
Safety analysis using UML
White paper
June 2009

Analyze system safety using
UML within the IBM Rational
Rhapsody environment.
Bruce Powel Douglass, Ph.D., chief evangelist,
Rational software, IBM Software Group

Contents
Abstract

The Unified Modeling Language (UML) is a visual language for specifying, con-
structing and documenting the artifacts of systems. It has been successfully used
in many realtime and embedded domains, including aerospace, military and
medical marketplaces. Many of the systems within these marketplaces are used
within safety-critical contexts. Until now, safety professionals have relied on
disparate tools and environments to capture requirements, create designs and
analyze system safety. However, UML is an extremely powerful, extensible lan-
guage that can help safety professionals within a variety of marketplaces. IBM
has therefore created a UML profile that enables you to capture requirements,
create designs and analyze system safety all within the same IBM Rational®
Rhapsody® tool environment.

This paper will discuss the use of the fault tree analysis (FTA) approach to safety
analysis and the use of the UML profiling mechanism to create a safety analysis
profile, including the definition of its normative metamodel. This profile enables
developers and analysts to capture safety-related requirements, perform FTA and
other safety analyses, create designs that meet those safety concerns, and provide
reports showing the relationships between the safety analysis, requirements and
design model elements.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 2

2	 Abstract

3	 What is safety?

4	 Faults and failures

10	 How the UML can help

12	 Safety analysis with fault tree

analysis

16	 UML profile for safety analysis

46	 Summary

Analyze system safety using UML within
the IBM Rational Rhapsody environment.

What is safety?

The paucity of material on safety-critical systems has led to a widespread
misunderstanding of the various terms used to discuss safety. The most basic
term is safety. Safety is defined as freedom from accidents or losses. An acci-
dent is an event in which an undesirable consequence occurs, such as death,
injury, equipment damage or financial loss. A safety-critical system is therefore a
system containing electronic, mechanical and software aspects and that presents
an opportunity for accidents to occur. For many people, safety-critical systems
are only those that present the opportunity for injury or loss of life, but this omits
from consideration other systems that might benefit from the techniques and
approaches common in safety analysis. Therefore, for the purposes of this paper, a
safety-critical system is defined as any system in which the cost of use of a system
because of an accident is potentially high.

A hazard is a system state that, when combined with other environmental condi-
tions, inevitably leads to an accident.1 Hazards are normally classified according
to severity. For example, there is a hazard of being shocked when jumping the
12-volt battery in your car, but this is a less severe hazard than slamming into
a mountainside at 600 knots while riding in a commercial aircraft. Different
standards use different categories for hazard severity. For example, the U.S.
Food and Drug Administration (FDA)2 uses major (irreversible injury or death),
moderate (injury) and minor (no injury) levels of concern for device safety. The
German standard DIN 19250 identifies eight categories, along with required
safety measures for each category, while the more recent IEC 615083 identifies
four safety integrity levels (SILs): catastrophic, critical, marginal and negligible,
although the text notes that the severity of system-presented hazards is actu-
ally a continuum.

Page 3

Highlights

Safety, the most basic term when

discussing safety-critical systems, is

defined as freedom from accidents

or losses.

Classified according to severity,

hazards are defined as system

states that, when combined

with environmental conditions,

inevitably lead to accidents.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 4

Highlights
The risk of a hazard is defined to be the product of the probability of the
occurrence of the hazard and its severity:

	 riskhazard = probabilityhazard x severityhazard

Being shocked by your car battery is a relatively high risk, but when combined
with the low severity, the overall risk is low. Similarly, while the consequences
of an abrupt release of the kinetic energy of a commercial aircraft are quite
severe, its probability is low, again resulting in a low risk. The various standards
also identify different risk levels based on both the severity of the hazard and its
likelihood of occurrence.

In the process of system design, hazards must be identified and safety mea-
sures must be put in place to reduce the risk.

Faults and failures

A safety fault is the nonconformance of a system that leads to a hazard. Faults
come in two flavors: failure states and errors. A failure is an event that occurs
when a component no longer functions properly, leading to a failed state. A
soft failure is a temporary failure that can be corrected or that can correct
itself without replacing the failed component. A hard failure is one in which
the component must be replaced to repair the defect. Failures are distinct
from errors. An error is a design or implementation defect. Failures are events
that occur at some point in time while errors are omnipresent conditions or
states. Errors may not always be apparent; when they become apparent, they
are said to manifest.

The risk of a hazard is the product

of the probability of the occurrence

of the hazard and its severity.

In system design, it’s important

to identify hazards and put safety

measures in place to reduce the risk.

A failure is an event that occurs

when components no longer

function properly, while errors are

design or implementation defects.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 5

Highlights
Mechanical or electronic hardware can have both failures and errors, while
software can only have errors. In addition, many—but by no means all—
systems have a fail-safe state, or a condition that is known to be always safe.
In many systems, this state occurs when the device is turned off or the power
is removed. For example, the fail-safe state for a microwave oven is off. Many
systems do not have such a fail-safe state.

Faults can be tolerated for a period of time before they lead to an accident. For
example, a patient ventilator failure can be tolerated for about five minutes
before death occurs. Overpressure can be tolerated for about 250 milliseconds
before it causes irreversible lung damage. A failure in the control of aircraft
ailerons and elevators in many modern aircraft must be corrected within 50
milliseconds or less to maintain stability. The period of time the system can tol-
erate a fault is called the fault tolerance time. To ensure safety, the system must
both detect and handle the fault before the fault tolerance time has elapsed.
Also, note that the mean time between failures (MTBF) of the component must
be much longer than the fault tolerance time. Figure 1 shows the relevant times
related to handling of the fault.

Fault MTBF

Fault tolerance time

Fault measure execution time

Fault detection time

Safety-related fault
state entered

t Fault detection <t Safe measure execution complete <t Fault tolerance <<t MTBF

Figure 1: Fault timeline

Many systems have a fail-safe state,

a condition that is known to be

always safe.

Faults can be tolerated for a period of

time—known as the fault tolerance

time—before an accident occurs.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 6

Highlights
These timeframes have ramifications on the kinds of safety detection and cor-
rection measures that need to be applied. If the detection is going to be handled
with periodic or continuous background testing, then the time to complete the
test (including the time to perform the normal device operation during the test) is
called the fault detection time. In many systems, there simply isn’t enough proces-

sor bandwidth to complete the test in software—in addition to normal system
execution—to detect the faults in a timely fashion. When this is true, other means
must be added to detect the fault. For example, a periodic RAM test, such as the
Abraham walking bit test, can detect various kinds of hard memory failures. How-
ever, in a system with several megabytes of memory and a short fault tolerance
time, the detection of a safety-relevant fault will not necessarily occur within the
fault tolerance time. A possible solution is to add mirrored memory with built-in
parity checking, eliminating the need for a periodic RAM test.

