
IBM Rational Rhapsody and Rational Rose

White paper

June 2009

Make the transition to IBM Rhapsody
software.
A guide to increased productivity and quality

Scott Niemann, IBM

Make the transition to IBM Rhapsody software
Page 2

2 Executive summary

2 MDD versus CASE

3 IBM Ration Rhapsody and IBM

Rational Rose

7 Domain-specific modeling

14 Conclusion

Contents
Executive summary

In the past decade, modeling with the Unified Modeling Language (UML) has

evolved as a powerful way to describe systems architecture and design intent.

With IBM® Rational® Rose® software, IBM emerged as a key player in bringing

UML to the systems market. Rational Rose software not only addressed the

design aspects of a system through UML, it also included an architectural

framework that helped enable it to integrate with other lifecycle development

tools to create a complete solution from concept to target system. Although still

a useful tool, updates in technology and development standards have paved the

way for more modern solutions such as IBM Rational Rhapsody® software to

offer new capabilities.

The Rational Rose application aimed to reduce the complexity of designing sys-

tems and software architectures and to improve collaboration by leveraging

UML as a common language that could be easily adopted and understood by

engineers. While this approach has enjoyed great success, keeping pace with

technological evolution and increasing system complexity requires a solution

that addresses the gaps that exist within Computer Aided System Engineering

(CASE) technology. Model-driven development (MDD) is a technology that

addresses testing and implementation while allowing you to easily take advan-

tage of your existing intellectual property in the form of Rational Rose models

or even source code.

MDD versus CASE

Model-driven development uses UML 2 models to specify not only the design,

but also requirements and implementation. As such, these specifications of var-

ious parts of the design process are executable—they can be validated as the

system is being developed. The CASE technology upon which the Rational Rose

solution is built is used primarily for documenting the system architecture and

specifying how the implementation will proceed. However, because the docu-

ment is static, CASE technology can’t provide an optimal way to validate

whether a specification is correct or how a system will behave. Therefore, if an

error is introduced into the system in the early design phase, it may not be

caught until implementation is complete.

IBM Rational Rose set the stage for
incorporating UML into the systems
design marketplace. IBM Rational
Rhapsody offers a model-driven
development (MDD) solution with
additional capabilities to handle
new and emerging technology and
development standards.

Make the transition to IBM Rhapsody software
Page 3

Figure 1 illustrates how costly it can be to miss errors early in the lifecycle.

Many errors are introduced in the early stages of high-level (HL) and software

(SW) design, primarily because of misinterpreted requirements. Catching

errors before the implementation phase can save both money and time. As the

lifecycle progresses and architecture and implementation features are added,

the cost of finding and correcting design errors can be catastrophic.

Highlights

Figure 1. Cost of errors in the design phase

The goal of an MDD approach with IBM Rational Rhapsody is to catch the

defects early in HL design because the cost of change at this point is minimal.

Fixing errors in the design phase lowers not only the cost, but also the time

spent in development.

IBM Ration Rhapsody and IBM Rational Rose

At the most basic level, Rational Rose is a subset of IBM Rational Rhapsody

because the Rhapsody software not only supports the latest UML standard, it

also supports standard, domain-specific profiles such as the Systems Modeling

Language (SysML). This flexibility enables developers to use the design lan-

guage most appropriate for describing their problem domain. IBM Rational

Rhapsody, an MDD platform, is used primarily for the aspects of the environ-

ment that go beyond simple modeling. We will discuss these aspects later in this

white paper. The migration process presented allows users of Rational Rose

software to take advantage of the advanced capabilities of IBM Rational

Rhapsody after they migrate their data.

Rhapsody helps you find and fix
errors before they are implemented,
saving you time and money.

IBM Rational Rose users can
easily migrate their data to
Rhapsody software to take
advantage of its advanced MDD
capabilities.

Make the transition to IBM Rhapsody software
Page 4

Figure 2. IBM Rational Rose and Rational Rhapsody

Model-based testing

The biggest differentiator for Rational Rhapsody software is its testing capabil-

ities, specifically model-based testing. With this feature, engineers can validate

the architecture as it is being created, helping to eliminate defects early in the

development process, before a single line of code is written. This technology

helps accelerate development at a lower cost because less time is spent fixing

errors late in the design phase. Additionally, testing can be automated on the

design so that regression suites will execute every night.

