
Developing enterprise OSGi applications for
WebSphere Application Server
An overview of modular applications

Skill Level: Intermediate

Dr. Ian Robinson (ian_robinson@uk.ibm.com)
Distinguished Engineer
IBM

Dr. Holly Cummins (cumminsh@uk.ibm.com)
Software Engineer
IBM

14 Jul 2010

Creating modular, extensible Web applications using standard Java™ EE
deployment has its challenges, but can generally be accomplished with good design
practices and discipline. Where it gets really hard, though, is when you want to
separate out common modules to share between multiple enterprise applications, or
use multiple versions of common libraries at the same time. OSGi is a Java
modularity technology that has been used internally in IBM® WebSphere®
Application Server and the Eclipse platform for many years, and was designed to
enable the development and execution of dynamic, modular, extensible applications.
The WebSphere Application Server V7 Feature Pack for OSGi Applications and JPA
2.0 enables modular enterprise applications to use OSGi directly to dramatically
simplify their development, assembly, and deployment. The feature pack also
provides an infrastructure in which modular design is no longer just a best practice
but is the only practice.

Introduction

The vast majority of the cost associated with software development is not related to
the initial design, development, and test of a new application -- although these can

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 1 of 24

mailto:ian_robinson@uk.ibm.com
mailto:cumminsh@uk.ibm.com
http://www.ibm.com/legal/copytrade.shtml


be expensive -- but to the maintenance and evolution of the application thereafter.

Designing and building applications and suites of applications from coherent,
versioned, reusable modules accessed only through well-defined interfaces reduces
complexity and provides the greatest flexibility to maintain and evolve the software
after its first release. A modular design, in which the modules offer well-defined
services and interfaces, enables large-scale projects to be divided between teams
who can focus on their own tasks without having to understand the details of the
other teams' code beyond the agreed externals, reducing the breadth of complexity
for each team and improving the time to delivery. In addition, the cost of application
maintenance is reduced by minimizing the scope of the impact of any changes to the
application -- assuming that scope can be determined. If a change to a module
affects only its internals, with no impact to its external contract, then maintenance
can be applied to a single isolated module and testing can be better targeted. This
should all be self-evident, but we could benefit from some active help from our
development tools and run time infrastructure to support such a modular design
approach. For example, wouldn't it be nice to have an easier way to deploy and
maintain common code that is used by multiple EARs?

First of all, what makes a good module?

• A module should provide a coherent logical function and should be
sufficiently self-contained that it represents a practical "unit of reuse."

• A module should be loosely-coupled to other modules through
well-defined external interfaces and dependencies.

• A module should isolate its internals from other modules so that changes
to the internal behavior of a module have no impact on any other modules

Java classes are typically too fine-grained to form a logical unit of re-use between
applications, their isolation focus being primarily limited to the encapsulation of
instance data. Classes are usually packaged inside a JAR file that represents a
coherent function. As the unit of deployment (and as the artifact that exists in the file
system), the JAR is a very practical unit of reuse but it lacks some of the other
characteristics of a good module.

Consider visibility: if you have a method in a class in package foo.bar that needs to
be available to a class in package bar.foo, then you need to declare that method
with a public access modifier. You have no way to indicate whether this method
should or should not also be available to classes outside the JAR. You can apply
conventions and best practices. You can organize your interfaces into external and
internal packages using a package-naming convention. For example, WebSphere
Application Server interfaces intended for use by applications are contained in
sub-packages of com.ibm.websphere or com.ibm.wsspi, whereas internal interfaces
not intended for application use are mostly in sub-packages of com.ibm.ws. If
different teams working on different modules within a project are disciplined about

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 2 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://www.cs.jyu.fi/~koskinen/smcosts.htm
http://www.ibm.com/legal/copytrade.shtml


the definition and use of module externals, then these modules will remain coupled
only through the defined externals. Of course, there's always that little bit of
plus-plus function in your module that you couldn't live without, but isn't part of the
module interface. So when another team finds out how much this will make their
lives better too, what’s the harm in letting them go ahead and use it? After all, you all
work on the same overall project and the methods they'd use all have public Java
accessibility, so it wouldn't need code changes to agree to let them use it -- if they
bothered to ask. And now, without meaning to, you've broken the desired
loose-coupling between bundles. The "scope of impact" of a change to your bundle's
internals might now extend beyond your bundle, which makes it harder to figure out
what might be affected and, therefore, what needs to be tested.

It is clear, then, that while the JAR is a very practical unit of reuse, it lacks the
capacity to distinguish between externals and internals and has no means to isolate
the latter. And it's actually worse than this: while its pretty easy for you to make this
JAR (your unit of reuse) available in another environment, how do you figure out
whether the new environment can satisfy all the dependencies it has? If you get this
wrong, you have a potential time-bomb on your hands, meaning that it could be
running happily for days and then need to load a class the new environment doesn't
have and boom -- ClassNotFoundException. The problem here is that, in addition to
providing no isolation, JARs also have no means to declare their own dependencies.

The JAR, then, is close to what you need for a good reusable module but it lacks
some basic modularity characteristics. This is where OSGi bundles come in.

An OSGi bundle is a JAR but it has additional headers in the JAR manifest. In a
plain JVM with no machinery to process this additional metadata, the bundle
behaves like a normal JAR. In a JVM that includes an OSGi framework, the
metadata is processed by the framework and additional modularity characteristics
are applied. Listing 1 shows an example MANIFEST.MF.

