
Batch-Modernisierung auf Basis von Java,
CICS und MQ

Joerg-Ulrich Veser

Client Technical Professional for
WebSphere on System z

jveser@de.ibm.com

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Liberty Profile

Expanded Tooling and WAS
Tooling Bundles

OSGI programming model
enhancements

EJB support in OSGi apps

JDK7 Support

Migration toolkit

Web 2.0 & Mobile Toolkit; IBM
Worklight Integration

SCA OASIS programming
model

WAS V8.5 Delivers
Unparalleled Application Development and Management
Environment, Rich User Experiences…Faster

Developer Experience Operations and Control

Fast, flexible,
and simplified
application
development

Application Edition
Management

Application Server Health
Management

Dynamic Clustering

New Intelligent Routing
capabilities

Messaging infrastructure
resiliency

Memory leak detection &
protection in WAS

Intelligent
Management
& Enhanced
Resiliency

Improved
Operations,
Security, Control
& Integration

Selectable JDK

WebSphere Batch
enhancements

Admin Security Audit

OSGi Blueprint security
improvements

Cross Component Trace
(XCT)

Enhanced IBM Support
Assistant

Better log and trace filtering

 Application Resiliency

3

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Concept of "Dedicated Batch" Window Going Away

24 x 7 x 365 Access
Users of your online systems
expect availability at all hours

Users from other parts of the
world means availability is
expected around the clock

Mobile Users
Users are no longer tied to a
desk and a computer. Today
users have access to mobile
computing devices that are with
the user wherever they may be.
Day or night, home or office.

Online

Batch

Online

Batch

In the past ... Today ...

Windows of time which used to be dedicated to batch processing are shrinking.
 The demands of online processing require more and more ...

The need to process batch work has not gone away.
The need to perform the work concurrent with OLTP has emerged.

4

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

The Value of Shared Services
It's not just that the window is shrinking ... it's also the cost pressures on
maintaining the batch and OLTP environments:

Efficiencies through consolidation around common assets

Batch
Infrastructure

OLTP
Infrastructure

OLTP
Applications

OLTP
Development

Tools

Batch
Applications

Batch
Development

Tools

Homegrown
Middleware

Infrastructure

Batch Support Staff OLTP Support Staff

Batch + OLTP
Common Infrastructure

Batch + OLTP
Common Tooling

Common Support
Staff

Homegrown
Middleware

Infrastructure

Shared
Java

Assets

OLTP
Applications

Batch
Applications

5

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Java for Batch Processing?
Yes ... for many very good reasons:

Java is a registered trademark of Oracle

Availability of Skills
Java is a programming language with wide adoption in the industry.
Skills for Java programming are common and affordable.

Tooling Support
Development tooling for Java has advanced to the point where some
tools (IBM Rational Application Developer) are very powerful and
sophisticated.

This also provides an opportunity to consolidate to a common tooling
environment for both OLTP and batch development.

z/OS Specialty Engines
Pressures on cost containment often dictate greater use of z/OS
specialty engines. Java offloads to zAAP. Java batch does as well.

Processing in OLTP Runtime
Running Java batch in the same execution runtime as Java OLTP
provides an opportunity to mix and manage the two processing types
together under the same management model.

6

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

The Objective -- OLTP and Batch Mixed and Managed:
OLTP and Batch do not need to be "either / or" ... it can be "both":

With IBM WebSphere Batch this is possible. OLTP and
Batch processing within a common execution runtime

(WebSphere Application Server) allows the WAS platform
to mix and manage the two workload types.

