
IBM Rational software development solutions
White paper

June 2009

Enabling software reuse using 
successful component-based 
development practices. 

Jean-Louis Vignaud, IBM Software Group, Rational



Enabling software reuse using successful component-based development practices 
Page 2

2	 Executive summary 	

3	 Component hierarchy and single 

development stream 	

When to use this best practice

Successful implementation of this practice

Process description

5	 Component hierarchy and  

multi-layer development streams

When to use this best practice

Successful implementation of this practice

Process description

9	 Continuous development  

streams integration 	

When to use this best practice

Process description

15	 Shared component repository

When to use this best practice

Successful implementation of this practice

Process description

Process variant

18	 Conclusion

Contents
Executive summary

Software development techniques have evolved over the past 40 years from 

machine code to high-level languages and tools for system modeling and con-

figuration. New technologies and platforms such as Java™, .Net, CORBA® and 

XML have helped practices such as Service Oriented Architecture (SOA), soft-

ware reuse and Component-Based Development (CBD) become commonly 

accepted and practiced in the software development industry.

CBD offers a reuse-focused approach to the design, development, implementa-

tion and evolution of software applications. Software applications are assembled 

from components from a variety of sources with the components being written 

in several different programming languages and running on several different 

platforms.

These practices allow organizations to develop and manage very large, complex 

software projects, applications, and products which can be composed of several 

hundred components and hundreds of thousand source code files, developed or 

maintained by several hundred to several thousand engineers on multiple sites.

This paper describes four best practices examples where organizations have 

created and successfully deployed to handle this scale and complexity challenge.

•	 Example 1 describes how a very large application composed of many components 

may be developed iteratively with a rapid development cycle in which all 

components follow the same release cycle.

•	 Example 2 describes how to handle the development of a large application 

integrating components that have their own release cycle as well as dependencies 

with other evolving components.

•	 Example 3 addresses the scenario where a very large project is divided into 

sub-projects that can impact any component of the software application and 

demonstrates management of parallel development streams and their continuous 

integration.

•	 Example 4 was inspired by open source practice and illustrates how components can 

be shared with multiple unrelated projects consuming and/or contributing to them.



Enabling software reuse using successful component-based development practices 
Page 3

These best practices are supported by IBM® Rational® Synergy; The  

implementations with Synergy will not be described in this paper. For specific 

implementation information, see “Synergy process tailoring” training that 

describes how Synergy can be tailored to provide standard configuration  

management (CM) process patterns.

Component hierarchy and single development stream

A product or system is composed of a component hierarchy. Each component 

can be developed and maintained by a different team.

 Figure 1. A component hierarchy can be composed of a large number of component streams.

The component hierarchy evolves in a single development stream, with a  

very rapid release cycle (one release every two weeks). Agile requirements  

management and iterative development ensure the component teams  

deliver these regular iterations.

When to use this best practice

•	 Specific teams in the organization have the component expertise (“expert” teams 

own key business components).

•	 Requirements for a component can be managed in a single development stream.

•	 Evolutions of the component hierarchy can be synchronized in a single common 

development stream.

Platform P1 Platform Pn

Component A Component B Component X Component Z

Product

Sub-System I Sub-System J

Component Y

...

... ...

...

Component-Based Development 

(CBD) can help companies manage 

even the largest, most complex  

software projects.

CBD focuses on the effective reuse of 

design and development components.

Use component hierarchy single  

development stream best practices to 

manage components on the same  

release cycle.

Highlights



Enabling software reuse using successful component-based development practices 
Page 4

This approach can be used as the development process of a small hierarchy 

(possibly a single component) or scale to large hierarchy of components; it is 

only limited by the number of changes that can be managed by the Release 

Control Board in each iteration.

Successful implementation of this practice

An IBM customer in the automotive industry implemented a single develop-

ment stream process to control their component hierarchy and successfully 

managed the development and delivery of more than 70 components from more 

than 1000 developers dispersed over many development sites.

