developerVWorks

Introduction to Comet

Streaming and long polling for responsive communication
between your server and client

Skill Level: Intermediate

Mathieu Carbou (mathieu.carbou@gmail.com)
Java Web Architect
Ovea

19 Jul 2011

Web development has changed considerably in the past few years. These days, we
expect fast, dynamic applications accessible from the web. In this new series, learn
how to develop event-driven web applications using Reverse Ajax techniques to
achieve a better user experience. The examples on the client side will use the jQuery
JavaScript library. In this first article, explore different Reverse Ajax techniques. With
downloadable examples, learn about Comet with streaming and long polling
methods.

Introduction

Web development has evolved considerably in the past few years. We're beyond the
static web pages linked together, which caused browser refreshing and waiting for
pages to load. Now, the demand is for completely dynamic applications accessible
from the web. These applications often need to be as fast as possible and provide
nearly real-time components. In this new five-part series, learn how to develop
event-driven web applications using Reverse Ajax techniques.

In this first article, learn about Reverse Ajax, polling, streaming, Comet, and long
polling. Learn how to implement different Reverse Ajax communication techniques,
and explore the advantages and disadvantages of each method. You can download
the source code to follow along with the examples in this article.

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 1 of 16

mailto:mathieu.carbou@gmail.com
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Ajax, Reverse Ajax, and WebSockets

Asynchronous JavaScript and XML (Ajax), a browser feature accessible in
JavasScript, allows a script to make an HTTP request to a website behind the
scenes, without the need for a page reload. Ajax has been around more than a
decade. Though the name includes XML, you can transfer nearly anything in an Ajax
request. The most commonly used data is JSON, which is close to JavaScript syntax
and consumes less bandwidth. Listing 1 shows an example of an Ajax request to
retrieve a place's name from its postal code.

Listing 1. Example Ajax request

var url = "http://ww. geonanes. or g/ post al CodeLookupJSON?post al code="
+ $(' #postal Code').val () + '&country='
+ $(' #country').val () + '&callback=?";

$. get JSON(url, function(data) {

1 $(' #pl aceNanme') . val (dat a. post al codes[0] . pl aceNane) ;

You can see this example work in listing1.html in the downloadable source code for
this article.

Reverse Ajax is essentially a concept: being able to send data from the server to the
client. In a standard HTTP Ajax request, data is sent to the server. Reverse Ajax can
be simulated to issue an Ajax request, in specific ways that are covered in this
article, so the server can send events to the client as quickly as possible
(low-latency communication).

WebSockets, which comes from HTML5, is a much more recent technique. Many
browsers already support it (Firefox, Google Chrome, Safari, and others).
WebSockets enables bidirectional, full-duplex communication channels. The
connection is opened through a sort of HTTP request, called a WebSockets
handshake, with some special headers. The connection is kept alive, and you can
write and receive data in JavaScript, as if you were using a raw TCP socket.
WebSockets will be covered more in Part 2 of this series.

Reverse Ajax techniques

The goal of Reverse Ajax is to let the server push information to the client. Ajax
requests are stateless by default, and can only be opened from the client to the
server. You can bypass this limitation by using the techniques to simulate
responsive communication between the server and client.

HTTP polling and JSONP polling

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 2 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Polling involves issuing a request from the client to the server to ask for some data.
This is obviously a mere Ajax HTTP request. To get the server events as soon as
possible, the polling interval (time between requests) must be as low as possible.
There's a drawback: if this interval is reduced, the client browser is going to issue
many more requests, many of which won't return any useful data, and will consume
bandwidth and processing resources for nothing.

The timeline in Figure 1 shows how some polling requests issued by the client but
no information is returned. The client must wait for the next polling to get the two
events received by the server.

Figure 1. Reverse Ajax with HTTP polling

Browser Server

Ajax regquest #1

L §

I 9

Response (no data)

Ajax request #2

Pa »
b Response (no data) % Event 1
b & Event 2
Ajax request #3 -
- Response with data
Y 'r

JSONP polling is essentially the same as HTTP polling. The difference, however, is
that with JISONP you can issue cross-domain requests (requests not in your
domain). JSONP is used in Listing 1 to get a place name from a postal code. A
JSONP request can usually be recognized by its callback parameter and returned
content, which is executable JavaScript code.