Listing 1. OSGi headers in a bundle manifest

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: MyService bundle

Bundle-SymbolicName: com.sample.myservice

Bundle-Version: 1.0.0

Import-Package: com.something.i.need;version="[1.0,2.0)"

Export-Package: com.myservice.api;version=1.0.0

Some headers to note here are:

• Export-Package lists one or more packages, at specific versions, to

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 3 of 24

http://www.ibm.com/legal/copytrade.shtml


export from the bundle. Only exported packages are visible outside the
bundle; any package not listed here is visible only inside the bundle.

• Import-Package lists one or more packages, at specific versions or
ranges of versions, required by the bundle.

Without getting into the details of versioning (which will be discussed later) let’s
consider what these two headers are doing. Recall that earlier on we talked about
the need to establish development best practices to define a module's external
interfaces and to ensure that no internals were used by any client modules. With
OSGi you now have a way for this best practice to be supported by enforcement in
the runtime and to provide a module owner with a mechanism to properly
encapsulate its internals. Furthermore, you have metadata in the bundle manifest
that clearly identifies all the packages required by the bundle that need to be
provided by other bundles. In a complex application consisting of many bundles, this
gives you a much more deterministic means to identify the impact of a change to a
bundle and to understand the likely impact on the rest of the system, reducing risk
and cost in the software development lifecycle.

The processing of the metadata and the run time enforcement of the visibility rules
are provided by the OSGi framework resolver. As each bundle is started, the
resolver reconciles each of the bundle's imports against the exports declared by
other bundles that have been installed into the framework and computes an
individual classpath for each bundle. If a bundle has a dependency that cannot be
resolved, the bundle will not start. The ticking time bomb mentioned earlier (for the
case when a JAR is moved to a new environment which cannot satisfy all its
dependencies) is dealt with by effectively removing the fuse. It's far easier to deal
with an application that won't start than an application that works properly for some
time and then fails unexpectedly with a ClassNotFoundException.

Nothing we've looked at so far is specific to an enterprise runtime -- so how does
any of this relate to enterprise Java applications or enterprise applications servers?

Given an enterprise application server that is able to process and honor OSGi
bundle metadata, then the first obvious benefit of OSGi is the proper modularization
of complex enterprise applications consisting of large numbers of modules. But it
goes much further than this and solves a number of additional problems common in
enterprise environments. We touched briefly on one of these already: in many
large-scale enterprise deployments where there are tens or hundreds of EARs
deployed, it is usually the case that each EAR is self-contained to the extent that
many common libraries used by the applications are packaged inside each EAR that
needs them. You end up with an explosion of copies of these libraries on the file
system or repository to which the EARs are deployed and in memory when the
applications are started. While enterprise applications can often be deployed to
various vendors' enterprise environments, with administrative dependencies
configured for shared libraries installed independently from the EARs, these
mechanisms vary from vendor to vendor and limit portability. Shared library

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 4 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


configuration is also typically dissociated from the deployment process itself,
requiring separate, post-deployment administrative configuration, which increases
the complexity of the end-to-end deployment process.

OSGi metadata and bundle repositories give you the opportunity to greatly simplify
the deployment of suites of enterprise applications that share common libraries so
that only application-specific modules need to be included in the application archive.
The enterprise deployment process becomes much more powerful when it
understands the OSGi metadata and can resolve bundle dependencies against the
content of bundle repositories configured within the deployment environment. All
common libraries can be managed in a centralized bundle repository which then
becomes part of the enterprise (cell) configuration.

OSGi also gives you the opportunity to do a much better job of versioning in the
enterprise environment. Today's enterprise applications often contain third-party
frameworks or libraries with similar dependencies on common libraries. This can
become a real headache if different frameworks require common libraries at different
versions. These headaches can turn quite serious when you have everything
working nicely until you need to update a vendor framework only to find you can't
because it has a dependency on a later and incompatible version of a library already
in use by another framework in the application.

OSGi versioning metadata and classloading eliminate this problem. In Listing 1,
above, the Import-Package header indicates a dependency on the package
com.something.i.need at a version range of "[1.0,2.0)". This means the dependency
is satisfied by any version of the package in the range: 1.0 # version < 2.0.
Therefore, version 1.0 or 1.5.0 or 1.9 would satisfy the dependency, but version 2.0
would not. OSGi's versioning mechanism enables package providers to indicate
whether a new version of a package is backwardly compatible to the previous
version, with a change in the major part of the version indicating an incompatible
update. Package consumers can indicate the version, or range of versions, they are
able to work with. (See this PDF whitepaper for more on OSGi versioning).
Importantly, if two bundles within an application depend on different versions of the
same package, then these dependencies can both be simultaneously satisfied
because the OSGi resolver can calculate different classpaths for the two bundles.

The OSGi platform specifications, along with reference implementations and
compliance tests, are produced by the OSGi Alliance and have been in common use
for over ten years. In March 2010, the enterprise environment was embraced with
the publication of the OSGi V4.2 Enterprise Specification. This defines the OSGi
semantics of enterprise Java technologies such as transactions, persistence, and
Web components. This important specification defines standard mechanisms to
bring the Java EE and OSGi worlds together, including OSGi metadata for a bundle
to declare that it is a Web bundle containing a web.xml file, a persistence bundle
containing a persistence.xml file, or a Blueprint bundle containing a blueprint.xml file.
Web and persistence bundles are just familiar Java EE modules with additional

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 5 of 24

http://www.osgi.org/
http://www.ibm.com/legal/copytrade.shtml


OSGi manifest headers; Blueprint bundles are more like Spring modules, but with a
standardized bean definition XML.

