
CRUD Operations Using JSF, Web Services and
JSF
Skill Level: Intermediate

Kamesh Pandrangi (kamesh.pandrangi@in.ibm.com)
System Engineer
IBM

30 Oct 2009

This article explains the use case of adding, updating, searching and deleting using
JSF, Web Services and OJB in WebSphere Integration Developer version 6.1. The
article discusses the steps in developing each layer including the integration among
these layers.

Introduction

With the introduction of Web services as a place holder for core business logic
based on SOA platform enabled the enterprise application development in an
independent layer structure thus making it easy for development and maintenance
as well.

In this article we will discuss the development of each layer and the interaction
among layers; resulting in an end-to-end enterprise solution. CRUD operations being
the basic operations for any kind of enterprise business, addressing these areas
gives an overview for the designing and developing the solutions based on SOA. To
answer the technical challenges and show the capabilities JSF is used for
developing the User Interface layer and OJB for handling the data at data layer.

Figure 1. Web service

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 1 of 24

mailto:kamesh.pandrangi@in.ibm.com
http://www.ibm.com/legal/copytrade.shtml


Java Server interface

The user interface (UI) layer is developed using Java Server Faces Technology. It
includes:

• A set of APIs for representing the UI components and managing their
state, handling events and input validation, converting values, defining
page navigation, and supporting internationalization and accessibility

• A default set of UI components

• Two JavaServer Pages (JSP) custom tag libraries for expressing a
JavaServer Faces interface within a JSP page

• A server-side event model

• State management

• Managed Beans (JavaBeans created with dependency injection)

• Unified Expression Language for both JSP 2.0 and JSF 1.2

Creating a JSF project is similar to the creating a normal web project in WebSphere
Integration Developer (WID) 6.1. The user friendly features of WID enable the user
to easily create Web projects. Below, we begin by creating a Dynamic Web project.
The following steps begins the process of building the JSF project in WID 6.1.

• Right-click on Project Explorer > Select New > Select Dynamic Web
Project

• Specify the Project name and EAR name

• Check the required Project Facet like JSTL, Basic Facet Support that
enable us to use the features of built in functionality

• Specify the Context Root, Content Directory & Java Source Directory

• Create a new JSF page by Right clicking on Web Content > New > JSP

• Specify the JSF page name

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 2 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Figure 2. Importing JSP templates

Open the page in design view and add the required components from the Enhanced
Faces Components. These enhanced Faces Components provide a rich a set of
widgets that are normally used in developing applications such as a drop down list,
selection list, data table, and panels. The biggest advantage with JSF is addressing
the many user interface components in basic form and connecting them with the
relevant operations in the JavaBean. To make a good look and feel we will build the
components in a table to view the alignment and position of fields in a consumable
way.

• Click on the HTML Tags > Select Table > Specify the number of rows and
columns

• Add the required labels for the form fields

• Click on Enhanced Faces Components > Select Input > Drag into
required cell

• Repeat the process to add other components

Figure 3. Properties of JSF components

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 3 of 24

http://www.ibm.com/legal/copytrade.shtml


Dpecify the properties of a component by clicking on the Properties tab.

Once we are finish with designing the page using the widgets and other
components. We then look into the next part of mapping the components to the
relevant properties at the JavaBean. Within the JSF we call it as managed bean that
holds the properties and provide operations on them, the following steps describe
how to start up with the managed bean.

• Create a managed bean with required properties

• Select the property > right-click > Generate Getters & Setters

• Create a method and specify the required operation (either the actual
business logic or Service Invocation), Figure 4 shows how we work with
managed beans.

Figure 4. Managed Bean properties and operations

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 4 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Figure 5. Page data

In Page Data right click on Use Bean > New > JavaBean.

Figure 6. Data component

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 5 of 24

http://www.ibm.com/legal/copytrade.shtml


Selection of the faces managed bean

Once the managed bean is created with the required properties and method
innovations, we specify the name for the managed bean with its corresponding
class. Depending on the functionality and usage of the class we make this bean as
reusable by specifying its scope. These are reflected in faces-config.xml.

This new bean definition is completed within th bottom-left panel called Page Data
where we select the Faces Managed Bean, once you refresh the Faces Managed
Beans in Page Data, you can view the bean with its available variables and
methods. Using Websphere Integration Developer directly map the bean properties
to the fields that are designed and developed in JSF page. Figure 7 shows the drag
and drop functionality provided in WID.

Figure 7. Drag & Drop bean properties

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 6 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Similarly you can also map the properties and operations for other operations of
Retrieve, Update and Delete. Once the four operations are complete deploy the EAR
onto the server and test it using the test clients that will push the data from User
Interface to the next layer.

• Map the variables to the corresponding field in Design View

• Map the method to be triggered on Submitting the form to the Submit
button

Using Web services

Web services form an interoperable layer that connects the user interface and
database layer.

