
Linux on z Systems

Configuring an Apache mod_nss server
to exploit z Systems cryptographic
hardware

���

Linux on z Systems

Configuring an Apache mod_nss server
to exploit z Systems cryptographic
hardware

���

Before using this information and the product it supports, read the information in “Notices” on page 25.

Edition notices

© Copyright International Business Machines Corporation 2015. All rights reserved.

U.S. Government Users Restricted Rights — Use, duplication, or disclosure restricted by GSA ADP Schedule Contract with IBM
Corp.

Contents

About this publication v

Chapter 1. Introduction 1

Chapter 2. Prerequisite tasks 3
Installing the required packages 3
Loading the zcrypt device driver 3
Configuring the openCryptoki ica token 4
Disabling the firewall and SELinux 5
Checking that the prerequisite tasks were successfully
completed 6

Chapter 3. Creating an nss certificate
database 9
Creating a directory for the nss database 9
Adding the openCryptoki module to the nss database 9
Create a self-signed CA server certificate 11
Create a certificate request file 13
Create a server certificate issued by own Certificate
Authority 14
Import a server certificate into the ica token . . . 15

Chapter 4. Configure and start the
Apache HTTPS server 17

Chapter 5. Verifying that cryptographic
operations work correctly 19

Chapter 6. Completing the
configuration 21
Enabling the firewall 21
Enabling SELinux 21
Checking that the Apache HTTPS server and
SELinux work together 22

Appendix. SELinux policy module . . . 23

Notices 25
Trademarks 27
Terms and conditions 27

© Copyright IBM Corp. 2015 iii

iv Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

About this publication

This white paper provides information about how to configure an Apache HTTPS
server with mod_nss to exploit the cryptographic hardware functions available
with IBM® z Systems™ cryptographic hardware. The scenario provided in this
white paper uses Red Hat Enterprise Linux (RHEL) 7. The scenario was tested
using Red Hat Enterprise Linux (RHEL) 7.1.

Authors

Crypto for Linux on z Systems team:
Patrick Steuer, Dr. Reinhard Buendgen, George C. Wilson

© Copyright IBM Corp. 2015 v

vi Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

Chapter 1. Introduction

This white paper describes how to configure an Apache HTTPS server with
mod_nss under RHEL 7 to exploit the cryptographic hardware functions available
with IBM z Systems. A scenario is provided that you might wish to repeat in your own
installation.

There are two security modules that can be used for setting up the SSL/TLS
implementation in an Apache HTTPS server:
v mod_ssl
v mod_nss

The scenario uses the mod_nss security module.

In addition, the scenario was tested using:
v A RHEL7.1 operating system that was installed in an LPAR of an IBM

zEnterprise® EC12 System.
v Central Processor Assist for Cryptographic Functions (CPACF).
v A Crypto Express4 (CEX4) adapter.

The tools and path/file names used in this white paper might be different for other
Linux software distributions.

The appendix provides a sample SELinux policy module that you can use as a
template.

© Copyright IBM Corp. 2015 1

2 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

Chapter 2. Prerequisite tasks

This topic describes the prerequisite tasks that must be completed before
configuring the Apache HTTPS server under RHEL 7 to exploit the cryptography
hardware that is provided by z Systems.

The scenario provided in this white paper uses this cryptographic hardware:
v CPACF feature (feature code LIC3863) supporting 3DES, AES, and SHA

operations.
v (Optionally) A Crypto Express (CEX) adapter in either accelerator or CCA

co-processor mode to support RSA operations.

For a description of the hardware and software used for testing the scenario, see .

In the steps described here, the information that you must enter is shown in bold
font.

Installing the required packages
To repeat the scenario, you must install various packages.

To start the installation of the required packages, enter:

yum install libica opencryptoki httpd mod_nss

To avoid any possible conflicts, remove the module mod_ssl (if installed on your
system):

yum erase mod_ssl

Store an html file containing your Web page in /var/www/httpd/. This Web page
will be displayed when a connection is made to the Apache HTTPS server.

