

IBM XL C/C++ Compiler for AIX

Benefits of C++11 (formerly C++0x) – Part 1

By: Nemanja Ivanovic
 Hubert S. Tong

Level: Intermediate

May 2012

Benefits of C++11 – Part 1, Page 2 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Contents

IBM XL C/C++ Compiler for AIX... 1

About this series .. 3

About this Tutorial ... 3

Objectives .. 3

Prerequisites ... 3

System Requirements... 3

Glossary ... 4

Introduction .. 4

Compiler Options Needed.. 4

Start the Terminal Emulator to AIX System.. 5

Introducing C++11 Features ... 7

Static Assertions..7

decltype ...9

Automatic Type Deduction..11

Trailing Return Types ...12

Scoped Enumerations ...13

Variadic Templates ...14

Inline Namespaces ..17

Rvalue References...18

Conclusion ...23

Trademarks..23

Resources..23

Benefits of C++11 – Part 1, Page 3 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Before you start

About this series

Walk through this scenario and others online as part of the IBM XL C/C++ Compiler for AIX.

About this Tutorial

This tutorial introduces a few of the key features of the C++11 (ISO/IEC 14882:2011) stan-
dard and how you can make the most of them with the IBM XL C/C++ Compiler V12.1 for
AIX.

Objectives

• Explain the following C++11 features and show their use in short code snippets
1. Variadic templates
2. Inline namespaces
3. Automatic type deduction
4. Trailing return types
5. Rvalue references (and reference collapsing)
6. decltype
7. static assertions
8. Scoped enumerations
• Put all of this together to implement a capture of up to 5 elements (Part 2)
• Refine the capture to an arbitrary number of elements (Part 3)

• Total time: 45 minutes

Prerequisites

• Basic Unix skills
• Basic Source code compile and build experience
• Basic knowledge of C++ programming language
• Basic knowledge of C++ template metaprogramming

System Requirements

http://www.ibm.com/software/awdtools/xlcpp/aix/sysreq/

Benefits of C++11 – Part 1, Page 4 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Glossary

IBM XL C/C++ Compiler: IBM® XL C and C++ compilers offer advanced compiler and
optimization technologies and are built on a common code base for easier porting of your
applications between platforms. They comply with the latest C/C++ international standards
and industry specifications and support a large array of common language features.

Introduction

This tutorial is designed to cover the basic concepts behind each of the forementioned fea-
tures of the C++ language in order to show the reader the rationale behind the feature and
what its benefits are. Once these basic concepts are covered, they are put together into a
small library that provides a clean interface for functionality that would be messy at best
without the use of the features. Furthermore, the library is implemented with only standard
C++ and is therefore fully portable across platforms and even compliant compilers.
Readers that are familiar with individual features are encouraged to skip to the last portion
of this tutorial in which a detailed explanation of the library and its interface is provided.

Compiler Options Needed

In order to successfully complete this exercise, the reader needs to understand the following
compiler options:
• -qlanglvl=extended0x (enables the XLC/C++ implementation of C++0x)
• -qattr=full (produces a listing that includes the attribute component, the listing file

has the same name as the source file but with a .lst extension)
• -o (specifies the name to give the resulting executable)
• -D (defines a macro whose name is provided immediately following the option without

any spaces)
• -q64 (produces a 64-bit object file or executable)

Benefits of C++11 – Part 1, Page 5 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Getting Started

Start the Terminal Emulator to AIX System

Figure 1 Get Started

Double click the “Launch AIX” icon on the desktop (See Figure 1) to start the character ter-
minal to AIX system.

Get Started with Debugging Optimized Code
Successful login will result with user presented with a menu of demo hosted on the server.
Type 22 and press Enter to select “Benefits of C++11 – Part 1” demo.

Figure 2 Demo Prepared

On the terminal window you will see important information and directory path to compiler
install directory (See Figure 2 Demo Prepared oval red).

Benefits of C++11 – Part 1, Page 6 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Note: Starting another command window will start the demonstration setup of your envi-
ronment. This will result in loss of any work done in your home directory (See Fig-
ure 2 Demo Prepared rectangle red). This will impact any progress you have made on
demo steps going forward.

This demo does not require more than one terminal window. However, if you prefer
more than one terminal window then you may open them before going forward.

Terminal window is now ready for commands (See Figure 2 Demo Prepared arrow). Your
home directory contains necessary source code to perform the tutorial. Type ls command to
see the directory content (See Figure 3 Contents).