To implement polling in JavaScript, you can use set | nt er val to periodically issue
Ajax requests, as shown in Listing 2:

Listing 2. JavaScript polling

setlnterval (function() ({
$. get JSON(' events', function(events) {
consol e. | og(events);

1),
}, 2000);

The polling demo in the article source code shows the bandwidth consumption by
the polling method. The interval is low, but you can see some requests returning no

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 3 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks®

event. Listing 3 shows the output of the sample polling.

Listing 3. Sample polling demo output

client] checking for
client] no event
client] checking for
client] 2 events
event] At Sun Jun 05
event] At Sun Jun 05
client] checking for
client] 1 events
event] At Sun Jun 05

Polling in JavaScript has advantages and disadvantages.

events. ..
events. ..
15:17: 14 EDT 2011
15:17: 14 EDT 2011
events. ..

15:17:16 EDT 2011

ibm.com/developerWorks

» Advantages: It's really easy to implement and does not require any
special features on the server side. It also works in all browsers.

» Disadvantage: This method is rarely employed because it does not scale
at all. Imagine the quantity of lost bandwidth and resources in the case of
100 clients each issuing polling requests for 2 seconds, where 30% of the
requests returned no data.

Piggyback

Piggyback polling is a much more clever method than polling since it tends to
remove all non-needed requests (those returning no data). There is no interval;
requests are sent when the client needs to send a request to the server. The
difference lies in the response, which is split into two parts: the response for the
requested data and the server events, if any occurred. Figure 2 shows an example.

Figure 2. Reverse Ajax with piggyback polling

Introduction to Comet
© Copyright IBM Corporation 2011

Trademarks
Page 4 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Browser Server

Client action #1
Response

W

'

Client action #2
Response

Ewvent 1

-

Event 2
B E—

A
ittt

sl
=T
Fn
=

Client action #3

¥

Mixed response

 J 'f

When implementing the piggyback technique, typically all Ajax requests targeting the
server might return a mixed response. An implementation sample is in the article
download and in Listing 4 below.

Listing 4. Sample piggyback code

$(' #submi t').click(function() {
$. post (' aj ax', function(data) {
var valid = data.fornValid;
/'l process validation results
/'l then process the other part of the response (events)
1 processEvent s(dat a. event s) ;
1)

Listing 5 shows some piggyback output.

Listing 5. Sample piggyback output

[client] checking for events...

[server] formvalid ? true

[client] 4 events

[event] At Sun Jun 05 16:08:32 EDT 2011
[event] At Sun Jun 05 16:08: 34 EDT 2011
[event] At Sun Jun 05 16:08: 34 EDT 2011
[event] At Sun Jun 05 16:08: 37 EDT 2011

You can see the result of the form validation and the events appended to the
response. Again, there are advantages and disadvantages to this method.

« Advantages: With no requests returning no data, since the client controls
when it sends requests, you have less resource consumption. It also

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 5 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

works in all browsers and does not require special features on the server
side.

» Disadvantage: You have no clue when the events accumulated on the
server side will be delivered to the client because it requires a client
action to request them.

Comet

Reverse Ajax with polling or piggyback is very limited: it does not scale and does not
provide low-latency communication (when events arrive in the browser as soon as
they arrive on the server). Comet is a web application model where a request is sent
to the server and kept alive for a long time, until a time-out or a server event occurs.
When the request is completed, another long-lived Ajax request is sent to wait for
other server events. With Comet, web servers can send the data to the client without
having to explicitly request it.

The big advantage of Comet is that each client always has a communication link
open to the server. The server can push events on the clients by immediately
committing (completing) the responses when they arrive, or it can even accumulate
and send bursts. Because a request is kept open for a long time, special features
are required on the server side to handle all of these long-lived requests. Figure 3
shows an example. (Part 2 in this series will explain the server constraints in more
detail.)

Figure 3. Reverse Ajax with Comet

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 6 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Browser Servar

Long-lived reguest #1 + Request is
W suspended

Clent action #2
Responsa

L

.

Event 1
- : -———————————
Long-lived request #1 completes

Long-lived request #2 < FRequestis
P.I
r suspended

T
_

Uy

Event 2
-

Ewvent 3

-l
=t

[ang-lived request #2 completes

Client action #3

.

Fesponse

L Y
Implementations of Comet can be separated into two types: those using streaming
mode, and those using long polling.

