
Component-based development
White paper
June 2009

Driving business success with
software reuse.

Leveraging an SCCM solution for effective component-based

development

Driving business success with software reuse
Page 2

Contents

2	 Executive summary

2	 Component-based development

and SOA

5	 Benefits of software reuse

6	 Challenges faced in achieving

software reuse

9	 Managing the CBD lifecycle

11	 Conclusion

Increasingly, organizations are

turning to software reuse initiatives

including component-based

development to meet market

pressures to create higher quality

software more quickly.

Executive summary

As enterprise software systems continue to grow in complexity, IT is struggling

to find better ways to meet increasing business demands. With pressure to

create higher-quality software more quickly and at lower cost, enterprise IT

must find ways to streamline development. One way that organizations are

meeting this challenge is by implementing ways to drive successful software

reuse initiatives. The upside to this approach is considerable: Devising an

effective software reuse strategy can help enable software development teams

to construct enterprise software systems through the assembly of reusable

parts, and component-based development (CBD) serves as a critical enabler

of realizing higher degrees of reusability. While CBD is not new, immature

technologies and short-term approaches have hindered previous efforts and

have soured some on the CBD journey. But that is changing, and many people

are looking at CBD with fresh eyes.

Today, proven technologies and tools exist that allow teams to develop, share

and manage the evolution of their software assets. With many organizations

embarking on large-scale service-oriented architecture (SOA) initiatives,

CBD stands to play a critical role in supporting higher degrees of reuse across

enterprise services and applications. In fact, CBD is one of the few technologies

to have successfully bridged the gap between commercial and open source

software development. At present, the open source community thrives on

componentization as a major means of achieving high degrees of reusability.

Realizing maximum value and return on investment from your enterprise

software development initiatives in today’s diverse software ecosystem demands

an effective reuse strategy that features CBD as its principal driver.

Component-based development and SOA

In many ways, service orientation is an evolution of the primary tenets of

component-based development, and a stated SOA goal is to fulfill mission-

critical business processes through an orchestration of reusable services.

Driving business success with software reuse
Page 3

Highlights

Service-oriented architecture has

evolved naturally from CBD in that it

strives to fulfill mission-critical

business processes by orchestrating

reusable services.

SOA helps IT and business align using

services tied to specific business

functions.

But SOA also represents a significant step forward, in that it offers the

possibility of helping IT and business achieve greater alignment through

services that expose discrete business functions. While SOA has the potential

to increase alignment between IT and business, the services development team

faces many of the same challenges that software development teams have dealt

with for decades. One critical dilemma lies in preventing problems that arise

from the inability to manage change and evolutionary growth. An effective

software reuse strategy, achieved through componentization, can provide a

significant benefit in realizing your SOA goals.

Let’s illustrate this benefit with a simple example. Figure 1 shows a sample use-

case diagram for an insurance company’s claim management system (CMS). A

customer service representative enters the claim upon receiving a notice of loss

from the customer. After the claim has been entered into the system, workflow

rules dictate to which claim adjustor the claim is routed. After receiving

the claim, the adjustor can evaluate the loss, enter the claim into his or her

electronic claim file, and eventually process the claim to settlement.

Figure 1: Use-case diagram for a claims processing system.

Driving business success with software reuse
Page 4

Highlights

Component reuse can help speed

service and application development

for multiple development efforts.

Figure 2 shows a component diagram for the claim management system

illustrating two separate Web applications and a number of services and

components. Each service fulfills a core business function and is composed

of one or more reusable components that can be deployed and reused across

multiple applications and services. The claim severity component is an example

of a component that is deployed and used by both the workflow and adjudication

service to help score the severity of the claim and to help ensure that the

appropriate rules are applied during adjudication. In this example, component

reuse helps speed the development of applications and services through a

combination of custom development and component assembly.

Figure 2: Component diagram illustrating the CMS services and components

Driving business success with software reuse
Page 5

Highlights

The inherent complexity of software

development can make successfully

managing the development of reusable

components difficult.