Thanks to the complete automation of this process with IBM Rational Synergy, 

this customer measured the following benefits:

•	 Achieved process reliability and predictability.

•	 Increased their productivity.

•	 Drastically reduced the risk of making errors.

•	 Optimized their resource usage.

•	 Improved the company’s efficiency by 33 percent overall.

Figure 2. Iterative development lifecycle with a bi-weekly release process

Released  
SW station

Development SW 
Iteration

QA & Release SW 
Iteration

Prepare next SW 

Working John

Working Elsa

Working Ed

Working Scott

Functional 
requirements

Defects

All completed 
tasks

All integrated 
tasks

Dev baseline

All approved 
tasks

Tested SW

Code Freeze SW release 
delivery

SW Comp 
Int Text

SW Release  
test cycleAccept

SW Baseline

Success story: An automotive  

customer improves productivity  

and reduces risk using a single  

development stream process.

Highlights



Enabling software reuse using successful component-based development practices 
Page 5

1.   Manage the agile requirements
•	 Functional requirements for an iteration are identified using the agile requirements 

management process and requirement prioritization.
•	 The definition of the requirements for the next iteration is done in parallel to the 

development activities for the previous one.

2.   Develop components
•	 Development tasks are assigned to the development team at the beginning of the 

new iteration development phase.
•	 The development team is organized in sub-teams working on different software 

components for greater scalability and efficiency.
•	 The project manager monitors the development team members’ progress 

toward their objectives and makes the necessary adjustments to ensure that the 
development goals will be achieved.

3.   Perform continuous component hierarchy integration and testing
•	 The software is continuously rebuilt and tested to speed up the development process 

while keeping a consistent and stable software configuration.
•	 Developers work on a stable software configuration that they can update on a 

frequent basis to get the latest integration stage.
•	 The rapid integration cycle limits the number of parallel and concurrent versions.

4.   Freeze a baseline
•	 At the end of the iteration (for instance, after 10 days of development), the release 

content is decided by the Release Control Board, and only approved tasks go 
through the software iteration qualification and release process.

•	 A software baseline is created and the development of the next iteration starts 
immediately.

5.   Perform quality assurance tasks
•	 The 2 to 4 day QA and release cycles are performed in parallel with the 

development activities for the next iteration.
•	 The quality of the iteration is validated through appropriate functional and 

operational testing.
•	 Developers make the necessary hot fixes which are added to the build and 

validated.
•	 When it passes QA, the iteration is released.

6.   Release the component hierarchy
•	 An iteration is released every 10 days.
•	 It usually takes 12 to 14 days from deciding of requirements implementation, or 

deciding of defect fixes to release.
 

Continuous testing and integration 

enable rapid development and greater 

agility.

Highlights



Enabling software reuse using successful component-based development practices 
Page 6

Figure 3. Parallel development of each iteration and no downtime for the requirements engineers, 
developers and testers.

This development process avoids development team downtime because:

•	 Developers are always working towards the “next” iteration:

	 –	They do not have to worry about in which SW iterations their tasks will to be  

     included.

	 –	They do not have to worry about creating new development workspaces for the  

     next development iteration.

•	 There are no process interruptions of development activities between 2 development 

iterations.

•	 Every 2 weeks during the 2 to 4 days of the iteration release process, developers 

may be asked to perform a hot fix for which they have a readily available design 

environment.

Component hierarchy and multilayer development streams

In more complex projects environments, components may have a different 

release cycle than their consumers. This is often the case when components 

have many consumers and complex dependency relationships. In such cases  

it is not possible to coordinate the evolution of the product and its entire  

component set in a single development stream.

It can be difficult to complete a build in these complex environments  

because the dependencies between the components are often broken. 

Therefore, it can be difficult for a build manager to produce a consistent build 

with little guidance on the complete set of components needed to bring the 

entire stack together.

Iteration I 

Iteration I + 1. 

TB TB TB 

Requirements 
development test 

Requirements 
development test 

Using component hierarchy best  

practices, there are no process  

interruptions between development 

iterations.