Comet using HTTP streaming

In streaming mode, one persistent connection is opened. There will only be a
long-lived request (#1 in Figure 3) since each event arriving on the server side is
sent through the same connection. Thus, it requires on the client side a way to
separate the different responses coming through the same connection. Technically
speaking, two common techniques for streaming include Forever Iframes (hidden
IFrames) or the multi-part feature of the XMLHt t pRequest object used to create
Ajax requests in JavaScript.

Forever Iframes

The Forever Iframes technique involves a hidden Iframe tag put in the page with its
sr ¢ attribute pointing to the servlet path returning server events. Each time an event
Is received, the servlet writes and flushes a new script tag with the JavaScript code
inside. The iframe content will be appended with this script tag that will get executed.

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 7 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

* Advantages: Simple to implement, and it works in all browsers supporting
iframes.

» Disadvantages: There is no way to implement reliable error handling or to
track the state of the connection, because all connection and data are
handled by the browser through HTML tags. You then don't know when
the connection is broken on either side.

Multi-part XMLHttpRequest

The second technique, which is more reliable, is to use the multi-part flag supported
by some browsers (such as Firefox) on the XMLHt t pRequest object. An Ajax
request is sent and kept open on the server side. Each time an event comes, a
multi-part response is written through the same connection. Listing 6 shows an
example.

Listing 6. Sample JavaScript code to set up a multi-part streaming request

var xhr = $.aj axSettings. xhr();
xhr.mul tipart = true;
xhr. open(' GET', 'ajax', true);
xhr. onr eadyst at echange = function() {
if (xhr.readyState == 4) {
processEvent s($. par seJSON(xhr . responseText)) ;

b

xhr.send(null);

On the server side, things are a little more complicated. You must first set up the
multi-part request, and then suspend the connection. Listing 7 shows how to

suspend an HTTP streaming request. (Part 3 of this series will cover the APIs in
more detail.)

Listing 7. Suspending an HTTP streaming request in a servlet using Servlet 3
API

protected void doGet (HttpServl et Request req, HttpServl et Response resp)
throws Servl et Exception, | OException {
/] start the suspension of the request
AsyncCont ext asyncContext = req.startAsync();
asyncCont ext . set Ti meout (0) ;

/1 send the multipart separator back to the client

resp. set Cont ent Type("nul ti part/x-m xed-repl ace; boundary=\""
+ boundary + "\"");

r esp. set Header (" Connecti on", "keep-alive");

resp. getQut put Stream().print("--" + boundary);

resp. flushBuffer();

/1 put the async context in a list for future usage
asyncCont ext s. of f er (asyncCont ext) ;

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 8 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Now, each time an event occurs you can iterate over all suspended connections and
write the data to them, as shown in Listing 8:

Listing 8. Send events to a suspended multi-part request using Servlet 3 API

for (AsyncContext asyncCont ext . asyncContexts) {
Ht t pSer vl et Response peer (Htt pSer vl et Response)
asyncCont ext . get Response()
peer. get Qut put Strean() . printl n(" Cont ent - Type: application/json");
peer. get Qut put Stream().println();
peer. get Qut put Strean() . printl n(new JSONAr ray/()
.put ("At " + new Date()). toStrlng())
peer.getQut put Stream().println("--" boundar y);
peer. flushBuffer();

The files you can download with this article demonstrate HTTP streaming in the
Comet-streaming folder. When you run the sample and open the home page, you'll
see that events appear immediately asynchronously as soon as they arrive on the
server. Also, if you open the Firebug console, you can see that there is only one
Ajax request opened. If you look deeper, you'll see JSON responses appended in
the Response tab, as shown in Figure 4:

Figure 4. FireBug view of an HTTP streaming request

HTTP Polling - hlarnchr_n-h:a

File Edit Wiew History Delicious Bookmarks
% @ | @ http://localhostaosof LR L B U+
1wogle... ™M mine g1 G W W B jcuery.z == Hege [@ HTT... ® L I

[elient] L ewenis
[ewent] At Mom Jun 06 12:29:57 OOT 2011
[elient] 1 ewents
|ewent] At Mom Jun G6 12:30:00 EOT 2011
lelient] 1 avents
lewent] At Mar Jun 86 12:323:00 BT 2211
leliant] 1 avents
lawentl At Mon Jun GG 12:30:05 BT 2811
['qj {

