
Component-based development
White paper
June 2009

Driving business success with
software reuse.

Leveraging an SCCM solution for effective component-based

development

Driving business success with software reuse
Page 2

Contents

2 Executive summary

2 Component-based development

and SOA

5 Benefits of software reuse

6 Challenges faced in achieving

software reuse

9 Managing the CBD lifecycle

11 Conclusion

Increasingly, organizations are

turning to software reuse initiatives

including component-based

development to meet market

pressures to create higher quality

software more quickly.

Executive summary

As enterprise software systems continue to grow in complexity, IT is struggling

to find better ways to meet increasing business demands. With pressure to

create higher-quality software more quickly and at lower cost, enterprise IT

must find ways to streamline development. One way that organizations are

meeting this challenge is by implementing ways to drive successful software

reuse initiatives. The upside to this approach is considerable: Devising an

effective software reuse strategy can help enable software development teams

to construct enterprise software systems through the assembly of reusable

parts, and component-based development (CBD) serves as a critical enabler

of realizing higher degrees of reusability. While CBD is not new, immature

technologies and short-term approaches have hindered previous efforts and

have soured some on the CBD journey. But that is changing, and many people

are looking at CBD with fresh eyes.

Today, proven technologies and tools exist that allow teams to develop, share

and manage the evolution of their software assets. With many organizations

embarking on large-scale service-oriented architecture (SOA) initiatives,

CBD stands to play a critical role in supporting higher degrees of reuse across

enterprise services and applications. In fact, CBD is one of the few technologies

to have successfully bridged the gap between commercial and open source

software development. At present, the open source community thrives on

componentization as a major means of achieving high degrees of reusability.

Realizing maximum value and return on investment from your enterprise

software development initiatives in today’s diverse software ecosystem demands

an effective reuse strategy that features CBD as its principal driver.

Component-based development and SOA

In many ways, service orientation is an evolution of the primary tenets of

component-based development, and a stated SOA goal is to fulfill mission-

critical business processes through an orchestration of reusable services.

Driving business success with software reuse
Page 3

Highlights

Service-oriented architecture has

evolved naturally from CBD in that it

strives to fulfill mission-critical

business processes by orchestrating

reusable services.

SOA helps IT and business align using

services tied to specific business

functions.

But SOA also represents a significant step forward, in that it offers the

possibility of helping IT and business achieve greater alignment through

services that expose discrete business functions. While SOA has the potential

to increase alignment between IT and business, the services development team

faces many of the same challenges that software development teams have dealt

with for decades. One critical dilemma lies in preventing problems that arise

from the inability to manage change and evolutionary growth. An effective

software reuse strategy, achieved through componentization, can provide a

significant benefit in realizing your SOA goals.

Let’s illustrate this benefit with a simple example. Figure 1 shows a sample use-

case diagram for an insurance company’s claim management system (CMS). A

customer service representative enters the claim upon receiving a notice of loss

from the customer. After the claim has been entered into the system, workflow

rules dictate to which claim adjustor the claim is routed. After receiving

the claim, the adjustor can evaluate the loss, enter the claim into his or her

electronic claim file, and eventually process the claim to settlement.

Figure 1: Use-case diagram for a claims processing system.

Driving business success with software reuse
Page 4

Highlights

Component reuse can help speed

service and application development

for multiple development efforts.

Figure 2 shows a component diagram for the claim management system

illustrating two separate Web applications and a number of services and

components. Each service fulfills a core business function and is composed

of one or more reusable components that can be deployed and reused across

multiple applications and services. The claim severity component is an example

of a component that is deployed and used by both the workflow and adjudication

service to help score the severity of the claim and to help ensure that the

appropriate rules are applied during adjudication. In this example, component

reuse helps speed the development of applications and services through a

combination of custom development and component assembly.

Figure 2: Component diagram illustrating the CMS services and components

Driving business success with software reuse
Page 5

Highlights

The inherent complexity of software

development can make successfully

managing the development of reusable

components difficult.

IBM Rational Synergy and IBM Rational

Change can help manage complexities

around creating reusable software

through their robust change and

configuration management functions.

Managing the development of these components is crucial to realizing the

advantages of component-based development (CBD) and SOA. Yet managing this

development is also difficult, not only because of complex technical challenges,

but also due to the essential complexity surrounding software development.

Often not considered a significant part of a CBD strategy, a robust software

configuration and change management solution is a fundamental aspect to

consider for project success. IBM® Rational® Synergy and IBM Rational

Change offer solutions for change and configuration management that can help

ease your pains surrounding enterprise CBD and SOA initiatives. Before delving

into how Rational Synergy and Change software contribute to CBD, let’s first

examine the benefits of CBD followed by some common impediments.