Reliability and safety

Reliability and safety are mostly independent concerns. Reliability refers to
the probability that a system or component will meet its functional and quality
of service requirements—for example, timeliness—within a specified time-
frame. While this sounds similar to our previous definition of safety, the two
concepts are importantly different. A safe system is one that does not lead to
accidents. It may fail all the time and still be safe. A reliable system may fail
infrequently but when it does fail, it does so with catastrophic consequences.
Such a system is not safe. A handgun, for example, is a very reliable piece of
equipment, but can easily lead to accidents even in the absence of a system
fault. On the other hand, an old station wagon that refuses to turn on at all is
very safe even though it is unreliable.

Fault detection time describes the

amount of time needed to complete

a periodic or continuous background

test, which also includes the amount

of time needed for the device to

operate normally during the test.

A reliable system or component

has a high probability of meeting

its functional and quality of service

requirements, while a safe system is

one that does not lead to accidents.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 7

Highlights
In general, reliability is a separate concern from safety, and it is important to
maintain the distinction. For the most part, in systems that have a fail-safe
state, reliability is an opposing concern to safety. Reliability is improved when the
system continues to provide services, even if it creates a hazardous situation. If the
system is creating a hazardous situation and there is a fail-safe state, then entering

the fail-safe state improves system safety but decreases system reliability.

Consider a medical treatment laser. If a memory cell in the controller seems faulty,
the safest thing to do is shut the system down, leaving the laser de-energized—or
put into its fail-safe state—even if it is relatively unlikely that the detected fault
could lead to a hazard. This decreases the system reliability. In such systems, a
pessimistic policy is likely to be safer than an optimistic policy.

Many systems don’t have a fail-safe state. If you’re flying at 600 knots at 35,000
feet, it is not safe to shut off the jet engine if you suspect it has a fault. Similarly,
in a drive-by-wire car, the last thing you want to see is an “Abort, Retry, Ignore”
message on the dashboard when you’re driving down the freeway at 85 miles
per hour. In such systems, increasing reliability, such as by adding redundant
delivery channels, also improves the system safety.

When a system enters its fail-safe

state, its safety improves but its

reliability decreases.

Many systems lack a fail-safe state.

For such systems, it’s possible to

increase both reliability and safety by

adding redundant delivery channels.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 8

Highlights Systems without
safety impact

Systems with a
fail-safe state

Systems without
a fail-safe state

SafetyReliability

Figure 2: Safety versus reliability

Types of safety measures

There are several ways to handle faults:

Obviation.•	 This approach entails preventing the fault by anticipating it
and making it difficult for it to occur. For example, using mechanically
incompatible fasteners can remove the hazard of connecting a patient
oxygen intake to a nitrogen source.
Education.•	 The hazard can be handled by educating users so that they
won’t create hazardous conditions through equipment misuse. This is a
relatively weak safety measure that depends on the sophistication of the user
and may not be appropriate in many circumstances.
Alarming.•	 This approach announces the hazard to the user when it appears
so that the user can take appropriate action. It requires a fault tolerance
time that can take into account the reaction time of monitoring personnel.
For example, an electrocardiogram (ECG) monitor notifies an attending
physician of an asystole or “flatline” condition so that he or she can take
corrective action.

There are several ways to handle

faults, including obviation, education

and alarming.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 9

Highlights
Interlocks.•	 The hazard can be removed by using secondary devices or logic
to intercede when a hazard presents itself. For example, a medical treatment
laser system could automatically disconnect power to the laser when its
cover is off.
Transition to a fail-safe state.•	 The hazard can be handled by ensuring

that a system can detect faults prior to an accident and enter a state that is
known to be safe. For example, a cruise control system can shut off, returning
to manual control when a fault is detected.
Switch to a redundant channel.•	 The hazard can be handled by engag-
ing another actuation channel to perform the system action correctly. This
approach is generally preferred when the system has no fail-safe state.
Use additional safety equipment.•	 For example, the use of a drill press
may require a light curtain to ensure that the user doesn’t place his or her
limbs in harm’s way.
Restrict access.•	 Passwords can prevent users from inadvertently invoking
“service mode,” in which safety checks are turned off.
Labels.•	 Hazards can be addressed by labeling; for example, “High volt-
age—do not touch.”

Each of these different approaches may be appropriate in different circum-
stances. Obviation is usually safest, but it is not always achievable. Going to a
fail-safe state requires both a means for detecting a fault and the presence of
a system condition that is both known and achievable.

Other ways to address faults include

interlocks, transitioning to a fail-

safe state, use of additional safety

equipment and labelling.

Circumstances dictate which

approach to handling faults is

most appropriate.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 10

Highlights
How the UML can help

UML is a modeling language that is commonly applied to both software and
systems development. It provides a semantic basis of fundamental concepts and
views, using diagrams that depict the interaction of elements of interest. UML
can aid the development of safety-critical systems in a number of ways, by:

Providing design clarity.•	
Modeling low-level redundancy.•	
Creating safety-relevant views of the requirements and design.•	
Aiding in safety analysis.•	

Providing design clarity

First, UML can provide design clarity by exposing the design of the system in
class diagrams, known as internal block diagrams in Systems Modeling Language
(SysML), a profile or specialized version of UML used in system engineering. UML
can also specify the traceability to requirements. If all you have is source code,
then it can be extremely difficult to identify the redundant safety measures, trace-
ability to requirements and other safety-relevant aspects of the design.

Modeling low-level redundancy

One of the fundamental building blocks of a UML model is the notion of a
class or block in SysML. It contains features such as data (attributes), services
(operations), logic (state machines), algorithms (activity diagrams), quality of
service aspects (constraints), interactions (sequence diagrams) and connection
points (ports). When a class has safety relevance, it is possible to add low-level
redundancy, such as using cyclic redundancy codes (CRCs) on the class attri-
butes, data replication, and precondition and postcondition checking to ensure
that safety-relevant faults are identified and handled appropriately.

UML is a modeling language that

can help in the development of

safety-critical systems.

By exposing the design of the

systems in class diagrams, UML

can provide design clarity.

One of the fundamental building

blocks in UML is a class, which

contains features such as data

and services.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 11

Highlights
Creating safety-relevant views of the requirements and design

One of the biggest benefits that UML provides is the ability to construct views
(diagrams) that focus on narrow aspects of the system structure or design.
The same elements can be depicted in many different views and the underly-
ing model repository can ensure that all the views are consistent. The IBM
Rational Harmony™ for Embedded RealTime Development process4,5, a
software development process founded on UML, identifies five key views of
architecture, including the safety and reliability view. It typically shows the
structurally redundant elements and their interaction that achieves the safety
goals of the system, and can do this at different levels of abstraction. This
allows the engineering and safety staff to understand how faults propagate
through the system, how safety measures interrupt that fault propagation and
how to perform safety analysis of the designs.