Command:
 ls

Figure 3 Contents

Benefits of C++11 – Part 1, Page 7 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Introducing C++11 Features

Static Assertions

Simply put, this feature allows the user to put compile-time assertions into their code. The
compiler will evaluate the assertion and emit the required message if the assertion fails.

Code Example 1:

The above example shows how a static assertion can be made. The particular example re-
quires the size of a pointer to be 8 bytes and provides a message to be emitted if this isn't
the case. It also shows that when compiled in 64-bit mode (with the -q64 option), the as-
sertion does not fail and there are no messages emitted.

Benefits of C++11 – Part 1, Page 8 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Code Example 2:

The above example shows the use of the feature to make assertions about template argu-
ments. Since template metaprogramming provides an interface for compile-time computa-
tion, static assertions are very useful for providing error-checking for template instantia-
tions, specializations, etc.

Note: the definition of is_pointer class template does not have specializatons to handle cv-
qualified pointers (such as int *const), but the object of the exercise is to illustrate static
assertions rather than a fully robust implementation of is_pointer.

Benefits of C++11 – Part 1, Page 9 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

decltype
This feature allows the user to acquire the static type of an object or an expression. There
are instances in which deducing the type of an expression is difficult for the user and it may
even be impossible in a general sense. When the type of such an expression is required, this
feature is an indispensable tool.

Code Example 3:

The above example illustrates the use of decltype for simplifying code. The actual preproc-
essor directives at the top are not relevant, they are just meant to illustrate that sometimes
the type of an object or expression is hard to determine. Without decltype, the preproces-
sor directives would need to be replicated wherever something is needed that has the same
type as our variable “some_var”. It is obvious from the example that specifying compiler
options that change the predefined macros change the declared type of “some_var” which in
turn changes the type returned by the decltype expression. Without wrapping function
func() in any preprocessor directives, its return type is correct.
Important note: decltype can be used to get the static type of an expression. If the ex-
pression has a different run-time type, that isn't reflected by decltype. This is one of the
reasons its name was chosen as such – it is the declared type of the expression.

Benefits of C++11 – Part 1, Page 10 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Code Example 4:

The above example shows a non-trivial use of the decltype feature. Namely, the return type
of function safe_divide() cannot be known in general without a facility such as decltype.
There are however some curious oddities in the above example. For example, the expres-
sion in decltype is very odd and messy. The reason this is so is alluded to in the comment
– we have to provide an expression for decltype, but we do not have any objects of the
two types. One might think that we can provide an expression such as A() / B() in de-
cltype, but this would require the types A and B to be default-constructible and this would-
n't be a fully generic solution. We will see how to fix this with trailing returns. Another bit of
a nuisance is the verbosity of the declarations of variables a and b in main(), it would be
better if we could just tell the compiler more concisely to figure out the type of the vari-
ables. Please read on for the solution. The last thing to note about the above example is
that the expression passed to decltype is a so-called “unevaluated operand”. What this
means is that the expression will not actually be evaluated so it won't have the side-effects
it would if it was actually evaluated. You can see this above since there appear to be four
calls to function safe_divide(), but the calls variable is incremented only twice.

Benefits of C++11 – Part 1, Page 11 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Benefits of C++11 – Part 1, Page 12 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Automatic Type Deduction
Similarly to decltype, automatic type deduction allows the user to tell the compiler to de-
duce the type of a declared variable based on an expression. However, automatic type de-
duction works by providing an initializer for the variable. Then the type deduction and ini-
tialization are not split into two separate processes, but are done together. In the previous
example, one could simply replace the decltype expressions in main with the word auto
and the program would work the same way.
Auto type deduction and decltype are extremely useful for reducing the complexity of dec-
larations.
Simple guidelines for their use:
• Use them whenever the type you are trying to use in a declaration is hard to figure out,

unwieldy to specify or redundant; including for example, STL container iterators
• When an initialization can be done, use auto type deduction
• When an initialization cannot be done (typedef's, return types, etc.), use decltype
• IMPORTANT: Keep in mind that both features work on static types – the run time type

of an expression can not be deduced by these features.

Code Example 5: Example of a limitation to compile-time types:

It is apparent from the above example that even though the variable pa actually points to
an object of the derived type, the compiler still gives the variable wanted_B the type of the
base class. This is simply because the variable pa is declared to be of type pointer-to-A
(base class) so the fact that it actually points to an object of the derived type is irrelevant.
Even though the variables wanted_B and got_B are initialized in a similar way, they have
different types.