Benefits of software reuse

Software reuse has been considered the “holy grail” of software development

for decades. The business value realized through successful reuse initiatives

can offer substantial rewards, which explains why so many organizations are

pursuing this goal. Below are a few of the significant advantages teams can

potentially realize through a successful CBD initiative for achieving reuse:

•	 Reduced	time	to	market:	CBD	emphasizes	the	assembly	of	applications	
from	prebuilt	parts.	Robust	components	have	already	undergone	rigid	
testing	cycles.	Because	components	are	modularized	and	independent	
units,	they	often	can	be	developed	in	parallel.	Given	the	proper	
collaboration	and	testing	tools,	teams	can	work	effectively	even	when	
dispersed	across	the	globe.

•	 Higher	quality:	Components	are	discrete,	fine-grained	units	of	behavior,	
and	automated	tests	can	be	written	to	help	ensure	that	each	component	
undergoes	a	strict	test	lifecycle.	As	components	are	field-tested	as	they	
are	consumed	by	an	increasing	number	of	applications,	developers	gain	
increased	trust	in	CBD.

Driving business success with software reuse
Page 6

Highlights

Businesses that successfully reuse

software components can realize

many potential benefits including

increased quality and agility,

decreased costs and faster time to

market.

Companies that want to reuse software

face numerous challenges with

configuration, change dependency

and version management.

•	 Decreased	cost:	Increased	component	modularity	helps	isolate	software	
functions,	providing	an	efficient	mechanism	to	upgrade	a	component	
without	impacting	an	entire	application.	Although	the	short-term	cost	of	
CBD	is	typically	greater	than	the	cost	of	developing	applications	in	silos,	
as	your	component	reuse	increases,	the	potential	benefits	of	reduced	time	
to	market	and	higher	quality	may	offer	substantial	long-term	savings.

•	 Increased	organizational	agility:	The	ability	of	IT	to	respond	quickly	
to	business	needs	is	imperative	in	today’s	dynamic	business	climate.	As	
the	component	inventory	of	your	organization	grows,	teams	will	be	able	
to	enhance	application	functionality	by	leveraging	prebuilt	software	
components.	Additionally,	because	change	requests	of	the	business	
stakeholders	are	isolated	to	discrete	units	of	functionality,	change	can	be	
made	in	isolation	and	released	to	all	component	consumers.

Challenges faced in achieving software reuse

While component technologies have gone mainstream within the enterprise,

CBD’s benefits have not scaled systematically. Advances in technology

are not enough, as teams continue to struggle with the many challenges

surrounding management of the CBD process.

•	 Managing	versions	and	upgrades:	It	is	likely	that	many	of	your	projects	
use	a	single	component.	Unlike	reuse	in	an	SOA	world,	where	multiple	
consumers	reuse	the	same	instance	of	a	service,	single	instances	of	a	
component	are	deployed	with	an	application.	When	an	upgraded	version	
of	the	component	is	available,	the	component	development	team	must	
determine	the	best	way	to	make	the	component	available	for	upgrade,	
while	the	teams	using	the	component	must	determine	the	best	upgrade	
path.	Beyond	managing	the	upgrade	process,	CBD	initiatives	must	have	
processes	in	place	to	help	ensure	that	component	development	teams	and	
application	development	teams	receive	proper	notification	when	a	new	
version	of	a	component	is	available.

Driving business success with software reuse
Page 7

•	 Component	granularity:	The	behavioral	evolution	of	a	component	
impacts	its	reusability.	As	a	component	is	used	by	more	and	more	
applications,	there	tends	to	be	a	push-and-pull	effect	as	requests	for	
expanded	and	reduced	behavior	influence	the	component.	Component	
granularity	must	be	carefully	managed	to	achieve	an	optimal	reuse	
threshold	while	ensuring	that	a	valuable	level	of	behavior	is	provided.	
Managing	change	surrounding	the	behavior	of	a	component	is	a	
significant	challenge	in	CBD.

•	 Dependency	management:	Components	with	excessive	dependencies	are	
more	difficult	to	reuse	because	of	the	impact	of	including	the	component	
and	each	of	its	dependencies.	Attempts	to	eliminate	all	component	
dependencies,	however,	often	result	in	duplication	of	code,	effectively	
negating	the	reuse	benefits	of	CBD.	Managing	dependencies	among	
components	is	critical,	but	understanding	component	dependencies	and	
the	granularity	of	dependent	components	is	equally	important.

•	 Configuration:	Ideal	components	are	adaptable	to	the	environment	
containing	them.	Failing	to	create	components	that	are	flexible	and	
configurable	often	means	that	a	component’s	reuse	is	limited	due	to	
inflexibility.	On	the	other	hand,	components	that	integrate	easily	into	
your	environment	are	well	accepted.