Aiding in safety analysis

FTA, an analytic approach discussed later in the paper, is a common technique for
analyzing how faults lead to hazards and how to add safety measures to address
these concerns. While there are a few FTA tools available, it is possible to create a
safety-critical profile—a specialized version of the UML that’s consistent with the
underlying UML semantics to meet a specialized need—that permits the captur-
ing of fault metadata for analysis. The advantage of this is that the requirements,
design model and safety analysis are colocated and interconnected. This intercon-
nection allows developers to reliably navigate between these three kinds of views
with ease.

UML enables you to construct dia

grams that focus on narrow aspects

of the system design so you can

create safety-relevant views and

ensure that all views are consistent.

It’s possible to create a safety-

critical profile, a specialized version

of the UML to meet a specialized

need. In this way, you can capture

fault metadata for analysis.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 12

Highlights
Safety analysis with fault tree analysis

The Rational Harmony for Embedded RealTime Development process includes
a best practice workflow called “eight steps to safety.”6 This practice is meant
to be added on top of a general development process such as a traditional waterfall
lifecycle or spiral model, such as the Rational Harmony for Embedded RealTime
Development process.7,8 The basic practice steps are simple to understand and
relatively straightforward to implement.

Here are the Rational Harmony for Embedded RealTime Development eight
steps to safety:

Identify the hazards.1.	
Determine the risks.2.	
Define the safety measures.3.	
Create safety requirements.4.	
Create safe designs.5.	
Implement safety.6.	
Ensure the safety process.7.	
Test, test, test. 8.	

The safety analysis in steps 1–3 is performed early in the development lifecycle
and elaborated frequently throughout development. The safety analysis identi-
fies the hazards presented by a system used in its execution context. This feeds
back into the system requirements specification to ensure that the system, as
specified, is safe. The safety analysis results in a hazard analysis document that
lists the hazards presented by the system, the faults that can lead to the hazard,
the fault tolerance time of the hazard, the safety measure used to mitigate the
hazard and the necessary fault handling response time.

The Rational Harmony for Embedded

RealTime Development process

includes a best practice workflow

called the “eight steps to safety,”

which can be added on top of a

general development process.

The safety analysis results in a

hazard analysis document that

describes information about the

faults as well as the necessary

fault handling response time.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 13

Highlights
Safety design specifies the means for detecting and extenuating the faults in
the design. This is most commonly done by identifying the architectural and
detail design redundancy in such a way that the safety requirements are met.
The Rational Harmony for Embedded RealTime Development process recom-
mends this be done with the application of FTA to link the safety measures

with the faults to ensure fault coverage.

Safety testing is then performed to ensure that the safety requirements are met.
This typically involves testing the primary functionality and quality of service
testing used for nonsafety-critical systems as well as seeding the system with
faults. Seeded faults may be simulated, or they may be done by actually induc-
ing the faults in the running system. It is common, for example, to cut wires,
discontinue power and pull chips from sockets during fault seeding tests.

As mentioned above, FTA is a common and useful analytic technique applied
to safety-critical systems. In FTA, conditions leading up to hazards are logically
analyzed for cause-effect relations using standard logical operators AND, OR, XOR
and NOT. Figure 3 shows the basic symbols used in the FTA diagrams. FTA allows
you to analyze the preconditions of hazardous conditions and how they combine
with faults to result in hazards. When these relations are identified, you can add
safety measures whose faults must be ANDed with the original fault to lead to the
hazardous condition. In other words, to arrive at the hazardous condition, the
original fault must occur AND there must be a fault in the safety measure as well.
There is normally an assumption of single fault independence, which means that
the primary and safety-measure faults are independent. When the faults are not
independent, this is called a common mode fault and usually means that the safety
measure is inadequate for the need.

Safety testing involves testing the

primary functionality and quality of

service testing used for nonsafety-

critical systems as well as seeding

the system with faults.

FTA, a common and useful analytic

technique applied to safety-critical

systems, enables you to logically

analyze conditions leading up to

hazards for cause-effect relations.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 14

Highlights An event that results from a
combination of events through
a logic gate

A basic fault event that requires
no further development

An “undeveloped fault” event,
not elaborated because the event
is trivial or more decomposition
is not necessary

An event that is expected
to occur normally

NOT gate

A condition that must
be present to produce
the output of a gate

Transfer

AND gate

NAND gate

OR gate

NOR gate

XOR gate

Figure 3: FTA symbols

Consider the patient ventilator in figure 4. This system uses the Monitor-Actuator
design pattern, a generalized solution to a commonly occurring design problem,
to achieve safety against two different hazardous conditions: hypoventilation and
overpressure. This pattern creates two channels or sets of sequential processing
elements: the actuation channel delivers the therapy, and the monitoring channel
checks on how well the therapy is delivered.

Monitoring channel

Monitoring system

Control system

Actuation channel

Patient

Release
valve

Physician

Breathing
circuit

Ventilator
settings

Speaker

Alarm
display

Parameter
display

Expiratory mixture
CO2 sensor

Inspiratory O2
sensor

Expiratory
pressure sensor

Figure 4: Patient ventilator simplified model

The Monitor-Actuator design

pattern is a generalized solution

to a commonly occurring design

problem—achieving safety against

two different hazardous conditions.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 15

Highlights
Figure 5 shows an FTA for these two hazards. In an unprotected system,
a fault occurring in the breathing circuit, gas supply or ventilator can lead to
hypoventilation. Note that intubating the esophagus rather than the trachea can
also lead to hypoventilation. The architectural redundancy has added a number
of sensors that can detect these conditions, and a failure of all of these or a fail-
ure of the alarm system is required, in addition to the occurrence of the original
fault, for the hazard to be realized. In this case, the fault tolerance time for the
fault is about five minutes, leaving an adequate amount of time for the attending
physician to correct the fault.

The other hazard protected against is overpressure. In an unprotected system,
a fault in the breathing circuit, gas supply or ventilator presents the hazard.
Because the fault tolerance time for this fault is about 250 milliseconds, alarm-
ing is an inadequate safety measure. Therefore, the system includes a relief valve
that responds in less than 5 milliseconds to an overpressure situation. Because
of this additional safety measure, the original fault must occur in addition to a
failure in the safety measure before the hazard is realized.

Hypoventilation
Hazard

OR Gate

Breathing
circuit fault

Esophageal
intubation

Gas supply
fault

Ventilator
fault

Breathing
circuit fault

Ventilator
fault

Gas supply
fault

Overpressure

AND Gate

CO2 sensor
fault

Pressure
sensor failure

Relief valve
fault

CO2 sensor
failure

Alarm system
fault

Basic condition
or event

Figure 5: Patient ventilator, simplified FTA

Architectural redundancy adds a

number of sensors to detect fault

conditions. A failure in all of them

or a failure of the alarm system is

required for the hazard to be realized.