OSGi as a technology has been popular for many years in standalone applications
and client-side application technologies, and is used internally within the
implementation of many enterprise application servers, such as WebSphere
Application Server. Direct leveraging of OSGi by the enterprise applications that run
on these application server platforms has, until recently, been inhibited by the lack of
OSGi standards for enterprise applications and by a lack of widely available
dedicated tooling and enterprise runtime support. This has changed with the
publication of the OSGi Enterprise Specification and the availability of the option to
deploy applications as OSGi bundles in an increasing number of enterprise
application servers.

The remainder of this article discusses the run time and tooling support for
developing and deploying enterprise OSGi applications introduced in the
WebSphere Application Server V7 Feature Pack for OSGi Applications and JPA 2.0.

The OSGi application feature pack

Support for OSGi applications in WebSphere Application Server is introduced in the
WebSphere Application Server V7 Feature Pack for OSGi Applications and JPA 2.0.
In common with other WebSphere Application Server feature packs, this is a freely
available download that can be additively installed and uninstalled on top of an
existing WebSphere Application Server V7.0.0.9 or later. The feature pack actually
consists of two installable features: the OSGi application feature and the JPA 2.0
feature. These can be installed independently or together; when used together
these features provide a simplified POJO-based component model,
high-performance persistence framework, and modular deployment system that
simplifies the development and unit testing of Web applications. This article is
focused only on the OSGi application feature.

The WebSphere Application Server OSGi application feature gives you the
opportunity to develop and deploy enterprise applications in a modular fashion,
introducing configurable OSGi bundle repositories into the WebSphere Application
Server administrative process. This enables common bundles to be factored out of
individual enterprise application archives and managed centrally in a bundle
repository. Multiple versions of bundles can be managed in a bundle repository, and
the appropriate version associated with individual enterprise applications can be
specified in metadata for those applications.

Let’s look at what it means to be an OSGi application in WebSphere Application
Server.

At the most basic level, an OSGi application can be the same collection of modules

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 6 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/osgi/
http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/osgi/
http://www.ibm.com/legal/copytrade.shtml


deployed in a Java EE enterprise archive (EAR) but with additional OSGi metadata
that enables the modules to be loaded as OSGi bundles. While there is no difference
in the end result between running such an application as a standard Java EE
application using Java EE classloaders or as an OSGi application using OSGi
classloaders, there are a number of reasons you might choose to develop and
deploy an OSGi application:

• Applications can be deployed in archives containing (if desired) just the
application-specific content, along with metadata referencing any shared
libraries (bundles). Application archives become smaller with only single
copies of common libraries loaded into memory.

• Multiple versions of classes can be loaded simultaneously in the same
application using standard OSGi mechanisms.

• Deployed applications can be administratively updated in a modular
fashion, at the bundle-level.

• At development time, enterprise OSGi projects in IBM Rational®
Application Developer enforce OSGi visibility rules so that projects can
only access packages from other projects that explicitly declare them as
part of the project externals, providing environmental support to
development best practices.

• Applications can be designed for extensibility and dynamic update
through the use of OSGi services.

• At run time, applications will only start successfully if all their
dependencies can be resolved, reducing the occurrences of
ClassNotFoundExceptions while an application is processing a workload.

• Applications can use their own versions of common utility classes distinct
from the server runtime's own usage without needing to configure
application Java EE classloader policies, such as PARENT_LAST mode.

The benefits of using OSGi become ever more apparent as your application grows in
complexity, or the suite of deployed applications grows in size, increasing the
challenge of managing updates to the applications' modules and the utility libraries
they use.

Getting started with OSGi applications

There are a number of ways to get started with deploying your first OSGi application
to WebSphere Application Server. Probably the most common way is to start with an
existing Java EE Web application that you are already familiar with, or to start with
one of the sample applications shipped as part of the OSGi application feature. In all
cases, you need to package the OSGi application in a format that can be deployed.

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 7 of 24

http://www.ibm.com/legal/copytrade.shtml


OSGi applications are deployed to WebSphere Application Server through wsadmin
or via the WebSphere Application Server administrative console just like any other
application, but are packaged in a new type of archive called an enterprise bundle
archive (EBA). This is similar to an EAR but its modules are deployed as bundles to
the desired target servers. An EBA represents a single isolated OSGi application
consisting of one of more application modules and is the unit of deployment for an
enterprise OSGi application. Similar to an EAR file, an EBA can contain all the
constituent modules or bundles that make up the application but can, instead, just
contain the metadata required to locate those bundles from a configured bundle
repository. The metadata is in the form of an EBA-level APPLICATION.MF file which
describes the content of the application and whether the application exposes any
external services and references. Just like a bundle manifest describes the
modularity characteristics of a bundle, the application manifest describes the
modularity characteristics of the application, as well as the deployable content of the
application.

Listing 2 shows a complete application manifest for a simple OSGi application. The
Application-Content header describes the primary bundles that make up the
application and which will be deployed when the application is deployed. The reason
you need a "list of contents" for the application being deployed is because not all of
this content needs to be included with the application manifest inside the EBA; the
bundles certainly can be packaged inside the archive but some or all of them can
equally be provisioned by the WebSphere Application Server deployment process
from a configured bundle repository. If, for example, the com.example.common.audit
bundle provides common audit services for all the applications managed by an IT
organization, that bundle should be installed into a common bundle repository rather
than deployed as part of each application EBA.

Listing 2. Simple APPLICATION.MF for an OSGi application

Application-Name: MyApp

Application-SymbolicName: com.example.app

Application-Version: 1.0

Application-Content: com.example.app.web;version=1.0.0,

com.example.app.persistence;version=1.0.0,

com.example.common.audit; version=1.0.0

With the OSGi application feature, WebSphere Application Server provides a built-in
OSGi bundle repository whose contents can be managed through WebSphere
Application Server administration, as shown in Figure 1. WebSphere Application
Server also provides the option to use external OSGi bundle repositories that are
accessed by a configured repository URL.