11:00pm Midnight 1:00a 2:00am 3:00am

OLTP ProcessingBatch Processing Batch Processing

OLTP Processing Batch

Batch OLTP Batch OLTP Batch

Batch Processing OLTP Processing

OLTP Batch OLTP Processing Batch OLTP

Compute
Processing
Resources

Overview
A high-level look at the IBM WebSphere

Java Batch model

8

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

IBM Compute Grid V8 and IBM WAS V8.5
The IBM WebSphere Java Batch function is provided in two ways today:

IBM WebSphere
Compute Grid

Version 8

IBM WebSphere
Application Server

Version 7 or 8

Operating Systems Supported:
AIX, IBM i, Linux, Windows, HP-UX,

Solaris, Linux for System z, z/OS

Add the function ("Augment")

IBM WebSphere
Application Server

Version 8.5

Operating Systems Supported:
AIX, IBM i, Linux, Windows, HP-UX,

Solaris, Linux for System z, z/OS

Compute Grid V8 function
incorporated into WAS V8.5Java Batch

Function

Java
Execution
Runtime

Function is identical between the two environments

Compute Grid V8 available for those who have not yet migrated
their execution runtimes to WAS V8.5

9

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Batch Container Added to the WAS Runtime
At a very high-level, you may think the IBM WebSphere Java Batch function as a
"batch container" operating alongside the other containers of WAS itself:

Container-managed Services

Web Container

Application
Web Modules

Container-managed Services

EJB Container

Application
EJB Modules

Container-managed Services

Batch Container

Batch Applications

WebSphere Application Server Runtime Environment

Batch job dispatching and
management system

Job resiliency services
(skip record, step retry)

Data record read and
write support services

Parallel job management
and execution services

Checkpoint and job
restart services

COBOL module call
services

10

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Overview of the Management and Execution Model
This picture illustrates some of the key components of the WebSphere Java
Batch model as provided in Compute Grid V8 and WAS V8.5:

Job
Dispatching

FunctionJob Properties
Declaration File

Job Execution
Endpoint

Batch
Applications

Job Execution
Endpoint

Batch
Applications

Development
Libraries and

Tooling Support
Job

Management
Console

1

2

3

4

5

1. Job Management Console (JMC) provides a view into the batch
environment and allows you to submit and manage jobs

2. Job declaration file (xJCL) provides information about the job to be
run, such as the steps, the data input and output streams and the
batch class files to invoke

3. The Job Dispatching function interprets the xJCL, dispatches the
job to the endpoint where the batch application resides, and
provides ability to stop and restart jobs

4. The Execution Endpoint is a WAS server in which the deployed
batch applications run

5. The development libraries and tooling assist in the creation of the
batch applications

A comprehensive Java
batch execution platform

Built on the proven Java runtime environment
of WebSphere Application Server

11

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Batch Job and Batch Job Steps
A batch job consists of one or more steps executed in order specified in xJCL:

xJCL
Properties of the overall job

Job Step 1
• Java class
• Input and output declarations
• Other properties of the step

Job Step 2
• Java class
• Input and output declarations
• Other properties of the step

Job Step n
• Java class
• Input and output declarations
• Other properties of the step

Job The xJCL is submitted through the Job
Management Console
Interfaces provided: HTTP browser, command Line, Web Services, RMI

The Job Dispatching function interprets
xJCL and determines which endpoint has
batch application class files deployed

Dispatching Function invokes job and
passes to the endpoint an object
containing all the properties in xJCL

Steps are executed in order, with
conditional step processing if declared

Dispatching Function maintains
awareness of job state

When job ends, job output file accessible
through Job Management Console

12

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Tivoli
Workload Scheduler

WebSphere
Java Batch

Job Scheduler

DB2

z/OS

GEE

Batch App

WAS z/OS

GEE

Batch App

CICS

Portable GEE

Batch App

J2EE AppServer

Distributed Distributed

GEE

Batch App

WAS

DB2 UDB DB2 UDB

- Portable Batch applications across platforms and J2EE vendors

- Location of the data dictates the placement of the batch application

- Flexible programming model, will host Spring Batch, JZOS, Compute Grid apps

- Centrally managed by your enterprise scheduler

- z/OS operational procedures manage batch across all platforms

JES

The Batch Vision

13

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Job Execution "State"
The following picture illustrates a simplified view of the job states ... it helps
illustrate a key point: executing jobs can be acted upon; failed jobs restarted.