Use component hierarchy multi-layer 

development streams best practices to 

manage components on different 

release cycles.

Highlights



Enabling software reuse using successful component-based development practices 
Page 7

If your organization is faced with these challenges, it’s important to secure a 

higher level of control in order to be able to promote independently managed 

components up the stack while maintaining build stability. This control can be 

obtained using multi-layer component streams:

•	 A development stream can correspond to a single component, or correspond to a 

group of components that evolve together.

•	 Each component is modified in a single development stream.

•	 A hierarchy of development streams defines the workflow of changes through 

bottom-up promotion path: Changes performed in lower level components are 

promoted to their higher level consumers.

Figure 4. “Persistence” component is consumed by two higher level components; changes on 
“Persistence” component are promoted to all consumer components belonging to the higher level at 
the same time.

When to use this best practice

•	 The components developed have many consumers.

•	 Components have independent and possibly uncoordinated release development 

cycles.

•	 Requirements for each component can be centralized and prioritized.

•	 Each component has a dedicated team with complete responsibility for its 

development.

Application A Application B

Service 1 Service 2 Service 3 Service 4

Service 
Framework 1

Service 
Framework 2

Service 
Framework 3

Persistence HW interface Data Gathering Security

Level 3

Level 2

Level 1

The multi-layer component stream 

approach is highly scalable for large,  

complex projects.

Success story: medical device  

company significantly improves their 

application build success ratio using 

multi-layer component streams.

Highlights



Enabling software reuse using successful component-based development practices 
Page 8

The multi-layer component stream approach is also highly scalable.  

If the team grows significantly, it may be difficult for other layers to get the  

correct component levels to consume. Organizations may add an integration 

build management team to ensure that the promotion up the layers is done 

effectively. Creating such a team would transfer Consumer Integration  

Baseline responsibilities to a coordinated group across components.

Successful implementation of this practice

An IBM customer in the pharmaceutical and medical device industry main-

tains a multi-site environment (four sites) that includes large-scale component 

development with multiple layers (four or more). The propagation of changes up 

the component stack needed to be carefully managed. By implementing multi-

layer component streams, the customer achieved the following benefits:

•	 Significantly improved the application build success ratio. Build failures due to 

consumed components inconsistencies are now exceptions that may be resolved 

quickly.

•	 Obtained predictable control over how changes are promoted across a very large 

component framework application. Specifically, all components work exactly the 

same across distributed sites.

•	 Achieved high scalability by being able to roll up changes from lower level 

components with minimal effort while still retaining management control.

•	 Improved project oversight by enabling managers to identify, prioritize and 

communicate task and timeline information to teams. 



Enabling software reuse using successful component-based development practices 
Page 9

Process description

•	 Each component has its own development, integration and testing cycle.

•	 Each component has a build manager responsible for producing quality iterations of 

the component. These iterations are available for use by the component consumers.

•	 Deliveries of component iterations on the same layer may be synchronized to deliver 

a consistent set of iterations that can be used together by any component consumers 

up the stack in the application.

•	 Deliveries of component iterations include both changes performed for the 

component itself as well all changes made on the consumed components, thereby 

ensuring consistency of the delivery.

•	 Consumers always integrate deliveries from lower level components with their 

latest changes. Code is not “merged upstream” until it has been thoroughly tested, to 

minimize broken builds.

Continuous development streams integration

The above processes define instances where a component is modified one 

development project at a time. Therefore, there are no parallel evolutions of  

the components that need to be merged. These processes work well when it is 

possible to centralize the requirements for the next evolution of the component. 

Such approaches may not be possible on very large-scale projects.

Very large-scale projects may be broken into:

•	 A component hierarchy as described in the examples above,

•	 A collection of smaller, parallel sub-projects on the same software. 

Use the continuous development 

streams integration best practice if your 

project is comprised of multiple sub-

projects being developed in parallel. 

Highlights



Enabling software reuse using successful component-based development practices 
Page 10

Each sub-project has:

•	 A functional objective.

•	 A development team.

•	 A project manager completely responsible for the project delivery.