Loading the zcrypt device driver
To access Crypto Express (CEX) adapters, the zcrypt device driver must be loaded
into the kernel.

The steps described in this topic only apply if your configuration includes a
Crypto Express adapter in accelerator or CCA coprocessor mode. If your
configuration does not include a Crypto Express adapter in accelerator or CCA
coprocessor mode, all RSA operations will be performed by the software.
1. Load the zcrypt device driver:

modprobe ap

© Copyright IBM Corp. 2015 3

2. Specify that the zcrypt device driver should be automatically loaded on boot by
creating a script called ap.modules in /etc/sysconfig/modules:

#!/usr/bin/bash
modprobe ap

3. Set the appropriate permissions:

chmod 770
/etc/sysconfig/modules/ap.modules

chown root:root
/etc/sysconfig/modules/ap.modules

For further details about the zcrypt device driver, see Device Drivers, Features, and
Commands, SC33-8411.

Configuring the openCryptoki ica token
openCryptoki is a PKCS#11 implementation. Using tokens and slots, the PKCS#11
standard unifies the way in which applications access cryptographic objects. The
openCryptoki ica token is used to perform clear-key cryptography (where the key
exists somewhere in the software stack) by exploiting z Systems hardware.

The ica token provides access to the cryptographic hardware of z Systems in order
to perform cryptographic operations. It exploits z Systems CPACF cryptographic
hardware in the CPU (using 3DES/AES/SHA) and in the CEX adapters (using
RSA).

To configure the openCryptoki ica token:
1. Add to the pkcs11 group, the users who should be allowed to access the

openCryptoki library:

usermod -aG pkcs11 root
usermod -aG pkcs11 apache

2. Enable the pkcsslot daemon (which manages access to the security tokens):

systemctl enable pkcsslotd.service

3. Start the slot daemon:

systemctl start pkcsslotd.service

4. Use the pkcsconf command to locate the slot number (slot 1 in this scenario)
of OpenCryptoki's ica token. In the default configuration listing that is shown
below, the ICA token is Token # 1. Your listing will probably differ from this
listing.

4 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

pkcsconf -t
Info:Token #1 Info:
Label: IBM ICA PKCS #11

Manufacturer: IBM Corp.
Model: IBM ICA
Serial Number: 123

Flags: 0x880045 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|USER_PIN_TO_BE_CHANGED|
SO_PIN_TO_BE_CHANGED)

Sessions: 0/-2
R/W Sessions: -1/-2
PIN Length: 4-8
Public Memory: 0xFFFFFFFF/0xFFFFFFFF
Private Memory: 0xFFFFFFFF/0xFFFFFFFF
Hardware Version: 1.0
Firmware Version: 1.0
Time: 14:16:45
...

5. Set a token label (myicatoken below) using the -I option. The pkcsconf tool is
used to initialize the ica token in slot 1 (-c 1 below). The default SO (“slot
operator” or “security officer”) pin is 87654321.

pkcsconf -I -c 1
Enter the SO PIN: 87654321
Enter a unique token label: myicatoken

6. Change the default SO pin using the -P option. In the example below, the new
pin is 13243546.

pkcsconf -P -c 1
Enter the SO PIN: 87654321
Enter the new SO PIN: 13243546
Re-enter the new SO PIN: 13243546

7. Initialize the user pin using the -u option. In the example below, the new user
pin is 25345867.

pkcsconf -u -c 1
Enter the SO PIN: 13243546
Enter the new user PIN: 25345867
Re-enter the new user PIN: 25345867

Note: To ensure the SO has no access to the token, you should change the user
pin as soon as a user is granted access. To do so, enter:

pkcsconf -p -c 1

Disabling the firewall and SELinux
Temporarily disable both the firewall and SELinux. This is required before you can
reboot the Linux system and test if the prerequisite steps were successfully
implemented.
1. Disable the firewall on boot:

systemctl disable firewalld.service

Chapter 2. Prerequisite tasks 5

2. Disable SELinux by editing file /etc/selinux/config and changing the line:
SELINUX=[...]

to
SELINUX=disabled

Checking that the prerequisite tasks were successfully completed
Various checks are required before you can start to configure the Apache HTTPS
server under RHEL 7 to exploit z Systems cryptographic hardware functions.