Figure 8. Overview of Web services

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 7 of 24

http://www.ibm.com/legal/copytrade.shtml


Services are defined using six major elements:

1. Types, which provides data type definitions used to describe the
messages exchanged.

2. Message, which represents an abstract definition of the data being
transmitted. A message consists of logical parts, each of which is
associated with a definition within some type system.

3. PortType, which is a set of abstract operations. Each operation refers to
an input message and output messages.

4. Binding, which specifies concrete protocol and data format specifications
for the operations and messages defined by a particular portType.

5. Port, which specifies an address for a binding, thus defining a single
communication endpoint.

6. Service, which is used to aggregate a set of related ports.

The Web service creates an interoperable layer that connects the user interace and
the database layer. This enables us to store the business logic and define rules as
and when and re-deploy only this layer whenever changes come. It provides us the
flexible way to upgrade the UI and back end layer without disturbing core business
logic.

We follow three major steps in creating a Web service here:

1. Creating a library that stores the Data Objects and WSDL's

2. A Web project to store the generated java skeletons

3. A java project to store the generated client

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 8 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Creating the library

The creation of a library and storing the created WSDL helps us to share the library
with other projects and provides a common place for managing them. This library is
also used to store the data objects that are used across the project. So at any point
of time any updates on these data objects can be made at a single place to avoid
the conflict in other projects.

Depending on the type of operations and the data used in the project the data
objects are defined. In the day to day business operations the data is wrapped in the
meaningful form of objects that are transferred in XML format. We have many XML
parsers that will wrap and unwrap these complex objects and serve the business
need. Since these data objects are defined in a common place like library and
imported by interface, they can be updated as an when required without changing
the actual wsdl definition.

The following steps provides guidance with the creation of library and Data objects:

• Select Library and click Next

• Create a new XSD by Right clicking on Web Content > New > Other >
XML > XMLSchema

• Right click on newly created XSD and open with Business Object Editor
as shown in Figure 9

• Specify the name and type for the element in Properties Tab

At this point we can group the object of objects thus creating a complex object as a
whole, where each object can contain the primitive data types like integer, string or a
Boolean value. The basic structure of a complex object can be depicted in figures 9
and 10.

Figure 9. Working with the Business Object Editor

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 9 of 24

http://www.ibm.com/legal/copytrade.shtml


Figure 10. Structure of Complex Business Object

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 10 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Once we are ready with the data objects, we can create a wsdl that takes these data
objects as inputs and outputs depending on the operation type. To use these data
objects we need to import them to our wsdl specifying the corresponding
namespace.

Generating the JavaBean

The WSDL's created earlier define the operations performed with input and output
parameters. The actual core business logic is defined by implementing those
operations, this can be achieved by generating the Java Bean shell. Figure 11
demonstrate how to create the Java Bean shell.

Figure 11. Structure of Complex Business Object

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 11 of 24

http://www.ibm.com/legal/copytrade.shtml


Right click on WSDL > Select Web Services > Generate Java bean skeleton

Figure 12. Specify Service Project Settings

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 12 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Specify the Service Project Name with its project type and EAR name.

Generating client

To check the implemented classes functionality we generate client that actually
make a call to the web service and confirm us that everything is fine. In real time we
actually give the wsdl to the user from which they generate the client and invoke for
the required functionality. Figure 13 shows how to create the client.

Figure 13. Generating the Client

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 13 of 24

http://www.ibm.com/legal/copytrade.shtml


Right click on WSDL > Select Web services > Generate Client

Figure 14. Specify Client Project Settings

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 14 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Click on Client Project > Specify the Client Project Name

ObJectRelationalBridge (OJB)

Data being the major component in any project should be manipulated and stored in
a right way at right time. Delay in response time or dirty read/write will degrade the
performance of the system and keeping the system in an inconsistent state as a
whole. In the current tutorial the DB layer sits at the end storing the data that is
passed through UI layer and service layer.

With the introduction of ORM tools the data manipulation and maintenance became
easy that can be directly mapped with the java, OJB is one among them that is
designed developed by Apache. It allows persistence for java objects against
relational databases.

The following are some key features of OJB:

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 15 of 24

http://www.ibm.com/legal/copytrade.shtml


• Provides flexibility through support to multiple persistence APIs

• The applications that are designed and developed using OJB are scalable
for future enhancements.

• It support JNDI lookups and Bean Managed Persistence

• The XML based ORM helps to manipulate during run-time

• It provides a flexible configuration and plug-in mechanism that allows to
select from set of predefined components.

• The open source feature with 100% pure Java orientation facilitates rapid
development.

With the completion of the user inteface layer and services layer we move into the
database layer which actually saves the data into the database. The annotations and
xml configuration features provided by OJB enables us to map the table columns
with the bean properties directly thus making the data manipulations easy. The
built-in methods in OJB help us to store ,update and delete the data in a object
model.