•	 Its own development stream with the need to follow an Agile process so it can be 

delivered quickly.

In this case, many different and parallel development sub-projects can impact 

any component of the software application or product, and there is a need to 

manage parallel development streams.

When to use this best practice

Use parallel development streams when:

•	 Many ongoing functional changes need to be performed in parallel and a 

component can be modified by several projects at the same time.

•	 Each project wants a full control on everything on the path to releasing their 

product.

•	 The projects have to be eventually integrated altogether in order to build the 

delivered software.

Process description

In this scenario, no established hierarchy of projects exists. All projects must 

be integrated for the formal application or product delivery.

Each sub-project is developed independently, and a process is created to ensure 

that changes delivered by the other sub-projects are continuously integrated. 

This method ensures that parallel development performed in different projects 

are limited in number and merged regularly. Continuous integration enables 

an iterative development process for the product.

Parallel development streams enable 

teams to ensure applications created 

independently can be eventually  

integrated together.

Highlights



Enabling software reuse using successful component-based development practices 
Page 11

The following is an overview of the iterative integration process:

•	 At the beginning of each development iteration, a single sub-project delivers its 

iteration to the parent project. For each iteration there is a different sub-project 

doing the delivery, which is governed by a formal schedule identifying when each 

sub-project has to make a delivery to the parent project.

•	 The parent project verifies the delivery quality for the whole application/product 

(the sub-project may only work on the sub-set) and publishes accepted products it to 

the other sub-projects.

•	 Sub-projects immediately perform the integration of the delivery published by the 

parent project.

•	 The process mandates that any sub-project delivery to the parent project includes all 

previous deliveries from the parent project. This way the integration process limits 

the scope of the merge:

Figure 5. Sub-project B delivers its iteration to the parent project (step 1).  When the delivery is 
approved it is published to the other sub-projects (step 2) that will have to integrate it before they can 
deliver to the parent project.

•	 Each sub-project receiving the delivery of the parent project has to merge it with its 

own changes.

•	 The sub-project that has delivered to the parent project and initiated the new parent 

project delivery has no code merge to perform in this iteration.

•	 Same merges are not duplicated among sub-projects.

Sub-Project A Sub-Project B Sub-Project C Sub-Project D

Project1
22



Enabling software reuse using successful component-based development practices 
Page 12

The master integration for the sub-projects development process is as follows:

Figure 6. Development process of a sub-project

The objective of such a process is to integrate deliveries of sub-projects,  

and to alternate which sub-project delivery is integrated. It gives you flexibility 

on the following:

•	 The length of a release development cycle for each sub-project – teams only have the 

requirement to finish a release development cycle when they have to deliver to the 

parent project.

•	 Selecting when you are ready to integrate the parent project delivery (For example, 

when the deliveries of the other sub-projects that have been accepted by the parent 

project).

It limits the merge activities to the sub-project development streams, and no 

merges are required in the parent project. It requires sub-projects to workout 

and agree on a delivery schedule plan for the parent project that will have to be 

strictly respected by each sub-project so the process can handle an integration 

cycle on a frequent basis (for example, every two weeks) and deliver the 

expected benefits of frequent integration (fewer merges).

Development Next 
Iteration

QA & Release  
SW Iteration

Prepare next SW 

Working John

Working Elsa

Working Ed

Working Scott

Functional 
requirements

Defects

All completed 
tasks

All integrated 
tasks

Tutorial SW

SW Comp 
Int Text

SW Release  
Delivery

BW Baseline

Master 
Integration

Released SW 
intervation

SW Release  
test cycle

All completed 
tasks

SW Baseline

Master Integration

A master integration process gives  

you greater flexibility in determining  

your release cycles and planning your 

integration timeline.



Enabling software reuse using successful component-based development practices 
Page 13

To optimize the process and to further limit the number of required merges, 

the sub-projects can agree on when shared components are updated in each 

sub-project. This way they could limit the parallel development on a shared 

component by ensuring they have received the changes made on a component 

by other sub-projects (through the continuous integration process) before  

modifying it.