The two key aspects of model-based testing are model-level debugging and

automated requirements-driven testing.

Model-level debugging

With model-level debugging, you can test the system as it is built and reduce

defects as they are introduced into the system. There are multiple levels of

granularity to this debugging, the systems level and the source level for imple-

mentation.

Highlights

IBM Rational Rhapsody differenti-
ates itself from its competitors with
its robust model-based testing and
debugging capabilities.

Make the transition to IBM Rhapsody software
Page 5

Figure 3. Model-level debugging

In Figure 3, the design on the right-hand side highlights as the system exe-

cutes. This allows you to see exactly where you are within a certain component

of the system, be it a subsystem or even an actual class. The HTML panel on the

left can be used to inject a stimulus into the design. This panel is automatically

created by the Rational Rhapsody application so you can more easily test the

system by clicking on events on the panel. If the system is a device under devel-

opment, such as a mobile phone, the panel can be extended to more realistically

represent the system. This approach better communicates the intent of the

design to customers, marketers and engineers.

Often, developers need to perform functional testing of the system before hard-

ware is available. Model-level debugging helps reduce the amount of time spent

in integration and system testing because many defects are eliminated by these

phases in the lifecycle. When the hardware becomes available, the application

can be built for the target platform, and the model-level debugging can be per-

formed on the actual target, provided there is a link from the target to the host

platform.

Highlights

Visual, model-level debugging
enables you to see how your
integrated system will operate at
implementation, even before the
components are built.

Make the transition to IBM Rhapsody software
Page 6

Requirements-driven testing

Requirements-driven testing allows you to verify that your systems satisfy the

customers’ requirements, which may be maintained in a requirements database

such as IBM Rational DOORS®, IBM Rational RequisitePro®, or in a Microsoft®

Word or Excel document. These requirements can be depicted as model

elements in the MDD environment and linked to scenarios that describe how

the system fulfills customer requirements. These scenarios, in turn, become

test vectors that can be built and automatically executed for regression testing.

The scenario simply describes the expected execution of the system based on

an external stimulus. The linkage between the scenarios and the customer

requirements can be synchronized back to the requirements database as well to

provide traceability information. This process is illustrated in Figure 4 which

shows a requirements database first imported into Rhapsody software, then

linked to design-level test vectors.

Highlights

DOORS functional

requirements, could also

be any text requirements

Requirements are

realized within

Rhapsody

Requirements

are detailed

through

scenarios and

executed to help

ensure

compliance

Figure 4. Requirements to design to test linkage.

Linking test scenarios to your
requirements database enables
you easily trace and show how
each test validates a customer
requirement and how each
requirement can and will be tested
to ensure compliance.

Make the transition to IBM Rhapsody software
Page 7

You can use the execution results of the MDD environment to deter-

mine if a requirement has been satisfied by the modeled

communication systems. This means the test vector on the right of

Figure 5 can be used as the benchmark of a pass/fail result. The exe-

cuting model can show what the system is actually doing and

automatically compare it against the benchmark. The traceability

helps enable you to easily keep track of which customer requirements

are being satisfied by the resulting executing system and where you

still need compliance. This approach more easily allows you to pro-

duce systems that meet customer expectations.

Domain-specific modeling

UML is a powerful language for modeling, but it only provides a

generic template of information for systems. Modeling closer to the rel-

evant domain reduces ambiguity and provides a clearer view of the

design intent for colleagues and customers. IBM Rational Rhapsody

supports the latest version of SysML to enable systems engineers to use

a functional decomposition approach for building high-level system

components and modeling subsequent subsystems.

Beyond horizontal disciplines, such as software and systems engineer-

ing, Rhapsody software supports domain-specific profiles for the

automotive, aerospace, defense and communications industries.

Profiles can also be created for your organization to help you better

specify the true intent of your designs. Figure 5 is an example of the

Department of Defense Architecture Framework (DoDAF), a frame-

work used in the aerospace and defense market, represented in the

Rhapsody solution.

Highlights

Combining the power of UML
with domain-specific profiles
enable organizations to create mod-
els with a clear, industry-specific,
view of their design intent.

Make the transition to IBM Rhapsody software
Page 8

Figure 5. Example of an industry-specific profile—DoDAF.