2 Consale - HTML OS5 Script DOM et | ' s hhjI'-"J

£ Clear Persisk Frofile .rb.ll! Errors Warnings Info Debug Info
=l GET hittpziflocalhost:BOB0 ajax 00 OF Sr 2o lecalhost:B080 (line 35) -

Hesders HRezponse

ﬁt Mam Jur 36 12:25:57 BEDT 20110 I"At Man Jun B8 12:30:00 BOT 2811°[["At Men Jun Q6 12:30:01 =0T G
At Mon Juen 06 12:30:03 DT 2011°I1["&t Mon Jun O 12:30:;G65 EOT _l.'ll_ || "&b Mon Jun 06 12:30:08 EOT 24
".ﬁ‘ Man Jisn 66 12'30'13 FOT ZE11°]["At Mon Jun 0S8 12:30'11 EOT ZA11°*]["At Mom Jum DS 12:30:13 EOT 31
AL Men Jwen 06 12:30;14 ST 2011° [A Men Jun 06 12:30:18 EDT 2011°(|[&t Men Jun 06 12:30:21 EOT 2i
.ﬂ‘ Mon Jun 06 12:30:25 EOT Z011°]["A&t Mon Jun 05 12:30:37 EOT Z011°]["At Mon Jun DS 12:30:31 EOT 20
I I
1L 1L

,..
:-

Mon Jun G6 12:308:32 SOT 2011°[["At Mo Jun O L2:30:34 EDT 2011°10°At Mon Jun DS 12:30:34 EOT 20

'_'.ﬂv‘ Mon Jwn Ob L2:730:78 C00 20L1°)["At Mon Jum O6 12:730:30 CDT =011%)["At Mom Jun 6 L2:30:40 COT 207

o === =
=4|v Done B @ enus & O L

As usual, there are advantages and disadvantages.

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 9 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

» Advantage: Only one persistent connection is opened. This is the Comet
technique that saves the most bandwidth usage.

» Disadvantage: The multi-part flag is not supported by all browsers. Some
widely used libraries, such as CometD in Java, reported issues in
buffering. For example, chunks of data (multi-parts) may be buffered and
sent only when the connection is completed or the buffer is full, which can
create higher latency than expected.

Comet using HTTP long polling

The long polling mode involves techniques that open a connection. The connection
IS kept open by the server, and, as soon as an event occurs, the response is
committed and the connection is closed. Then, a new long-polling connection is
reopened immediately by the client waiting for new events to arrive.

You can implement HTTP long polling by using script tags or a mere
XM_Ht t pRequest object.

Script tags

As with iframes, the goal is to append a script tag in your page to get the script
executed. The server will: suspend the connection until an event occurs, send the
script content back to the browser, and then reopen another script tag to get the next
events.

« Advantages: Because it's based on HTML tags, this technique is very
easy to implement and works across domains (by default,
XM_Ht t pRequest does not allow requests on other domains or
sub-domains).

» Disadvantages: Similar to the iframe technique, error handling is missing,
and you can't have a state or the ability to interrupt a connection.

XMLHttpRequest long polling

The second, and recommended, method to implement Comet is to open an Ajax
request to the server and wait for the response. The server requires specific features
on the server side to allow the request to be suspended. As soon as an event
occurs, the server sends back the response in the suspended request and closes it,
exactly like you close the output stream of a servlet response. The client then
consumes the response and opens a new long-lived Ajax request to the server, as
shown in Listing 9:

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 10 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Listing 9. Sample JavaScript code to set up long polling requests

function |l ong_polling() {
$. get JISON(' aj ax', function(events) {
processEvent s(events);

| ong_pol l'i ng();
) 1)

I ong_pol l'i ng();

On the back end, the code also uses the Servlet 3 API to suspend the request, as in
HTTP streaming, but you don't need all the multi-part handling code. Listing 10
shows an example.

