
1IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Linux on IBM Z -
Compiler GCC

Mario Held
Linux Performance Analyst

3IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

GCC versions in Distributions for IBM Z

SLES RHEL Ubuntu
4.1 02/2006 z9-109 SLES10 RHEL5

4.2 05/2007 z9-109

4.3 05/2008 z9-ec SLES11 (backport z10)

4.4 04/2009 z10 RHEL5.6**/6.1 (backport z196)

4.5 04/2010 z10 SLES11 SP1

4.6 03/2011 z196 SLES11 SP2* RHEL6

4.7 03/2012 z196 SLES11 SP3 (4.7 opt. zEC12)**

4.8 03/2013 zEC12 SLES12 RHEL7.3 (4.8 backport z13)

4.9 04/2014 zEC12

5 04/2015 zEC12

5.2 07/2015 z13 SLES12 SP1 (5.2 TCM z13)** Ubuntu16.04 (5.3)

6.1 04/2016 z13 SLES12 SP2 (6.6 TCM z13)** RH Developer Toolset 6**

7.1 05/2017 arch12 (z14)

7.2 08/2017 z14 SLES12 SP3 (7.2 TCM z14)** RH Developer Toolset 7** Ubuntu18.04 (7.3)

8.1 05/2018 z14 SLES12 SP4 (8.8 TCM z14)** RH Developer Toolset 8**

9.1 05/2019 arch13 (z15)
9.2 10/2019 z15 Ubuntu 19.10 (9.2)

GCC
stream

First
release

Highest
-march

* included in SDK, optional, not supported
** fully supported add-on compiler until next add-on
toolchain release

Note: Future Linux distribution contents depend on distributor support and are always subject to
change without notice! Also schedules of gcc.gnu.org are always subject to change without notice!

4IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Relative Performance of different GCC versions on identical hardware (IBM z14)

• Throughput change overall (average integer and floating point suite result)

– Improvement in percent, normalized to base gcc-5

Overall fp + int
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Throughput change industry standard

Deviation in percent gcc-6 to gcc-9 on a IBM z14 (base gcc-5)

gcc-6
gcc-7
gcc-8
gcc-9

Study on Fedora-29
based Linux with close to
GA GCC development
versions from
gcc.gnu.org

5IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Optimizing C/C++ code

● Options -O3 or -O2 are a good starting point (used in most frequently in our performance measurements)

● Optimize instruction scheduling with performance critical target machine in mind using -mtune parameter

– -mtune=values <g5*, g6*, z900, z990, z9-109, z10, z196, zEC12 with all supported GCC versions>

– <z13 with RHEL7.3 gcc-4.8, SUSE TCM gcc-5.2, Ubuntu16.04 gcc-5.3, and GNU gcc-6.1 and higher>

– <z14 with RHEL Developer Toolset 8, SUSE TCM gcc-8.8, Ubuntu18.04 gcc-7.3, and GNU gcc-8.1 and
higher>

– <z15 with Ubuntu 19.10 gcc-9.2 >

– Default is the value used for -march if -march is specified as a compile parameter

● Exploit also improved machine instruction set and new hardware capabilities using -march parameter

– -march=values <g5*, g6*, z900, z990, z9-109, z10, z196, zEC12, z13, z14, z15> available with the same
compilers as mentioned above

– -march compiled code will only run on the target machine or newer
* deprecated / will not be supported with gcc-9.1 and higher

6IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Optimizing C/C++ code (cont.)
● Fine Tuning: additional general options on a file by file basis

– -funroll-loops has often advantages on IBM Z

● Unrolling is internal delimited to a reasonable value by default

– Use of inline assembler for performance critical functions may have advantages

– -ffast-math speeds up calculations (if not exact implementation of IEEE or ISO
rules/specifications for math functions is needed)

● For a more comprehensive description of the -m options defined for the architecture
see the GCC documentation at gnu.org

https://gcc.gnu.org/onlinedocs/gcc/S_002f390-and-zSeries-Options.html#S_002f390-and-zSeries-Options

https://gcc.gnu.org/onlinedocs/gcc/S_002f390-and-zSeries-Options.html#S_002f390-and-zSeries-Options

IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Special Optimization - GCC Feedback Driven Optimization (FDO)
● FDO is also known as Profiled Directed Feedback (PDF)

● With FDO the compile is done in three phases:

– Profile code generation, instrumentation code gets inserted

– Training run while statistic information gets collected into a file, especially which code parts are used how often

– Feedback optimization using the collected data from the previous phase to guide the optimization routines for
instance for branch prediction or loop unrolling

● FDO produces in most cases significant better code and improves performance significantly

● FDO requires more compile time because of compiling twice and doing the test run, but it is usually worth the investment

● Best results if the codes' hot paths are not depending on the single input data

– The advantage of FDO depends on a really representative training workload

– If the training workload is not good your application could even run more slowly

● Option to add in the first pass: -fprofile-generate

● Option to add in the second pass: -fprofile-use

IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Special Optimization - GCC Link Time Optimization
● Link Time Optimization (LTO) enables cross-module optimization without changing the build infrastructure.