Note: Steps 2 and 3 of this topic are only required if you are using a Crypto
Express adapter (for details, see “Installing the required packages” on page 3).
1. Reboot the RHEL 7 operating system:

reboot

2. Check that the crypto device driver has been loaded:

lsmod | grep zcrypt
zcrypt_msgtype6 18217 1
zcrypt_cex4 12819 2
zcrypt_api 30536 2 [...]
ap 35201 3 [...]

Note that the output shown above might differ if you are using a Crypto
Express (CEX) adapter in accelerator mode.

3. Check that the required cryptographic adapters are online (their device-IDs
and firmware loads are shown below as underlined).

lszcrypt -V
card00: CEX4C online
card01: CEX4C online
card03: CEX4P online

At least one online adaper of type Accelerator (A) or CCA-Coprocessor (C) is
required. In the above example, we see that two coprocessors have been made
available.
You can set a cryptographic adapter online using command chzcrypt -e
<device id>.
You can set a cryptographic adapter offline using command chzcrypt -d
<device id>.

4. Check that SELinux is disabled:

sestatus
SELinux status: disabled

5. Check that the firewall is disabled:

systemctl status firewalld.service
firewalld.service - firewalld - dynamic firewall daemon
Loaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled)
Active: inactive (dead)

6 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

6. Check that the slot daemon is running:

systemctl status pkcsslotd.service
pkcsslotd.service - Daemon which manages cryptographic hardware tokens for the

openCryptoki package
Loaded: loaded (/usr/lib/systemd/system/pkcsslotd.service; enabled)
Active: active (running) since Wed 2015-08-05 17:19:41 CEST; 3min 59s ago
Process: 682 ExecStart=/usr/sbin/pkcsslotd (code=exited, status=0/SUCCESS)
Main PID: 694 (pkcsslotd)
CGroup: /system.slice/pkcsslotd.service

└─694 /usr/sbin/pkcsslotd

7. Check that the ica token is initialized:

pkcsconf -t -c1
Token #1 Info:
Label: myicatoken
Manufacturer: IBM Corp.
Model: IBM ICA
Serial Number: 123
Flags: 0x44D (RNG|LOGIN_REQUIRED|USER_PIN_INITIALIZED|CLOCK_ON_TOKEN|TOKEN_INITIALIZED)
Sessions: 0/-2
R/W Sessions: -1/-2
PIN Length: 4-8
Public Memory: 0xFFFFFFFF/0xFFFFFFFF
Private Memory: 0xFFFFFFFF/0xFFFFFFFF
Hardware Version: 1.0
Firmware Version: 1.0
Time: 17:24:23

8. Check that users root and apache can communicate with the slot daemon:

groups root apache
root : root pkcs11
apache : apache pkcs11

For further details about using openCryptoki's pkcsslot daemon, see libica
Programmer's Reference, SC34-2602.

Chapter 2. Prerequisite tasks 7

8 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

Chapter 3. Creating an nss certificate database

You must now create a new nss certificate database for use with the Apache
HTTPS server and z Systems cryptographic hardware.

In the steps described here, the information that you must enter is shown in bold
font.

Creating a directory for the nss database
A directory must be created for use with the nss database. Later, the required
certificates will be stored in this directory.
1. Create the directory:

mkdir /etc/httpd/nss

2. Initialize the new database using the option -N (New) option. In this scenario,
the new database password used for initializing the database is 19283746.

certutil -N -d /etc/httpd/nss
Enter a password which will be used to encrypt your keys.
The password should be at least 8 characters long,
and should contain at least one non-alphabetic character.

