KVM on IBM 7

KVM Network Performance -
Best Practices and Tuning
Recommendations

<|ll

KVM on IBM 7

KVM Network Performance -
Best Practices and Tuning
Recommendations

<|ll

Before using this information and the product it supports, read the information in [“Notices” on page 61

Edition notices
© Copyright International Business Machines Corporation 2016, 2018. All rights reserved.

U.S. Government Users Restricted Rights — Use, duplication, or disclosure restricted by GSA ADP Schedule Contract with IBM
Corp.

Contents

Figures .

About this publication .
Chapter 1. Overview

Chapter 2. Introduction
Chapter 3. Test environment .
Single KVM host .

Multiple KVM hosts .

KVM guest configuration .

KVM host network configuration
Operating system versions

Chapter 4. Network workload .
Chapter 5. Testing methodology .

Chapter 6. KVM Host Networklng
Configuration Choices .

OSA interface traffic forwarding
KVM default NAT-based networking .

© Copyright IBM Corp. 2016, 2018

. Vil

(3]

S O 0N

. M

.17

.21

.21
.23

Using a Linux Bridge25
Using Open vSwitch27
Using the MacVTap driver28
Network Configuration Pros and Cons B X
MacVTap driver considerations.32
Open vSwitch considerations33
Linux bridge38

Chapter 7. Network Performance
Tuning.43

General system settings44
Network stack settings46
TCPIP IPv4 settings47
Network interface settings49
KVM settings.55

Chapter8. Summary.57
References.hH9

Notices61

Trademarks63
Terms and conditions63
iii

iV KVM Network Performance - Best Practices and Tuning Recommendations

Figures

High-level Overview of the IBM Z Mainframe
Single LPAR - KVM Host Configuration
Two LPAR / KVM Host Configuration.
KVM Guest configuration .
KVM guest conflguratlon using a software
bridge.
6. KVM guests usmg a MacVTap Network
Configuration .
7. Single KVM host uper‘f palr to KVM guest
mappings . .
8. uperf pair to KVM guest mappmgs when
multiple KVM hosts are used
9. Single LPAR using MacVTap bridge mode for
direct connection between KVM guests
10. Open vSwitch vs MacVTap with MTU size
1492 on a single KVM host LPAR . .
11. Open vSwitch vs MacVTap with large MTU
size on a single KVM host LPAR
12. Open vSwitch compared to MacVTap with the
small MTU size across LPARs

SO

© Copyright IBM Corp. 2016, 2018

. 10

.15

. 16

. 30

. 34

. 35

. 36

13.

14.

15.

16.

17.

18.

19.

Open vSwitch compared to MacVTap with

larger MTU size across LPARs 37
Single LPAR Linux Bridge compared to Open
vSwitch with small MTU size . . . 39
Single LPAR Linux Bridge compared to Open
vSwitch with large MTU size40
Linux Bridge compared to Open vSw1tch

across multiple LPARs with a small MTU . . 41

Throughput, Latency and CPU efficiency using

a large MTU size vs the default MTU size with
KVM guests running on a single KVM host

LPAR 51
Throughput, latency and CPU consumptlon

using normal and large MTU sizes with KVM

guests running on separate LPARs.52

halt_poll_ns improvements to transactional

workloads56
A\

Vi KVM Network Performance - Best Practices and Tuning Recommendations

About this publication

This paper explores different system configurations (running KVM guests) and
different networking configuration choices, as well as tuning recommendations for
the KVM host and KVM guest environments to achieve greater network
performance on the IBM Z platforms.

Authors

Mark A. Peloquin, Juergen Doelle

Remarks

The web-links referred in this paper are up-to-date as of October, 2016.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Measurements have been made on development-level code and

there is no guarantee that these measurements will be the same on generally
available releases. Actual results may vary.

© Copyright IBM Corp. 2016, 2018 vii

viii KVM Network Performance - Best Practices and Tuning Recommendations

Chapter 1. Overview

The IBM Z platforms are the latest generation in the IBM® family of mainframe
offerings. The IBM mainframes have a long legacy from being first produced over
50 years ago. The system technology has continued to expand and evolve enabling
the IBM mainframe releases to continue to offer capabilities and features enterprise
customers require.

The IBM Z family maintains full packward compatibility] This means that current
systems are the direct, lineal descendants of |sttem/ 360| announced in 1964, and
from the 1970s. Many applications written for these systems can still
run unmodified on the newestIBM Z system over five decades later!"

Over several decades, as more and more software stacks and operating system
choices have been added to the IBM Z platforms software catalog and while
maintaining full backward compatibility, the IBM mainframe has become a “virtual
Swiss Army knife” in terms of all the things it can do.

Open Source: Open Source:
Mongo DB Mongo DB
Transaction apps Dsz:k P°SstgrefQL
ocker parl
Workload Test = SrEED Node.js
ERP | Analytics 2008 | —— Goancs i
CICS® Data- Web- —T— InfoSphere® family ngbnzos
base Sphere® —— OI:f2
Db2® Spark P —— Oracle DB WebSphere family
1 WebSphere family IBM Integration Bus
® ® . .
IMS Db2 | Cognos o — Linux® MobileFirst Maximo® Linux
- SAP apps
Db2 —— Node.js SAP apps
Linux Linux || native native
Guests | | Guests || N Linux Guests* Linux Guests * in
| LPAR " easmmsensssmmam LPAR
oSk ZVM® KVM ZIVMe KVM
IBM Wave onZ IBM Wave onZ

Virtual networking and switching - HiperSockets™

Logical Partitions (up to 85 LPARs) based on
Processor Resource/Systems Manager™ (PR/SM™)

HEENENEN CPs

ENEEEEEENNNENE uwto14lintetal EENNENENENEEEE IFLs DEEEE

Memory —up to 10 TB

* some workload examples

Figure 1. High-level Overview of the IBM Z Mainframe

provides a high-level picture of the IBM Z integrated virtualization
capabilities.

¢ PR/SM " allows the system resources (CPUs, memory, IO adapters) to be
dedicated or shared across up to 60 logical partitions.

1.[IBM Z on Wikipedial

© Copyright IBM Corp. 2016, 2018

https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/System/360
https://en.wikipedia.org/wiki/System/370
https://en.wikipedia.org/wiki/IBM_Z

* Each of the logical partitions can be installed with a variety of target operating
systems.

The z/OS® and z/VM?® operating systems have been available for a long time. For
a number of years, the choice of running the Linux operating system has been
supported. Now the support for the hypervisor KVM has been included to provide
open-source virtualization capabilities within a logical partition on IBM Z and IBM
LinuxONE" platforms.

Using the combination of KVM virtualization and IBM Z and IBM LinuxONE, you
have the performance and flexibility to address the requirements of multiple,
differing Linux workloads. KVM’s open source virtualization on IBM Z and
LinuxONE allow businesses to reduce costs by deploying fewer systems to run
more workloads, sharing resources, and improving service levels to meet demand.”

Eor-mere-information about the LinuxONE and KVM running on IBM Z, visit IIB_MI
developerWorks® (]http: / /www.ibm.com/developerworks/linux/kvmforz/ |

index.htm“).

2.[Linux on KVM|

2 KVM Network Performance - Best Practices and Tuning Recommendations

http://www.ibm.com/developerworks/linux/kvmforz/index.html
http://www.ibm.com/developerworks/linux/kvmforz/index.html
http://www.ibm.com/developerworks/linux/kvmforz/index.html
http://www.ibm.com/developerworks/linux/kvmforz/index.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_kvm_base.html

Chapter 2. Introduction

This paper documents the analysis and findings of the Network Performance
analysis that was conducted using Kernel-based Virtual Machines (KVM) running
on Linux developed for IBM Z.

KVM is a virtualization infrastructure that enables the Linux kernel to become a
hypervisor with the ability to run a separate and distinct operating system in a
virtual machine. IBM Z platforms now support the use of KVM to create and run
multiple virtual machines or guests in each LPAR.

Note: The availability of the features mentioned in this paper might depend on the
KVM release.

© Copyright IBM Corp. 2016, 2018 3

4 KVM Network Performance - Best Practices and Tuning Recommendations

Chapter 3. Test environment

The network performance analysis used two basic IBM Z configurations.

Each configuration uses a single or a pair of logical partitions (LPARs) on IBM Z.
A logical partition is a subset of a computer's hardware resources,
as a separate computer. In effect, a physical machine can be partitioned into
multiple logical partitions, each hosting a separate 3

Up to two LPARs on an IBM z13® system are used. The configuration for each

LPAR is identical and contains the following characteristics:

* 32 IFL (Integrated Facilities for Linux) processors
* 128 GB memory

* One 1GbE network connection configured from an Open System Adapter (OSA)
4 card. This connection was used on a public subnet to provide administrative
access to each LPAR.

* Two 10GbE network connections, each configured from separate OSA 4 adapters.
Both OSA adapters were configured in both LPARs. Note that having two OSAs
allows testing shared OSA as well as cross-OSA, connecting one OSA to the
other via the switch. The 10GbE links were connected to a dedicated network
switch to create an isolated network environment. The interfaces were
configured to use the private subnet and used exclusively for network
performance measurement testing.

* Eight Fibre Connection (FICON®) storage adapters providing multipath SAN
access to Extended Count Key Data (ECKD") Direct Access Storage Devices
(DASD) on a DS8000® storage controller. Each LPAR uses as single DASD disk
as the boot and install device.