Figure 1. Internal OSGi bundle repository in admin console

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 8 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


During the deployment of an OSGi application, WebSphere Application Server
administration calculates all package and OSGi service level dependencies for the
application to ensure that the application can be fully provisioned from a combination
of the EBA and the configured bundle repositories. The application manifest file itself
can be authored by a developer or generated by tools, such as Rational Application
Developer. It is important to understand that the application manifest needs to list, in
the Application-Content, only the primary application bundles, and it need not
enumerate all the package-providing and service-providing bundles that these
depend upon. The WebSphere Application Server deployment process resolves all
the primary bundles' dependencies to calculate a transitively-closed list of
application content, and prevents application deployment if the resolution process
detects missing dependencies. It is also important to understand that configuration is
by-exception, so an application manifest is not required at all if the
Application-Content is all contained within the EBA. Each module that forms a part of
the Application-Content, along with all its calculated dependencies, is deployed as
an OSGi bundle. If a Web module with no OSGi metadata is included in the
Application-Content, then the WebSphere Application Server deployment process
will automatically convert this to a Web application bundle (a WAB module) during
deployment. The configuration-by-exception and automated detection and
conversion of WAR files provides the quickest way to get started with OSGi
applications -- you can take a Java EE EAR containing only Web modules and
deploy as an OSGi application simply by renaming the archive's .ear file extension to
.eba.

OSGi services and the Blueprint component model

Another feature OSGi brings is a standard extensibility model, through OSGi
services. You can design your application to take advantage of OSGi's rich and

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 9 of 24

http://www.ibm.com/legal/copytrade.shtml


dynamic service-based model to consume services from the OSGi service registry.
OSGi services then become extension points that you can design into your
application, extending it in the future via service provider implementations introduced
through separate bundles with no change to the original application code. OSGi
defines Java APIs for registering and discovering OSGi services, but a declarative
approach to OSGi services is much simpler. This is where the enterprise OSGi V4.2
Blueprint container comes in: the Blueprint container manages the lifecycle and
dependency injection of POJO bean components and is configured through an
application-level XML bean definition file, which is a standards-based evolution of
the Spring bean definition XML. By standardizing the bean definition XML schema
and bean lifecycle management semantics in the OSGi Alliance, it has become
possible to re-factor the dependency injection container out of the application (where
the Spring framework libraries are typically packaged) and into the middleware. The
enterprise OSGi v4.2 Blueprint container implementation from the Apache Aries
project is integrated and extended as part of the WebSphere Application Server
runtime when the OSGi application feature is installed.

Blueprint provides a fine-grained bean assembly model for OSGi applications, as
well as a simple declarative means to publish a service provided by a POJO bean
component. For example, the bean definition snippet shown in Listing 3 defines a
bloggingServiceComponent bean, implemented by the BloggingServiceImpl class,
for which a BloggingService service is registered in the OSGi service registry.

Listing 3. Blueprint bean definition

<blueprint>
<bean id="bloggingServiceComponent"

class="com.ibm.ws.eba.example.blog.BloggingServiceImpl">
<property name="blogEntryManager" ref="blogEntryManager"/>
<property name="blogAuthorManager" ref="blogAuthorManager"/>
<property name="blogCommentManager" ref="blogCommentManager"/>
</bean>
<service ref="bloggingServiceComponent"
interface="com.ibm.ws.eba.example.blog.api.BloggingService"/>
...

</blueprint>

In this example, three properties (which might be references to OSGi services or
beans defined elsewhere in the bean definition blueprint.xml) are injected by the
container into the bloggingServiceComponent bean when it is instantiated. Blueprint
configured beans give OSGi applications a convenient way to encapsulate their
business logic into POJO components that have their dependencies and
configuration injected into them by the Blueprint container. Since the POJO bean
components have no Java dependencies on the application server, it is very simple
to unit test the business logic in a plain Java SE or Eclipse environment.

A sample OSGi application

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 10 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Let's look at one of the samples shipped as part of the OSGi application feature to
illustrate how such applications are typically developed and deployed. The sample is
a simple blog publishing application illustrating the combined use of Web, Blueprint,
and persistence technologies within an OSGi application. (If you would like to
explore the code in more depth, the source code for the blog application is shipped
with the OSGi Application feature pack.)

Figure 2. Blog sample application

The blog sample demonstrates a typical architecture for an enterprise application. It
consists of four loosely-coupled bundles: a Web layer, a business logic layer, a
persistence layer, and an API bundle.

First of all, notice how the APIs are pulled into their own bundle. This is an OSGi
best practice that keeps couplings loose. If necessary, an implementation can easily
be swapped out for a different one at deploy time or even at run time.

The coupling between the bundles makes use of a fundamental OSGi construct,
services (represented as triangles in Figure 2), which maintain the desirable
loose-coupling between bundles and enable bundle implementations to be more
easily replaced with minimal impact on the rest of the application. As described in
OSGi services and the Blueprint component mModel, OSGi applications do not need
to interact directly with the OSGi service registry, but can do so instead through
declarative Blueprint configuration of simple POJO beans. Both the blog-biz and
blog-persistence bundles use Blueprint-configured beans to encapsulate business
logic and have their dependencies and configuration injected into them by the
Blueprint container that manages their lifecycle. The Blueprint container wires the

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 11 of 24

http://www.ibm.com/legal/copytrade.shtml


beans together within the blog-biz bundle and also wires components in the blog-biz
bundle to the Blog persistence service provided by the blog-persistence bundle.