When a system has a short fault

tolerance time, alarming is an

inadequate safety measure.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 16

Highlights
UML profile for safety analysis

A profile is a coherent set of lightweight extensions to the UML, creating a
version of the UML specialized for some purpose or problem domain. A profile
can contain a number of things, including stereotypes, tags, constraints, new
diagram types, iconic representations and model libraries. Each stereotype
within a profile must extend a metaclass from the UML metamodel, such as
class, event or association. The stereotype is usually elaborated with metadata
stored in named tags, constraints on its usage and graphical iconic depictions.
For example, in the SysML profile, a flow port is a stereotype of port that applies
to flows. New types of diagrams may be created that represent collections of
these elements for specific purposes. For example, in the UML profile for the
U.S. Department of Defense Architecture Framework (DoDAF), U.K. Ministry
of Defence Architecture Framework MODAF (also known as the Unified Profile
for DoDAF/MODAF [UPDM]) and Operational Node Connectivity Description
(OV-2) product is a diagram based on a UML class diagram that specifically
contains stereotyped elements from the UPDM to show operational nodes within
an operational architecture and their relations.

In this context, this paper will show how to use the Rational Rhapsody tool
to create a safety analysis profile that adds new stereotyped elements to create
FTA diagrams, and custom matrix and tabular views to summarize the results
of the analysis. In addition, we will extend the typical definition of FTA ele-
ments to support traceable links from the FTA model into both requirements
and design elements.

Before a profile can be created, it is necessary to characterize the concepts
contained within the profile and how these concepts relate to one another. This
is usually done with a metamodel. A metamodel is a model of the fundamental
concepts and their relations for a domain or subject matter. Figure 6 (page 17)
shows the metamodel for the safety analysis profile (the metasubtypes of the
logical operator are detailed in Figure 7 [page 17]). The attributes of the meta-
classes will end up as tags on our defined stereotypes. The colored boxes are the
relations between the core metaclasses.

A profile is a set of lightweight

extensions to the UML that creates

a specialized version of UML for a

specific purpose.

You can use Rational Rhapsody

software to create a safety analysis

profile that adds new stereotyped

elements to create FTA diagrams.

Before creating a profile, you need

to characterize the concepts within

the profile and how the concepts

relate to one another, usually by

creating a metamodel.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 17

Highlights

Figure 6: Safety profile metamodel

Figure 7: Metasubtypes of logical operators

A metamodel is a model of the

fundamental concepts and their

relations for a domain or sub-

ject matter.

The metasubtypes of a logical

operator can be shown using a

diagram like figure 7.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 18

Highlights
The key elements for the metamodel (along with their profile realizations) are
as follows:

Hazard•	 —a condition that will lead to an accident or loss. This is usually
the top terminal element in an FTA. (Stereotype of class)
Fault•	 —the nonconformance of an element to its specification or expectation.

Faults are further subclassed into basic faults and undeveloped faults. These
are usually the bottom terminal elements in an FTA. (Stereotype of class)
Resulting condition•	 —the condition resulting from a combination of faults
and conditions, combined with logical operators. (Stereotype of class)
Required condition•	 —a condition required for the fault to interact. (Stereo-
type of class)
Logical operator•	 —one of several logic conjunctives, such as OR, NOT or
AND. Note that the transfer operator actually has no semantics of its own
but is used as a “diagram connector,” allowing large FTAs to be broken up
across multiple diagrams. (Stereotype of class)
Logic flow•	 —the connection of a fault, condition or hazard to a logical opera-
tor. The logic flow can be an input or an output. For example, in the statement
A || B -> C, there is a flow output from A as an input to the || (OR) operator.
There is also an output from flow the || operator to the resulting condition C.
(Stereotype of flow)
Fault source•	 —a normal UML element that could manifest a fault, for
example, or that could be the source of a fault. (Stereotype of class)
Safety measure•	 —a normal UML element that could detect or extenuate, or
mitigate, a fault. (Stereotype of class)
Manifest relation•	 —a relationship from a fault to a fault source that causes
the fault. (Stereotype of dependency)
Detect relation•	 —a relation from a fault or hazard to a safety measure that
can detect when the fault has occurred. (Stereotype of dependency)
Extenuates relation•	 —a relation from a fault or hazard to a safety measure
that reduces either the likelihood or severity of the hazard or fault. (Stereo-
type of dependency)
Trace to requirement•	 —a relation from a fault or hazard to a requirement.
(Stereotype of dependency)

Key elements for a metamodel

include hazard, fault, resulting

condition, required condition and

logical operator.

Additional elements for the meta-

model include logic flow, fault

source, safety measure, manifest

relation, detect relation, extenuates

relation and trace to requirement.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 19

Highlights
Fault and hazard elements have important metadata characterizing them. The
important metadata is summarized in table 1.

Table 1: Safety metadata

Metaclass Metadata Description

Hazard Fault tolerance time The length of time the fault can be tolerated before it
leads to an accident.

Fault tolerance time
units

The units of time, such as milliseconds, seconds,
hours or days.

Risk The product of the severity times the probability.

Severity The degree of damage the accident can cause.

Safety integrity level For standards such as IEC65-1508, the identified
SIL level.

Probability The likelihood of occurrence of the hazardous
condition, usually computed from the metadata of
the faults.

Fault Probability The likelihood the fault will occur.

MTBF The mean time between failures for the element.

MTBF time units The time units expressed in the MTBF meta-attribute.

Fault source Fault mechanism A description of how the fault can occur.

Safety

measure

Fault action time The length of time the corrective action requires to
complete once initiated.

Fault detection time The length of time from the occurrence of the fault to
its detection.

Fault time units The unit of time used in the fault action time and the
fault detection time.

Safety mechanism A description of how the detection and/or safety
action is performed.

Fault and hazard elements have

important metadata character-

izing them.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 20

Highlights
Tables, matrices and hazard analyses

In addition to the elements of the profile, new tables and matrices are added
in the profile as well, as shown in table 2.

Table 2: Tables and matrix summary views

Table or matrix Format Description

Fault table Rational Rhapsody table view A list of the faults and all their
metadata.

Hazard table Rational Rhapsody table view A list of the hazards and all their
metadata.

Fault source
matrix

Rational Rhapsody matrix view A fault × fault source matrix, as
defined by the manifests relations.

Fault detection
matrix

Rational Rhapsody matrix view A fault × safety measure matrix, as
defined by the detects relations.

Fault extenuation
matrix

Rational Rhapsody matrix view A fault × safety measure matrix, as
defined by the extenuates relations.

Hazard analysis Tab-separated value text
file (.tsv) intended to load
into a commercial spread-
sheet program

An external file generated by the
profile helper macros summarizing
the hazard and fault information.

The hazard analysis is generated as an external file with a helper macro. This
macro scans the entire model and generates the tab-separated value file that can
be loaded into most spreadsheet programs. The macro generates the name from
the current date and time so you can retain multiple versions of the hazard
analysis. The output is divided into three sections:

1. Lists the hazards and their metadata, including the description, fault toler-
ance time, fault tolerance time units, probability, severity, risk and safety
integrity level.

2. Lists the relations between the faults and the hazards as defined by multiple
intervening logical operators and logic flows. Each fault is identified with its
name, description and other metadata.

3. Lists the relations between the faults and the normal UML model elements,
such as requirements and classes related with the manifests, detects, extenu-
ates and traceToReqs relations.