Listing 10. Suspending a long polling Ajax request

protected void doGet (HttpServl et Request req, HttpServl et Response resp)
throws Servl et Exception, |OException {
AsyncCont ext asyncContext = req.startAsync();
asyncCont ext . set Ti meout (0) ;
asyncCont ext s. of f er (asyncCont ext) ;

When an event is received, simply take all of the suspended requests and complete
them, as shown in Listing 11:

Listing 11. Completing a long polling Ajax request when an event occurs

whil e (!asyncContexts.isEmty()) {

AsyncCont ext asyncContext = asyncContexts. poll();

Ht t pSer vl et Response peer = (HttpServl et Response)
asyncCont ext . get Response();

peer.getWiter().wite(
new JSONArray().put("At " + new Date()).toString());

peer. set Status(Htt pServl et Response. SC_CXK) ;

peer. set Cont ent Type("application/json");

asyncCont ext . conpl ete();

In the accompanying downloadable source files, the comet-long-polling folder
contains a long polling sample web application that you can run using the mvn
j etty: runcommand.

* Advantages: It's easy to implement on the client side with a good
error-handling system and timeout management. This reliable technique
also allows a round-trip between connections on the server side, since
connections are not persistent (a good thing, when you have a lot of
clients on your application). It also works on all browsers; you only make
use of the XMLHt t pRequest object by issuing a simple Ajax request.

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 11 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

» Disadvantage: There is no main disadvantage compared to other
techniques. But, like all techniques we've discussed, this one still relies on
a stateless HTTP connection, which requires special features on the
server side to be able to temporarily suspend it.

Recommendations

Because all modern browsers support the Cross-Origin Resource Sharing (CORS)
specification, which allows XHR to perform cross-domain requests, the need for
script-based and iframe-based techniques becomes deprecated.

The best way to implement and use Comet for Reverse Ajax is through the

XM_Ht t pRequest object, which provides a real connection handle and error
handling. Considering that not all browsers support the multi-part flag, and multi-part
streaming can be subject to buffering issues, it is recommended that you use Comet
through HTTP long polling with the XMLHt t pRequest object (a simple Ajax request
that is suspended on the server side). All browsers supporting Ajax also support this
method.

Conclusion

This article provided an introduction to Reverse Ajax techniques. It explored different
ways to implement Reverse Ajax communication, and it explained the advantages
and drawbacks for each implementation. Your particular situation and the
requirements of your application will influence which method is best for you.
Generally speaking though, Comet with Ajax long-polling requests is the way to go if
you want the best compromise of: low-latency communication; timeout and error
detection; simplicity; and good support from all browsers and platforms.

Stay tuned for Part 2 in this series, which will explore a third Reverse Ajax
technique: WebSockets. Though not all browsers support it yet, WebSockets will
definitely be a very good communication medium for Reverse Ajax. WebSockets will
remove all constraints relative to the stateless characteristic of an HTTP connection.
Part 2 will also cover the server-side constraints induced by Comet and WebSocket
techniques.

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 12 of 16

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Downloads
Description Name Size Download
method
Article source code reverse_ajaxptl_source.zip 17KB HTTP
Information about download methods
Introduction to Comet Trademarks

© Copyright IBM Corporation 2011 Page 13 of 16

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=733315&filename=reverse_ajaxpt1_source.zip&method=http&locale=
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Resources

Learn
* On Wikipedia, read about:
e Ajax
* Reverse Ajax
* Comet
* WebSockets

» "Exploring Reverse AJAX" (Google Maps .Net Control blog, August 2006): Get
an introduction to some Reverse-Ajax techniques.

* "Cross-domain communications with JSONP, Part 1: Combine JSONP and
jQuery to quickly build powerful mashups" (developerWorks, February 2009):
See how you can combine an obscure cross-domain call technique (JSONP)
and a flexible JavaScript library (jQuery) to build powerful mashups surprisingly
quickly.

e "Cross-Origin Resource Sharing (CORS)" specification (W3C, July 2010): Learn
more about this mechanism, which allows XHR to perform cross-domain
requests.

» "Build Ajax applications with Ext JS" (developerWorks, July 2008): Get an
overview of the object-oriented JavaScript design concepts behind Ext JS, and
shows how to use the Ext JS framework for rich Internet application Ul
elements.

» "Compare JavaScript frameworks" (developerWorks, February 2010): Get an
overview of the frameworks that greatly enhance JavaScript development.

« "Mastering Ajax, Part 2: Make asynchronous requests with JavaScript and Ajax"
(developerWorks, January 2006): Learn how to use Ajax and the
XM_Ht t pRequest object to create a request/response model that never leaves
users waiting for a server to respond.

» "Create Ajax applications for the mobile Web" (developerWorks, March 2010):
Understand how to build cross-browser smartphone Web applications using
Ajax.