* Eight Fiber Channel Protocol (FCP) adapters providing multipath SAN access to
SCSI devices on the DS8K storage controller. A SCSI device is used as the
boot/install device used by each KVM virtual machines / guests.

Note: Both 10GbE interfaces were configured in all KVM guests for test
configuration convenience.

However, for all network configurations and all test measurements, only a single
10GbE was actually used at any point in time. Having multiple 10GbE interfaces
configured enabled tests using KVM guests on separate KVM hosts to use a
separate 10GbE interface (on a separate OSA adapter) for the KVM guests running
on each KVM host. Using separate OSA adapters ensures network traffic flows out
of the KVM host to the switch and back to the destination system (see
, avoiding any KVM host or OSA adapter shortcuts or optimizations, to
capture the performance and behavior seen when communicating with a system
external from the KVM host.

3.[logical partition: Wikipedia|

© Copyright IBM Corp. 2016, 2018 5

https://en.wikipedia.org/wiki/Platform_virtualization
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Logical_partition

Single KVM host

The first configuration uses a single LPAR installed with Linux containing KVM
support. KVM virtual machines or guests are configured and installed with an
operating system.

This configuration tests the networking performance available in a single KVM
host environment using various network modes to connect and direct network
traffic from one KVM guest to another KVM guest. In this configuration, all guest
to guest network traffic is typically handled internal to the KVM host and does not
flow externally over the physical network adapter to a remote system or LPAR.
This configuration is designed to stress the traffic flowing from one KVM guest to
another KVM guest on the same host.

Since the guests on the same host are connected via software components (virtual
drivers, bridges or switches) the maximum achievable network speed is not limited
by the speed of physical network hardware. This configuration allows cross-guest
network traffic to (sometimes greatly) exceed the speed of the physical adapter
hardware. Instead of being limited by the physical network fabric speed, which has
the potential to be the slowest element in the network path, other factors such as
the available (host or guest) CPU resources or the system's memory bandwidth
could become the limitation. By removing the limitations imposed by physical
network fabric, virtual networking in a single KVM host configuration can produce
greater stress on the network stack and components.

Figure 2|illustrates the block level diagram of the single LPAR configurations.

IBM Z Logical Partition

Configured resources

« 32 Processors ¢ 2 10GbE interfaces

. 128 GB Memory « 8 EICON storage adapters
« 1 1GDbE interface » 8 fiber storage adapters

Figure 2. Single LPAR - KVM Host Configuration

6 KVM Network Performance - Best Practices and Tuning Recommendations

Multiple KVM hosts

The second configuration uses two LPARs both installed with Linux and KVM
support.

As in the single LPAR configuration, both LPARs are KVM hosts and have KVM
guests configured and installed. In this configuration, the KVM guests in the first
LPAR are used to connect and interact with KVM guests from the second LPAR.
This configuration is designed to use and test the physical network pathway that
provide communication in and out of the LPARs as well as demonstrating the
ability to drive the physical links to full utilization.

IBM Z LPAR #1 IBM Z LPAR #2

Figure 3. Two LPAR / KVM Host Configuration

Chapter 3. Test environment 7

KVM guest configuration

Each LPAR was configured to support sixteen KVM guests.

The configuration for all KVM guests was identical and contained the following
details:

* 4 virtual processors
* 512 MB of memory
e 1 SCSI device used for installation and boot of Linux.

* 2 network interfaces. Each interfaces is connected to a separate 10GbE interface
in the KVM host LPAR.

Figure 4. KVM Guest configuration

8 KVM Network Performance - Best Practices and Tuning Recommendations

KVM host network configuration

KVM on Z supports a variety of host OS network configuration methods that are
available for KVM guests to use.

This paper evaluates three network configuration choices that provide connectivity
to the KVM guests:

1. KVM guests using Linux bridge mode

2. KVM guests using OpenvSwitch as substitute for a Linux bridge
3. KVM guests using the MacVTap driver.

Figure 5. KVM guest configuration using a software bridge

Note: The KVM guests shown above are a smaller version of those shown in
[Figure 4 on page 8l

Chapter 3. Test environment 9

Figure 6. KVM guests using a MacVTap Network Configuration

Operating system versions

The goal of this paper is to help customers (administrators and users) using the
KVM hypervisor running on a IBM Z platform to more efficiently set up, configure
and tune their configurations to obtain better network performance.

The results presented in this paper were collected from an IBM internal
development driver running in the KVM hosts which may contain features and
enhancements not yet available in current KVM releases, but which are planned for
inclusion in upcoming releases. The vast majority of recommendations and tunings
are relevant to all KVM releases.

10 KVM Network Performance - Best Practices and Tuning Recommendations

Chapter 4. Network workload

The network workload was generated by using the network performance tool
uperf.

Description of uperf

From “uperf is a network performance tool that supports

modelling and replay of various networking patterns ... uperf represents the next
generation benchmarking tools (like filebench) where instead of running a fixed

benchmark or workload, a description (or model) of the workload is provided and
the tool generates the load according to the model. By distilling the benchmark or
workload into a model, you can now do various things like change the scale of the
workload, change different parameters, change protocols, and so on, and analyze
the effect of these changes on your model. You can also study the effect of
interleaving CPU activity, or think times or the use of SSL instead of TCP among
many other things.”

uperf profiles

uperf? uses a profile in XML format to define the desired characteristics of the
workload that will run. An example of a profile describing a test that sends a
1-byte request, and receives a 1-byte response over a single connection:

<?xml version="1.0"?>
<profile name="TCP_RR">
<group nprocs="1">
<transaction iterations="1">
<flowop type="accept" options="remotehost=10.12.37.2 protocol=tcp tcp_nodelay"/>
</transaction>
<transaction duration="300">
<flowop type="write" options="size=1"/>
<flowop type="read" options="size=1"/>
</transaction>
<transaction iterations="1">
<flowop type="disconnect" />
</transaction>
</group>
</profile>

For more details about all the fields available in the uperf profile, refer to the

Web page.

As described above, uperf supports a wide variety of options and is highly
configurable permitting the ability to model or simulate practically any network
behavior desired.

Workload Configurations

The test methodology used includes workloads that have been divided into two
high level categories, transactional and streaming workloads.

4.luperf - A network performance tool|

© Copyright IBM Corp. 2016, 2018 11

http://www.uperf.org/
http://opensolaris.org/os/community/performance/filebench
http://www.uperf.org/
http://www.uperf.org/

Workload categories

A transactional workload is comprised of two parts, a (send) request followed by
(receiving) a response. This Request-and-Response (RR) pattern is typical of what
is seen by web servers as users interact with websites using web browsers. The
payload sizes for these RR patterns are relatively small.

* Requests are typically in the range from a few bytes to simulate mouse-clicks up
to a few hundred bytes to represent larger URLs or form data entered and sent
by a user.

* Responses are typically in tens of kilobytes (KB) to deliver web pages and up to
a few megabytes (MB) to deliver the embedded images typically associated with
most web content.

* The ratio of RR (send/receive) payload sizes are typically in the 1:100 to 1:1,000
range. With ratios in this range, the workload is considered bi-directional which
defines the meaning of transactional.

Streaming workloads (STR) tend to simulate the load characteristics that many
Enterprise or SMB servers experience when supporting operations such as
backup/restore, large file transfers and other content delivery services. Streaming
workloads, although comprised of a Request-and-Response, are considered
uni-directional because the Request-and-Response ratio can be well over 1:1,000,000
or higher. A small request can trigger responses that are many gigabytes or more in
size.

Workload types

Each workload category, Request-and-Response (RR) and Streaming (STR), is
further divided in to separately-defined workload types that each possess discrete
characteristics.

RR testing will be split into three workload types:

1. Small packet / high transactional workloads, exclusively 1 byte requests and 1
byte responses

2. Nominal payload size transactional workloads, 200 byte requests and 1000 byte
responses

3. Large payload transactional workloads, 1000 byte requests and 30KB responses

STR testing will be split into two workload types:
1. Streaming reads, 30 KB payloads
2. Streaming writes, 30 KB payloads

The intention is that these workload types should map reasonably closely to the
specific characteristics of user workloads.

Simulating Users

In addition to the 5 basic workload types (3 RR and 2 STR), its also necessary to
simulate the effects of users. This means having to generate the load of a single
user and scale this up to reflect the load of many users. In uperf this can be
achieved by running each workload one or more times concurrently. uperf has a
several ways to multiply workload concurrency. The method used to specify
concurrency (used for the test in this paper) is to use an optional parameter in the
group statement.

* The parameter nprocs= specifies the number of concurrent processes to create.

12 KVM Network Performance - Best Practices and Tuning Recommendations

* Each process executes the transactions defined in the group.

* If all the defined transactions are considered to represent the activity of a single
user, then the nprocs value specified effectively simulates the number of users
you choose.

Workload tests

For each of the 5 workload types (3 RR and 3 STR) described in the previous topic
“Workload types”, 4 discrete levels of concurrency were chosen to simulate
increasing levels of load from additional users (1, 10, 50, 250 users) resulting in a
total of 20 different tests.

Later in this paper (starting with [Figure 10 on page 34), various graphs showing
performance data are included. Each graph lists each of the 20 different tests on
the X-axis. The names for each of the tests have the form:

For transaction tests:

{category}{lc}-{requestsize}x{responsesize}--{users}

Where {category} is RR for the transaction Request-and-Response tests, {1c}
stands for using just 1 uperf client for each uperf server, {requestsize} is the
number of bytes sent by the client to the server, {responsesize} is the number of
bytes in the response by the server to the client and {users} represents the total
number of concurrent users (or processes) generating the overall load.