Table 2 shows the tables and

matrices added in the profile.

The hazard analysis output is divided

into three sections. The first lists

hazards and their metadata. The

second lists relations between the

faults and hazards. And the third lists

the relations between the faults and

the normal UML model elements.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 21

Highlights
The hazard analysis provides a summary with enough information to trace
from the safety requirements to the model elements realizing those require-
ments, as well as from the faults and hazards to the requirements and design.

Using the profile

To use the profile in Rational Rhapsody, you can create a new safety analysis

model or you can add the profile after the model is created. If you do this, you
must select the project in the browser, right-click and then change the type of
the model to Safety Analysis Profile.

Once the model is created, a new diagram type—the FTA diagram—is available
on the diagram toolbar. All of the UML and Rational Rhapsody features remain
available to you. It is recommended to put the safety analysis in a separate pack-
age in your model to separate it from your requirements and design elements.

A medical example: the anesthesia machine patient ventilator

To illustrate the use of the profile, we’ll use a model for a surgical anesthesia
machine. This system delivers inhalant anesthetic drugs, mixes gases, delivers a
gas/drug mixture to the patient via ventilation, collects exhaled CO2 and monitors
both patient and machine status, including blood O2 saturation (SpO2), inspiratory
limb O2 concentration, expiratory limb CO2 concentration, inspiratory limb agent
(drug) concentration, gas flow and breathing circuit gas pressures.

To use the profile in Rational

Rhapsody, you can create a new

safety analysis model or add the

profile after the model is created.

A model for a surgical anesthe-

sia machine shows how to use

the profile.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 22

Highlights
Figure 8 shows a schematic for the SleepyTime anesthesia machine breathing
circuit and important sensors. The primary elements include:

Gas supplies, which may be wall supplies or tanks that supply medically •	
certified gases (O2, N2, N2O, He or air).
A gas mixer, which is formally a part of the ventilator and mixes the input •	
gases from the gas supplies as directed and outputs a mixed gas to the
breathing circuit.
A ventilator, which shapes the breath delivered to the patient. Its primary •	
parameters include the respiration rate of breaths/minute, tidal volume of
volume per breath, the ratio of inspiration time to expiration time (I:E ratio),
inspiratory time in seconds and an optional inspiratory pause that measures
the delay between breaths.
A vaporizer, which vaporizes an anesthetic drug, such as Suprane, Halothane or •	
Enflourane, and delivers it to the breathing circuit in the concentration specified.

Gas mixer

Ventilator system

Ventilator bellows

Gas flow
sensors

SpO2 (finger cuff)
sensor

Gas supply manifold

Agent (drug)
monitor

Inspiratory
pressure sensor

Gas flow sensor

Noninvasive blood
pressure (NiBP)

monitor

Inspiratory
O2 sensor

Expiratory
CO2 sensor

Patient lungs

Rebreathing system

Relief
valve

Expiratory limb

Inspiratory limb

CO2 scavenging system
Drug vaporizer

N2 N2O O2 He Air

Figure 8: Anesthesia machine schematic

The primary elements of the surgical

anesthesia model include gas

supplies, a gas mixer, a ventilator

and a vaporizer.

The schematic for the anesthe-

sia machine shows all of its

primary elements.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 23

Highlights
The overall use case model for the SleepyTime anesthesia system is shown
in figure 9. Certain functionality, such as CO2 scavenging, while important,
doesn’t involve the software and so is not included in this model. If this were a
system engineering model, then gas scavenging would be included.

Figure 9: SleepyTime anesthesia system use cases

Most of our discussion will focus on the patient. The delivery of ventilation
involves the timing of the inspiratory time and expiratory time, delivering a speci-
fied volume per breath (known as tidal volume) with either a specified I:E ratio
or, alternatively, a specified time for inspiration (inspiration time). Additionally,
an inspiratory pause may be specified as well as a respiration rate. In the context
of this discussion, the ventilator is a subsystem of the anesthesia machine. Figure
10 shows the use cases for the ventilator subsystem. The use of the stereotype
InternalActor indicates that the element used as an actor in this context is actu-
ally part of the system but within another scope, or another subsystem.

In this example, the focus is mainly

on the patient and how ventilation

affects him or her.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 24

Highlights

Figure 10: Ventilator use cases

Of course, there are a large number of requirements bound to each of the use
cases. These requirements are typically managed with requirements traceability
tools, such as IBM Rational DOORS® software, and can then be imported to the
model and attached to the use cases and design elements for traceability. For
example, figure 11 (page 25) shows the requirements for setting the different
ventilator parameters. Figure 12 (page 25) and figure 13 (page 26) show similar
requirements for two other use cases.

Requirements bound to each of the

use cases can be managed with a

requirements traceability tool, such

as Rational DOORS.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 25

Highlights

Figure 11: Requirements for use case set ventilation parameters

Figure 12: Requirements for use case alarm on critical event

Use case requirements can be shown

using diagrams like figures 11 and 12.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 26

Highlights

Figure 13: Requirements for use case display machine status

After we have an understanding of the requirements, we can begin to analyze
the system for safety. One of the expected results of such an analysis is the
identification of additional requirements needed to ensure the safe operation
of the system.

Consider a single hazard, hypoxia. This is a fundamental hazard for a ventila-
tor, but just one of many. Other hazards for a ventilator include hyperoxia,
overpressure, inadequate anesthesia, overanesthesia and leaking drugs into the
operating room environment. We would now create a new FTA diagram and
draw something like figure 14 (page 27).

A safety analysis identifies additional

requirements needed to ensure the

safe operation of the system.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 27

Highlights

Figure 14: FTA for the hazard hypoxia

Figure 14 shows the basic structure of the FTA for the hypoxia hazard. The
resulting condition, O2 concentration problem, occurs only if all of the follow-
ing faults occur: the breathing circuit O2 sensor fault, the SpO2 sensor fault
and the O2 supply fault. The last of these is the primary fault, while the other
two are faults in what are known as safety measures, elements and behaviors
added to the system specifically to address safety concerns. In this case, we add
both a breathing circuit sensor and an SpO2 finger cuff sensor to improve safety.

Safety measures are elements and

behaviors added to the system to

address safety concerns.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 28

Highlights
The hazardous condition due to a fault in the O2 gas supply can only occur if
both the SpO2 and breathing circuit O2 sensor have faults. This is what we mean
by ANDing redundancy. For the hazardous condition to occur, both the original
fault AND the fault in the safety measure must occur.

Furthering this analysis, we see that for an O2 concentration problem to result

in the hypoxia hazard, other conditions must be true. Specifically, the ventila-
tor must be in use and the attending physician must fail to take proper action,
either because he or she doesn’t know that action is required (failure to alarm
fault) or because for some reason he or she is unable to take action (physician
unable to manually ventilate).