The application's front end is a Web module using familiar Java EE servlet
components. To illustrate how simple it is to combine Java EE programming styles
with an OSGi service-based style, the sample blog-web bundle follows a pure Java
EE programming model and uses JNDI to access the Blueprint-published OSGi
service. The enterprise OSGi specification defines a standard mechanism for JNDI
clients to obtain references to OSGi services, providing a natural bridge between two
programming styles.

The blog-persistence-jpa bundle uses JPA as the persistence framework through
which blog authors and entries are persisted to and retrieved from a database. It
leverages the Blueprint container's ability to manage both persistence contexts and
global transactions to ensure the business logic remains as simple as possible to
develop and unit test.

Finally, the blog JARs are packaged together in an EBA and deployed to
WebSphere Application Server.

Let’s look at each element of this application in more detail.

API bundle

Perhaps not surprisingly, the API bundle is the simplest component. It is a simple
OSGi bundle that does not make use of any enterprise features. As mentioned
above, it is the OSGi metadata in the JAR manifest that gives a JAR its "bundle
characteristics." In the case of the blog API, the bundle declares that it exports the
com.ibm.ws.eba.example.blog.api,
com.ibm.ws.eba.example.blog.comment.persistence.api, and
com.ibm.ws.eba.example.blog.persistence.api packages, at version 1.0.0.

Listing 4. Blog sample API bundle manifest

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: blog

Bundle-SymbolicName: com.ibm.ws.eba.example.blog.api

Bundle-Version: 1.0.0

Export-Package:

com.ibm.ws.eba.example.blog.api;version=1.0.0,

com.ibm.ws.eba.example.blog.comment.persistence.api;version=1.0.0,

com.ibm.ws.eba.example.blog.persistence.api;version=1.0.0

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 12 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Web application bundle

In many respects, the Web bundle resembles a standard Java EE Web archive; it
declares its servlet mappings in a web.xml file, and packages its code in
WEB-INF/classes. However, there are some differences. As you would expect for an
OSGi bundle, the manifest declares some imports -- in this case, the blog API
exported by the API bundle. The Web-ContextPath is declared in the manifest,
rather than in the EAR's application.xml file. The practical reason for this is that an
OSGi application is not an EAR and so does not have an application.xml file.
However, there is a more fundamental motivation. Having all the configuration
information for the Web module within the Web bundle itself enables the Web
archive to be much more modular and self-contained, in keeping with the spirit of
OSGi.

Listing 5. Blog sample web bundle manifest

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-ClassPath: WEB-INF/classes

Bundle-Name: blog.web

Bundle-SymbolicName: com.ibm.ws.eba.example.blog.web

Web-ContextPath: blog

Bundle-Version: 1.0.0

Import-Package:

com.ibm.ws.eba.example.blog.api;version="[1.0.0,1.1.0)",

com.ibm.json.java;version="[1.0.0,2.0.0)"

The OSGi framework in WebSphere Application Server recognises the archive as a
Web bundle and hands over to a Web container to manage the lifecycle of the
servlets. Integration between the Java EE Web container and the OSGi container is
achieved through federated JNDI lookup, a feature of the enterprise OSGi
specification. All OSGi services are automatically registered in JNDI and can be
accessed in a manner familiar to Java EE components. For example, the blog
servlet accesses an implementation of the BloggingService, as shown in Listing 6.

Listing 6. Accessing OSGi services from Web components

InitialContext ic = new InitialContext();

return (BloggingService) ic.lookup("osgi:service/"

+ BloggingService.class.getName());

It could equally use an @Resource annotation to inject the reference as an

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 13 of 24

http://www.ibm.com/legal/copytrade.shtml


alternative to using the JNDI Context API.

Blueprint bundle

The business logic is implemented as a collection of POJOs with a declarative
blueprint.xml configuration file to associate bean definitions and references with
OSGi services. The Blueprint container takes care of the interactions with the OSGi
service registry to manage the interactions with and the lifecycle of the services. The
blueprint.xml snippet shown above in Listing 3 is from the blog sample business
bundle and illustrates a typical pattern to declare a bean, inject its dependencies
(which may be references to services or other beans), and publish the bean as a
service.

Persistence bundle

The persistence bundle makes use of another standard feature of enterprise OSGi,
JPA integration, to take advantage of managed persistence. The JPA persistence
unit is configured as usual through a persistence.xml file. The bundle manifest of a
persistence bundle requires a Meta-Persistence header to indicate that it is a
persistence bundle, as shown in Listing 7.

Listing 7. Blog sample persistence manifest

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: blog.persistence

Bundle-SymbolicName: com.ibm.ws.eba.example.blog.persistence

Bundle-Version: 1.0.0

Meta-Persistence:

Import-Package:

com.ibm.ws.eba.example.blog.persistence.api;version="[1.0.0,1.1.0)",

javax.persistence;version=1.0.0

The persistence bundle actually gets a better deal than just managed JPA -- it gets
container managed JPA since it is a Blueprint bundle (as well as a persistence
bundle); the Blueprint container fully manages the JPA PersistenceContext and
injects it into the managed bean (BlogPersistenceServiceImpl) annotated for the
blogExample persistence unit, as shown in Listing 8.

Listing 8. Annotation-based injection of JPA EntityManager

private EntityManager em;

@PersistenceContext(unitName = "blogExample")

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 14 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


public void setEntityManager(EntityManager e) {

em = e;

}

As an alternative to annotating the bean Java code, the container-managed
PersistenceContext could instead have been declared using the <jpa:context>
element in the Blueprint bean definition, as shown in Listing 9.