IBM Rational Synergy and IBM Rational

Change can help manage complexities

around creating reusable software

through their robust change and

configuration management functions.

Managing the development of these components is crucial to realizing the

advantages of component-based development (CBD) and SOA. Yet managing this

development is also difficult, not only because of complex technical challenges,

but also due to the essential complexity surrounding software development.

Often not considered a significant part of a CBD strategy, a robust software

configuration and change management solution is a fundamental aspect to

consider for project success. IBM® Rational® Synergy and IBM Rational

Change offer solutions for change and configuration management that can help

ease your pains surrounding enterprise CBD and SOA initiatives. Before delving

into how Rational Synergy and Change software contribute to CBD, let’s first

examine the benefits of CBD followed by some common impediments.

Benefits of software reuse

Software reuse has been considered the “holy grail” of software development

for decades. The business value realized through successful reuse initiatives

can offer substantial rewards, which explains why so many organizations are

pursuing this goal. Below are a few of the significant advantages teams can

potentially realize through a successful CBD initiative for achieving reuse:

•	 Reduced time to market: CBD emphasizes the assembly of applications
from prebuilt parts. Robust components have already undergone rigid
testing cycles. Because components are modularized and independent
units, they often can be developed in parallel. Given the proper
collaboration and testing tools, teams can work effectively even when
dispersed across the globe.

•	 Higher quality: Components are discrete, fine-grained units of behavior,
and automated tests can be written to help ensure that each component
undergoes a strict test lifecycle. As components are field-tested as they
are consumed by an increasing number of applications, developers gain
increased trust in CBD.

Driving business success with software reuse
Page 6

Highlights

Businesses that successfully reuse

software components can realize

many potential benefits including

increased quality and agility,

decreased costs and faster time to

market.

Companies that want to reuse software

face numerous challenges with

configuration, change dependency

and version management.

•	 Decreased cost: Increased component modularity helps isolate software
functions, providing an efficient mechanism to upgrade a component
without impacting an entire application. Although the short-term cost of
CBD is typically greater than the cost of developing applications in silos,
as your component reuse increases, the potential benefits of reduced time
to market and higher quality may offer substantial long-term savings.

•	 Increased organizational agility: The ability of IT to respond quickly
to business needs is imperative in today’s dynamic business climate. As
the component inventory of your organization grows, teams will be able
to enhance application functionality by leveraging prebuilt software
components. Additionally, because change requests of the business
stakeholders are isolated to discrete units of functionality, change can be
made in isolation and released to all component consumers.

Challenges faced in achieving software reuse

While component technologies have gone mainstream within the enterprise,

CBD’s benefits have not scaled systematically. Advances in technology

are not enough, as teams continue to struggle with the many challenges

surrounding management of the CBD process.

•	 Managing versions and upgrades: It is likely that many of your projects
use a single component. Unlike reuse in an SOA world, where multiple
consumers reuse the same instance of a service, single instances of a
component are deployed with an application. When an upgraded version
of the component is available, the component development team must
determine the best way to make the component available for upgrade,
while the teams using the component must determine the best upgrade
path. Beyond managing the upgrade process, CBD initiatives must have
processes in place to help ensure that component development teams and
application development teams receive proper notification when a new
version of a component is available.

Driving business success with software reuse
Page 7

•	 Component granularity: The behavioral evolution of a component
impacts its reusability. As a component is used by more and more
applications, there tends to be a push-and-pull effect as requests for
expanded and reduced behavior influence the component. Component
granularity must be carefully managed to achieve an optimal reuse
threshold while ensuring that a valuable level of behavior is provided.
Managing change surrounding the behavior of a component is a
significant challenge in CBD.

•	 Dependency management: Components with excessive dependencies are
more difficult to reuse because of the impact of including the component
and each of its dependencies. Attempts to eliminate all component
dependencies, however, often result in duplication of code, effectively
negating the reuse benefits of CBD. Managing dependencies among
components is critical, but understanding component dependencies and
the granularity of dependent components is equally important.