Benefits of C++11 – Part 1, Page 13 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Trailing Return Types
This feature allows the return type of a function to appear after the parameter list, therefore
allowing expressions involving parameters as part of the return type. In turn, this frees the
programmer from the need to form complex and messy expressions when specifying the
return type of a function. Generic functions whose return types depend on their template
arguments can truly benefit from the simplified syntax provided by this feature.

Code Example 6:

The above example shows how the trailing return types feature can be used to declare re-
turn types of functions that are dependent on function parameters in a natural way. There is
no need for strange expressions involving casting a zero to a pointer to a type and so on.
One important note about this feature is that the auto keyword that appears instead of a
return type must be the only type-specifier that appears – the type must be fully specified
in the trailing return specifier. The below example shows some examples of what isn't al-
lowed.

Code Example 7:

Benefits of C++11 – Part 1, Page 14 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

The above example shows that the auto type specifier must be the only token that replaces
the return type specifier – the return type must be fully specified in the trailing return.

Benefits of C++11 – Part 1, Page 15 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Scoped Enumerations
Up until C++11, enumerated types had a fundamental issue – lack of type safety. There are
situations in which an enumerated type is very useful, but it is difficult to prevent type
safety violations.

Code Example 8:

The above example illustrates a few of the limitations of enums and how scoped enums re-
move those limitations. For example, enumerators of a scoped enum are declared only in the
scope of that enum and not at in the enclosing scope. All access to enumerators of scoped
enums must be done by qualifying the enumerator with the name of the enum. Furthermore,
there is no implicit conversion from a scoped enum to int. This prevents their use in expres-
sions that are logically meaningless. Notice that there are no messages for lines 9, 13 and
14; whereas there are messages for the respective scoped enum uses on lines 25, 29 and

Benefits of C++11 – Part 1, Page 16 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

30. Further to restricting scope of visibility of enumerators, scoped enums allow forward dec-
larations as well as explicitly specifying the underlying type of an enum.

Benefits of C++11 – Part 1, Page 17 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Variadic Templates
This feature extends the power of templates by allowing definitions of templates with a var-
ied number of arguments. In a way, it is similar to variable arguments in C/C++ functions,
but it facilitates type safety since all types are known when the template is instantiated. The
best way to learn about this feature is by seeing it in action, so let's have a look at an ex-
ample.

Code Example 9:

The above example is rather complex, so we will analyze it one step at a time. First of all,
let's look at the variadic templates in the example, starting with function f(). Its declaration
shows the syntax for declaring variadic templates – the template parameter name is pre-
ceded by an ellipsis which indicates a “template parameter pack”. Such a pack can contain
any number of type arguments at instantiation (including zero). In order to use the pack, it
usually needs to be expanded (by, for example, moving the ellipsis to the right side of the
pack name). When a template parameter pack is expanded into a list of function arguments,

Benefits of C++11 – Part 1, Page 18 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

the name declared by the expansion is a function parameter pack, which may in turn be ex-
panded to access individual arguments. In contrast to variable function arguments from C,
the type of each parameter in the pack is known and does not require casting.
Typical use of variadic templates is akin to recursion: for functions, a base overload is pro-
vided as well as a template for general overloads; for classes, a template for the general
case is provided along with a specialization for the base case. The recursion-like structure is
clear within the function template – there is a call to the function with the same name (of
course, this isn't a recursive call, but a call to an overload with one fewer argument). Al-
though less obvious, a similar structure exists in the class template: something is done with
the first argument and another instantiation with one less argument is used.

But what of the strange structure for the return type of the function template? Would it not
be easier to just use decltype and trailing returns? Something like:
template /*...*/ auto f(Head h, Tail ... t) -> decltype(h + f(t...))
The problem with this structure is that the template currently being defined is not part of
the overload set yet, so the only function available to decltype for the call to f(t...) is the
base case, so if the Tail parameter pack contains more than one element, there is simply no
overload to call. That is why the workaround with a variadic class template is required. No-
tice that type promotion is thereby preserved.
Now we need to look at why the remove_reference template is needed. In truth, for this ex-
ample, it is not needed. However, if one of the types in the parameter pack was a reference
type, there would be a compile-time failure. This is simply because the decltype expression
in the variadic class template would attempt to use a type that is a pointer to a reference –
which of course isn't allowed. Lastly, the strange type in the final specialization of re-
move_reference is an rvalue reference and is covered later in this tutorial.

Let's now summarize variadic templates since this is quite a bit of information to take in
from an example.