Enter new password: 19283746
Re-enter password: 19283746

Adding the openCryptoki module to the nss database
Add the openCryptoki module to the nss database and specify it as the default
provider. PKCS11 modules in the database are managed by the modutil tool.
1. Insert a statement description=<your_slot_name> immediately below

stdll=libpkcs11_ica.so in file /etc/opencryptoki.conf. In the example shown
below, the name ICA is used.

slot1
{
stdll=libpkcs11_ica.so
description=ICA
}

2. Add the openCryptoki module (in this scenario, the name used is
opencryptoki) to the nss database:

modutil -dbdir /etc/httpd/nss -add opencryptoki -libfile
/usr/lib64/opencryptoki/PKCS11_API.so

WARNING: Performing this operation while the browser is running could cause
corruption of your security databases. If the browser is currently running,
you should exit browser before continuing this operation. Type
’q <enter>’ to abort, or <enter> to continue:

Module "opencryptoki" added to database.

© Copyright IBM Corp. 2015 9

3. Disable all slots of the openCryptoki module and then enable only the ICA slot:

modutil -dbdir /etc/httpd/nss -disable opencryptoki
modutil -dbdir /etc/httpd/nss -enable opencryptoki -slot ICA

4. Set OpenCryptoki to be the default provider for the required cryptographic
mechanisms:

modutil -dbdir /etc/httpd/nss -default opencryptoki -mechanisms RSA:AES:DES:RANDOM
WARNING: Performing this operation while the browser is running could cause
corruption of your security databases. If the browser is currently running,
you should exit browser before continuing this operation. Type
’q <enter>’ to abort, or <enter> to continue:

Successfully changed defaults.

5. List the available cryptographic modules by entering:

modutil -dbdir /etc/httpd/nss -list
Listing of PKCS #11 Modules

1. NSS Internal PKCS #11 Module
slots: 2 slots attached
status: loaded

slot: NSS Internal Cryptographic Services
token: NSS Generic Crypto Services

slot: NSS User Private Key and Certificate Services
token: NSS Certificate DB

2. opencryptoki
library name: /usr/lib64/opencryptoki/PKCS11_API.so
slots: 2 slots attached
status: loaded

slot: ICA
token: myicatoken

slot: Linux
token: IBM OS PKCS#11
--

6. Display detailed information about the openCryptoki module by entering:

10 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

modutil -dbdir /etc/httpd/nss -list opencryptoki

Name: opencryptoki
Library file: /usr/lib64/opencryptoki/PKCS11_API.so
Manufacturer: IBM
Description: Meta PKCS11 LIBRARY
PKCS #11 Version 2.20
Library Version: 3.2
Cipher Enable Flags: None
Default Mechanism Flags: RSA:DES:AES
Slot: ICA
Slot Mechanism Flags: RSA:DES:AES
Manufacturer: IBM
Type: Software
Version Number: 0.0
Firmware Version: 0.0
Status: Enabled
Token Name: myicatoken
Token Manufacturer: IBM Corp.
Token Model: IBM ICA
Token Serial Number: 123
Token Version: 1.0
Token Firmware Version: 1.0
Access: NOT Write Protected
Login Type: Login required
User Pin: Initialized

Slot: Linux
Slot Mechanism Flags: RSA:DES:AES
Manufacturer: IBM
Type: Software
Version Number: 0.0
Firmware Version: 0.0
Status: DISABLED (user disabled)
Token Name: IBM OS PKCS#11
Token Manufacturer: IBM Corp.
Token Model: IBM SoftTok
Token Serial Number: 123
Token Version: 1.0
Token Firmware Version: 1.0
Access: NOT Write Protected
Login Type: Login required
User Pin: NOT Initialized

--

Create a self-signed CA server certificate
In this topic, we create a server certificate that will be used for configuring the
https server.

A server certificate is a data object that is used to associate a server with its public
key. Certificates are digitally signed by a Certifiate Authority (CA) to prevent them
from being manipulated.
1. In a production environment, the server certificate request would be signed by

a recognized third-party (that is, a CA). However, for testing purposes our own
self-signed CA server certificate is created (with the options “-S -x”) called
testca. The private key associated with testca will later be used to sign the
server certificate.
v In example below, the validity in months is specified with options -v 48

together with a unique serial number -m 5555.
v Certificates hold trust attributes in three different categories: ssl, email, and

object signing.
v The trust attributes for each category can be set using the (trust) options -t

<ssl>,<email>,<object signing>.