•	 Change	management:	Change	is	an	inherent	part	of	the	software	
development	lifecycle.	As	change	occurs,	the	team	must	collect	
change	from	a	variety	of	sources	and	collaborate	on	the	most	effective	
approach	to	component	growth	without	having	a	detrimental	impact	on	
component	reuse.	A	central	repository	for	managing	change	with	event-
based	triggers	and	bidirectional	traceability	to	requirements,	design,	
code	and	testing	helps	encourage	effective	change	management.

Driving business success with software reuse
Page 8

Highlights

It’s important to have in place a strong

foundation of communication and

collaboration tools to facilitate

component development and to deal

with the social and cultural aspects of

CBD, in addition to the technological

aspects.

•	 Communication	and	collaboration:	Publishing	a	component	as	an	
organization’s	software	asset	seems	like	a	logical	step.	However,	ensuring	
that	proper	communication	occurs	between	component	developers	and	a	
component	consumer	is	critical	as	a	component	evolves.	Ensuring	that	
a	component	repository	is	available,	that	your	team	understands	how	to	
obtain	a	list	of	published	components,	and	that	changes	to	components	
are	made	readily	available,	is	imperative.

•	 Cultural	challenges:	Many	reuse	initiatives	emphasize	CBD’s	technology	
aspects	but	neglect	addressing	the	cultural	impact	that	this	may	have.	
Failure	to	address	the	people,	process	and	social	aspects	of	CBD	can	
undermine	even	the	most	technically	adept	CBD	teams.	Since	CBD	
is	a	reengineering	initiative,	obtaining	strong	upper-management	
support	is	critical	to	helping	teams	work	cooperatively	and	effectively.	
Reuse	initiatives	may	be	disruptive,	as	key	architectural	decisions	are	
often	split	between	component	developers	and	component	consumers.	
Successful	reuse	initiatives	require	that	trust	be	established	between	
stakeholders	and	that	developers	feel	empowered.

•	 Reuse	without	source:	The	“reuse	without	source”	model	of	CBD	is	
incredibly	difficult	because	it	is	based	on	the	assumption	that	the	
component	will	always	work	within	your	environment.	Unfortunately,	
because	component	developers	cannot	predict	all	possible	usage	
scenarios,	environmental	failure	is	to	be	expected.	Component	“reuse	
with	source”	is	an	effective	CBD	model	because	teams	experiencing	
component	failure	can	perform	trial-and-error	debugging	techniques	in	
search	of	the	problem.	In	fact,	reuse	with	source	is	a	significant	factor	in	
the	continuing	success	of	open	source	software.

Driving business success with software reuse
Page 9

Highlights

IBM Rational Synergy and IBM Rational

Change offer change and configuration

management solutions that integrate

with other application lifecycle

management (ALM) tools to create a

robust CBD environment.

IBM Rational Synergy and IBM Rational

Change together offer a centralized or

distributed component repository,

advanced configuration and version

tracking capabilities, and robust

reporting and security features.

Managing the CBD lifecycle

Overcoming many of the challenges surrounding CBD requires that we

effectively manage the CBD lifecycle. Teams that have the discipline

and maturity to adhere to a robust CBD process can potentially realize

significant value from solutions like IBM Rational Synergy and IBM Rational

Change software. These solutions offer software change and configuration

management capabilities that integrate with other application lifecycle

management (ALM) tools. Together, the Rational solutions provide a robust

environment for managing CBD in a complex environment with multiple

teams. Each is a first-class construct that supports numerous practices

aiding the CBD lifecycle, including:

•	 Choice	of	a	centralized	or	distributed	component	repository	that	stores	
components	as	source	or	binary,	allowing	teams	to	set	up	multiple	
separate	repositories	and	distribute	the	components	across	those	
repositories.	IBM	Rational	Synergy	supports	high-performance	wide	area	
network	access	to	a	central	server,	while	one	has	a	topographical	choice	
of	setting	up	multiple,	distributed	repositories.	Because	components	
can	be	reused	as	source	components,	teams	have	the	ability	to	review	
the	source	code	when	troubleshooting	component	configurations,	and	
they	can	make	critical	changes	to	the	component	depending	on	an	
organization’s	CBD	processes	and	guidelines.	Because	source	components	
can	be	versioned	and	reused	at	many	different	levels	of	abstraction,	
source	components	can	also	be	easily	broken	down	into	finer-grained	
components	to	achieve	the	desired	level	of	component	granularity.

•	 Advanced	configuration	and	version	tracking	that	allows	teams	to	
compose	applications	and	services	from	a	combination	of	components.	
Teams	can	also	easily	manage	different	variations	of	a	component	and	
can	perform	parallel	development	on	multiple	release	streams	at	once.	
Teams	have	the	ability	to	search	the	component	repository	and	subscribe	
to	the	components	they	want	to	use.