1. This feature allows definitions of templates with any number of parameters (the
number is known at instantiation time, but not at definition time).

2. To declare a variadic template, prefix a template parameter name with an ellipsis (…)
3. When using a parameter pack, it typically needs to be expanded. The expansion con-

sists of a pattern followed by an ellipsis. The following are valid expansions:
4. template <class ... Args> struct A : public Args... // (possibly) multiple

inheritance
5. func(static_cast<int>(args)...) // assuming that “args” is an argument pack,

it will call function “func” with all of the arguments statically cast to int
6. func(static_cast<Args1>(args2)...) // assuming that Args1 is a parameter

pack and args2 is an argument pack corresponding to another parameter pack, will
call function “func” with each argument in the list args2 converted to the correspond-
ing type in Args1 (see example)

7. Typically, variadic templates are used by specifying a base specialization/overload
and a general template that unwinds the parameter pack

8. The number of parameters in the pack is available from a sizeof...(Pack) expres-
sion (where Pack is a parameter pack).

Benefits of C++11 – Part 1, Page 19 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Code Example 10:

This example illustrates a pack expansion that has a slightly more complex form than just
the name of the parameter pack followed by an ellipsis.

Benefits of C++11 – Part 1, Page 20 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Inline Namespaces
This feature provides better support for versioning of libraries by allowing namespaces to be
declared with the “inline” specification whereby the members of the namespace appear as if
they are members of the enclosing namespace. A typical use example for this is if a library
is to be shipped with two versions: the two versions can be in two separate namespaces one
of which would be declared as an “inline namespace”.

Code Example 11
The above example illustrates the key aspects of the feature. It is clear from the example
that elements of an inline namespace appear as if they are elements of the enclosing name-
space. Furthermore, since the enclosed namespace is already declared to be inline, all sub-
sequent extensions of the namespace appear as if they are members of the enclosing
namespace. Unlike with using declarations, templates in an inline namespace can be explic-
itly specialized in the enclosing namespace. Finally, it is up to the library architect to decide
which namespace is inline and therefore the default.
There is also a small bonus feature included in the above example. Perhaps you spotted that
instantiating and specializing a template with a template argument no longer requires that
the two “>” symbols be separated by a space. This was an unnecessary nuisance in
C++2003 that has been removed in C++2011.

Benefits of C++11 – Part 1, Page 21 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Rvalue References
The new C++ standard includes a new type of reference, the aptly named “rvalue refer-
ence”. This is a reference that can be bound to an rvalue (previously only const references
could bind to rvalues, and even then, only copyable rvalues). But if there was a way of bind-
ing a reference to an rvalue before, why don't we just use that method? Why do we need
another type of reference?
The problem is that the distinction of whether the rvalue to which the reference is bound is
const or non-const is lost. Furthermore, there is no mechanism to ensure that a reference
must bind to an rvalue. The solution is the rvalue reference. This type of reference is de-
noted by the “&&” symbol and can bind only to an rvalue. Let's explore the uses of rvalue
references through some examples.

Code Example 12

Benefits of C++11 – Part 1, Page 22 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

The above example illustrates a number of rules governing rvalues, how they are used and
how they bind. It is perhaps somewhat surprising that there are no ambiguities in the above
code: all initializations and function calls have a best match. Let's compile and execute this
program and analyze the results.
Compile and execute the above example

• The compiler warning is emitted since we are creating a temporary in the conversion
operator and returning that temporary by reference. Not a concern for this discussion.

• Rules governing rvalue references
◦ An rvalue reference can only bind to an rvalue (prvalue or xvalue)
◦ An rvalue reference is an lvalue
◦ The result of calling a function that returns an rvalue reference is an xvalue
◦ The result of calling a function that returns an lvalue reference is still an lvalue
◦ The result of calling a function that returns by value is a prvalue
◦ The new value categories are: xvalue (for expiring value) and prvalue (for pure

rvalue).
• Output from the program

◦ First line is emitted from initializing the reference on line 18. Not surprisingly, the
best match for the conversion function is operator int& since the call is an lvalue

◦ Second line is emitted from initializing the reference on line 21. Although both op-
erator int() and operator int&&() are valid choices, the latter is tried first in this
context

◦ Line 24 causes the next line of output. There is only one valid choice of conversion
function for this initialization – the only one that returns an lvalue.

◦ Line 26 again causes a call to operator int&&() since it is a better choice for initializ-
ing an rvalue reference than is operator int().