Chapter 3. Creating an nss certificate database 11

v The CA in this example has trust settings CTu,CTu,CTu (where C means
“trusted CA for client authentication”, T means “trusted CA”, and u means
“user”).

v Certificate extensions indicate how a certificate should be used. If an
application does not recognize the extensions marked as critical, the
certificate must not be accepted. Non-critical extensions may be ignored if
they are not recognized but must be processed if recognized. In this example,
you specify the options -1 (keyUsage), -2 (basic constraint extension) and -5
(nsCertType). You are prompted to select the appropriate extensions for our
CA, as shown in the example below.

certutil -S -d /etc/httpd/nss -n testca -s "CN=Certificate Shack, O=example.com,
C=US" -x -t CTu,CTu,CTu -g 2048 -m 5555 -v 48 -h myicatoken -1 -2 -5

Enter Password or Pin for "myicatoken": 25345867
...

Continue typing until the progress meter is full:

|**|

Finished. Press enter to continue:

Generating key. This may take a few moments...

2. Select option 5 (Cert signing key) as shown below:

0 - Digital Signature
1 - Non-repudiation
2 - Key encipherment
3 - Data encipherment
4 - Key agreement
5 - Cert signing key
6 - CRL signing key
Other to finish
> 5

3. Select option 9 (Other to finish) as shown below:

0 - Digital Signature
1 - Non-repudiation
2 - Key encipherment
3 - Data encipherment
4 - Key agreement
5 - Cert signing key
6 - CRL signing key
Other to finish
> 9

4. Select the options n, y, and y as shown below:

Is this a critical extension [y/N]?
n
Is this a CA certificate [y/N]?
y
Enter the path length constraint, enter to skip [<0 for unlimited path]: > 10
Is this a critical extension [y/N]?
y

12 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

5. Select option 5 (SSL CA) as shown below:

0 - SSL Client
1 - SSL Server
2 - S/MIME
3 - Object Signing
4 - Reserved for future use
5 - SSL CA
6 - S/MIME CA
7 - Object Signing CA
Other to finish
> 5

6. Select option 6 (S/MIME CA) as shown below:

0 - SSL Client
1 - SSL Server
2 - S/MIME
3 - Object Signing
4 - Reserved for future use
5 - SSL CA
6 - S/MIME CA
7 - Object Signing CA
Other to finish
> 6

7. Select option 7 (Object Signing CA) as shown below:

0 - SSL Client
1 - SSL Server
2 - S/MIME
3 - Object Signing
4 - Reserved for future use
5 - SSL CA
6 - S/MIME CA
7 - Object Signing CA
Other to finish
> 7

8. Select option 9 (Other to finish) as shown below:

0 - SSL Client
1 - SSL Server
2 - S/MIME
3 - Object Signing
4 - Reserved for future use
5 - SSL CA
6 - S/MIME CA
7 - Object Signing CA
Other to finish
> 9

9. Select option n as shown below:

Is this a critical extension [y/N]
n
Notice: Trust flag u is set automatically if the private key is present.

Create a certificate request file
A certificate request file specifies the attributes of the certificate that is to be
requested.

Using the certutil command with -R option (request file), you can now create a
certificate request file (tmpcertreq) for the https server certificate in the token.
v The path of the nss database is specified using the -d option.