Profiles can also be created for organization-specific purposes. Profiles are

extensions of UML 2, so they are compatible with XML Metadata Interchange

(XMI), which is used for model interchange. A systems designer can model a

profile in Rhapsody software to use as a modeling template and distribute the

template to systems developers throughout the organization. This approach

can better enable your organization to adhere to design best practices and

guidelines.

Make the transition to IBM Rhapsody software
Page 9

Collaboration

Another area where Rational Rhapsody benefits are clear is in development

teams, where the focus is on producing robust software. Rational Rhapsody

software provides an environment where the model and the code are

integrated. If you simply want to create an operation in Rational Rhapsody

and handwrite the code in C, you can do it. The information is stored in the

model. Rather than maintaining the model and code separately, you have one

model element that you check in and out of your configuration management

(CM) repository, which can greatly reduce and simplify parallel development.

Graphical differencing and merging

The graphical differencing and merging capability of Rhapsody software

makes the integration of model and code possible. As shown in Figure 7,

Rhapsody software not only comes with its own auto-merging facility, it also

integrates with CM tools such as IBM Rational ClearCase® software. For exam-

ple, you can simply run the auto-merge facility in Rational ClearCase software,

and the Rhapsody solution differencing and merging tool is designed to auto-

matically merge the design (both model and code). If there are any conflicts,

systems developers can resolve them by viewing the graphical differences in

IBM Rational Rhapsody. Model and code merging helps simplify and drasti-

cally reduce integration time.

Highlights

Figure 6. Rhapsody software differencing and merging

Rhapsody software facilitates a
flexible coding environment that
integrates with multiple configura-
tion management tools and enables
collaborative development.

Make the transition to IBM Rhapsody software
Page 10

The window on the left of Figure 6 shows the model data and indicates if there

are differences that require merging. If some of that model data is code, then

developers—through the Rational Rhapsody solution’s integration with com-

mon text differencing tools— can use the differencing tool of their choice,

including those available in Rational ClearCase software and other CM tools.

But this is only necessary if the change could not be merged automatically.

In the case of graphics, the diagram on the right of Figure 6 shows how changes

that cannot be resolved are displayed. You can step through these changes to

create a merge candidate.

This functionality is integrated with the Rational ClearCase application

through its type manager facility, so the invocation of auto-merge and Rational

Rhapsody software differentiate/merge is actually done through a Rational

ClearCase software command line or through a version tree.

Code-centric workflow

The ability to code efficiently and effectively is extremely important to most

developers. The Rational Rhapsody solution offers a series of powerful tools

that can make coding easier or even allow you to design models that automati-

cally output the code you might otherwise write by hand. No matter which

method you choose, Rational Rhapsody software helps ensure that the code

and model are always synchronized and the design documentation is an exact

representation of the implementation. The code-centric workflow is broken

down into synchronization as well as component reuse through visualization.

Highlights

The synchronization capabilities
of Rational Rhapsody help ensure
that code changes are reflected in
the model and model changes are
reflected in the code.

Make the transition to IBM Rhapsody software
Page 11

Code synchronization

The code synchronization capabilities of Rational Rhapsody enable you to

produce code in whichever way is most familiar and comfortable, while still

ensuring that the design and model remain synchronized. As you type code in

the editing environment, the system automatically updates the model. The

“code respect” feature ensures that the placement of information within the

source file will be respected in the modeled environment. That is, if you add

data and operations in a particular place in a file, that information will remain

there through future engineering tasks.

Highlights

Respect

Figure 7. Code synchronization: Whether you update the code or the model, both are synchronized
and code placement is respected in the Rhapsody application environment.

Visualization

Software reuse is often especially important to Rational Rose users because, in

most cases, software has been written to comply with the design specification

created in the Rational Rose application. Though it’s sometimes necessary to

recreate new system components from scratch, in many cases Rhapsody soft-

ware facilitates the reuse of proven intellectual property, offering greater

advantage over the competition.

IBM Rhapsody helps Rational
Rose users reuse their intellectual
property while taking advantage of
Rhapsody’s enhanced modeling
and testing capabilities.

Modeling helps developers
visualize their code, which contrib-
utes to their overall understanding
of a system’s architecture.

Make the transition to IBM Rhapsody software
Page 12

Often, this intellectual property is code. In embedded systems, the code is

usually written in the C++, C or Java™ language. Using a model, you can visual-

ize the code, which helps improve your understanding of the architecture.

