Linux on IBM Z -
Compiler GCC

Mario Held
Linux Performance Analyst

IBM GCC compiler development driven by Open Source and new IBM z generations

IBM GCC development provides patches to exploit new GCC features also in Linux on IBM Z
(i. e. software DFP, Transactional Execution TX)

GCC-4.7 GCC-48 GCC-49 GCC50 GCCH1 GCC7.1 GCCBL GCCO.L

W M

IBM development provides patches to exploit new IBM hardware features in new GCC versions
(new instructions, hardware DFP, pre-fetching, hardware TX, changed pipeline architecture, SIMD)
IBM development cycle is running in sync with the gcc.gnu.org development cycle

gcc.gnu.org
Development

zEC12
z13*
z13
z14

*z13 support with GNU GCC-5.2 **z15 aka arch13

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / ©® 2019 IBM Corporation

GCC versions in Distributions for IBM Z

4.1 02/2006 z9-109 SLES10 RHELS5
4.2 05/2007 z9-109
4.3 05/2008 z9-ec SLES11 (backport z10)
4.4 04/2009 z10 RHEL5.6**/6.1 (backport z196)
4.5 04/2010 z10 SLES11 SP1
4.6 03/2011 z196 SLES11 SP2* RHEL6
4.7 03/2012 z196 SLES11 SP3 (4.7 opt. zZEC12)**
4.8 03/2013 zEC12 SLES12 RHEL7.3 (4.8 backport z13)
4.9 04/2014 zEC12
5 04/2015 zEC12
5.2 07/2015 z13 SLES12 SP1 (5.2 TCM z13)** Ubuntul6.04 (5.3)
6.1 04/2016 z13 SLES12 SP2 (6.6 TCM z13)** RH Developer Toolset 6**
7.1 05/2017 archl12 (z14)
7.2 08/2017 z14 SLES12 SP3 (7.2 TCM z14)** RH Developer Toolset 7** Ubuntul8.04 (7.3)
8.1 05/2018 z14 SLES12 SP4 (8.8 TCM z14)** RH Developer Toolset 8**
9.1 05/2019 archl13 (z15)
9.2 10/2019 z15 Ubuntu 19.10 (9.2)

* included in SDK, optional, not supported
** fully supported add-on compiler until next add-on

toolchain release

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Note: Future Linux distribution contents depend on distributor support and are always subject to
change without notice! Also schedules of gcc.gnu.org are always subject to change without notice!

3

Relative Performance of different GCC versions on identical hardware (IBM z14)

Throughput change industry standard

Deviation in percent gcc-6 to gcc-9 on a IBM z14 (base gcc-5)
16.0

14.0

12.0 I

10.0 W gcc-7
M gcc-8

8.0 gcc-9

6.0
Study on Fedora-29

based Linux with close to
GA GCC development
versions from
gcc.gnu.org

4.0

2.0

0.0

Overall fp + int

. Throughput change overall (average integer and floating point suite result)

- Improvement in percent, normalized to base gcc-5

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Optimizing C/C++ code

e Options -03 or -02 are a good starting point (used in most frequently in our performance measurements)

* Optimize instruction scheduling with performance critical target machine in mind using -mtune parameter
- -mtune=values <g5*, g6%* 2900, 2990, z9-109, 210, z196, zEC12 with all supported GCC versions>
- <z13 with RHEL7.3 gcc-4.8, SUSE TCM gec-5.2, Ubuntul6.04 gec-5.3, and GNU gec-6.1 and higher>

- <z14 with RHEL Developer Toolset 8, SUSE TCM gcc-8.8, Ubuntul8.04 gcc-7.3, and GNU gec-8.1 and
higher>

- <z15 with Ubuntu 19.10 gcc-9.2 >

— Default is the value used for -march if -march is specified as a compile parameter

* Exploit also improved machine instruction set and new hardware capabilities using -march parameter

- -march=values <g5% g6* 2900, 2990, z9-109, z10, z196, zEC12, z13, z14, z15> available with the same
compilers as mentioned above

- =march compiled code will only run on the target machine or newer
* deprecated / will not be supported with gcc-9.1 and higher

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Optimizing C/C++ code (cont.)
* Fine Tuning: additional general options on a file by file basis

- -funroll-loops has often advantages on IBM Z

* Unrolling is internal delimited to a reasonable value by default
— Use of inline assembler for performance critical functions may have advantages

- -ffast-math speeds up calculations (if not exact implementation of IEEE or ISO
rules/specifications for math functions is needed)

* For a more comprehensive description of the -m options defined for the architecture
see the GCC documentation at gnu.org

https://gcc.gnu.org/onlinedocs/gcc/S_002f390-and-zSeries-Options.html#S_002f390-and-zSeries-Options