For example: rr1c-200x1000--10 describes a Request-and-Response test sending a
200 byte request and receiving a 1000 byte response being generated each by 10

concurent users.

For streaming tests:

{category}-{read|write}x{payloadsize}--{users}

Where {category} is STR for Streaming tests, {read |write} denotes which
direction relative to the client data flows, {payloadsize} is the number of bytes in
each datagram and {users} represents the total number of concurrent users (or
processes) generating the overall load.

For example: str-readx30k--50 describes a streaming test read of 30KB datagrams
being generated each by 50 concurrent users.

uperf pairs

The uperf implementation uses a Master / Slave model. The Master and Slave
relationship can also be thought of as a Client and Server. When uperf runs the
Client (Master) initiates communication with the Server (Slave). The Client
invocation includes a parameter to the test definition profile. After connecting, the
Client sends the Server a version of the test definition.

Since uperf requires both roles of client and server, we chose to assign each role to
a separate KVM guest. Each uperf client has a unique uperf server to use. We
named the association of a KVM guest client to its KVM guest server counterpart a
“uperf pair”. A uperf pair forms the smallest aggregation of resources that defines
the building block used to scale our testing configurations. Testing starts with a
single uperf pair and then adds more pairs to increase and scale the load. Each

Chapter 4. Network workload 13

step in the scale doubles the load of the previous step. The steps used 1, 2, 4 and 8
uperf pairs. All uperf pairs will run the exact same workloads and are expected to
perform and behave similarly.

In addition, recall from the previous topic “Workload tests”, for each step in the
number of uperf pairs tested, each of the 5 workload types (3 RR and 2 STR) run.
Each workload type is run with 4 different levels of concurrency 1, 10, 50 and 250,
where each value of concurrency equates to a single user.

So as the number of uperf pairs increase, so does the load of the KVM host(s), so
does the number of KVM guests and so does the number of simulated users. With
8 uperf pairs, each using two KVM guests, one for the client and one for the
server, using a total of 16 KVM guests, the define workload types will each
simulate up to 2000 concurrent users.

The association of which KVM guests are used to compose a uperf pair differs

depending on the KVM host configuration. In the single KVM host configuration,
the uperf pairs are assembled from KVM guests running on that same KVM host.

14 KVM Network Performance - Best Practices and Tuning Recommendations

Figure 7. Single KVM host uperf pair to KVM guest mappings

KVM guest 1 and 2 (light grey color) are used to form the first uperf pair. The next
uperf pair uses the next sequential KVM guests 3 and 4 (light blue color) and so
on.

Chapter 4. Network workload 15

IBM Z LPAR 1 IBM Z LPAR 2

Figure 8. uperf pair to KVM guest mappings when multiple KVM hosts are used

For the multiple host configuration, the uperf pairs are assembled from a KVM
guest residing on a different KVM hosts. Here KVM guest 1 (in light grey) on both
hosts are used to form a uperf pair. As with the single KVM host configuration,
the next KVM guest from each host (in light blue, yellow and red) is used to form
the next uperf pair and so on. Unlike the single host configuration which handles
both clients and servers, the multiple host configurations ends up with all the
KVM uperf clients running on one KVM host while all the KVM uperf servers run
on the other. The goal was to spread each uperf pair across the KVM hosts.

In the multiple host configuration, for test measurement purposes, each host used
a separate network interface which was configured from a separate OSA adapter
(see the red connector arrows in to ensure traffic flowed from one LPAR
to the other LPAR through the hardware switch, to evaluate the network path and
behavior seen when communicating with an external system.

16 KVM Network Performance - Best Practices and Tuning Recommendations

Chapter 5. Testing methodology

This topic describes the testing methodology that was used in this paper.

Testing was performed by running uperf with the 20 unique tests defined in the
topic “Workload tests” of [Chapter 4, “Network workload,” on page 11| that scaled
the simulated users for each of the five workloads. The execution of each of the 20
workload tests invoked sequentially, one after the other, are called a “run”. Runs
were performed for 1, 2, 4 and 8 uperf pairs. The KVM host LPARs were freshly
rebooted at the start of each run.

A separate run was conducted for each LPAR, network configuration, uperf pair
count and when a different value was used for one of the many Linux operating
system, network, KVM, or uperf settings / tunables.

Running uperf

To run uperf, the server must first be started with the following command:

C[root@kvmguest ~] # uperf -s)

When the server starts, it enters listening mode waiting for one or more clients to
connect.

Once the server is listening, the client can then be started with the following
command:

C[root@kvmguest ~] # uperf -m profile.xml -a -i 30)

The -m parameter specifies the XML which contains the workload test definition or
profile that uperf will use for this invocation. Two additional command line
options were used. First, the -a option to tells uperf to collect all statistics which is
useful for analysis purposes. Second, the -i option specifies the interval (in
seconds) until the next real-time update of throughput and operations per second
statistics are reported by uperf to the user.

There are a variety of additional command line parameters available. For the
complete list of options, refer to the Web page.

uperf Output

An example of the data generated by the command # uperf -m profile.xml -i 30

is listed below. Additionally, specifying the -a option includes the details from
Group, Strand, Transaction (Txn), andFlowop sections in the results report.

© Copyright IBM Corp. 2016, 2018 17

http://www.uperf.org/

uperf -m profile.xml -a

Starting 5 processes running profile:tcp_rr ... 0.00 seconds

Txnl 0/ 1.00(s) = 0 5o0p/s

Txn2 18.49MB / 300.50(s) = 516.11Kb/s 645130p/s

Txn3 0/ 0.00(s) = 0 Oop/s

Total 18.49MB / 302.60(s) = 512.52Kb/s 640650p/s

Group Details

Group0 0 / 302.50(s) = 0 Oop/s

Strand Details

Thro 3.70MB / 302.50(s) = 102.55Kb/s 12818op/s

Thro 3.70MB / 302.50(s) = 102.55Kb/s 128180p/s

Thro 3.70MB / 302.50(s) = 102.55Kb/s 12818op/s

Thro 3.706MB / 302.50(s) = 102.55Kb/s 128180p/s

Thro 3.76MB / 302.50(s) = 102.55Kb/s 12818op/s

Txn Count avg cpu max min
Txn0 5 453.42us 0.00ns 513.58us 383.42us
Txnl 9693177 154.87us 0.00ns 200.06ms 32.28us
Txn2 5 10.65us 0.00ns 12.38us 8.63us
Flowop Count avg cpu max min
accept 5 453.10us 0.00ns 513.18us 383.18us
write 9693177 3.53us 0.00ns 232.93us 1.49us
read 9693172 151.25us 0.00ns 200.06ms 867.00ns
disconnect 5 10.50us 0.00ns 12.30us 8.47us
Netstat statistics for this run

Nic opkts/s ipkts/s obits/s ibits/s

10gh2 0 0 0 24.75b/s

1gb 1 1 2.42Kb/s 617.18b/s

10gb1 32033 32033 17.17Mb/s 13.58Mb/s

Run Statistics

Hostname Time Data Throughput Operations Errors xferbytes nsec
10.12.38.254 302.60s 18.49MB 512.52Kb/s 19386369 0.00 19386354 302603373999
master 302.60s 18.49MB 512.52Kb/s 19386364 0.00 19386349 302603147820
Difference(%) -0.00% -0.00% 0.00% -0.00% 0.00%

-

The uperf output data is separated into three sections.

The first section provides real-time updates of the execution progress of the
transactions defined in the profile. In the example profile above, you will see the
three transactions that were defined.

* The first transaction was to connect each process from the client to the server.

* The second transaction sends a 1 byte Request and reads a 1 byte Response. The
throughput rate and operations per second for each transaction is updated based
on the specified interval (-i) parameter (which defaults to 1 second).

18 KVM Network Performance - Best Practices and Tuning Recommendations

* The third transaction disconnects each client process from the server. When the
transaction has completed, a final update is displayed.’

If the -a parameter is specified, four additional detail sections (group, strand,
transaction and flowop) will be displayed. Each section will show totals for each
element type relevant to that section.

The next section reports the Netstat statistics for the run, showing the packets and
bits sent and received by each network interface in the system. Typically only one
or two interfaces will be relevant to the test that was run.

The final section reports the Run statistics which is a high level summary of the
completed test, reporting the total test duration, data transferred, operations and
errors across the hostname or IP of all the members involved in the test. The data
in this section will be a primary source of the results used to conduct our
comparisons.

For the measurement results used in this paper, the workload test throughputs and
transaction times were extracted from the uperf output report.

5.[Private network: Wikipedial

Chapter 5. Testing methodology 19

https://en.wikipedia.org/wiki/Private_network

20 KVM Network Performance - Best Practices and Tuning Recommendations

Chapter 6. KVM Host Networking Configuration Choices

There are many choices for network configuration in the KVM host. In this topic,
four choices are discussed.

The four network configuration choices are:

* Using a Linux bridge with NAT for KVM guests

* Using a Linux bridge (without NAT) for KVM guests
* Using an Open vSwitch bridge with KVM guests

* Using the MacVTap driver with KVM guests

Each of these choices has trade-offs. In the topics below, each choice will have a
topic describing the configuration, and a “review” that highlights the pros and
cons to help you to decide which configuration is best for your needs.