Besides an O2 concentration problem, other faults could also result in hypoxia,
subject to the same overall conditions discussed in the previous paragraph. There
could be a problem delivering the gas (gas flow problem) or the patient could
be disconnected from the breathing circuit (connection problem). These latter
concerns are somewhat involved, and including them in this diagram would make
it difficult to read. For this reason, transfer operators connect them logically into
their appropriate position within this diagram even though they are drawn on a
separate diagram.

Transfer operators can be used

to logically connect issues into

the appropriate position within

a diagram, even when they are

drawn on a separate diagram.

If both the original fault and the

fault in the safety measure must

occur for the hazardous condition

to take place, it is known as

ANDing redundancy.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 29

Highlights

Figure 15: FTA for gas flow problem subdiagram

Figure 15 elaborates the FTA for the gas flow problem condition. Here again we
see that basic faults must be ANDed with the faults of safety measures for the
hazard to be realized. This analysis leads to the identification of new requirements
for the safety measures, such as gas flow sensors, CRCs on parameter settings and
redundant computation of ventilator control.

A more elaborate FTA can lead

to the identification of new

safety requirements.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 30

Highlights

Figure 16: FTA for the connection problem subdiagram

Figure 16 illustrates another concern for the hypoxia hazard, the problem of
misconnection or disconnection of the patient from the breathing circuit. A very

common problem is improper intubation, that is, the insertion of the breathing
circuit connection into the patient’s trachea. The most common physician fault
is intubation of the esophagus. Esophageal intubation cannot be detected with
gas flow sensors, pressure sensors or even O2 sensors. The selected safety mea-
sure is to add a CO2 sensor on the expiratory limb. Since the only thing in the
entire system that inserts CO2 into the breathing circuit is the patient’s lungs, if
the expiratory limb doesn’t see an increased CO2 concentration, then either the
patient isn’t producing CO2, which is a very bad sign, or the expiratory limb of
the breathing circuit isn’t connected to the patient’s lungs.

In the example, another concern

that can cause the hypoxia hazard

to occur is the misconnection or

disconnection of the patient from

the breathing circuit.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 31

Highlights
The identified faults can be characterized with the fault metadata by filling in
the identified tag fields. Figure 17 shows a portion of the generated fault table
summarizing the faults.

Figure 17: Fault table

One of the results for the safety analysis is the discovery of additional require-
ments to enhance safety. We can tie the requirements to the faults identified in the
FTA. For example, figure 18 shows the FTA for the connection problem linked to
the relevant requirements with the trace to requirement relation. This is important
because it binds the safety analysis directly to the requirements. The result of this
process is captured in the generated fault-requirement matrix, a portion of which
is shown in figure 19 (page 32).

Identified faults can be characterized

with the fault metadata by filling in

the identified tag fields.

Performing a safety analysis can

lead to the discovery of additional

requirements to enhance safety.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 32

Highlights

Figure 18: Faults linked to requirements

Figure 19: Fault-requirement matrix

Figure 18 shows the FTA for the

connection problem linked to

the relevant requirements with the

trace to requirement relation. This

binds the safety analysis directly

to the requirements.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 33

Highlights
During subsequent analysis and design, the UML model of the design elabo-
rates. Figure 20 shows a model system emphasizing the vaporizer and its
relations with other elements, while figure 21 shows the primary classes within
the ventilator subsystem.

Figure 20: SleepyTime subsystems

Figure 21: Ventilator design model

UML models can become more

elaborate during subsequent

analysis and design.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 34

Highlights
Figure 21 shows some electronic components with the stereotype electronics
colored in blue. The other elements are all software classes that collaborate to
realize the ventilator use cases.

During the design and development work, new hazards may be added—for
example, the selection of bottled O2 might result in a pressure explosion haz-
ard—and questions about whether the design appropriately addresses the safety
concerns may arise. At this point, you can elaborate the FTA model with that
information and add specific links from the profile, from the faults to the elements
in the model that can manifest the faults or that detect or extenuate the faults.

The safety analysis profile also supports linking the analysis and design elements
to the faults using the manifests (to fault sources), detects and extenuates (to safety
measures) relations. Figure 22 and figure 23 (page 35) show examples of such
elaborated FTA diagrams.

Figure 22: FTA with design element links

As you add new hazards through

design and development work, you

can elaborate the FTA model with

the new information.

The safety analysis profile helps

enable you to link the analysis

and design elements to the faults

using the manifests, detects and

extenuates relations.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 35

Highlights

Figure 23: FTA with additional design elements

Not only is this information visually apparent, it is also represented in the
fault source matrix, fault detection matrix and fault extenuation matrix. For
example, figure 24 (page 36) shows a portion of the matrix of the faults and
the design elements that can manifest them, while figure 25 (page 36) shows
the same view for the faults and the design elements that detect them.

Using the FTA, information is both

visually apparent and represented

in the associated matrixes.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 36

Highlights

Figure 24: Fault source matrix

Figure 25: Fault detection matrix

In addition, a comprehensive hazard analysis can be generated from the
annotated fault model. This is generated as an external tab-separated value
(.tsv) file. This file is placed automatically in the main directory of the model
and may be added as a controlled file into the model. This file can be read by
most spreadsheet programs, although you may have to customize the registry
to open the appropriate application if the spreadsheet program doesn’t do that
for you automatically.

A comprehensive hazard analysis

can be generated as a .tsv file from

the annotated fault model.

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 37

The hazard analysis consists of three sections. The first shows the hazards and
the metadata from the safety model. The output from this model is shown in
table 3.

Table 3: Hazard analysis part 1—hazard metadata

Hazard Description

Fault
tolerance
time

Fault
tolerance
time units Probability Severity Risk

Safety
integrity
level

Hypoxia The hypoxia hazard occurs when the
brain and other organs receive insufficient
oxygen. In a normal 21 percent O2
environment, death or irreversible injury
occurs after five minutes of no oxygen. If
the patient is breathing 100 percent O2
for a significant period of time, this time is
about 10 minutes.

5 minutes 1.00E-02 8 8.00E-02 3

Overpressure Overpressure can damage the lungs. This
is an especially severe trauma, possibly
fatal, to neonates.

200 milliseconds 1.00E+04 4 3.00E+04 3

Hyperoxia Hyperoxia problems are usually limited to
neonates, where it can cause blindness.

10 minutes 1.00E+05 4 4.00E+05 4

Inadequate
anesthesia

Inadequate anesthesia leads to patient
discomfort and memory retention of the
surgical procedures. This is normally
not life threatening but can be severely
discomforting.

5 minutes 1.00E+04 2 2.00E+04 2

Overanesthesia Overanesthesia can lead to death. 3 minutes 1.00E+03 4 4.00E+03 4

Anesthesia leak
into ER

Anesthesia leak can lead to short-term, in
smaller doses, or to long-term poisoning
of medical staff.

10 minutes 1.00E+05 5 4.00E+05 5

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 38

The second part of the hazard analysis summarizes the relations between the
faults and the hazards. This involves the tracing of multiple levels of logic flows
connecting the faults with the hazards. The output for this model is shown in
table 4.