Submitted

Executing

Ended

Restartable

Stop or Cancel

Problem

Restart

The Job Management Console
provides you ability to act upon
an executing job

The Batch Container is
maintaining checkpoint status
and will restart at the last
checkpoint interval

This is possible because of the Java
batch runtime services that are part of

the batch container model
If you were to write this yourself then just what's shown here would
require a significant amount of custom batch middleware code. IBM

WebSphere Java Batch provides that as part of the product.

14

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Batch Data Stream Framework (BDSF)
This is a key function service provided by the batch container - it abstracts data
read and write operations so your code may focus on the business logic:

Batch Data Stream Framework

Supplied "patterns" for data access:
• JDBC read or write operations
• JPA read or write operations
• File read or write operations
• z/OS Data Set read or write operations

Your Java class that implements the
supplied framework and provides the

specific data access logic
Example: SQL query for JDBC

Your job step Java class, which
implements the business logic

required for the batch processing
Data object

passed based on
your mapping in

BDSF class

Batch Data Stream retrieves result set
from data persistence store (DB, file, etc.)

Batch Data Stream maps data fields to
data object

For each record in result set, BDSF
invokes your job step, passing a data
object mapped to your specifications

Your job step code stays focused on
business logic, not Java stream handling
and data object formatting

15

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Integration with Enterprise Scheduler Functions
The Job Dispatching Function has a Message Driven Bean (MDB) interface. IBM
supplies a program that integrates schedulers with WebSphere Java Batch:

Enterprise
Scheduler
Example: IBM Tivoli

Workload Scheduler, CA
Workload Automation CA 7,

or BMC Control-M

WSGRID Program
Shell script, BAT file or JCL job

Input Queue

Output Queue

Message Driven
Bean Interface

WSGRID is seen by Scheduler as any other batch job it starts and monitors

WSGRID interacts with Job Dispatching, submitting the job and processing
Java batch job output back to STDOUT or JES Spool if z/OS

WSGRID program stays up for life of job in WebSphere Java Batch

To the Scheduler, WGRID is the Java Batch job ... but behind WSGRID is all
the WebSphere Java Batch function we'll discuss

WebSphere MQ

Feature Focus
A closer look at some of the features
and functions of the IBM WebSphere

Java Batch model

17

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Transactional Checkpoint Processing
The batch container provides the ability to checkpoint at intervals based on
either record count or time. The container keeps track of last checkpoint.

Batch Container

Java Batch
Application

xJCL says:
Checkpoint = 5

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Commit
Processing

Last good
checkpoint
persisted

Checkpoint interval (record or
time) specified in the xJCL

This is a function of the batch
container, not your application
code

As checkpoint intervals are
reached, container commits and
records the checkpoint attained

In the event of a failure, job may
be restarted at the last good
checkpoint

Set the checkpoint interval based
on your knowledge of balance
between recoverability and
efficiency

18

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Skip-Record Processing
Provides a container-managed way of tolerating data read or write errors so the
job itself may continue on. Information about data errors may be logged.

Batch Data Stream
Framework

Java Batch
Application

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

xJCL tells BDSF:

• How many data read
or write exceptions to
consume

• What exceptions to
consider for skip-
record processing

• Alternatively, what
exceptions to exclude
from skip-record
processing

Objective: allow job to continue if a data read or
write exception occurs in BDSF
Why fail a million-record job just because of one or two read or write
exceptions? Better to complete the job and allow auditors to go back
and investigate the few exceptions.

Skip-Record processing allows BDSF to keep
exception and not surface it to your application
This takes burden off your application code to explicitly handle data
read or write exceptions that may occur

A "skip-record listener" may be called so your
code may lot information about skipped record
More on "batch listeners" coming up

xJCL properties allow you to specify how many
records may be skipped and what exceptions to
include or exclude from consideration

When skip limit is reached, further exceptions are
surfaced to application. That may result in job
failing and going into a restartable state
Normal restart-at-checkpoint would occur

19

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Retry-Step Processing
Provides a means of retrying a job step in the event of an exception thrown. If
successful on retry then the job continues and your processing completes.

xJCL tells Container:

• How many step retries may be
attempted

• What exceptions to consider for
retry-step processing

• Alternatively, what exceptions to
exclude from retry-step processing

• Whether to process a delay before
attempting a retry of the step

Objective: retry step in attempt to allow overall job
to continue and complete when an unanticipated
exception is thrown

This is at level higher than skip-record ... this is if
an unhandled exception is thrown when the job
step function is called

Batch container falls back to last good checkpoint
and restarts from there

A "retry-step listener" may be called so you can
perform custom action upon retry-step processing
More on "batch listeners" coming up

xJCL properties allow you to specify how many
retry attempts will be performed and what
exceptions to include or exclude from
consideration

When retry limit is reached, job will go into
restartable state
Normal restart-at-checkpoint would occur

On exception, retry
up to n times

20

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Parallel Job Manager
The Parallel Job Manager (PJM) provides a way to "parameterize" logic so
parallel sub-jobs may act on a slice of the overall batch job data:

One job processing 1M customer records

1 - 100K

100K - 200K

900K - 1M

Ten sub-jobs
acting on a
1/10th slice
of data each

Sub-
job

Sub-
job

Sub-
job

or

Time = 0 Time = 1 Time = 10

Objective is reduction in
overall job completion time
Which shortens overall batch window if other
jobs are dependent on this job for completion

xJCL specifies whether job is to be
run in parallel, and if so how:

• One JVM, multiple threads
• Multiple JVMs

Your "parameterizer" code is called
at start so data range may be
segmented into sub-job slices

Job is submitted, then PJM
dispatches "sub-jobs" to act on
each data range
"Parameterizer" code constructs data range query
strings to be used by each sub-job

PJM manages "top-job" and all
subordinate "sub-jobs" to
completion

Java Batch on z/OS
A review of what IBM WebSphere Java

Batch brings specific to z/OS

22

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

WLM Classification
The submitted job can be tagged with a WLM "transaction class," which may
then be used to map the job to a WLM Service Class or Reporting Class:

Job
Dispatching

Function

Job Execution
Endpoint

Batch
Applications

Configurable rules map job
submission to a "Transaction

Class" (TC) name

xJCL

TC name sent to endpoint
where batch job will run

WLM "CB" subsystem rules
map TC name to Service

Class and Reporting Class

z/OS WLM

Batch job runs under that
Service Class and data is

gathered under the
Reporting Class

Classifying to a Service Class
allows WAS z/OS to place work
into separate servant regions
based on Service Class
A somewhat sophisticated practice not widely used

Classifying to a Reporting Class
allows WLM to gather system
information for all work running
under that Class
A much more common practice that is very useful for
understanding usage patterns and for capacity planning

23

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

SMF 120.9 Activity Recording
WAS z/OS supports the use of activity recording using the SMF 120.9 record.
WebSphere Java Batch extends the record with batch activity information:

WebSphere Java Batch
Compute Grid z/OS V8

WAS z/OS V8.5

SMF Buffers and
Data Sets

Job activity records allow you to
understand how your system is being used
and to provide chargeback data

Activity recording available on all platforms,
but only z/OS uses SMF, which is an
extremely efficient logging mechanism

Provides historical records for usage
analysis and batch capacity planning

Information captured:
• Job submitter
• Date and time of submission
• Final job state
• Total CPU used for job
• General processor used for job
• zAAP usage derived: Total - GP = zAAP

24

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Use of JZOS Services
JZOS is a set of functions that make using Java on z/OS much easier and
useful. The JZOS class libraries may be used in batch application development:

Job Execution
Endpoint

Batch
Applications

JZOS Libraries

z/OS

JZOS is technology acquired by IBM from Dovetail
Technologies* and incorporated into z/OS**

Examples of some z/OS services available:
DfSort - interface for invoking DFSORT

MvsConsole - class with static methods to interface with the MVS console.

MvsJobSubmitter - class for submitting batch jobs to JES2 or JES3 from a Java program

PdsDirectory - class for opening a PDS directory and iterating over its members.