OSA interface traffic forwarding

Before reviewing the various bridge choices, lets first discuss two OSA interface
configuration modes that can affect how you choose to incorporate bridges in your
network configurations.

OSA MAC address registration

By default, the OSA card only forwards network traffic destined to devices that the
OSA device knows about. The OSA “only knows about” devices that are registered
with the OSA device. For each registered device, the OSA cards maintains a MAC
address entry in the “Forwarding Database” (see man bridge) on the KVM host.
To list the Forwarding Database entries for the KVM host, use the following
command:

/Eroot@kvmhost] # bridge fdb show
01:00:5€:00:00:01 dev 10gh2 self permanent
33:33:00:00:00:01 dev 10gb2 self permanent
33:33:ff:c4:11:fd dev 10gb2 self permanent
01:00:5€:00:00:01 dev 10gbl self permanent
33:33:00:00:00:01 dev 10gbl self permanent
33:33:ff:c4:11:fe dev 10gbl self permanent
33:33:00:00:00:01 dev 1gb self permanent
01:00:5€:00:00:01 dev 1gb self permanent

33:33:ff:6b:00:39 dev 1gb self permanent

%

To view the Forwarding Database entries associated to a specific OSA device, use
the command:

(Eroot@kvmhost] # bridge fdb show dev <interface-name> :)

For example:

[root@kvmhost] # bridge fdb show 10gbl

01:00:5€:00:00:01 dev 10gbl self permanent
33:33:00:00:00:01 dev 10gbl self permanent
33:33:ff:c4:11:fe dev 10gbl self permanent

© Copyright IBM Corp. 2016, 2018 21

Each bridge fdb entry contains two relevant pieces of information. The first is the
registered MAC address of a device in the KVM host, and the second is to which
KVM host interface that the MAC address is registered.

Before you can register a new device, you must know its MAC address. To list the
available devices and their MAC addresses, use the ifconfig or ip 1ink show

command.

To register a new device on the OSA card, use this command:

C[root@kvmhost] # bridge fdb add <new-device-mac-address> dev <interface-name>)

Once the MAC address of the target device is known to the OSA interface, the
OSA will forward any traffic it receives which is destined for the target device.
Additionally, any other devices that are attached to the target device need to be
known to the OSA device as well. This includes network interfaces of all KVM
guests. Depending on the KVM releases, the libvirt daemon (1ibvirtd) might
manage the MAC registration (adds and deletes) for KVM guests using MacVTap
devices as they are started and stopped. However, if you decide to configure
additional devices between the KVM guests and the OSA interfaces, manual
registration on the OSA is required.

MAC address registration on OSA interfaces does not persist across reboots of the
KVM host. It will be necessary to perform manual MAC registration each time the
KVM host restarts. A better choice might be to create a script that is configured to
run at system startup time.

OSA Bridgeport mode

As more complex network configurations are used, the requirement of MAC
registration become more complex. For this reason, the firmware of newer OSA
cards supports a new configuration option called Bridgeport. Bridgeport is an OSA
specific feature that activates promiscuous mode on the OSA adapters. Bridgeport
mode, when enabled, disables packet address inspection and filtering and causes
the OSA interface to forward traffic with unknown destinations to all attached
devices (e.g. traffic destined to other software bridges, switches or interfaces
running in the KVM host).

Bridgeport essentially disables the requirement for OSA MAC address registration
that was previously described.

To view the configuration of an OSA interface, use this command:

C[root@kvmhost] # 1sqeth <interface-name>)

For example:

22 KVM Network Performance - Best Practices and Tuning Recommendations

g N
[root@kvmhost] # 1sqeth 10gbl
Device name : privatel
card_type : 0SD_10GIG
cdevO : 0.0.e000
cdevl : 0.0.e001
cdev2 : 0.0.e002
chpid : 84
online : 1
portname : no portname required
portno : 0
state : UP (LAN ONLINE)
priority_queueing : always queue 2
buffer_count : 128
layer2 : 1
isolation : none
bridge_role : none
bridge_state : inactive
bridge_hostnotify : 0
bridge_reflect_promisc : none
switch_attrs : unknown
2 - %
The value of the field bridge_reflect_promisc reports the state of Bridgeport
mode.
Note: If the field bridge_reflect_promisc is not present, then Bridgeport mode
may not be supported by either the:
* OSA adapter in the system.
* version of KVM being used.
To enable Bridgeport mode, do the following;:
* Enable the OSA bridge _reflect promisc on the OSA:
(}root@kvmhost] # echo "primary" > /sys/class/net/<interface-name>/device/bridge_reflect_promisc :)
* enable promiscuous mode in the Linux Kernel-based:
(Eroot@kvmhost] # ip link set dev <interface-name> promisc on :)

With Bridgeport active, device MAC address registration is no longer required.

Note: If an OSA adapter is shared across multiple LPARs on the same system, only
a single LPAR can be configured for Bridgeport mode at any point in time.
Separate LPARs being configured for promiscuous mode concurrently require
separate OSA adapters.

KVM default NAT-based networking

NAT-based networking is commonly provided and enabled as default by most
major Linux distributions that support KVM virtualization.

This network configuration uses a Linux bridge in combination with Network
Address Translation (NAT) to enable a guest OS to get outbound connectivity
regardless of the type of networking (wired, wireless, dial-up, and so on) used in
the KVM host without requiring any specific administrator configuration.

Chapter 6. KVM Host Networking Configuration Choices 23

Like other software bridge choices, NAT-based networking allows KVM guests
sharing the same bridge to communicate together even if the bridge is not
connected to an interface in the KVM host or if the KVM host has no physical
networking installed or enabled.

While NAT is a convenient choice that is extremely flexible, allowing a guest OS to
easily connect to the world outside of the KVM host, it has characteristics which
can make it more or less desirable for many business and enterprise uses.

First, by default, the bridge used with NAT-based connectivity is typically
configured to use private IP addresses from a 192.168.x.x subnet. “Addresses in
the private space are not allocated to any specific organization and anyone may
use these addresses without approval from a regional Internet registry.”® Using a
192.168.x.x subnet allows a Linux distribution to avoid many of the configuration
tasks and complexities regarding network resource reservation and administration,
which is extremely convenient.

A second characteristic or restriction with using the KVM default NAT-based
networking is that interfaces associated to the NAT are not, by default, visible
outside of the KVM host running the NAT. This mean that external systems and
their networking components have no knowledge of or way to route network
traffic directly to a KVM guest OS on separate KVM host. This generally means a
NAT would not be unusable for server workloads that rely on receiving unsolicited
external network requests in order to do work.

A third characteristic, the use of Network Address Translation in addition to a
software bridge, creates additional overhead which can affect network performance
throughput and latency as well as potentially increases the consumption of CPU
and memory resources. NAT behavior is normally implemented using a linux
firewall that employs static and dynamic firewall rules. The use of the firewall puts
additional demands on system.

For most Linux distributions, NAT-based networking is configured and available
by default when the operating system is installed. Typically, the name for the
default NAT bridge is virbr0 and the typical name for the default network is
default.

To list which networks have been defined to the libvirt daemon for use by KVM
guests, use the following command:

[root@kvmhost ~] # virsh net-list
Name State Autostart Persistent

default active yes yes

To use the default NAT bridge by a KVM guest, add or edit the network section of
the libvirt XML configuration file for the KVM guest to include the name of the
default bridge:

<interface type="bridge">
<source bridge="bridge-name"/>
<model type="virtio"/>
<driver name="vhost"/>
</interface>

6.[Private network: Wikipedial

24 KVM Network Performance - Best Practices and Tuning Recommendations

https://en.wikipedia.org/wiki/Regional_Internet_registry

To define a new NAT bridge, complete the following steps.
1. Create a new libvirt network configuration like the following:

[root@kvmhost ~] # vi ~/new-kvm-network.xml h
<network>
<name>newnatnetwork</name>
<forward mode='nat'>
<nat>
<port start='1024' end='65535"'/>
</nat>
</forward>
<bridge name='my-bridge-name' stp='on' delay='0"'/>
<ip address='192.168.X.1"' netmask='255.255.255.0"'>
<dhcp>
<range start='192.168.X.2' end='192.168.X.254"'/>
</dhcp>
</ip>
</network>
N J

Change the <name>, <bridge name> and <ip address> to suite your needs. It is
recommended that you choose names and ip address that are different from the
default bridge to avoid conflicts. The typical ip address of the default network
is 192.168.122.1.

The network name defined in network XML <name> tag is reported in the Name
field using the virsh net-1ist command.

2. Add the new network definition XML file to libvirt:

(}root@kvmhost ~] # virsh net-create ~/net-nat-network.xml :)

Once added to libvirt, the new network definition will persist.

3. To set the new network to automatically startup each time the KVM host is
rebooted, do this:

(Eroot@kvmhost ~] # virsh net-autostart <network-name-from-xml> j)

Specify the network by the <name> defined in the XML file.

4. Add or change the KVM guest's configuration to use this network or bridge
name.

To view configuration details of a specific network defined in libvirt, use the
following command:

(}root@kvmhost ~] # virsh net-dumpxml<libvirt-network-name> j)

Using a Linux Bridge

An alternative to using a NAT-based network would be to use a standard Linux
network bridge.

A network bridge is a Link Layer device which forwards traffic between networks
based on MAC addresses and is therefore also referred to as a Layer 2 device. It
makes forwarding decisions based on tables of MAC addresses which it builds by
learning what hosts are connected to each network. A software bridge can be used
within a Linux host in order to emulate a hardware bridge, for example in
virtualization applications for sharing a NIC with one or more virtual NICs.”