Table 4: Hazard analysis part 2—hazard fault matrix

Hazard Fault or event Fault type Fault description MTBF

MTBF
time
units Probability

Hypoxia Ventilator engaged NormalEvent 1

Hypoxia Gas supply fault BasicFault This fault occurs when gas from a required
source is unavailable. This may be due to
any number of root causes, such as a stuck
or closed valve, running out of gas, or a leak.

1.00E+06 1.00E-06

Hypoxia Breathing circuit
leak

BasicFault This fault occurs when a significant amount
of gas leaks from the breathing circuit into
the surrounding environment. This can
lead to a poisoning hazard when the gas
contains anesthetic drugs.

1.00E+03 1.00E-03

Hypoxia Ventilator pump
fault

BasicFault This fault occurs when the pump internal
to the ventilator no longer functions to
shape the breath and push gas into the
breathing circuit.

1.00E+06 1.00E-06

Hypoxia Ventilator param-
eter setting wrong

BasicFault This fault occurs when a ventilator
parameter is out of range. This includes:

I:E ratio.•	

Tidal volume.•	

Respiration rate.•	

Inspiratory pause.•	

Maximum inspiratory pressure.•	

Inspiration time.•	

1.00E+04 1.00E-04

Hypoxia Ventilator computa-
tion incorrect

BasicFault This fault occurs when an error in the
software or a fault in a necessary resource
(such as memory) results in an incorrect
computation that in turn results in incorrect
delivery of ventilation.

1.00E+05 1.00E-05

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 39

Hazard Fault or event Fault type Fault description MTBF

MTBF
time
units Probability

Hypoxia Redundant
computational
channel fails

UndevelopedFault The redundant computational channel uses
a heterogeneous algorithm to compute the
output values as a check on the primary.
Since there are only two computational
channels, if one is in error, the system
cannot determine which channel is in error,
only that an error has occurred.

1.00E+05 1.00E-05

Hypoxia Ventilator param-
eter limiting fails

UndevelopedFault This fault occurs if the limit checks on the
setting of ventilator parameters fail. For
example, allowing a value to be entered that
is out of the allowed range, given the mode
(neonate or adult) of the system.

1.00E+06 1.00E-06

Hypoxia Gas flow sensor
fault

UndevelopedFault This fault occurs if the gas flow sensor
fails to correctly measure the gas flow
in the breathing circuit limb to which
it is attached or if it fails to send that
information to the system.

1.00E-07 1.00E-07

Hypoxia Ventilator param-
eter CRC check
fails

UndevelopedFault Ventilator parameters are protected with a
32-bit CRC algorithm. This is specifically
designed to identify situations in which
the value has been changed through
inappropriate means (such as memory cell
fault). A fault here means that the CRC fails
to identify the corruption of the parameter.

1.00E+05 1.00E-05

Hypoxia Esophageal
intubation

BasicFault This is a user fault, but is common. This is
mitigated by a CO2 sensor on the expiratory
limb of the breathing circuit.

1.00E+05 1.00E-04

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 40

Hazard Fault or event Fault type Fault description MTBF

MTBF
time
units Probability

Hypoxia Patient disconnect
from breathing
circuit

BasicFault This fault can occur as a result of jostling
the breathing circuit during a surgical
procedure.

1.00E+04 1.00E-04

Hypoxia Power supply fault BasicFault The mains can fail because of a source
power supply fault or if the power cord
becomes unplugged.

1.00E+05 1.00E-05

Hypoxia Backup power fails UndevelopedFault The battery backup exists as a safety
means to enable the system to continue
to provide therapy and monitoring when
mains fail. This fault means that the backup
system is unable to provide that backup.

1.00E+04 1.00E-04

Hypoxia Physician unable
to manually
ventilate

UndevelopedFault The anesthesiologist is required to have a
manual ventilation system available in the
case of an unrecoverable system failure.
This fault may occur because that manual
system is missing or nonfunctional or if
the system has alarmed but the physician
is unaware of the alarm or of the need for
immediate action.

1.00E+10 1.00E-10

Hypoxia Failure to alarm BasicFault The alarm system exists solely for safety
reasons. Therefore, it need not be extenu-
ated by another system since it exists
solely to address safety issues of the pri-
mary systems. It must, however, be tested
as a part of system start up.

1.00E+05 1.00E-05

Hypoxia SpO2 sensor fault UndevelopedFault The SpO2 sensor is a fingercuff O2 sensor.
This fault occurs if the sensor does not
accurately determine the blood concen-
tration of O2 or if the sensor is unable to
communicate its readings to the system.

1.00E+07 1.00E-07

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 41

Hazard Fault or event Fault type Fault description MTBF

MTBF
time
units Probability

Hypoxia Breathing circuit O2
sensor fault

UndevelopedFault The breathing circuit O2 sensor is provided
to ensure that the O2 delivered from the
system matches expectations. This fault
means that it is unable to either determine
the O2 concentration or unable to communi-
cate that information.

1.00E+07 1.00E-07

Hypoxia Inspiratory pres-
sure sensor fault

UndevelopedFault The inspiratory pressure sensor is used to
determine that the pressures delivered to
the patient lungs are within minimum and
maximum limits and that they match the
expectations of the system based on the
delivery of the shaped breath. This fault
means that the sensor is either unable to
determine pressure accurately or that it
cannot communicate these values to
the system.

1.00E+07 1.00E-07

Hypoxia Expiratory limb
CO2 sensor fault

UndevelopedFault The expiratory limb CO2 sensor exists to
ensure that the breathing circuit is properly
connected to the patient. If there is inad-
equate CO2 in the expiratory limb, then
either the patient isn’t generating CO2 or
the expiratory limb is disconnected from
the patient. This fault means that the sensor
is either unable to accurately determine the
CO2 concentration or is unable to communi-
cate those values to the system.

1.00E+07 1.00E-07

Hypoxia O2 supply fault BasicFault The O2 supply fault can occur because of
an exhaustion of the supply itself, stuck
or incorrectly commanded valves, or a
problem in the supply line to the ventilator.

1.00E+04 1.00E-04

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 42

Lastly, the hazard analysis contains the relations between all faults and the
elements of the model, including requirements, and classes that manifest
detect or extenuate faults. This view is crucial for a detailed understanding
of the correctness and safety of a design model. Table 5 shows the output for
the example model.