Chapter 3. Creating an nss certificate database 13

v The subject name is specified using the -s option.
v Replace <FQDN> with your fully-qualified domain name (which you can obtain

using the hostname -f command).
v The name and location of the output file is specified using the -o option.
v The certificate will contain a 2048-bit RSA key pair that is generated using the -g

option.
v The certificate request file for the server certificate is created using the -h option

together with the token name "myicatoken" (token name "myicatoken" was
previously used to initialize the token).

v The requested password is the user PIN of the ICA token that was set in Step 7
of topic “Configuring the openCryptoki ica token” on page 4.

certutil -R -d /etc/httpd/nss -s “CN=<FQDN>, O=example.com, C=US” -o
/etc/httpd/nss/tmpcertreq -g 2048 -h myicatoken

Enter Password or Pin for "myicatoken": 25345867
...

Continue typing until the progress meter is full:

|**|

Finished. Press enter to continue:

Generating key. This may take a few moments...

Create a server certificate issued by own Certificate Authority
Create a server certificate that will be issued by the Certificate Authority (CA) that
you control.
1. In the example below, you use the -C (certificate) request option. The -i option

specifies the name and path of the request file (in this scenario, "tmpcertreq").
You create the server certificate issued by our CA in our token using options -c
myicatoken:testca.
In this scenario, "myicatoken" is the name used for the ica token, and "testca" is
the name used for the self-signed CA server certificate. The password entered
here is the user PIN of the ICA token (which was set in Step 7 of topic
“Configuring the openCryptoki ica token” on page 4). For our server certificate
tmpcert.der enter:

certutil -C -d /etc/httpd/nss -c myicatoken:testca -i /etc/httpd/nss/tmpcertreq -o
/etc/httpd/nss/tmpcert.der -m 5556 -v 48 -1 -5

Enter Password or Pin for "myicatoken": 25345867

2. Select option 2 (Key encipherment) as shown below:

0 - Digital Signature
1 - Non-repudiation
2 - Key encipherment
3 - Data encipherment
4 - Key agreement
5 - Cert signing key
6 - CRL signing key
Other to finish
> 2

14 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

3. Select option 9 (Other to finish) as shown below:

0 - Digital Signature
1 - Non-repudiation
2 - Key encipherment
3 - Data encipherment
4 - Key agreement
5 - Cert signing key
6 - CRL signing key
Other to finish
> 9

4. Select option n as shown below:

Is this a critical extension [y/N]?
n

5. Select option 1 (SSL Server) as shown below:

0 - SSL Client
1 - SSL Server
2 - S/MIME
3 - Object Signing
4 - Reserved for future use
5 - SSL CA
6 - S/MIME CA
7 - Object Signing CA
Other to finish
> 1

6. Select option 9 (Other to finish) as shown below:

0 - SSL Client
1 - SSL Server
2 - S/MIME
3 - Object Signing
4 - Reserved for future use
5 - SSL CA
6 - S/MIME CA
7 - Object Signing CA
Other to finish
> 9

7. Select option n as shown below:

Is this a critical extension [y/N]?
n

On completion of the above steps, the self-signed certificate testca is now stored
in the nss database.

Import a server certificate into the ica token
Import the server certificate into the openCryptoki ica token.
1. Import the server certificate into our token called testcert using option -A

(add):

certutil -A -d /etc/httpd/nss -n testcert -t u,u,u -i /etc/httpd/nss/tmpcert.der
-h myicatoken

Notice: Trust flag u is set automatically if the private key is present.

Chapter 3. Creating an nss certificate database 15

2. Display the contents of the token:

certutil -K -d /etc/httpd/nss -h myicatoken
certutil: Checking token "myicatoken" in slot "Linux"
Enter Password or Pin for "myicatoken": 25345867
< 0> rsa 49fe255b05e746c08b4a11d7ac5e5c9f68d8fe5a myicatoken:testcert
< 1> rsa f11fa89f1d630d188b7da752c1c004f48b774235 myicatoken:testca

The password that you enter above was set in Step 7 of topic “Configuring the
openCryptoki ica token” on page 4.

3. Create a file password.txt in /etc/httpd/nss which contains the passwords for
the database and token. This file should look the following:
internal:19283746
myicatoken:25345867

4. Set reasonable permissions for the database and password file:

chmod 640 /etc/httpd/nss/*.db
chown root:apache /etc/httpd/nss/*.db
chmod 640 /etc/httpd/nss/password.txt
chown root:apache /etc/httpd/nss/password.txt

16 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

Chapter 4. Configure and start the Apache HTTPS server

You customize the Apache HTTPS server by tailoring the entries contained in file
/etc/httpd/conf.d/nss.conf.