Driving business success with software reuse
Page 10

Highlights

The robust promotion scheme,

management console and out-of-the-

box support for best practices help

make IBM Rational Synergy and IBM

Rational Change first-class constructs

for supporting the CBD lifecycle.

•	 Task-based	change	and	configuration	management	enables	teams	to	
manage	coarse-grained	change	requests	that	are	broken	down	into	
discrete	tasks.	Instead	of	change	being	managed	at	a	file	level,	change	
is	managed	at	the	task	level.	Once	a	task	is	marked	complete,	all	files	
that	have	undergone	change	as	part	of	that	task	are	released	back	to	the	
repository.	Using	a	shared	repository	with	IBM	Rational	Change	helps	
to	ensure	that	a	single	instance	of	change	requests	and	tasks	propagate	
throughout	the	CBD	environment.	Change	requests	entered	into	the	
software	by	quality	assurance	engineers	or	customers	can	easily	be	
traced	through	completion.

•	 Insulated	environments	and	a	robust	promotion	scheme,	which	can	help	
enable	teams	both	to	work	in	isolation	during	heavy	active	development	
and	to	work	together	during	intense	periods	of	integration.	For	instance,	
separate	environments	can	be	set	up	such	that	a	component	must	pass	
integration	tests	before	being	propagated	to	the	others.	Teams	can	also	
set	up	an	integration	area	where	the	most	recent	changes	to	a	component	
are	built	and	tested.

•	 A	robust	management	console	that	allows	individual	tasks	or	entire	
change	requests	to	be	excluded	from	component	versions,	branches	and	
builds	to	help	isolate	component	errors	during	component	development,	
integration	and	build.

•	 Support	for	best	practices	and	patterns	for	CBD	available	“out-of-the-
box,”	with	significant	flexibility	for	managing	variants.	With	support	
for	a	variety	of	reuse	engineering	rules,	Synergy	allows	for	very	flexible	
component	hierarchies	that	include	control	over	what	component	is	
published,	identification	of	all	consumers	of	a	given	component,	and	
techniques	for	managing	the	process	of	component	sharing.

•	 Plug-ins	for	integrated	development	environments	that	allow	developers	
to	work	within	the	context	of	a	single	consolidated	environment.

Driving business success with software reuse
Page 11

Highlights

Companies who can overcome the

challenges of creating a software-

reuse environment can realize

numerous benefits. IBM Rational

Synergy and IBM Rational Change can

help companies succeed in their CBD

initiatives and gain a competitive edge

in the global marketplace.

•	 Robust	reporting	capabilities	that	allow	members	of	the	team	to	
clearly	understand	the	evolution	of	component	growth	across	versions,	
environments	and	component	consumers.

•	 Robust	security	that	supports	the	separation	of	roles	between	component	
developers	and	component	consumers.

Conclusion

Software reuse and its underlying fundamentals have evolved dramatically

over the past four decades. The benefits of constructing mission-critical

enterprise software applications through the assembly of reusable parts are

immense. With today’s complex development environments and ambitious

SOA initiatives, effective CBD can play a critical role in realizing success.

While component technologies have gone mainstream, many other factors

are impeding CBD success. One of the biggest reasons is the inability of

development teams to develop, share and manage components through an

underlying framework of integrated and optimized process patterns and change

management techniques.

The Rational Synergy and Rational Change solutions can offer mature teams a

significant advantage with CBD initiatives. The robust features combined with

strong integration capabilities offer a disciplined approach to CBD. The two

solutions can help you reduce time to market, improve quality and accelerate

the delivery of advanced software and systems by supporting best practices.

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
June 2009
All Rights Reserved

IBM, the IBM logo, ibm.com and Rational, are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both. If these and other IBM
trademarked terms are marked on their first occurrence
in this information with a trademark symbol (® or ™),
these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered
or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at
“Copyright and trademark information” at:
ibm.com/legal/copytrade.shtml.

Other company, product, or service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this document is provided
for informational purposes only and provided “as is”
without warranty of any kind, express or implied. In
addition, this information is based on IBM’s current
product plans and strategy, which are subject to
change by IBM without notice. Without limiting the
foregoing, all statements regarding IBM future direction
or intent are subject to change or withdrawal without
notice and represent goals and objectives only. Nothing
contained in this documentation is intended to, nor
shall have the effect of, creating any warranties or
representations from IBM (or its suppliers or licensors),
or altering the terms and conditions of the applicable
license agreement governing the use of IBM software.

RAW14082-USEN-01

http://www.ibm.com/

	Executive summary
	Component-based development and SOA
	Benefits of software reuse
	Challenges faced in achieving software reuse
	Managing the CBD lifecycle
	Conclusion