N

https:/ /access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide /|

s2-networkscripts-interfaces_network-bridge.html|

Chapter 6. KVM Host Networking Configuration Choices 25

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces_network-bridge.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces_network-bridge.html

In the context of KVM, a Linux bridge is used to connect the KVM guest interface
to a KVM host network interface.

To create a Linux Bridge on a KVM host, use the following command:

C[root@kvmhost ~] # brctl addbr <bridge-name>)

Next, if KVM guest interfaces that will be connecting to the bridge need to
communicate with other systems external to the KVM host, the Linux bridge must
be instructed which KVM host interface to use. To attach a Linux bridge to an OSA
interface in the KVM host, use the following command:

C[root@kvmhost ~] # brctl addif <bridge-name> <host-interface-name>)

If the bridge needs to send or receive network traffic from external systems,
changes in the KVM host will need to be configured to enable this. As discussed in
[‘OSA interface traffic forwarding” on page 21 there are two ways to do this:

* By registering the bridge device with the OSA card.

* By configuring the OSA card for Bridgeport mode and enabling promiscuous
mode in the KVM host kernel.

To configure a KVM guest interface to use a Linux bridge, the XML stanza to
define the interface for the KVM guest in the libvirt XML configuration file should
include the following:
<interface type="bridge">

<mac address="11:22:33:44:55:66"/>

<source bridge="bridge-name"/>

<model type="virtio"/>

<driver name="vhost"/>
</interface>

For a KVM guest interface to connect to a bridge, use <interface type="bridge">
and specify the name of the bridge using the <source bridge= keyword.

For better performance throughput and latency, it is recommended that KVM
guests use the newer vhost-net driver, rather than the older para-virtualized
virtio-net driver, by specifying the keyword <driver name="vhost"/> in the
guest's libvirt configuration file. vhost-net uses an in-kernel guest networking
performance enhancement which moves network packets between the guest and
the host system using the Linux kernel rather than QEMU. This avoids context
switches from the kernel to user space to improve overall performance.

The MAC address field is optional and if omitted, the libvirt daemon will generate
a unique value.

After the changes have been saved in the libvirt XML configuration file for the
KVM guest, the libvirt daemon needs to be informed by using the following
commands:

[root@kvmhost ~] # virsh undefine <kvm-guest-name>
[root@kvmhost ~] # virsh define <kvm-guest-libvirt-xml-file>

And finally, remember to restart the KVM guest for the changes to take affect.

26 KVM Network Performance - Best Practices and Tuning Recommendations

Using Open vSwitch

Open vSwitch (abbreviated to OVS) is a production quality, multilayer virtual
switch. It is designed to enable massive network automation through
programmatic extension, while still supporting standard management interfaces
and protocols (for example, NetFlow, sFlow, IPFIX, RSPAN, CLI, LACP, 802.1ag).

In addition, it is designed to support distribution across multiple physical servers
similar to VMware's vNetwork distributed vswitch or Cisco's Nexus 1000V. Also
see the full feature list.®

Open vSwitch has many features that can not be found in the standard Linux
software bridges. If your configuration needs the functionality provided by these
features, Open vSwitch may be your best choice. In this comparison Open vSwitch
was tested as an alternative to the Linux software bridge, therefore none of the
additional capabilities were configured or tested.

To use Open vSwitch, the service must be enabled and started using the following
commands:

[root@kvmhost ~] # systemctl enable openvswitch.service
[root@kvmhost ~] # systemctl start openvswitch.service

Enablement and starting need only be done once and will persist across KVM host
restarts.

To create an Open vSwitch bridge use:

([root@kvmhost ~] # ovs-vsctl add-br <bridge-name>)

Next, if KVM guest interfaces that will be connecting to the bridge need to
communicate with other systems external to the KVM host, the Open vSwitch
bridge must know which KVM host interface to use. Attach the OSA device
associated with the KVM host interface to the Open vSwitch bridge by connecting
them together using an Open vSwitch bridge port.

C[root@kvmhost ~] # ovs-vsctl add-port <bridge-name> <host-interface-name>)

Once the bridge exists and if the bridge needs to send or receive network traffic
outside of the KVM host, the KVM host will need to be configured to forward
traffic to bridge. As discussed in [“OSA interface traffic forwarding” on page 21
there are two possible ways to do this:

* By registering the bridge device with the OSA card.

* By configuring the OSA card for Bridgeport mode and enabling promiscuous
mode in the KVM host.

To configure a KVM guest interface to use an Open vSwitch bridge, the XML
stanza to define the KVM guest's interface in the guest's libvirt XML configuration
file should include the following;:

8.|http:/ /openvswitch.org /|

Chapter 6. KVM Host Networking Configuration Choices 27

http://openvswitch.org/

<interface type="bridge">
<mac address="11:22:33:44:55:66"/>
<source bridge="bridge-name"/>
<virtualport type="openvswitch">
<parameters interfaceid="<ovs-bridge-uuid>"/>
</virtualport>
<model type="virtio"/>
<driver name="vhost"/>
</interface>

For the KVM guest interface to connect to a bridge, use <interface type="bridge”>
and specify the name of the bridge using the keyword <source bridge=.

For better performance throughput and latency, it is recommended that KVM
guests use the newer vhost-net driver, rather than the older paravirtualizated
virtio-net driver, by specifying the keyword <driver name="vhost”/> in the guest's
libvirt configuration file. Vhost-net uses an in-kernel guest networking
performance enhancement which moves network packets between the guest and
the host system using the Linux kernel rather than QEMU. This avoids context
switches from the kernel to user space to improve overall performance.

When using an Open vSwitch bridge, it is required to not only specify the bridge
by name (<source bridge=) but to also specify the identity of OVS bridge using it's
UUID in the <parameters interface= tag within the <virtualport type= stanza. The
UUID of the OVS bridge can be obtained using the following command:

[root@kvmhost ~] # ovs-vsctl show
2dbde39b-9f37-4a73-a82e-8afeaf723fb6
ovs_version: "2.0.1"

The MAC address field is optional and if omitted, the libvirt daemon will generate
a unique address.

After the changes have been saved in the KVM guest's libvirt XML configuration
file, the libvirt daemon needs to be informed, using the following commands:

[root@kvmhost ~] # virsh undefine <kvm-guest-name>
[root@kvmhost ~] # virsh define <kvm-guest-libvirt-xml-file>

And lastly, remember to restart the KVM guest for the changes to take affect.

Using the MacVTap driver

Another alternative to using a bridge to enable a KVM guest to communicate
externally is to use the Linux MacVTap driver.

“Macvtap is a new device driver meant to simplify virtualized bridged
networking. It replaces the combination of the tun/tap and bridge drivers with a
single module based on the macvlan device driver. A macvtap endpoint is a
character device that largely follows the tun/tap ioctl interface and can be used
directly by kvim/qemu and other hypervisors that support the tun/tap interface.
The endpoint extends an existing network interface, the lower device, and has its

28 KVM Network Performance - Best Practices and Tuning Recommendations

own mac address on the same ethernet segment. Typically, this is used to make
both the guest and the host show up directly on the switch to which the host is
connected.’

A key difference between using a bridge is that MacVTap connects directly to the
network interface in the KVM host. This direct connection effectively shortens the
codepath, by bypassing much of the code and components in the KVM host
associated with connecting to and using a software bridge. This shorter codepath
usually improves throughput and reduces latencies to external systems.

MacVTap modes

MacVTap can be configured in any of three different modes which determine how
the macvtap device communicates with the lower device in the KVM host. The
three possible modes are VEPA, Bridge and private mode.

1. Virtual Ethernet Port Aggregator (VEPA) is the default mode. Data flows from
one endpoint down through the source device in the KVM host out to the
external switch. If the switch supports hairpin mode, the data is sent back to
the source device in the KVM host and from there sent to the destination
endpoint.

Most switches today do not support hairpin mode, so the two endpoints are
not able to exchange ethernet frames, although they might still be able to
communicate using an tcp/ip router. A linux host used as the adjacent bridge
can be put into hairpin mode by writing to /sys/class/net/dev/brif/port/
hairpin_mode. This mode is particularly interesting for data-centers and cloud
provides where the ability to manage virtual machine networking at the switch
level is desirable. Switches aware of the VEPA guests can enforce filtering and
bandwidth limits per MAC address without the Linux host knowing about it.

2. Bridge, connecting all endpoints directly to each other. Two endpoints that are
both in bridge mode can exchange frames directly, without the round trip
through the external bridge. This is the most useful mode for setups with
classic switches, and when inter-guest communication is performance critical.
(Figure 9 on page 30| shows the communication path using Bridge mode.)

3. For completeness, a private mode exists that behaves like a VEPA mode
endpoint in the absence of a hairpin aware switch. Even when the switch is in
hairpin mode, a private endpoint can never communicate to any other endpoint
on the same lowerdev."

9.[MacVTap - Linux Virtualization Wikil
10.[MacVTap - Linux Virtualization Wikil

Chapter 6. KVM Host Networking Configuration Choices 29

http://virt.kernelnewbies.org/MacVTap
http://virt.kernelnewbies.org/MacVTap

IBM Z Logical Partition

Figure 9. Single LPAR using MacVTap bridge mode for direct connection between KVM guests

MacVTap isolation / limitations

Each of these modes provide different levels of endpoint isolation. Consider your
needs when choosing which macvtap mode is right for your environment.