Table 5: Hazard analysis part 3—fault to model element relations

Fault or event Requirements Manifestors Detectors Extenuators

Gas supply fault REQ_BCM_01 GasValve GasFlowSensor Alarm

Gas supply fault REQ_VD_06

Gas supply fault REQ_VD_03

Gas supply fault REQ_VD_04

Gas supply fault REQ_VD_08

Breathing circuit leak REQ_VD_03 PressureSensor Alarm

Breathing circuit leak REQ_VD_04

Breathing circuit leak REQ_VD_06

Ventilator pump fault REQ_VD_06 Pump PumpController PumpController

Ventilator parameter
setting wrong

REQ_vent_limit_range_on_
patient_mode

PumpController ProtectedCRCClass Alarm

Ventilator parameter
setting wrong

REQ_vent_parameter_out_of_
range_setting

Ventilator parameter
setting wrong

REQ_Vent_confirmation

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 43

Fault or event Requirements Manifestors Detectors Extenuators

Ventilator computation
incorrect

REQ_BCM_06 PumpController GasFlowSensor Alarm

Ventilator computation
incorrect

REQ_BCM_07 GasMixer

Ventilator computation
incorrect

REQ_BCM_08

Ventilator computation
incorrect

REQ_BCM_09

Redundant computational
channel fails

REQ_VD_10 PressureSensor Alarm

Redundant computational
channel fails

GasFlowSensor

Redundant computational
channel fails

GasMixer

Ventilator parameter
limiting fails

REQ_vent_parameter_out_of_
range_setting

PumpController ProtectedCRCClass Alarm

Ventilator parameter
limiting fails

REQ_vent_limit_range_on_
patient_mode

Gas flow sensor fault REQ_BCM_03 GasFlowSensor Alarm

Ventilator parameter CRC
check fails

REQ_vent_parameter_out_of_
range_setting

ProtectedCRCClass Alarm

Ventilator parameter CRC
check fails

REQ_vent_limit_range_on_
patient_mode

Esophageal intubation REQ_BCM_02 CO2Sensor Alarm

Esophageal intubation REQ_BCM_07

Esophageal intubation REQ_VD_06

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 44

Fault or event Requirements Manifestors Detectors Extenuators

Patient disconnect from
breathing circuit

REQ_Display_Pressures CO2Sensor Alarm

Patient disconnect from
breathing circuit

REQ_BCM_02 GasFlowSensor

Patient disconnect from
breathing circuit

REQ_Display_Status_constantly PressureSensor

Patient disconnect from
breathing circuit

REQ_Display_CO2

Patient disconnect from
breathing circuit

REQ_BCM_03

Patient disconnect from
breathing circuit

REQ_BCM_07

Power supply fault REQ_VD_11 PowerSupplyRegulator Battery Battery

Backup power fails REQ_VD_12 Battery PowerSupplyRegulator PowerSupplyRegulator

Failure to alarm REQ_Chart_recorder_alarms AlarmManager

Failure to alarm REQ_Alarm_retention

Failure to alarm REQ_Alarm_categories

Failure to alarm REQ_Warning_sounds

Failure to alarm REQ_Dismiss_alarms

Failure to alarm REQ_Critical_reannounciation

Failure to alarm REQ_Critical_alarms

Failure to alarm REQ_Alarm_condition

Failure to alarm REQ_informational_alarms

Failure to alarm REQ_Critical_alarm_sounds

Failure to alarm REQ_warning_alarms

Failure to alarm REQ_informational_alarms

Failure to alarm REQ_patient_alarms

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 45

Fault or event Requirements Manifestors Detectors Extenuators

SpO2 sensor fault REQ_SpO2_01 SpO2Sensor PumpController AlarmManager

SpO2 sensor fault Alarm

Breathing circuit O2
sensor fault

REQ_BCM_01 O2Sensor GasMixer Alarm

Breathing circuit O2
sensor fault

REQ_BCM_05 AlarmManager

Breathing circuit O2
sensor fault

REQ_BCM_06

Inspiratory pressure
sensor fault

REQ_BCM_11 PressureSensor

Expiratory limb CO2
sensor fault

REQ_BCM_02 CO2Sensor PumpController Alarm

Expiratory limb CO2
sensor fault

REQ_BCM_07

Expiratory limb CO2
sensor fault

REQ_VD_06

O2 supply fault REQ_VD_03 GasValve GasMixer AlarmManager

O2 supply fault REQ_VD_04 Alarm

O2 supply fault REQ_VD_08

O2 supply fault REQ_VD_06

O2 supply fault REQ_BCM_01

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 46

Summary

This paper has shown how to use the UML to aid in the requirements analysis,
safety analysis and design of safety-critical systems. FTA is well established as a
useful method for understanding how normal events, conditions and faults com-
bine to create hazardous conditions. The safety analysis profile discussed in this
paper adds the ability to create and report on FTA diagrams in a UML tool. This
includes the specification of safety-related metadata, such as hazard severity,
risk, probability and safety integrity level, as well as fault probability and MTBF.
The profile extends the FTA method by supplying relations from the analysis to
normal UML model elements—specifically, requirements, source of faults and
elements that can detect or extenuate the faults. These extensions add value by
making the relations between the safety analysis and the UML model elements
explicit and traceable.

This profile supports the safety approach identified in the IBM Rational Harmony
for Embedded RealTime Development process. Using this profile, developers and
safety analysts can use a common language and tool environment, improving
their collaboration and quality of work.

FTA is a useful method for under-

standing how normal events,

conditions and faults combine to

create hazardous conditions.

The safety profile discussed in this

paper supports the safety approach

identified in the IBM Rational

Harmony for Embedded RealTime

Development process.

Highlights

Analyze system safety using UML within
the IBM Rational Rhapsody environment.
Page 47

For more information

To learn more about how you can use the UML to perform safety analysis,
contact your IBM representative or IBM Business Partner, or visit:

ibm.com/software/rational

http://www.ibm.com/software/rational

 Endnotes

1	 Nancy Leveson, Safeware: System Safety and Computers, Reading, MA: Addison-Wesley, 1995.

2 Guidance for FDA Reviewers and Industry: Guidance for the Content of Premarket Submissions for
 Software Contained in Medical Devices, Washington, D.C.; FDA, 1998.

3 IEC 65A/1508: Functional Safety: Safety-Related Systems Parts 1-7, IEC, 1995.

4, 6, 7 Bruce Powel Douglass, Doing Hard Time: Developing Real-Time Systems with UML, Objects,
 Frameworks and Patterns, Reading, MA: Addison-Wesley, 1999.

5, 8 Bruce Powel Douglass, Real-Time Agility, Reading, MA: Addison-Wesley, 2009.

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
June 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, Rational, Harmony, and
Rhapsody are trademarks or registered trademarks
of International Business Machines Corporation in
the United States, other countries, or both. If these
and other IBM trademarked terms are marked on
their first occurrence in this information with a trade-
mark symbol (® or ™), these symbols indicate U.S.
registered or common law trademarks owned by
IBM at the time this information was published. Such
trademarks may also be registered or common law
trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright
and trademark information” at ibm.com/legal/
copytrade.shtml

Other company, product, or service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness and
accuracy of the information contained in this docu-
mentation, it is provided “as is” without warranty of
any kind, express or implied. In addition, this infor-
mation is based on IBM’s current product plans and
strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any dam-
ages arising out of the use of, or otherwise related
to, this documentation or any other documentation.
Nothing contained in this documentation is intended
to, nor shall have the effect of, creating any warran-
ties or representations from IBM (or its suppliers or
licensors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

RAW14124-USEN-01

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