Shared component repository

In the previous models, each component is generally owned by a specific  

team, which controls its evolutions and implements the requirements of the 

component’s consumer.

This approach lacks flexibility when organizations developing families of  

products need to be more reactive to customer requests. Projects may have  

prioritization conflicts for their requirements on a component. To address this, 

a more collaborative environment is needed, allowing each project to modify 

the components they need in a more flexible way.

The shared component repository approach is inspired by Open Source  

practices. Shared components are in a central repository and may be modified 

by any component consumer that requires it.

Figure 7. Central repository for shared components and delivery of shared components to consumers 
and receive contribution on shared components

Shared components are a good fit 

when developing families of products 

that need to change and grow together

Highlights



Enabling software reuse using successful component-based development practices 
Page 14

An architecture board defines and manages a roadmap on the shared compo-

nents, and assigns (temporarily) a component to a project team. A shared 

component may be modified in one project at a time.

When to use this best practice

A shared component repository process is a good fit when:

•	 The organization is developing product families that share a common set of 

components.

•	 There are independent projects that reuse and possibly require modifications on 

shared components.

•	 It is not possible for a central team maintaining the shared components to cope with 

the change and adaptation requests.

•	 Project managers want  full control of everything on the path to releasing their 

product.

•	 There is a strong focus on project execution — shared components must not get in the 

way of delivering the projects.

•	 The organization is open to new development techniques such as those established 

in the Open Source community and accepts coordination of shared components 

changes.

•	 Development teams have the appropriate skills to update shared components or can 

get temporary access to resources with the appropriate skills.

Successful implementation of this practice

An IBM customer in the consumer electronic market implemented a shared 

component repository approach based on lessons learned from the Open 

Source community to further improve their reactivity to market requests by 

removing collaboration conflicts on shared components.



Enabling software reuse using successful component-based development practices 
Page 15

As a result, the organization measured the following benefits:

•	 Increased quality and productivity due to the implementation of a central repository 

for shared components.

•	 Better focus on business objectives for all teams.

•	 Faster turnaround time for customer requests.

•	 Increased collaboration and contribution to the evolutions of shared components.

Process description

The shared component repository approach uses principles that mirror those 

found in large Open Source projects:

•	 No dedicated team for the shared components.

•	 No (permanent) component ownership.

•	 Component customers who find bugs, need new features, new components become 

contributors to the consumed components.

•	 When changes on a component are performed and verified, they are published on 

the repository, so they become available for the other projects.

An architecture board composed of the architects from the various customers 

and contributors defines and updates the roadmap for the shared component:

•	 What is / What should / What will be in the repository?

•	 What is required on components? Who uses them?

An executive board decides which project can modify a component and helps 

avoid unnecessary parallel modifications:

•	 Explicit separation between component interfaces and implementation.

•	 Permission to fix the implementation does not give the right to modify the interface.

Success story: a consumer  

electronics company improved their 

turnaround time on customer requests 

and increased their collaborative  

capabilities by implementing a shared 

component repository development 

approach.

Highlights



Enabling software reuse using successful component-based development practices 
Page 16

Figure 8. A component has only one committer at a time, the committer (e.g., project modifying the 
component) is changing over time based on the executive board decision.

Process variant

In this variant there is no need for an architecture board and executive  

board, enabling the teams consuming the components to tailor them as they 

need, when they need. This is achieved by having a team responsible for  

each component.

Open source terminology introduces three types of stakeholders:

•	 Committer: the one that updates the component. In that case the committer is the 

team responsible for the component.

•	 Contributor: the one that makes modifications suitable for the general need and 

that proposes them for inclusion in the next version of the component.

•	 Consumer: the one that uses the component and possibly updates it.

BV1.0 BV1.1 BV1.2 BV1.3

Bxx

Byy

Consumer A

Committer B



Enabling software reuse using successful component-based development practices 
Page 17

The process is therefore:

•	 A component is owned by a team (the committer). The team owning the component 

is not in charge of making all the modifications in the component source code. 