● Problem: Current build mechanics pass one source code file at a time to the compiler → cross-module
optimization not possible.

● Solution: Optimization is postponed until link-step when all the required modules are known

● LTO compilation procedure:

– First the compilation units are optimized separately

– GCC internal code representation (GIMPLE) is embedded into the object file

– During link-step the objects are passed to the compiler again

– Compiler uses the embedded information to redo the optimization step

● Higher potential together with Feedback Driven Optimization (FDO)

● GCC support introduced with GCC 4.5 and matured since then

● Experiments showed single-digit performance improvement

● Options to add: -flto

9IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

GCC Performance influenced by compiler version and compile options
● Advantages of using current

compilers and higher optimization
are significant in general

– Improved machine / instruction
support come with newer GCC
versions

– In the chart comparing GCC
performance in RHEL7.6 using
standard and DTS compilers
with different options on a IBM
z14 using geomean of 22
different real world applications gc

c-
4.

8
-O

3
-fu

nr
oll

-lo
op

s
(b

as
e)

gc
c-

4.
8

-O
3

-m
ar

ch
=z1

3
-fu

nr
oll

-lo
op

s

gc
c-

8.
2.

1
-O

3
-m

ar
ch

=z1
4

-fu
nr

oll
-lo

op
s

gc
c-

8.
2.

1
-O

3
-m

ar
ch

=z1
4

-fu
nr

oll
-lo

op
s

+ F
DO

0

2

4

6

8

10

12

Comparison compiler versions and options in one distribution

Industry standard benchmark running on IBM z14

Compiler version and optimization

G
e

o
m

e
a

n
 p

e
rf

o
rm

a
n

ce
 im

p
ro

ve
m

e
n

t i
n

 %

10IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Options for generating 31-bit code to execute on a 64-bit system

● Some applications have to be compiled for 31-bit mode, because they are currently not
prepared for 64-bit mode

● Recommended options and flag settings when compiling for 31-bit mode on a 64-bit system
– Compiler options for C, C++, and Fortran

● CFLAGS, CXXFLAGS, FFLAGS: append '-m31'
● With the option '-m31', the compiler generates code which is compliant to the

GNU/Linux for s390 ABI
● When using the '-m31 -mzarch' options the generated code still conforms to the 32-bit ABI but

uses the general purpose registers as 64-bit registers internally
– Requires a Linux kernel saving the whole 64-bit registers when doing a context switch

● Sometimes in the future distributions will remove the 31-bit support

– Be prepared and port the code to 64-bit

11IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Thank You

Linux on System z – Tuning hints and tips http://www.ibm.com/developerworks/linux/linux390/perf/index.html

Live Virtual Classes for z/VM and Linux http://www.vm.ibm.com/education/lvc/

Mainframe Linux blog http://linuxmain.blogspot.com

Research & Development
Schoenaicher Strasse 220
71032 Boeblingen, Germany

mario.held@de.ibm.com

Mario Held
Performance Analyst

Linux on IBM Z Performance
Evaluation

12IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Acknowledgements

● Andreas Krebbel
GNU Toolchain
Development

13IBM SYSTEMS / Linux on IBM Z – Compiler GCC / October, 29, 2019 / © 2019 IBM Corporation

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. A current list of IBM trademarks is available on
the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

● The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a world wide basis.

● Red Hat®, Fedora®, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries
in the United States and other countries.

● "SUSE" and the SUSE logo are trademarks of SUSE IP Development Limited or its subsidiaries
or affiliates in the United States and other countries.

● Ubuntu and Canonical are registered trademarks of Canonical Ltd in the United States and other
countries.

● Other product and service names might be trademarks of IBM or other companies.

http://www.ibm.com/legal/copytrade.shtml

	Slide 1
	GCC compiler
	GCC versions in distributions
	Slide 4
	Optimizing code
	Optimizing code cont
	Slide 7
	Slide 8
	Slide 9
	options for 31 bit
	Slide 11
	Slide 12
	Slide 13