When necessary, you can even reverse-engineer the code into the model for

intellectual property capture and refine it as part of the ongoing design. The

model also provides automatic design documentation so you can spend more

time in design and implementation and less time documenting.

Component-based design

Component-based design uses modeling methodologies to create plug-

and-play development environments where software may be created as reusable

components. Rational Rhapsody facilitates this kind of development approach

by offering the following:

•	 UML 2 compatibility

•	 The ability to save individual components such as classes, subsystems or other

software units

•	 The ability to export or reference components to other projects

The combination of these technologies helps enable teams to accelerate the

design phase by improving collaboration and reuse.

Highlights

The component-based design
features in Rational Rhapsody
software facilitate the creation of
reusable components to help
accelerate design and foster
collaboration.

Make the transition to IBM Rhapsody software
Page 13

Another benefit of component-based design is the ability to create complete

applications, rather than code skeletons, for virtually any realtime target. For

build processes that incorporate components from third parties or other

groups, Rhapsody software provides a rich command line interface that can be

easily incorporated into build scripts. Make files, which sometimes present a

challenge, can be automatically generated and you can also dictate precise

specifications about how to generate build files.

 Realtime operating system

Legacy code Rhapsody application

Figure 8. Rhapsody application architecture

Figure 8 depicts a simplified Rhapsody application. The Rhapsody application

represents the UML 2 or other domain-specific profile used to model the sys-

tem. With Rhapsody software, you can completely model code behavior,

including state-machine and activity diagram behaviors. You can also easily

incorporate legacy code using the visualization tools such as graphical compo-

nent diagrams. You can then rapidly retarget from the host environment to

actual target systems, such as Linux®, Wind River VxWorks, 16-bit operating

systems (OS) or even no OS at all.

Make the transition to IBM Rhapsody software
Page 14

The Rational Rhapsody application is designed to be target independent of

the underlying operating system. Although it uses the services of the underly-

ing operating system at all times, the Rhapsody application introduces no

additional ones. Rational Rhapsody achieves this through a thin abstraction

layer that enables the application to be created generically for a particular OS.

The concrete operating system is easily selected using the Rational Rhapsody

environment’s menus. This mechanism can be extended to virtually any OS.

Conclusion

Transitioning to Rational Rhapsody and bringing the latest capabilities of

MDD into your development environment can help you improve productivity,

system performance and time to market while reducing cost. The primary

benefits of an MDD approach can include:

•	 Reduce errors early in the development lifecycle with model-based testing.

•	 Improve communication within your organization through domain-specific

modeling based on UML 2.

•	 Simplify and automate documentation.

•	 Improve complex systems integration and team collaboration.

•	 Reuse existing IP in current software development processes with a code-centric

workflow.

•	 Accelerate application development with a plug-and-play approach for virtually

any platform and existing tool infrastructure.

Rational Rhapsody helps enable
an MDD approach which can help
companies develop higher quality
systems faster and more efficiently.

Highlights

Make the transition to IBM Rhapsody software
Page 15

For more information

To learn more about IBM Rational Rhapsody, please contact your

IBM representative or IBM Business Partner, or visit:

ibm.com/software/rational

http://ibm.com/software/rational

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
June 2009
All Rights Reserved in the United States of America,

IBM, the IBM logo, ibm.com, Rational, Rhapsody, Rose,
ClearCase, RequisitePro, and DOORS are trademarks or
registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.
If these and other IBM trademarked terms are marked on
their first occurrence in this information with a trademark
symbol (© or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this
information was published. Such trademarks may also
be registered or common law trademarks in other coun-
tries. A current list of IBM trademarks is available on the
Web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

Microsoft is a trademark of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are
trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, or service names may be
trademarks or service marks of others.

References in this publication to IBM products and
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation is
provided for informational purposes only. While efforts
were made to verify the completeness and accuracy
of the information contained in this documentation, it is
provided “as is” without warranty of any kind, express or
implied. In addition, this information is based on IBM’s
current product plans and strategy, which are subject
to change by IBM without notice. IBM shall not be
responsible for any damages arising out of the use of,
or otherwise related to, this documentation or any other
documentation. Nothing contained in this documenta-
tion is intended to, nor shall have the effect of, creating
any warranties or representations from IBM (or its sup-
pliers or licensors), or altering the terms and conditions
of the applicable license agreement governing the use
of IBM software.

RAW14047-USEN-01

http://ibm.com/legal/copytrade.shtml