Instead, the team’s responsibility is to release new versions of the component on a 

regular basis with appropriate quality levels.

•	 Teams consuming the components can modify (tailor/bug fix) the components 

as needed. Sometimes, consumers have a better understanding of tailoring 

requirements than the team owning the component and can more productively 

update it.

•	 The teams consuming the components and modifying them are invited to become 

contributors. This means they are invited to deliver their modifications to the team 

responsible for the component in order to have these modifications included in the 

next version of the component. To do this, they must follow strict guidelines when 

updating the consumed components.

•	 Each consuming team has to merge their modifications in the new component 

versions when delivered by the committer. Avoiding this merge effort is a strong 

motivation for becoming a contributor.

Figure 9. Projects modifying the component are motivated to become a contributor in delivering their 
changes to the committer for inclusion in the next component version in order to avoid merging their 
changes in the new component versions when delivered.

BV1.0 BV1.1 BV1.2

Bxx

Byy

Contributor B

Committer

Contributor BByy
Merge

A variation on the shared component 

repository process enables teams to 

tailor components as they see fit,  

without board interaction.

Highlights



Enabling software reuse using successful component-based development practices 
Page 18

This process may yield the following benefits:

•	 Create increased agility for the project teams who are free to modify reused 

components as needed.

•	 Enable teams owning components to release more often and with more content as 

they receive changes from the contributors.

•	 Increase overall satisfaction with the reused components and enable a significant 

increase in organizational productivity and quality.

Conclusion

Although software projects are growing exponentially in size and complexity, 

implementing CBD best practices can help you gain control of your develop-

ment initiatives and maintain agility while meeting time-to-market 

requirements. Implementing a structured project architecture with an appro-

priate workflow can enable autonomous but coordinated teams to design even 

the most complex software systems without sacrificing efficiency, innovation or 

agility.

By implementing the best practices enabled by advanced change and configu-

ration management solutions such as IBM Rational Synergy, you can more 

easily design, manage and reuse the specific process patterns supporting the 

complex needs of your organization today and help you compete and thrive into 

the future.



Enabling software reuse using successful component-based development practices 
Page 19

For more information

To learn more about advanced change and configuration management best 

practices and IBM Rational Synergy, please contact your IBM representative or 

IBM Business Partner, or visit: 

ibm.com/software/rational

http://ibm.com/software/rational


© 	Copyright IBM Corporation 2009

	 IBM Corporation 
Software Group 
Route 100 
Somers, NY 10589 
U.S.A.

Produced in the United States of America 
June 2009 
All Rights Reserved

IBM, the IBM logo, ibm.com, and Rational are 
trademarks or registered trademarks of International 
Business Machines Corporation in the United 
States, other countries, or both. If these and other 
IBM trademarked terms are marked on their first 
occurrence in this information with a trademark symbol 
(® or ™), these symbols indicate U.S. registered or 
common law trademarks owned by IBM at the time 
this information was published. Such trademarks may 
also be registered or common law trademarks in other 
countries. A current list of IBM trademarks is available 
on the Web at “Copyright and trademark information” at 
ibm.com/legal/copytrade.shtml

Other company, product, or service names may be 
trademarks or service marks of others.

References in this publication to IBM products or 
services do not imply that IBM intends to make them 
available in all countries in which IBM operates.

The information contained in this document is provided 
for informational purposes only and provided “as is” 
without warranty of any kind, express or implied. In 
addition, this information is based on IBM’s current 
product plans and strategy, which are subject to 
change by IBM without notice. Without limiting the 
foregoing, all statements regarding IBM future direction 
or intent are subject to change or withdrawal without 
notice and represent goals and objectives only. 
Nothing contained in this documentation is intended to, 
nor shall have the effect of, creating any warranties or 
representations from IBM (or its suppliers or licensors), 
or altering the terms and conditions of the applicable 
license agreement governing the use of IBM software

RAW14135-USEN-00

http://ibm.com/legal/copytrade.shtml