Bridge mode provides the greatest degree of flexibility enabling inter-guest
communication within a single KVM host.

VEPA mode, without a network switch thats supports hairpin mode, prevents any
endpoints using the same KVM host interface from being able to communicate.

In Private mode, even with a network switch thats supports hairpin mode, a KVM
guest endpoint will not be able to communicate with its KVM host using the same
lower level source device.

Without a switch that supports hairpin mode, KVM guests configured to use Bridge
or VEPA modes will not be able to directly communicate with the KVM host using
the same KVM host interface. This limitation can be overcome if the KVM host has
multiple interfaces using different ethernet segments (subnets).

30 KVM Network Performance - Best Practices and Tuning Recommendations

To configure a KVM guest interface to use the MacVTap driver, the XML stanza to
define the interface for KVM guest the in the guest's libvirt XML configuration file
should include the following;:
<interface type="direct">

<mac address="12:34:56:78:9a:bc"/>

<source dev="privatel" mode="bridge"/>

<model type="virtio"/>

<driver name="vhost"/>
</interface>

The relevant XML tags here are:
* <interface type="direct">
* <source dev="kvm-host-device" mode="bridge">

The interface type for macvtap is direct, which specifies a direct mapping to an
existing KVM host device. The source dev keyword specifies the KVM host
network interface name that will be used by the macvtap interface for the KVM
guest. The mode keyword defines which macvtap mode will be used.

The MAC address field is optional and if omitted, the libvirt daemon will generate
a unique address.

After the changes have been saved in the KVM guest's libvirt XML configuration
file, the libvirt daemon needs to be informed, using the following commands:

[root@kvmhost ~] # virsh undefine <kvm-guest-name>
[root@kvmhost ~] # virsh define <kvm-guest-libvirt-xml-file>

And lastly, remember to restart the KVM guest for the changes to take affect. The
defined macvtap interface will be persistent and automatically started whenever
the KVM guest restarts.

All of MacVTap testing done in this paper used the macvtap mode="bridge”
which allowed KVM guests on the same KVM host attached to the same KVM
host network interface to communicate with each other. This enabled KVM guests
on the same KVM host with uperf client and server roles to be paired.

Network Configuration Pros and Cons

In this topic we discuss the advantages and disadvantages of the three evaluated
Network Configurations.

Which of the tested Networking Configurations is the appropriate choice for you?
That depends on a number of factors, like highest throughputs, less CPU
consumption, better CPU efficiency, easier configuration, usability, isolation and
more.

To help compare and contrast characteristics and behavior of the tested network
configurations, graphs have been produced comparing results from two separate
workload runs. Recall that each run consists of 20 different tests (described in
“Workload tests” in [Chapter 4, “Network workload,” on page 11). Each graph
compares the 20 workload test results from one run to the results of a separate run.

The graphs show the differences between the two compared runs. In the graphs
below the 20 different workload tests are represented on the X-axis and the
difference (in %) of 4 different performance characteristics are shown on the

Chapter 6. KVM Host Networking Configuration Choices 31

Y-axis. All of the performance characteristics have been normalized to show the
difference of a second run (B) when compared to a first run (A). The titles of each
graph take the form of “run B config” vs “run A config”.

* If the result from run B is better than run A, the bar on the graph will be
positive.

* If run B's result is worse than run A's result, the bar will be negative. In all the
graphs a positive bar means a better result.

For throughput, (the blue bar), a better results means a higher absolute value.

For transaction times (the orange bars), better equates to shorter time. Transaction
time is equivalent to the overall latency of network transaction. The faster (or
shorter) amount of time a transaction completes the better, so better is less overall
time.

The yellow and green bars represent CPU efficiency for the KVM guest running
the uperf client (yellow) and KVM guest running the uperf server (green). These
bars compare the amount of CPU required to transfer a megabyte of data. For CPU
efficiency, a better result or a positive bar means less CPU was required to transfer
the same amount of data.

Note: All of the graphs that follow are from test results collected from runs using
4 uperf pairs (see “uperf pairs” in [Chapter 4, “Network workload,” on page 11)
which use 8 KVM guests running on 1 or 2 LPAR configurations.

MacVTap driver considerations

From purely a performance perspective, based on the workloads tested and the
Linux and KVM levels measured, the MacVTap driver consistently demonstrated
higher throughputs and better CPU efficiency.

The MacVTap driver provides exceptional transactional throughput and
operations/sec results (up to 10-50%) better than either of the two software
bridges. Additionally, throughput of MacVTap scales up with load more quickly
compared to using a software bridge. This means that MacVTap is more CPU
efficient, consuming less CPU resources to complete the same amount of work.
Stated another way, MacVTap can do more work using the same amount of CPU
resources.

Although MacVTap is the best performing, it suffers from a couple of issues that
may limit the use cases where it would be a suitable choice.

The first limitation is that MacVTap can not readily enable network communication
between the KVM host and any of the KVM guests using MacVTap.

* This issue can be overcome in two different ways. The first way to avoid this
limitation is to use a special hardware switch that supports hairpin mode to
connect the IBM Z system to the outside world. However, hairpin mode is not a
common feature in most hardware switches and those switches that do have this
feature tend to be significantly more expensive.

* The second way to enable KVM host to guest communications is by having
multiple network interfaces in the KVM host. Configure the second KVM host
interface on the same segment with a different subnet from the first host
interface. MacVTap only restricts traffic flow to the same subnet shared between
host and guest. While this method works w/o purchasing additional costly

32 KVM Network Performance - Best Practices and Tuning Recommendations

hardware, it still requires that a second interface be available and appropriately
configured in the KVM host and each KVM guest.

A second limitation of MacVTap is that it must attach to a physical host interface.
MacVTap, unlike software bridges, provides no way to enable KVM guests to
communicate without first being attached to a host interface which is active and
externally facing. In other words, KVM guests using MacVTap will be external
facing and exposed to external network traffic. This is not necessarily a bad thing.
It just doesn't provide KVM host only isolation and connectivity for KVM guests
that other choices allow.

Open vSwitch considerations

Based on the measurement data collected in the scope of this paper, Open vSwitch
is a good choice when the restrictions of MacVTap are undesirable.

From a performance perspective, Open vSwitch tends to trail behind MacVTap in
latency sensitive transactional tests and lightly loaded streaming tests. Open
vSwitch, however, typically performs as good or better than a standard Linux
bridge. In configurations that desire or require a software bridge, Open vSwitch is
a good choice.

Open vSwitch is a very sophisticated and complex network component supporting
many more features than does a linux bridge. The comparisons done in this paper
utilize relatively basic configuration choices to provide network connectivity for
KVM guests to communicate with other guests on the same KVM host or to other
external systems. If your configuration requires any of the advanced features
provided by Open vSwitch, leveraging these capabilities could easily be deemed a
higher priority than the uplift in performance provided by MacVTap.

The following topics describe the high level comparison of relative performance
between Open vSwitch and MacVTap.

Chapter 6. KVM Host Networking Configuration Choices 33

KVM guests and uperf pairs running on the same KVM host
using a small MTU size

Open vSwitch compared to MacVTap on 1 LPAR with MTU 1492

Throughput, Transaction time, CPU Efficiency

5

Ol_ ‘lll

ANL || |
B Throughput
W Transaction times

1
6]

-10 Uperf client cpu

m Uperf server cpu
-15

rrlc-1x1--10
rrlc-1x1--50
rrlc-1x1-250

rrl1c-200x1000---1

rrlc-200x1000--10

% difference of Open vSwitch vs MacVTap
rrlc-1x1---1

rrlc-200x1000--50
rrlc-200x1000-250
rrlc-200x30k---1
rrlc-200x30k--10
rrlc-200x30k--50
rrlc-200x30k-250
str-readx30k---1
str-readx30k--10
str-readx30k--50
str-readx30k-250
str-writex30k---1
str-writex30k--10
str-writex30k--50
str-writex30k-250

Workload Tests

Figure 10. Open vSwitch vs MacVTap with MTU size 1492 on a single KVM host LPAR

34

Transactional and Streaming performance observations:

* Open vSwitch has higher latencies which lowers the operations/sec
which directly impacts throughput by as much as 12% in tests using
small, medium or large payload sizes.

* Tests using higher user load (connection counts) see a greater impact.

* CPU consumption for uperf client and server tends to vary a fair
amount, in this case by +/-7%. The trend for the uperf client averages at
almost 0%, while the uperf server tends to show more CPU
consumption for Open vSwitch compared to MacVTap.

Conclusion:

* MacVTap demonstrates higher throughput and lower latency than Open
vSwitch.

* MacVTap, especially for the uperf server, consumes less CPU generally
than does Open vSwitch.

* For these reasons, MacVTap is recommended ahead of Open vSwitch for
this LPAR configuration and MTU size combination.