Listing 9. Blueprint container-managed Transaction and Persistence
configuration

<bean id="persistenceManager"
class="com.ibm.ws.eba.example.blog.persistence.BlogPersistenceServiceImpl">

<tx:transaction method="*" value="Required"/>
<jpa:context property="em" unitname="blogExample"/>
</bean>

Listing 9 also illustrates Blueprint container-managed transactions. In this example,
all the methods of the persistenceManager bean are run under a global transaction
established (or joined) by the Blueprint container. The set of container-managed
transaction values supported by the WebSphere Blueprint container is the same as
that supported for the EJB container. (See Transactions and OSGi Applications for
more details.)

Application assembly

The last piece of the sample blog application is the EBA. As described earlier, the
EBA is the deployable unit, containing an application manifest which describes the
application content. For the blog sample, the application manifest looks like Listing
10.

Listing 10. Blog Sample APPLICATION MANIFEST

Application-Name: Blog

Application-SymbolicName: com.ibm.ws.eba.example.blog.app

Application-Version: 1.0

Application-Content:

com.ibm.ws.eba.example.blog.api;version=1.0.0,

com.ibm.ws.eba.example.blog.persistence;version="[1.0.0, 2.0.0)",

com.ibm.ws.eba.example.blog.web;version=1.0.0,

com.ibm.ws.eba.example.blog;version=1.0.0

Use-Bundle: com.ibm.json.java;version=1.0.0

The basic format for this application-level metadata is described above. There are

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 15 of 24

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.osgifep.multiplatform.doc/topics/ca_transactions.html 
http://www.ibm.com/legal/copytrade.shtml


two things to note in the blog sample manifest:

• The API, blog, and Web bundles deployed for the application must be at
version 1.0.0 or later, but the persistence bundle must be a version in the
range 1.0.0 up to (but not including) 2.0.0. What this means is that, while
all the bundles can be at version 1.0.0 when the application is initially
deployed, the application has been assembled to accommodate future
updates of the bundles. If later, after the application has been deployed, a
1.1.0 version of the persistence bundle becomes available then the
WebSphere Application Server administrator can (through wsadmin or the
admin console) update that bundle within the application. The blog
sample provides an additional version 1.1.0 of the blog persistence
bundle to demonstrate this administrative update capability.

• The Use-Bundle header lists the com.ibm.json.java bundle separately
from the Application-Content. This indicates that this bundle is shareable
with other applications. All the bundles listed in the Application-Content
will run in an OSGi framework instance that isolates these bundles from
other OSGi applications in the same application server. In this way, one
OSGi application cannot have unintended side-effects on another OSGi
application just because it is deployed to the same target server. Because
one of the goals of OSGi application support is to simplify module-sharing
between applications in a fashion that is integrated with the deployment
process, the Use-Bundle header provides a mechanism to identify
modules which should be shared. As well as explicit Use-Bundle content,
any bundles whose packages or services are implicitly resolved when the
application is deployed are also considered to be providing shared
content. When the application is started on the target server(s), any
bundles that are identified as being shared are loaded into a server-wide
parent OSGi framework, the contents of which are visible to each of the
isolated application frameworks.

The blog sample is packaged to illustrate the use of the WebSphere Application
Server bundle repository: one of the required bundles, the com.ibm.json.java bundle,
is provided separately from the blog.eba archive. This shared bundle must be
installed into the WebSphere Application Server bundle repository before the
blog.eba is deployed. The deployment process calculates the package and service
dependencies of all application bundles against the contents of the deployed EBA
archive, the configured bundle repositories, and WebSphere Application Server
provided API/SPI packages (such as Java EE packages and com.ibm.websphere
packages). If all the dependencies are resolved, the application is successfully
deployed to the configured target server(s). In the WebSphere Application Server
admin console, installed OSGi applications appear in the same Business-level
applications (BLA) collection view as Java EE and SCA applications. (See
administrative tasks for deploying OSGi applications for details.)

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 16 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.osgifep.multiplatform.doc/topics/thread_ta_dev_deployapp.html                     
http://www.ibm.com/legal/copytrade.shtml


SCA composition

The OSGi application feature can be used in conjunction with WebSphere
Application Server's Service Component Architecture (SCA) support when the
WebSphere Application Server V7 Feature Pack for SCA v1.0.1.5 or later is
installed. SCA provides an assembly model for composing potentially
heterogeneous components into coarse-grained composites that define external
services and references for which a variety of different bindings can be configured.
SCA and OSGi share some common concepts around the notions of assembling
components into a coherent module with explicitly declared externals. It is quite
natural to use these technologies together, although they do address different and
unique aspects of service assembly.

On its own, an OSGi application can be assembled from a collection of OSGi
bundles, each of which performs a coherent function within the application, like the
Web, business, and persistence bundles of the blog sample application:

• Within a bundle, fine grained components can be implemented as POJO
beans and wired together using a Blueprint bean definition; the internals
of one bundle are not visible to other bundles.

• Within an OSGi application, bundles are wired together through OSGi
services or external package dependencies; the internals of one OSGi
application are not visible to other applications.

The above are two different levels of modularity. SCA provides the next:

• Within an SCA composite, SCA components are wired together through
SCA services; the internals of one SCA composite are not visible to other
composites.

An OSGi application can be assembled as an SCA component within a
coarse-grained SCA composite and can selectively expose the OSGi services it
implements, using SCA to provide remote bindings for these services. An SCA
component implementation provided by an OSGi application has an SCA component
type of implementation.osgiapp. It might remotely expose any of its
Blueprint-configured OSGi services as SCA services and configure remote bindings
for these services.