Figure 15. Creating New Java Project

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 16 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


To achieve this we create a Java Project with two main packages that store DAO’s
and Domain classes. Following the java naming conventions create the packages
with appropriate names. The Domain package stores the classes that contain
doclets mapping the properties to that of columns in the specific table, while the
DAO package contains the real operational methods that stores the domain object.
Import the required Jars into the lib folder. This include the necessary jars for the
database support, in this article we use DB2 as database and import them
accordingly.

Figure 16. Configuring the repository_database.xml

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 17 of 24

http://www.ibm.com/legal/copytrade.shtml


Once we are done with the basic packaging structure and importing of dependent jar
files we moved ahead with configuring the XML files. The files are stored in the
config folder, the main config file include repository_database.xml that is used to
configure the database name and other credentials. The next file we deal is the
build.xml that actually map the location of domain objects and classpath from where
required jars are loaded. It also specifies the target location for files
project-schema.xml and repository_user.xml. These two files will be generated and
placed in config folder once we run the build.xml file. Figure 17 shows the typical
build.xml file.

Figure 17. Configuring the build.xml

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 18 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Integrating the user interface with services

Now we are ready with three individual layers and need to integrate them to make
an end-to-end flow. Firstly we integrate the user interface with Web services. Since
the user interface is a dynamic Web project, adding the service client jar makes the
operations defined in Web service to be available to the user interface layer. This
can be achieved in the following way, described below.

Figure 18. Adding web service client to UI

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 19 of 24

http://www.ibm.com/legal/copytrade.shtml


Right Click on UI Project > Properties > J2EE Module Dependencies > Check the
Client JAR

Invoke the service using service locator and locate the endpoint with appropriate
port type. If the server is listening in another port, we need to change accordingly.
Depending on the object type at user interface layer we map them to objects that are
defined at service layer. Figure 19 shows the sample code for invoking web service
from a managed bean in user interface layer.

Figure 19. Service Invocation from Managed Bean

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 20 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Integrating the services with the database layer

The integration of services with database layer includes adding the database java
project as dependency jar in Web service project J2EE Module dependencies. Make
certain that the required jars for the database project are already added in EAR that
is generated for the Web service project. Figure 20 shows adding the data project as
dependency jar to the Web service project.

Figure 21. Adding DB jar dependency

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 21 of 24

http://www.ibm.com/legal/copytrade.shtml


Right Click on Web Service Project > Properties > J2EE Module Dependencies > DB
JAR

Figure 21. Creating Domain and DAO objects

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 22 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Create the Domain and DAO Objects

• Set the domain object using appropriate DAO

Conclusion

This article summarized the rapid application development on SOA platform using
the services as core layer with cutting edge technologies like JSF and OJB. It
focused on development of each layer and integrating with the other layers. This is
an basic approach to start and visualise the SOA and identify the interopability of
services that can glue any kind of technology together.

ibm.com/developerWorks developerWorks®

CRUD Operations Using JSF, Web Services and JSF
© Copyright IBM Corporation 2009. All rights reserved. Page 23 of 24

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• For further reading visit the new to SOA and Web services page.

• In the SOA and Web services area on developerWorks, get the resources you
need to advance your skills.

• "IBM WebSphere Developer Technical Journal: Web Services Architectures and
Best Practices", (developerWorks, Oct 2003) book excerpt covers some of the
architectural challenges posed by Web services, examines how to use (and not
to use) Web Services, and describes some best practices in applying Web
Services for solving tough architectural problems.

• Learn more about JavaServer Faces Technology.

• "Developing Web Applications with JavaServer Faces".

• Learn more about Apache ObJectRelationalBridge.

• View the OJB reference guide summary.

• Browse the technology bookstore for books on these and other technical topics.

Get products and technologies

• Download IBM product evaluation versions or explore the online trials in the
IBM SOA Sandbox and get your hands on application development tools and
middleware products from DB2®, Lotus®, Rational®, Tivoli®, and
WebSphere®.

Discuss

• Check out developerWorks blogs and get involved in the developerWorks
community.

About the author

Kamesh Pandrangi
Kamesh has been working at IBM for over 3 years, exclusively on develping SOA
solutions utilizing WebSphere software.

developerWorks® ibm.com/developerWorks

CRUD Operations Using JSF, Web Services and JSF
Page 24 of 24 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/developerworks/webservices/newto/
http://www.ibm.com/developerworks/webservices/
http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html
http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html
http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/developer/technicalArticles/GUI/JavaServerFaces/
http://db.apache.org/ojb/
http://db.apache.org/ojb/docu/guides/summary.html/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/soasandbox/
http://www.ibm.com/developerworks/downloads/soasandbox/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	Java Server interface
	Creating the library
	Generating the JavaBean
	Generating client
	ObJectRelationalBridge (OJB)
	Integrating the user interface with services
	Integrating the services with the database layer
	Conclusion
	Resources
	About the author