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

https://gcc.gnu.org/onlinedocs/gcc/S_002f390-and-zSeries-Options.html#S_002f390-and-zSeries-Options

Special Optimization - GCC Feedback Driven Optimization (FDO)
* FDO s also known as Profiled Directed Feedback (PDF)

* With FDO the compile is done in three phases:
- Profile code generation, instrumentation code gets inserted
- Training run while statistic information gets collected into a file, especially which code parts are used how often

- Feedback optimization using the collected data from the previous phase to guide the optimization routines for
instance for branch prediction or loop unrolling

* FDO produces in most cases significant better code and improves performance significantly
* FDO requires more compile time because of compiling twice and doing the test run, but it is usually worth the investment

* Bestresults if the codes' hot paths are not depending on the single input data
- The advantage of FDO depends on a really representative training workload
- Ifthe training workload is not good your application could even run more slowly

* Option to add in the first pass: -fprofile-generate

* Optionto add in the second pass: -fprofile-use

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Special Optimization - GCC Link Time Optimization

Link Time Optimization (LTO) enables cross-module optimization without changing the build infrastructure.

Problem: Current build mechanics pass one source code file at a time to the compiler = cross-module
optimization not possible.

Solution: Optimization is postponed until link-step when all the required modules are known

LTO compilation procedure:
— First the compilation units are optimized separately
- GCC internal code representation (GIMPLE) is embedded into the object file
- During link-step the objects are passed to the compiler again
- Compiler uses the embedded information to redo the optimization step
Higher potential together with Feedback Driven Optimization (FDO)
GCC support introduced with GCC 4.5 and matured since then

Experiments showed single-digit performance improvement

Options to add: -flto

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

GCC Performance influenced by compiler version and compile options

* Advantages of using current
compilers and higher optimization
are significant in general

Comparison compiler versions and options in one distribution

Industry standard benchmark running on IBM z14

[ERN
N

— Improved machine / instruction
support come with newer GCC
versions

— Inthe chart comparing GCC
performance in RHEL7.6 using

Geomean performance improvementin %
'—\
O N DM O OO
y .

standard and DTS compilers S o’ > &
. . . S PAZ A
with different options on a IBM On;\“ & & u"‘&\
. A 4
z14 using geomean of 22 S o e &
. . . 4 4 >
different real world applications § > o o'b'&
¢ s o~
9).
QOO

Compiler version and optimization

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Options for generating 31-bit code to execute on a 64-bit system

* Some applications have to be compiled for 31-bit mode, because they are currently not
prepared for 64-bit mode

* Recommended options and flag settings when compiling for 31-bit mode on a 64-bit system
— Compiler options for C, C++, and Fortran
* CFLAGS, CXXFLAGS, FFLAGS: append '-m31'

* With the option '-m31/, the compiler generates code which is compliant to the
GNU/Linux for s390 ABI

* When using the '-m31 -mzarch' options the generated code still conforms to the 32-bit ABI but
uses the general purpose registers as 64-bit registers internally

- Requires a Linux kernel saving the whole 64-bit registers when doing a context switch

* Sometimes in the future distributions will remove the 31-bit support

- Be prepared and port the code to 64-bit

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Thank You

Mario Held
Performance Analyst

Linux on IBM Z Performance
Evaluation

Research & Development
Schoenaicher Strasse 220
71032 Boeblingen, Germany

mario.held@de.ibm.com

Linux on System z — Tuning hints and tips http://www.ibm.com/developerworks/linux/linux390/perf/index.html

Live Virtual Classes for z/VM and Linux http://www.vm.ibm.com/education/lvc/

Mainframe Linux blog http://linuxmain.blogspot.com

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

11

Acknowledgements

* Andreas Krebbel
GNU Toolchain
Development

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

12

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. A current list of IBM trademarks is available on
the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

* Theregistered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

« Red Hat®, Fedora®, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries
in the United States and other countries.

« "SUSE" and the SUSE logo are trademarks of SUSE IP Development Limited or its subsidiaries
or affiliates in the United States and other countries.

 Ubuntu and Canonical are registered trademarks of Canonical Ltd in the United States and other
countries.

* Other product and service names might be trademarks of IBM or other companies.

IBM SYSTEMS / Linux on IBM Z — Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation 13

http://www.ibm.com/legal/copytrade.shtml

	Slide 1
	GCC compiler
	GCC versions in distributions
	Slide 4
	Optimizing code
	Optimizing code cont
	Slide 7
	Slide 8
	Slide 9
	options for 31 bit
	Slide 11
	Slide 12
	Slide 13