In the steps described here, the information that you must enter is shown in bold
font.
1. To ensure all TCP/IP ports use secure communication, change the following

two lines:
Listen 443
<VirtualHost _default_:443>

2. Enable or disable cipher suites by selecting either + (enable) or - (disable) next
to the cipher suites for which hardware support is available on your system.
For example:
NSSCipherSuite +rsa_aes_256_sha,+rsa_aes_128_sha,+rsa_3des_sha

3. Specify the server protocols you wish to use. For example, one of:
NSSProtocol TLSv1.0,TLSv1.1

4. Change the following lines to include the server certificate stored in the nss
database (as described in Chapter 3, “Creating an nss certificate database,” on
page 9):
NSSCertificateDatabase /etc/httpd/nss
NSSNickname myicatoken:testcert

5. Specify the passphrases that were created in the password file:
NSSPassPhraseDialog file:/etc/httpd/nss/password.txt

6. Finally, specify that the Apache HTTPS server will be started when Linux is
started. In addition, start the Apache HTTPS server immediately.
systemctl enable httpd.service
systemctl start httpd.service

© Copyright IBM Corp. 2015 17

18 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

Chapter 5. Verifying that cryptographic operations work
correctly

You must verify that cryptographic operations can be successfully performed on
IBM z Systems cryptographic hardware. To do so, insert the file index.html (that
you previously created) into the directory /var/www/html/.

You can now access your Web site using any supported Web browser. To display
the count of cryptographic operations that were performed, enter:

icastats -A

To reset the counters used for counting the number of cryptographic operations
that were performed, enter:

icastats -R

After resetting the counters, access the Web page that you wish to secure via
openCryptoki and check that the counters that monitor hardware cryptographic
operations have increased.

To investigate any errors that might have occurred during cryptographic
operations, enter:

cat /var/log/httpd/error_log

To debug errors that might have occurred during cryptographic operations, enter:

openssl s_client -connect <FQDN>:443 -<protocol> -debug

(replacing <FQDN> and <protocol> with your own values).

© Copyright IBM Corp. 2015 19

20 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

Chapter 6. Completing the configuration

There are various tasks that you must complete before you can use the Apache
HTTPS server for cryptographic operations in a production environment.

In the steps described here, the information that you must enter is shown in bold
font.

Enabling the firewall
Enable your firewall so that it can work together with the Apache HTTPS server.
1. Start the firewall, and then give the http and https services permission to access

the firewall.

systemctl start firewalld.service
firewall-cmd --add-service http --permanent
success
firewall-cmd --add-service https --permanent
success

2. Restart the firewall in order to make your permission changes active and
automatically enable the firewall service on boot.

systemctl restart firewalld.service
systemctl enable firewalld.service
ln -s ’/usr/lib/systemd/system/firewalld.service’

’/etc/systemd/system/dbus-org.fedoraproject.FirewallD1.service’
ln -s ’/usr/lib/systemd/system/firewalld.service’

’/etc/systemd/system/basic.target.wants/firewalld.service’

Enabling SELinux
Enable SELinux so that it can work together with the Apache HTTPS server.
1. Obtain the tools used in this topic by running this command:

yum install policycoreutils-python selinux-policy-devel

2. Set the following SELinux booleans to value 1:

setsebool -P httpd_unified 1
setsebool -P daemons_enable_cluster_mode 1
setsebool -P httpd_run_stickshift 1

