logo, ibm.com, Rational, and Jazz are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both. If these and other IBM
trademarked terms are marked on their first
occurrence in this information with a trademark
symbol (® or ™), these symbols indicate U.S. reg-
istered or common law trademarks owned by IBM
at the time this information was published. Such
trademarks may also be registered or common
law trademarks in other countries. A current
list of IBM trademarks is available on the Web
at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos
are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may
be trademarks or service marks of others.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness and
accuracy of the information contained in this docu-
mentation, it is provided “as is” without warranty of
any kind, express or implied. In addition, this infor-
mation is based on IBM’s current product plans and
strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any dam-
ages arising out of the use of, or otherwise related
to, this documentation or any other documentation.
Nothing contained in this documentation is intended
to, nor shall have the effect of, creating any warran-
ties or representations from IBM (or its suppliers or
licensors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

IBM customers are responsible for ensuring their
own compliance with legal requirements. It is the
customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification
and interpretation of any relevant laws and regula-
tory requirements that may affect the customer’s
business and any actions the customer may need
to take to comply with such laws.

RAW14040-USEN-00