For example, suppose you wanted to compose the blog sample OSGi application as
an SCA component, along with some other components with a different
implementation type (for example, an EJB component) into an SCA composite, and
then expose the bloggingServiceComponent defined in the snippet shown in Listing
3 as an external service with a default SCA binding. The first thing you would need
to do is update the Blueprint service definition from which this snippet is taken to

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 17 of 24

http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca/
http://www.ibm.com/legal/copytrade.shtml


indicate that the service is remoteable. This requires a standard OSGi property,
service.exported.interfaces, to be added to the service definition (Listing 11).

Listing 11. Declare that a service is remotely available

<blueprint>
<bean id="bloggingServiceComponent"

class="com.ibm.ws.eba.example.blog.BloggingServiceImpl">
...

</bean>
<service ref="bloggingServiceComponent"
interface="com.ibm.ws.eba.example.blog.api.BloggingService">
<service-properties>
<entry key="service.exported.interfaces" value="*"/>
</service-properties>
</service>
...

</blueprint>

The application manifest shown in Listing 10 needs to indicate that this service
should be visible outside the OSGi application. Do this by adding the
Application-ExportService header to the application manifest (Listing 12)

Listing 12. Export the service from the OSGi application

Application-Name: Blog

Application-SymbolicName: com.ibm.ws.eba.example.blog.app

Application-Version: 1.0

...

Application-ExportService: com.ibm.ws.eba.example.blog.api.BloggingService

Now you can configure an SCA component whose implementation is an OSGi
application and which provides an SCA service (Listing 13)

Listing 13. Configure an SCA component

<composite name="SocialMediaComposite">
<component name="BlogComponent">
<scafp:implementation.osgiapp
applicationSymbolicName="com.ibm.ws.eba.example.blog.app"
applicationVersion="1.0.0"/>
<service name="bloggingServiceComponent">
<binding.sca>
</service>
</component>
</composite>

In this example, a default SCA binding is shown but other bindings (such as
binding.ws for Web services or binding.jms for JMS) could be specified, depending
on how the service needs to be exposed.

Similar to how it exports remote services, implementation.osgiapp SCA components

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 18 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


can import remote service references. A broader discussion of the scenarios and
patterns for using OSGi and SCA together are beyond the scope of this article. (See
documentation for assembling and deploying OSGi components in SCA composites
for more.)

Development tools

Most of the development activities, and hence development tools, used to build
enterprise OSGi applications are common with Java EE tools, but there are some
new considerations. Primarily, these are around the compile-time classpaths, the
authoring of the OSGi bundle and application manifests and, optionally, Blueprint
bean definition files. Rational Application Developer adds support for developing
OSGi application tools with the introduction of new projects types for OSGi bundle
projects and OSGi application projects, with automated generation of manifests and
forms-based editors to modify them. OSGi modularity semantics are honored in the
project build paths so that only the packages explicitly imported and exported in a
project's bundle manifest are shared between projects. Rational Application
Developer's facet-based configuration enables OSGi projects to be configured as
OSGi Web projects or OSGi JPA projects, and integrates tools for authoring
web.xml, persistence.xml, and blueprint.xml. Rational Application Developer’s new
Bundle Explorer can be used to visualize the relationships between the bundles in
an OSGi application, as illustrated in Figure 3. OSGi application projects can be
imported from or exported to .eba archives, and can be run from the Rational
Application Developer workspace, either on the WebSphere Application Sever V7
optionally installed with Rational Application Developer or on a remote WebSphere
Application Server V7 environment that includes the OSGi application feature.

Figure 3. Rational Application Developer Bundle Explorer

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 19 of 24

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tsca_osgi_impl.html 
https://www14.software.ibm.com/iwm/web/cc/earlyprograms/rational/radob/index.shtml
http://www.ibm.com/legal/copytrade.shtml


Beyond the integrated Rational Application Developer tooling, there are a number of
open source tools to help generate OSGi bundle manifests. In addition, the EBA
Maven Plugin developed by the Apache Aries community can generate an OSGi
application manifest from a Maven pom configuration as part of a build.

Operational details

So far we've talked about developing, assembling, and deploying OSGi applications.
This section takes a brief look at the result of a deployment and some of the
administrative actions that can subsequently be taken.

A useful utility provided with the WebSphere Application Server OSGi application
feature pack is the osgiApplicationConsole script installed in the
install_dir/feature_packs/aries/bin/ directory. This is a wsadmin client application that
provides a remote OSGi console for the specified application server. The
command-line parameters are shown in Listing 14.

Listing 14. Using the OSGi application console utility

-h The host name of the target machine.

-o The port number of the SOAP port of the target server

-u The user ID, if the wsadmin connection is secured.

-p The password, if the wsadmin connection is secured.

example:

install_dir/feature_packs/aries/bin/osgiApplicationConsole -h server1.acme.com -o 8880

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 20 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://incubator.apache.org/aries/ebamavenpluginproject.html
http://incubator.apache.org/aries/ebamavenpluginproject.html
http://www.ibm.com/legal/copytrade.shtml


At the command prompt, you can type help() for a list of interactive commands. If
you run this command after deploying and starting the blog sample application and
then type list() at the command prompt, you'll see entries for two OSGi
frameworks on the target server. One is for the OSGi framework into which the blog
sample application is installed and one is the server-wide shared framework. To find
out details of bundles, services, and packages for each framework, you need first to
connect to the desired framework: from the command prompt, type: connect(1) to
connect to the application framework. To list all the bundles installed into this
framework, and see their bundle states, type ss(). You should see something like
Listing 15.