* "Where and when to use Ajax in your applications" (developerWorks, February
2008): See how you can use Ajax to improve your Web sites while avoiding bad
user experiences.

* "Improve the performance of Web 2.0 applications" (developerWorks,
December 2009): Explore different browser-side cache mechanisms.

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 14 of 16

http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://en.wikipedia.org/wiki/Reverse_Ajax
http://en.wikipedia.org/wiki/Comet_(programming)
http://en.wikipedia.org/wiki/Websockets
http://gmapsdotnetcontrol.blogspot.com/2006/08/exploring-reverse-ajax-ajax.html
https://www.ibm.com/developerworks/web/library/wa-aj-jsonp1/
https://www.ibm.com/developerworks/web/library/wa-aj-jsonp1/
http://www.w3.org/TR/cors/
http://www.ibm.com/developerworks/web/library/wa-aj-extjs/
http://www.ibm.com/developerworks/web/library/wa-jsframeworks/
http://www.ibm.com/developerworks/web/library/wa-ajaxintro2/
http://www.ibm.com/developerworks/opensource/library/wa-aj-mobileajax/
http://www.ibm.com/developerworks/web/library/wa-aj-when/
http://www.ibm.com/developerworks/web/library/wa-aj-cache/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

"Introducing JSON" (JSON.org): Get an introduction to JSON syntax.

developerWorks Web development zone: Find articles covering various
Web-based solutions.

developerWorks podcasts: Listen to interesting interviews and discussions for
software developers.

developerWorks technical events and webcasts: Stay current with
developerWorks technical events and webcasts.

Get products and technologies

Get ExtJS, the cross-browser JavaScript library for building rich internet
applications.

XAMPP provides easy installation of Apache, PHP, MySQL and other goodies.

Try out IBM software for free. Download a trial version, log into an online trial,
work with a product in a sandbox environment, or access it through the cloud.
Choose from over 100 IBM product trials.

Discuss

Create your developerWorks profile today and setup a watchlist on Reverse
Ajax. Get connected and stay connected with developerWorks community.

Find other developerWorks members interested in web development.

Share what you know: Join one of our developerWorks groups focused on web
topics.

Roland Barcia talks about Web 2.0 and middleware in his blog.
Follow developerWorks' members' shared bookmarks on web topics.
Get answers quickly: Visit the Web 2.0 Apps forum.

Get answers quickly: Visit the Ajax forum.

About the author

Mathieu Carbou

Mathieu Carbou, a Java web architect and consultant at Ovea, provides
services and development solutions. He is a committer and leader of
several open source projects, a speaker, and a leader of Montreal's
Java User Group. Mathieu has a strong background in code design and
best practices, and is a specialist of event-driven web development
from the client side to the back end. He focuses on providing
event-driven and messaging solutions in highly scalable web

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 15 of 16

http://json.org
http://www.ibm.com/developerworks/web/
http://www.ibm.com/developerworks/podcast/
http://www-128.ibm.com/developerworks/offers/techbriefings/
http://www.sencha.com/products/js/download.php
http://www.apachefriends.org/en/xampp.html
http://www.ibm.com/developerworks/downloads/product.html
https://www.ibm.com/developerworks/mydeveloperworks/profiles/home.do?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/homepage/help/doc/en/homepage_watchlistuse.html
http://www.ibm.com/developerworks/mydeveloperworks/#community
https://www.ibm.com/developerworks/mydeveloperworks/profiles/html/keywordSearch.do?keyword=web&lang=en
https://www.ibm.com/developerworks/mydeveloperworks/search/web/search
https://www.ibm.com/developerworks/mydeveloperworks/search/web/search
https://www.ibm.com/developerworks/mydeveloperworks/blogs/barcia/?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/bookmarks/html?ps=50&search=web&searchType=mode&sortOrder=desc&lang=en
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1182
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=965
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

applications. Check out his blog.

Introduction to Comet Trademarks
© Copyright IBM Corporation 2011 Page 16 of 16

http://blog.mycila.com/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	Ajax, Reverse Ajax, and WebSockets
	Reverse Ajax techniques
	Comet
	Comet using HTTP streaming
	Comet using HTTP long polling
	XMLHttpRequest long polling
	Recommendations
	Conclusion
	Downloads
	Resources
	About the author