◦ The next line of output is caused by line 28. The only conversion function that con-
verts struct S to char returns a prvalue and the rvalue reference binds to it

◦ The next 3 lines of output are exactly what one might expect, a const lvalue argu-
ment matches the const lvalue reference parameter, a non-const lvalue argument
matches the non-const lvalue reference parameter and a prvalue argument
matches the rvalue reference parameter.

◦ However, the following 4 function calls may be somewhat unexpected:
▪ The calls on lines 45 and 46 pass rvalue reference arguments and those argu-

ments actually match the respective lvalue reference parameter. This is so be-
cause an rvalue reference is an lvalue.

▪ A seemingly analogous call on line 47 passes the result of calling a function that
returns an rvalue reference but the argument matches the rvalue reference pa-

Benefits of C++11 – Part 1, Page 23 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

rameter. This is so because the result of the function call in the argument is an
xvalue which can bind to an rvalue reference

Benefits of C++11 – Part 1, Page 24 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Code Example 13: Move Constructors

This example illustrates move construction of objects that are potentially expensive to copy.
If the user does not need the original object any longer, a new object can be constructed by
stealing the original one's resources. For example, the s1 object is invalidated when s3 is
created by stealing its resources, making the access to s1.arr[0] after the move unsafe
(dereference of a null pointer). This mechanism can obviously be used to implement move

Benefits of C++11 – Part 1, Page 25 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

assignment as well. The advantage of move construction and assignment is that there is no
longer a need to perform expensive copy operations when swapping objects, passing tem-
poraries around, etc.

Benefits of C++11 – Part 1, Page 26 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

Code Example 14: Reference Collapsing

In order to make use of rvalue references, a mechanism was added for dealing with situa-
tions in which a reference to a reference (an illegal type) might arise. For example, if a
typedef declaration declares a reference to an object type, a reference to that type needs to
collapse to a reference to the original type. This is of particular importance with template
arguments.
The rules for reference collapsing are rather simple:
• Assuming that TL is an lvalue reference to some (possibly cv-qualified) object type T

(i.e. T&) and that TR is an rvalue reference to the same object type T (i.e. T&&), the
following hold:
◦ The type cv TL& is TL
◦ The type cv TL&& is TL
◦ The type cv TR& is TL
◦ The type cv TR&& is TR

Note that the cv-qualification in the original reference type is preserved regardless of the
cv-qualification applied on top of it.

These rules are illustrated through the typedef declarations above. The function declarations
for functions f1() through f3() do not cause any re-declaration messages since the refer-
ences collapse. Furthermore, the template argument for class C in function f4() is deduced
to int&. Here is why:
There is a special rule which works in conjunction with reference collapsing so that function
parameters of the form T &&, where T is a template type parameter, can bind to lvalues:
• The function is called with an lvalue, and the parameter type is a reference type, so it

must be an lvalue reference type (int &) in the instantiation for the binding to work
• In order for C&& to collapse to int &, the template argument must be int &

Benefits of C++11 – Part 1, Page 27 of 27

Copyright © 2012, IBM® Corporation. Published by IBM® developerWorks®.

What you have learned

In this exercise you learned how to:
• Use IBM XL C/C++ compiler for AIX to build source code that includes C++11 features
• The basics about a number of useful C++11 features

Conclusion

This tutorial has provided an introduction to C++11 features currently available in the
XLC/C++ compiler version 12.1. The reader is invited to explore the use of these features
further and to exploit them for making their code:
• Perhaps more robust (using static_assert)
• Easier to read and maintain (perhaps using decltype and automatic type deduction and

trailing returns)
• Use more versatile generics (with variadic template)
• Faster (implementing move construction and assignment to avoid copies where unnec-

essary)
• More type safe when using enumerations (scoped enumerations)
• Use more transparent versioning of libraries it provides (with inline namespaces)

Trademarks
IBM and the IBM logo are trademarks of International Business Machines Corporation in the
United States, other countries or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corpo-
ration in the United States, other countries, or both.

Other company, product and service names may be trademarks or service marks of others.

Resources

XL C/C++ for AIX, V12.1 Compiler Information Center:
http://pic.dhe.ibm.com/infocenter/comphelp/v121v141/index.jsp

Community Cafe Articles
What is new in XL C/C++ V12.1
 http://www.ibm.com/developerworks/rational/library/whats-new-XL-C-Cpp.html
Variadic templates proposal
 http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2006/n2080.pdf
Rvalue references proposal
 http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2006/n1952.html