•	 Configuration: Ideal components are adaptable to the environment
containing them. Failing to create components that are flexible and
configurable often means that a component’s reuse is limited due to
inflexibility. On the other hand, components that integrate easily into
your environment are well accepted.

•	 Change management: Change is an inherent part of the software
development lifecycle. As change occurs, the team must collect
change from a variety of sources and collaborate on the most effective
approach to component growth without having a detrimental impact on
component reuse. A central repository for managing change with event-
based triggers and bidirectional traceability to requirements, design,
code and testing helps encourage effective change management.

Driving business success with software reuse
Page 8

Highlights

It’s important to have in place a strong

foundation of communication and

collaboration tools to facilitate

component development and to deal

with the social and cultural aspects of

CBD, in addition to the technological

aspects.

•	 Communication and collaboration: Publishing a component as an
organization’s software asset seems like a logical step. However, ensuring
that proper communication occurs between component developers and a
component consumer is critical as a component evolves. Ensuring that
a component repository is available, that your team understands how to
obtain a list of published components, and that changes to components
are made readily available, is imperative.

•	 Cultural challenges: Many reuse initiatives emphasize CBD’s technology
aspects but neglect addressing the cultural impact that this may have.
Failure to address the people, process and social aspects of CBD can
undermine even the most technically adept CBD teams. Since CBD
is a reengineering initiative, obtaining strong upper-management
support is critical to helping teams work cooperatively and effectively.
Reuse initiatives may be disruptive, as key architectural decisions are
often split between component developers and component consumers.
Successful reuse initiatives require that trust be established between
stakeholders and that developers feel empowered.

•	 Reuse without source: The “reuse without source” model of CBD is
incredibly difficult because it is based on the assumption that the
component will always work within your environment. Unfortunately,
because component developers cannot predict all possible usage
scenarios, environmental failure is to be expected. Component “reuse
with source” is an effective CBD model because teams experiencing
component failure can perform trial-and-error debugging techniques in
search of the problem. In fact, reuse with source is a significant factor in
the continuing success of open source software.

Driving business success with software reuse
Page 9

Highlights

IBM Rational Synergy and IBM Rational

Change offer change and configuration

management solutions that integrate

with other application lifecycle

management (ALM) tools to create a

robust CBD environment.

IBM Rational Synergy and IBM Rational

Change together offer a centralized or

distributed component repository,

advanced configuration and version

tracking capabilities, and robust

reporting and security features.

Managing the CBD lifecycle

Overcoming many of the challenges surrounding CBD requires that we

effectively manage the CBD lifecycle. Teams that have the discipline

and maturity to adhere to a robust CBD process can potentially realize

significant value from solutions like IBM Rational Synergy and IBM Rational

Change software. These solutions offer software change and configuration

management capabilities that integrate with other application lifecycle

management (ALM) tools. Together, the Rational solutions provide a robust

environment for managing CBD in a complex environment with multiple

teams. Each is a first-class construct that supports numerous practices

aiding the CBD lifecycle, including:

•	 Choice of a centralized or distributed component repository that stores
components as source or binary, allowing teams to set up multiple
separate repositories and distribute the components across those
repositories. IBM Rational Synergy supports high-performance wide area
network access to a central server, while one has a topographical choice
of setting up multiple, distributed repositories. Because components
can be reused as source components, teams have the ability to review
the source code when troubleshooting component configurations, and
they can make critical changes to the component depending on an
organization’s CBD processes and guidelines. Because source components
can be versioned and reused at many different levels of abstraction,
source components can also be easily broken down into finer-grained
components to achieve the desired level of component granularity.

•	 Advanced configuration and version tracking that allows teams to
compose applications and services from a combination of components.
Teams can also easily manage different variations of a component and
can perform parallel development on multiple release streams at once.
Teams have the ability to search the component repository and subscribe
to the components they want to use.