WtoMessage - simple data object/bean for holding a WTO message and its parameters.

ZUtil - static interface to various z/OS native library calls other than I/O.

* www.dovetail.com
** http://www-03.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html

WebSphere Java Batch and JZOS are not
mutually exclusive ... the JZOS class

libraries may provide exactly what you
need for your batch application to access

z/OS functions and services

25

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

COBOL Container
The COBOL Container provides a way to call and execute COBOL modules in
the WAS z/OS server address space ... a very efficient way to call COBOL

1. Batch application runs in the WAS
z/OS servant region address space

2. The COBOL container is created as a
separate LE enclave in the address
space

3. COBOL DLLs are accessed using
STEPLIB or LIBPATH

4. COBOL Container code provides the
"glue" between the Java environment
and the native COBOL

5. Java batch code uses supplied class
methods to create the container and
use it

6. Call stubs provide an easy way to call
the COBOL DLL and marshal data
back and forth

7. The call stubs are generated by a
supplied utility that uses COBOL
source to understand data bindings

8. JDBC Type 2 connections created in
the Java batch program may be
shared into the COBOL module in the
COBOL Container

COBOL
Container
Call Code

WebSphere Java
Batch Container

COBOL Container LE Enclave

COBOL Module

Call
Stubs

WAS z/OS Servant Region Address Space
Separate LE Enclave from COBOL Container

Call Stub
Generator

IBM Rational
Application Developer

Compiled COBOL Library
PDSE or USS Directory

1

2

3

4
5

6

7

Lines of code needed to invoke COBOL many times
less than other means of calling COBOL from Java

8

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

• Batch jobs and online transactions can run in parallel sharing the same data

• Resources and business logic shared

• VSAM files not closed and hence availability is increased

• Use JCICS API to talk to CICS COBOL programs from Java with transaction support

• Compute Grid provides

– General job dispatching, management, execute control, monitoring
• Works with other schedulers, eg. Tivoli Workload Scheduler

– Higher throughput to address larger data volumes
• Process jobs in parallel across multiple CICS regions

– Locking of data
• Updates are synchronised at configurable Checkpoints
• Checkpoint includes positions in input and output resources

– Failure/Recovery scenarios
• If batch jobstep fails, rollback updates, restore last checkpoint, cursors to input and output

resources restored, and jobstep retried

Why run batch inside CICS?

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

WebSphere Cell

Scheduler
database

Oracle/DB2

Deployment
Manager

WAS

Scheduler Cluster

Compute Grid

Scheduler 1

WAS

P
R

O
X

Y

Compute Grid

Scheduler 2

WAS

P
R

O
X

Y

z/OS

CICS TS

Grid Execution
Environment

(GEE)

Optional shared
 GEE database

(VSAM or DB2)

GEE
Configuration

+
Joblog

HTTP(S)

Requests to
CICS TS

WebSphere Java Batch and CICS with SupportPac CN11

28

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

Co-Location on z/OS
With the WebSphere Java Batch function on z/OS several advantages surface:

Job Execution
Endpoint

Batch
Applications

Data
SubSystems
DB2, CICS, IMS, MQ

z/OS

Use of cross-memory connectors for high-speed
and low-latency access to data

• JDBC Type 2 connector for access to DB2

• CICS Transaction Gateway (CTG) local EXCI
• WebSphere Optimized Local Adapters (WOLA)

Much more secure -- cross memory data exchanges
can not be 'sniffed' or intercepted

Parallel Sysplex data sharing provides highly
available clustered environment without reliance on
a single instance of a data subsystem

Use of COBOL Container technology for re-use of
COBOL assets in very efficient calling pattern

Use of WebSphere MQ Bindings Mode for
integration with Enterprise Scheduler for very fast
job submission and job output return

Reduction of per-access latency is critical when dealing with large
volumes of records where job completion time is important

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

LPAR (z10)

Queue
Manager

MQ

Database

AppServer

AppServer

AIX

AppServer

AppServer

JD
B

C

T
yp

e 2

CR SR

DB2

DDFJDBC
Type 4

TCP/IP

IMS

Transactions

DB2

DB2 Stored
Procedures

AIX

 Same job with same amount of processed
insurance policies

Same data basis in DB2 z/OS, which is reset
after each run



An insurance company has an existing WCG infrastructure on distributed AIX
with data intensive JEE applications, which accesses DB2 z/OS via JDBC type
4. Within the scope of this PoC the Java batch job, which calculates the dynamic
of the accident insurance is evaluated on WCG z/OS using JDBC type 2 cross
memory adapter.