3. Set type pkcsslotd_lock_t in the security context of /var/lock/opencryptoki
and all folders and sub-directories:

chcon -R -t pkcsslotd_lock_t /var/lock/opencryptoki/

4. Write an SELinux policy module with the name httpd-plus.te. The source
code for policy module httpd-plus.te is provided in “Appendix. SELinux
policy module” on page 23. To build and install policy module httpd-plus.te,
enter:

make -f /usr/share/selinux/devel/Makefile
semodule -i httpd-plus.pp

© Copyright IBM Corp. 2015 21

5. Restart the slot daemon and Apache HTTPS server:

systemctl restart pkcsslotd.service
systemctl restart httpd.service

Checking that the Apache HTTPS server and SELinux work together
Check that the Apache HTTPS server and SELinux policy module work together
correctly.
1. Check that the policy module httpd-plus.te has been correctly installed:

semodule -l | grep httpd-plus
httpd-plus 1.0.3

2. Repeat the checks described in Chapter 5, “Verifying that cryptographic
operations work correctly,” on page 19 to confirm that the Apache HTTPS
server is running and correctly using the z Systems cryptographic hardware.

You have now successfully completed the topics and steps described in this
white paper! You should now have an Apache HTTPS server with mod_nss
under RHEL 7 that exploits the cryptographic hardware functions available with
IBM z Systems.

22 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

Appendix. SELinux policy module

This appendix provides the source code for the SELinux policy module
httpd-ock.te.

policy_module(httpd-ock, 1.0.3)

#
Additional permissions between httpd and pkcsslotd to allow
mod_nss to work with openCryptoki.
#

gen_require(`
type httpd_t;
type pkcs_slotd_t;
type pkcs_slotd_exec_t;

’)

Allow httpd access to pkcsslotd objects

allow httpd_t pkcs_slotd_exec_t:file getattr; # Allow httpd to access the pkcsslotd binary

pkcs_admin_slotd(httpd_t,system_r) # Allow httpd to administer pkcsslotd

allow httpd_t pkcs_slotd_t:shm rw_shm_perms; # Allow httpd to access pkcsslotd’s shared
memory segement

Allow pkcsslotd access to httpd objects

apache_signal(pkcs_slotd_t) # Allow pkcsslotd to send signals except
signull to httpd

apache_signull(pkcs_slotd_t) # Allow pkcsslotd to send signull to httpd
to check if it is available

allow pkcs_slotd_t httpd_t:dir search_dir_perms; # Allow pkcsslotd to search httpd directories

allow pkcs_slotd_t httpd_t:file read_file_perms; # Allow pkcsslotd to read httpd files

© Copyright IBM Corp. 2015 23

24 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2015 25

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

26 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe is either registered trademarks or trademark of Adobe Systems Incorporated
in the United States, and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Terms and conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal Use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative works of these publications, or any
portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of the manufacturer.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any data,
software or other intellectual property contained therein.

Notices 27

http://www.ibm.com/legal/copytrade.shtml

The manufacturer reserves the right to withdraw the permissions granted herein
whenever, in its discretion, the use of the publications is detrimental to its interest
or, as determined by the manufacturer, the above instructions are not being
properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF
THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED "AS-IS" AND
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A
PARTICULAR PURPOSE.

28 Configuring an Apache mod_nss server to exploit z Systems cryptographic hardware

����

Printed in USA

	Contents
	About this publication
	Chapter 1. Introduction
	Chapter 2. Prerequisite tasks
	Installing the required packages
	Loading the zcrypt device driver
	Configuring the openCryptoki ica token
	Disabling the firewall and SELinux
	Checking that the prerequisite tasks were successfully completed

	Chapter 3. Creating an nss certificate database
	Creating a directory for the nss database
	Adding the openCryptoki module to the nss database
	Create a self-signed CA server certificate
	Create a certificate request file
	Create a server certificate issued by own Certificate Authority
	Import a server certificate into the ica token

	Chapter 4. Configure and start the Apache HTTPS server
	Chapter 5. Verifying that cryptographic operations work correctly
	Chapter 6. Completing the configuration
	Enabling the firewall
	Enabling SELinux
	Checking that the Apache HTTPS server and SELinux work together

	Appendix. SELinux policy module
	Notices
	Trademarks
	Terms and conditions