KVM Network Performance - Best Practices and Tuning Recommendations

KVM guests and uperf pairs running on the same KVM host
using a large MTU size

Open vSwitch compared to MacVTap on 1 LPAR with MTU 8192

Throughput, Transaction time & CP U Efficiency

6
o 4
S 2 |
% 0 ' L I I- m | I | - - I I

il gt NN
=)
2
< -4 B Throughput
3] _ . .
= g W Transaction times
@ 10 Uperf client cpu
c
g 12 m Uperf server cpu
(@) 4 O OO 4 0O OO 4 0 0 O 40 0 O 40 o O
Y ! — 1 H — O H — O H — O H — 1
S) LA N N S A SN AR A S S SN
@ X XX T 08839938 X038 d X935 5 X
= S 3 3 X 90 6602 0 m®mA® »® o 0 o »® K
c Do o T d 3 3 9 X x o ox QX % ox QX % ox Q@
) O 0o 0o K X X X Jd 86 8 38 X o X 0 3 o X
= 4 a9 49 2 & X o o T T g = 2 8 0
- O - 4 o O 5 O O 85 ® © ®© - 2 = =
O] = £ £ - © & o N NN o © IS
£ EIQRS Y Y¥a2o0oF s sE
S O A T U OO
° a8 8 o C TR B E B R TE
A = \; g o = £ £t n n G n n G
=
Workload Tests

Figure 11. Open vSwitch vs MacVTap with large MTU size on a single KVM host LPAR

Transactional performance observations:

* Open vSwitch has higher throughput and latencies impacts by as much
as 12% in tests using small, medium or large payload sizes.

* Greater impacts observed at high user (connection) counts.

Streaming performance observations:
* Has similar trends as the transactional workload tests.

* However the benefits of a larger MTU size (showing a reduced %
difference vs MacVTap) can be observed for the tests that have larger
payload sizes compared to (transactional) workloads having smaller
payload sizes.

* Also, trend showing the performance impacts at higher user loads
(connections counts) continues to be seen.

Conclusion:

* MacVTap has better throughput and transaction times compared to
Open vSwitch.

* CPU consumption is generally equivalent between MacVTap and Open
vSwitch and within the run to run variation typically seen across uperf
runs.

* Therefore, MacVTap is recommended over Open vSwitch for this LPAR
configuration using larger MTU sizes.

Chapter 6. KVM Host Networking Configuration Choices 35

KVM guests and uperf pairs running across separate KVM hosts
using a small MTU size

Open vSwitch compared to MacVTap with MTU 1492 across 2 LPARs

Throughput, Transaction time, CPU efficiency
higher bars are better
better = higher throughput or shorter transaction times or lower cpu consumption

= 20
g
o 10
= - |
= 0 N il -—.——.— T _ —If . _lli | m__
2 10 I B Throughput
c) - .
I 20 B Transaction times
= - .
7 20 Uperf client cpu
) [|

S 4000 40 004000400040 0 0 Uperf server cpu
ol ' 9 b b ! 4 bm ! o4 OO ! A OWm ! o b D
O R = T S S . RUB BV EUBIIUBI N SCRUBIIURI
u— X X x 99 &6 &6 8 9 c o ¥ 20 o £ 9 o o X
S} S 9 X9 56508 0 mm QAo m I e e R

oo T d g a9 X X ox @ X xox @ X xox Q@
) O H hH N a1 8 X o X P
S d 9 49 2 &8 3 3 x 06088 & T o 3 L 38 3
c = o= = o O 5 © O 85 8 © «© s =2 = 2

= —_ — » O o O) N N N o5 o o (o] ; = c -
(O] S PPN) h N = 2 20 - E S
et S DN “_-’| O O 4 L T T 5 L T T3
2 S e o b ddan s s 585 585 5
= o 4 4 3 & £ £ ¢ 7R I [ZER7 I
© =R =R T =
o
>

Workload Tests

Figure 12. Open vSwitch compared to MacVTap with the small MTU size across LPARs

Transactional performance observations:

* For most workload tests the throughput and latency of Open vSwitch is
similar to MacVTap.

* At the highest load levels (250 users), the latencies differences with
MacVTap results in Open vSwitch being up to 15% slower.
Streaming performance observations:

¢ Throughput is essentially the same since it is limited by line speed of the
interfaces used in each KVM host.

* Results indicate that Open vSwitch may offer some CPU consumptions
savings compared to MacVTap for the uperf server, especially for tests
with larger payload sizes.

Conclusion:

* For highly concurrent transactional traffic, MacVTap demonstrates up to
15% better throughput and latency than Open vSwitch.

* For streaming workloads (which are throughput limited by the speed of
the network interfaces), Open vSwitch has CPU savings advantages over
MacVTap.

* MacVTap is recommended for highlytransactional workloads

* Open vSwitch is recommended for workloads that have primarily
streaming behavior.

36 KVM Network Performance - Best Practices and Tuning Recommendations

KVM guests and uperf pairs running across separate KVM hosts
using a large MTU size

45
35
25
15

-15
-25

% difference with Open vSwitch vs MacVTap

better = higher throughput or shorter transaction times or lower cpu consumption

Open vSwitch compared to MacVTap on 2 LPARs with MTU 8192

rrlc-1x1---1

rrlc-1x1--10
rrlc-1x1--50
rrlc-1x1-250
rrlc-200x1000---1
rrlc-200x1000--10
rrlc-200x1000--50
rrlc-200x1000-250

Throughput, Transaction time, CPU efficiency
higher bars are better

B Throughput

B Transaction times
Uperf client cpu

m Uperf server cpu

;I,I- _ - ,.,I,

rrlc-200x30k---1
rrlc-200x30k--10
rr1c-200x30k--50
rrlc-200x30k-250
str-readx30k---1
str-readx30k--10
str-readx30k--50
str-readx30k-250
str-writex30k---1
str-writex30k--10
str-writex30k--50
str-writex30k-250

Workload Tests

Figure 13. Open vSwitch compared to MacVTap with larger MTU size across LPARs

Transactional performance observation:

* Similar trends (throughput dropping at 250 user load per uperf pair)

were observed as with the smaller MTU size.

Streaming performance observation:

Open vSwitch shows a trend of using up to 30+% less CPU than
MacVTap.

Conclusion:

Behavior is very similar to the 2 LPAR configuration with a small MTU
size.

For highly concurrent transactional traffic, MacVTap demonstrates up to
15% better throughput and latency than Open vSwitch.

For streaming workloads (which are throughput limited by the speed of
the network interfaces), Open vSwitch demonstrates CPU savings
advantages up to 30% better than MacVTap.

MacVTap is recommended for highlytransactional workloads

Open vSwitch is recommended for workloads that have primarily
streaming behavior.

Chapter 6. KVM Host Networking Configuration Choices 37

Overall conclusions of Open vSwitch vs MacVTap in our tests

For a single LPAR:
MacVTap is recommended over Open vSwitch because MacVTap achieved
higher throughput, lower transaction times and generally less CPU
consumption.

For multiple LPARs (which models behavior to external systems):
* MacVTap is recommended for highly transactional workloads.

* Open vSwitch is recommended for primarily streaming behavior.

For either 1 or 2 LPARs:
Using a larger MTU size achieves higher throughputs and lower latencies
than smaller MTU size and is recommended choice.

Other considerations

* Open vSwitch does not require any special hardware support (ie. no switch with
hairpin mode required) to enable the KVM host and KVM guests to
communicate directly.

* Open vSwitch can be configured to provide a KVM host isolation mode. Unlike
MacVTap, Open vSwitch does not require being attached to a KVM host
interface in order to operate, providing a pure virtual and isolated network.

* By only connecting KVM guests to an Open vSwitch bridge and not the host
interface, the KVM guests can communicate with each other and the KVM host
while being detached and isolated from all network traffic originating from or
destined to go outside of the KVM host environment.

Linux bridge

Within the context of the workload analysis and measurement results obtained, the
standard software bridge included in Linux can also be a reasonable choice for
KVM guest connectivity.

Linux bridges avoids the same restrictions imposed by the MacVTap driver. The
Linux bridge provides performance characteristics that are equivalent to or within

10% of Open vSwitch performance results.

The following topics describe the high level comparison of relative performance
between the Linux bridge and Open vSwitch.

38 KVM Network Performance - Best Practices and Tuning Recommendations

KVM guests and uperf pairs running on the same KVM host
using a small MTU size

10

o

-10

% difference from Linux Bridge vs Open vSwitch

better = higher throughput or shorter transaction times or lower cpu consumption

rrlc-1x1---1

Linux Bridge compared to Open vSwitch on 1 LPAR with MTU 1492

rrlc-1x1--10
rrlc-1x1--50
rrlc-1x1-250

rrlc-200x1000---1
rrlc-200x1000--10

Throughput, Transaction time, CPU efficiency
higher bars are better

III' I Illlllll'-'. —Ill lThroughput
B Transaction time
|‘| | Uperf client cpu
W Uperf server cpu

rrlc-200x1000--50
rrlc-200x1000-250
rrlc-200x30k---1
rrlc-200x30k--10
rrlc-200x30k--50
rrlc-200x30k-250
str-readx30k---1
str-readx30k--10
str-readx30k--50
str-readx30k-250
str-writex30k---1
str-writex30k--10
str-writex30k--50
str-writex30k-250

Workload Tests

Figure 14. Single LPAR Linux Bridge compared to Open vSwitch with small MTU size

Transaction performance observations:

* The latency and throughput results at the small to medium payload
sizes are within measurement variations compared to Open vSwitch.

* At small and medium payload sizes, the Linux bridge may have very
small CPU consumption savings.

* As the bandwidth load becomes high, the Linux bridge performance
tends to drop off up to ~7% versus Open vSwitch.

Streaming performance observations:

* Throughput and latency performance are nearly equivalent to Open
vSwitch, hovering within 2% (which is within the normal measurement
variations) with a trend to a very slight drop.

Conclusion:

* For small and large payload sizes, the Linux bridge is essentially
equivalent to Open vSwitch.