WAS z/OS Java Batch PoC Architecture

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

The same job runs on both platforms WCG AIX and WCG z/OS. Because of the proximity
to data in DB2 z/O the job, which runs on WCG z/OS has 83.5% more throughput
and the job runtime is shortened by by 45%.
.

0

2000

4000

6000

8000

10000

12000

14000

16000

13987

7663

Thoughput platform comparison
based on 15592 policies

WCG z/OS

WCG AIX

th
ro

u
g

h
p

u
t (

p
o

lic
ie

s
p

e
r

h
o

u
r)

0

1000

2000

3000

4000

5000

6000

7000

8000

4018

7326

Job runtime platform comparison
based on 15592 policies

WCG z/OS

WCG AIX

Jo
b

 r
u

n
tim

e
 in

 s
e

co
n

d
s

(+ 83%)

(- 45%)

2 h
o

u
rs 2 m

in
.

1 h
o

u
rs 7 m

in
.

WAS z/OS Java Batch PoC Results

31

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

WebSphere Java Batch

Key Features:
 Java Batch programming model

 Java Batch container built on WAS QoS

 Development and deployment tooling

 Batch execution environment
 Concurrent OLTP and batch workloads

 Enterprise scheduler integration

 Parallel processing of batch jobs

 Container based checkpoint and restart

 Mixed batch workloads

 COBOL support on z/OS

WebSphere Application Server v8.5 integrates capabilities from WebSphere Compute
Grid and delivers a complete enterprise level Java batch processing solution

Compute Grid
capabilities
integrated

into
WAS 8.5

32

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

WebSphere Java Batch - Value Proposition

 Reliable batch infrastructure – Built on the proven Qualities of Service
delivered by WebSphere Application Server.

 Incremental modernization – Move at your pace to reduce risk.

 Resource efficiencies – Focus resources on business logic and leave the
infrastructure to WebSphere

 Enterprise integration – Integrate with existing enterprise schedulers to help
deliver a robust end-to-end solution.

 Enables new execution patterns – Dynamic OLTP and Batch runtime
environment built on WebSphere; highly parallel batch jobs; and many others.

 Supports a SOA strategy of reuse – Enable the cost effective sharing of
business logic across both the OLTP and Batch paradigms.

 Eliminate batch windows – Transition from traditional batch windows to
running batch 24x7 concurrent with OLTP.

Move batch into the WebSphere environment and integrate with OLTP to gain the
benefits of concurrent processing, shared business logic, and cost efficiencies

33

IBM WebSphere Java Batch

WP101783 at ibm.com/support/techdocs© 2012, IBM Corporation

WebSphere Java Batch - Key Use Cases

 Batch Modernization – Migrate from a native batch runtime, typically
developed in programming languages like C, C++, PL/I, and COBOL, to Java.

 Highly Parallel Batch Jobs – Execute a single large batch job that is broken
into chunks and executed concurrently across a grid of resources.

 Dynamic OLTP & Batch Runtime – Dynamically provision resources for
execution to meet operational goals.

 Batch as a Service – Expose business capabilities as a service and leverage
usage accounting features for tracking and chargeback.

 Replace Homegrown Batch Frameworks – Eliminate costly proprietary batch
infrastructures and focus development resources on business logic.

 Shared business logic across OLTP and Batch – Leverage the proven
WebSphere platform to share logic across both batch and OLTP.

Evolve to a single infrastructure for both OLTP and Batch that enables you to
leverage existing applications and focus resources on business logic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