Driving business success with software reuse
Page 10

Highlights

The robust promotion scheme,

management console and out-of-the-

box support for best practices help

make IBM Rational Synergy and IBM

Rational Change first-class constructs

for supporting the CBD lifecycle.

•	 Task-based change and configuration management enables teams to
manage coarse-grained change requests that are broken down into
discrete tasks. Instead of change being managed at a file level, change
is managed at the task level. Once a task is marked complete, all files
that have undergone change as part of that task are released back to the
repository. Using a shared repository with IBM Rational Change helps
to ensure that a single instance of change requests and tasks propagate
throughout the CBD environment. Change requests entered into the
software by quality assurance engineers or customers can easily be
traced through completion.

•	 Insulated environments and a robust promotion scheme, which can help
enable teams both to work in isolation during heavy active development
and to work together during intense periods of integration. For instance,
separate environments can be set up such that a component must pass
integration tests before being propagated to the others. Teams can also
set up an integration area where the most recent changes to a component
are built and tested.

•	 A robust management console that allows individual tasks or entire
change requests to be excluded from component versions, branches and
builds to help isolate component errors during component development,
integration and build.

•	 Support for best practices and patterns for CBD available “out-of-the-
box,” with significant flexibility for managing variants. With support
for a variety of reuse engineering rules, Synergy allows for very flexible
component hierarchies that include control over what component is
published, identification of all consumers of a given component, and
techniques for managing the process of component sharing.

•	 Plug-ins for integrated development environments that allow developers
to work within the context of a single consolidated environment.

Driving business success with software reuse
Page 11

Highlights

Companies who can overcome the

challenges of creating a software-

reuse environment can realize

numerous benefits. IBM Rational

Synergy and IBM Rational Change can

help companies succeed in their CBD

initiatives and gain a competitive edge

in the global marketplace.

•	 Robust reporting capabilities that allow members of the team to
clearly understand the evolution of component growth across versions,
environments and component consumers.

•	 Robust security that supports the separation of roles between component
developers and component consumers.

Conclusion

Software reuse and its underlying fundamentals have evolved dramatically

over the past four decades. The benefits of constructing mission-critical

enterprise software applications through the assembly of reusable parts are

immense. With today’s complex development environments and ambitious

SOA initiatives, effective CBD can play a critical role in realizing success.

While component technologies have gone mainstream, many other factors

are impeding CBD success. One of the biggest reasons is the inability of

development teams to develop, share and manage components through an

underlying framework of integrated and optimized process patterns and change

management techniques.

The Rational Synergy and Rational Change solutions can offer mature teams a

significant advantage with CBD initiatives. The robust features combined with

strong integration capabilities offer a disciplined approach to CBD. The two

solutions can help you reduce time to market, improve quality and accelerate

the delivery of advanced software and systems by supporting best practices.

©	 Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
June 2009
All Rights Reserved

IBM, the IBM logo, ibm.com and Rational, are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both. If these and other IBM
trademarked terms are marked on their first occurrence
in this information with a trademark symbol (® or ™),
these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered
or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at
“Copyright and trademark information” at:
ibm.com/legal/copytrade.shtml.

Other company, product, or service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this document is provided
for informational purposes only and provided “as is”
without warranty of any kind, express or implied. In
addition, this information is based on IBM’s current
product plans and strategy, which are subject to
change by IBM without notice. Without limiting the
foregoing, all statements regarding IBM future direction
or intent are subject to change or withdrawal without
notice and represent goals and objectives only. Nothing
contained in this documentation is intended to, nor
shall have the effect of, creating any warranties or
representations from IBM (or its suppliers or licensors),
or altering the terms and conditions of the applicable
license agreement governing the use of IBM software.

RAW14082-USEN-01

http://www.ibm.com/

	Executive summary
	Component-based development and SOA
	Benefits of software reuse
	Challenges faced in achieving software reuse
	Managing the CBD lifecycle
	Conclusion