Listing 15. Interactive OSGi application console

wsadmin>ss()

ID State Bundle

0 ACTIVE org.eclipse.osgi_3.5.2.R35x_v20100126

1 ACTIVE com.ibm.ws.eba.example.blog.app_1.0.0

2 ACTIVE com.ibm.ws.eba.example.blog.persistence_1.0.0

3 ACTIVE com.ibm.ws.eba.example.blog.web_1.0.0

4 ACTIVE com.ibm.ws.eba.example.blog.api_1.0.0

5 ACTIVE com.ibm.ws.eba.example.blog_1.0.0

The WebSphere Application Server Information Center documents the interactive
commands and filters you can use to get more information about running
applications. Something this console helps you visualize very easily is the manner in
which isolation is maintained for discrete OSGi applications so that the internal
bundles and packages of one application are not visible to other applications. It is
not necessary to deploy different applications on different servers just to isolate one
application from another. Bundles that need to be shared between applications (for
example, the Use-Bundle content described earlier (link to Application Assembly)
are installed into the shared framework.

The last thing we'll look at is administrative update of a bundle in a deployed
application.

After an application has been installed, you can navigate to the admin console's
Assets view to see the installed versions of each bundle. If later versions of one or
more of the bundles are available, in any of the configured bundle repositories, and
those versions lie within the version ranges defined for the bundles in the OSGi
application manifest, then you have the opportunity to administratively update some
or all of those bundles to the desired version. By way of illustration, the blog sample
provides an additional 1.1.0 version of its persistence bundle. If, after deploying the
blog sample, you then add the 1.1.0 version of blog persistence to the WebSphere
Application Server internal bundle repository, you can navigate via the Application

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 21 of 24

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.osgifep.multiplatform.doc/topics/ta_admin_runtime_console.html 
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.osgifep.multiplatform.doc/topics/ta_admin_runtime_console.html 
http://www.ibm.com/legal/copytrade.shtml


Assets view in the panel shown in Figure 4.

Figure 4. Administrative update of bundles

You can now choose the 1.1.0 version of the persistence bundle and select the
Preview button to re-resolve the application and check for any inconsistencies. If the
preview produces no errors, you can then select the Commit button to update the
application and save the configuration.

Conclusion

The benefits of a modular approach to application design include reduced
complexity, reduced time to delivery, and increased serviceability. While the benefits
are well-understood and best practices are often put in place to encourage modular
design, Java EE infrastructure on its own has limited ability to enforce or encourage
modular design.

Enterprise OSGi combines the modularity principles and infrastructure of OSGi with
a familiar Java EE programing model for enterprise applications and the server
environments in which they run.

The OSGi application feature of the WebSphere Application Server V7 Feature Pack
for OSGi Applications and JPA 2.0 provides comprehensive run time and integrated

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 22 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


administrative support for deploying OSGi applications to WebSphere Application
Server. Application integrity is maintained by isolating applications from one another
while enabling the sharing of specific bundles to be directed by application assembly
metadata. The application deployment process is augmented to enable application
content to be provisioned from a combination of application-specific archives and
shared OSGi bundle repositories, reducing application archive size as well as disk
and memory footprint. Spring-like declarative assembly and dependency injection,
with its benefit of simplified unit test outside the application server, is provided
through the Blueprint container, governed by OSGi standards and integrated into the
server runtime. Assembly of OSGi applications into heterogeneous composites and
remote binding to OSGi services is provided through a new SCA component
implementation type for OSGi applications.

Tooling for developers of OSGi applications is provided in Rational Application
Developer, including generators and editors for OSGi metadata, enforcement of
OSGi modularity constraints in the development environment, import/export of
enterprise bundle archives, and workspace-integrated capabilities to run and debug
OSGi applications on a server.

Try it out!

ibm.com/developerWorks developerWorks®

Developing enterprise OSGi applications for WebSphere Application Server
© Copyright IBM Corporation 2010. All rights reserved. Page 23 of 24

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• WebSphere Application Server Information Center including documentation for
the featurepack

• B est practices for developing and working with OSGi applications

• Apache Aries project

• Eclipse Equinox project

• Administrative tasks for deploying OSGi applications

• assembling and deploying OSGi components in SCA composites

• IBM developerWorks WebSphere

Get products and technologies

• WebSphere Application Server V7 Feature Pack for OSGi Applications and
Java Persistence API 2.0

• Rational Application Developer

Discuss

• OSGi Application feature discussion forum

About the authors

Dr. Ian Robinson
Dr. Ian Robinson is an IBM Distinguished Engineer and senior architect for the
WebSphere Application Server, responsible for the strategy and development of
OSGi technologies in WebSphere and the transaction processing capabilities of the
WebSphere platform.

Dr. Holly Cummins
Dr. Holly Cummins is an IBM software engineer. She is a developer for the
WebSphere feature packs and is also committer on the Apache Aries project. She
has been with IBM for nine years and holds a DPhil in quantum computation and an
MSc in software engineering.

developerWorks® ibm.com/developerWorks

Developing enterprise OSGi applications for WebSphere Application Server
Page 24 of 24 © Copyright IBM Corporation 2010. All rights reserved.

http://publib.boulder.ibm.com/infocenter/wasinfo/fep/index.jsp?topic=/com.ibm.websphere.jpafep.multiplatform.doc/info/ae/ae/welcome_fepjpa.html
https://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://incubator.apache.org/aries/ 
http://eclipse.org/equinox/
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.osgifep.multiplatform.doc/topics/thread_ta_dev_deployapp.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tsca_osgi_impl.html
http://www.ibm.com/developerworks/websphere/
http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/osgi/
http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/osgi/
https://www14.software.ibm.com/iwm/web/cc/earlyprograms/rational/radob/index.shtml
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1928
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	The OSGi application feature pack
	Getting started with OSGi applications
	OSGi services and the Blueprint component model
	A sample OSGi application
	SCA composition
	Development tools
	Operational details
	Conclusion
	Resources
	About the authors