* For moderate size payloads, Open vSwitch demonstrated a 5%
advantage for throughput and latency while achieving a slightly lower
improvement for CPU consumption. Open vSwitch is recommended for
this payload sizes.

Chapter 6. KVM Host Networking Configuration Choices 39

KVM guests and uperf pairs running on the same KVM host
using a large MTU size

Linux Bridge compared to Open vSwitch on 1 LPAR with MTU 8192

Throughput, Transaction time, CPU efficiency
higher bars are better
better = higher throughput or shorter transaction times or lower cpu consumption

1

N
|
-
-
| |
—
L]
-
1
[

..I I u _.I'l-l-. | .I B Throughput

M Transaction time
6 Uperf client cpu
-8 l Uperf server cpu

rrlc-1x1--10
rrlc-1x1--50
rrlc-1x1-250

rrlc-1x1---1
rrlc-200x1000---1
rrlc-200x1000--10
rr1c-200x1000--50
rrlc-200x30k---1
rrlc-200x30k--10
rrlc-200x30k--50
rrlc-200x30k-250
str-readx30k---1
str-readx30k--10
str-readx30k--50
str-readx30k-250
str-writex30k---1
str-writex30k--10
str-writex30k--50
str-writex30k-250

% difference with Linux Bridge vs Open vSwitch
rrlc-200x1000-250

Workload Tests

Figure 15. Single LPAR Linux Bridge compared to Open vSwitch with large MTU size

Transactional and streaming performance observations:

* Behavior is nearly identical, with a trend to a very minor drop in
performance for streaming workloads.

Conclusion:

* Linux bridge results are similar to Open vSwitch across all the tests. For
this reason, either would be an equally acceptable choice when using a
bridge is desirable.

40 KVM Network Performance - Best Practices and Tuning Recommendations

KVM guests and uperf pairs running across separate KVM hosts
using a small MTU size

Linux Bridge compared to Open vSwitch on 2 LPARs with MTU 1492

Throughput, Transaction time, CPU efficiency
higher bars are better
better = higher throughput or shorter transaction times or lower cpu consumption

L _ L I . I‘- I B Throughput

I B Transaction time
-10 Uperf client cpu
15 H Uperf server cpu

rrlc-1x1--10
rrlc-1x1--50
rrlc-1x1-250

rrlc-1x1---1
rrlc-200x1000---1
rrlc-200x1000--10
rr1c-200x1000--50
rrlc-200x30k---1
rrlc-200x30k--10
rrlc-200x30k--50
rrlc-200x30k-250
str-readx30k---1
str-readx30k--10
str-readx30k--50
str-readx30k-250
str-writex30k---1
str-writex30k--10
str-writex30k--50
str-writex30k-250

% difference using Linux Bridge vs Open vSwitch
rrlc-200x1000-250

Workload Tests

Figure 16. Linux Bridge compared to Open vSwitch across multiple LPARs with a small MTU

Transactional and streaming performance observations:
* The behavior is essentially equivalent across all workload tests.

* The difference in CPU efficiency are mixed. As seen in previous graphs,
the uperf client and server CPU efficiencies tend to vary +/- a fair
amount. With no clear trend visible across these runs, the variations are
therefore considered inconsequential for comparison purposes.

KVM guests and uperf pairs running across separate KVM hosts
using a large MTU size

Performance observations:

* The results of the large MTU size are almost identical to the small MTU
results, and have therefore been omitted.

Chapter 6. KVM Host Networking Configuration Choices 41

Overall conclusions when comparing a Linux bridge to Open
vSwitch in our tests

For single LPAR using a small MTU size:

* Open vSwitch is recommended over the Linux bridge. The Linux bridge
falls behind Open vSwitch across most tests for throughput and
transaction time (latency), where the most notable difference was
observed with large transactional payloads.

For single LPAR with large MTU size or multiple LPARs with either MTU size:

* The differences between both bridges is negligible as they delivered
nearly equivalent performance characteristics. In this case, aspects other
than performance might influence your choice of bridge.

Other considerations

* Like Open vSwitch, the Linux bridge does not require any special hardware
support (ie. no switch with hairpin mode required) to enable the KVM host and
KVM guests to communicate directly.

* The Linux bridge can be configured to provide a KVM host isolation mode.
Unlike MacVTap, a Linux bridge does not require being attached to a KVM host
interface in order to operate, providing a pure virtual and isolated network.

* By only connecting KVM guests to a Linux bridge and not connecting the bridge
to the external facing host interface, the KVM guests can communicate with each
other and the KVM host while being detached and isolated from all network
traffic originating from or destined to go outside of the KVM host environment.

* Has been part of standard Linux installs for years. Requires no additional
packages to install or learn.

42 KVM Network Performance - Best Practices and Tuning Recommendations

Chapter 7. Network Performance Tuning

The process of determining the optimizations in this paper was in part drawn from
past experience and from analysis of data captured during the execution of uperf.

This topic covers the operating system settings that will directly affect the
networking performance in Linux and KVM guests. Here is the list of all the
settings that were changed from the operating system default settings.

Summary of used /proc settings

The following table is a list of all the settings (located in the /proc file system) that
were used/adjusted to obtain the results contained in this paper.

Sysctl Variable Sysctl value
kernel.randomize_va_space 0
net.core.netdev_max_backlog 25000
net.core.rmem_max 4136960
net.core.wmem_max 4136960
net.ipv4.tcp_congestion_control cubic
net.ipv4.tcp_fin_timeout 1
net.ipv4.tcp_limit_output_bytes 131072
net.ipv4.tcp_low_latency 0
net.ipv4.tcp_max_tw_buckets 450000
net.ipv4.tcp_rmem 4096 87380 4136960
net.ipv4.tcp_tw_reuse 1
net.ipv4.tcp_wmem 4096 16384 4136960

Using Sysctl to override default settings

Rather than modifying system variables by echo-ing values in to the /proc file
system directly,

C[r‘oot@kvm(hostlguest) ~] # echo "value" > /proc/sys/location/variable)

the sysctl command is available to change system/network settings. Sysctl
provides methods of overriding default setting values on a temporary basis for
evaluation purposes as well as changing values permanently that persist across
system restarts.

To display a list of all available sysctl variables, use the following command:

[root@kvm(host|guest) ~] # sysctl -a | less)

To only list specific variables use:

© Copyright IBM Corp. 2016, 2018 43

C[r‘oot@kvm(hostlgFor ID uest) ™~] # sysctl variablel [variable2] [...])

To change a value temporarily use the sysctl command with the -w option:

([root@kvm(host|guest) ~] # sysctl -w variable=value)

To override the value persistently, the /etc/sysctl.conf file must be changed. This is
the recommend method. Edit the /etc/sysctl.conf file:

Gr‘oot@kvm(hostlguest) ~ # vi /etc/sysctl.conf)

Then add/change the value of the variable:

C[root@kvm(hostlguest) ~] # variable = value)

Save the changes and close the file. Then use the -p option of the sysctl command
to load the updated sysctl.conf settings:

C[root@kvm(host|guest) ~] # sysctl -p or sysctl -p /etc/sysctl.conf)

The updated sysctl.conf values will now be applied when the system restarts.

General system settings

The following topics describe the general operating system settings used for the
testing.

randomize_va_space

This setting controls Address Space Layout Randomization (ASLR). ASLR is a
security features that can help protect against certain types of buffer overflow
attacks by randomizing the base address of code, stack, heap and other program
elements to prevent attacks at known, predicted or assumed locations. This feature
has been available since kernel 2.6.12 back in 2005.

ASLR is configurable and the following values are supported:
0 No randomization. Everything is static.

1 Conservative randomization. Shared libraries, stack, mmap(), VDSO and
heap are randomized.

2 Full randomization. In addition to elements listed in the previous point,
memory managed through brk() is also randomized.

The default setting adopted by most Linux distributions is “full randomization”
(2). Changing the setting to “no randomization” (0) permits the greatest chance of
sharing and enhanced cache efficiency. This setting was changed to reduce the
variations of the measurement results in a controlled lab environment. Users
should consider the security implications when changing this setting in their
environments.

44 KVM Network Performance - Best Practices and Tuning Recommendations

Note: It is not recommended to change this parameter in a production
environment.

Kernel Same-page Merging

Another action that was taken was to disable Kernel Same-page Merging (KSM).
Based on prior experience where processor utilization is a critical resource and in
the absence of a memory over-commitment scenario, allowing KSM to run serves
to introduce overhead in the form of breaking down Transparent Huge Pages
(THP) and consuming CPU cycles when scanning memory. Since there is no need
for memory over-commitment for the purposes of this paper, the service which
runs KSM was disabled, which can be done by executing the following commands:

[root@kvmhost ~] # chkconfig ksm off
[root@kvmhost ~] # service ksm stop
Stopping ksm: [OK]

This setting was changed to reduce the variations of the measurement results in a
controlled lab environment.

Note: It is not recommended to change this parameter in a production
environment.

Receive Packet Steering

Modern system configurations rely heavily on network connectivity for many
functions. Additionally, newer network components are getting increasingly faster
and faster. This results in an ever increasing load on the OS and subsystems.

While newer processors increase capacity, much of these gains are due to
additional cores rather than more powerful cores. In order to keep pace with the
growing network requirements and load, many newer network adapters support
multiple send and receive queues and can use multiple cores to process these
queues concurrently.

For adapters that do not support multiple send / receive queues, there remains a
desire and need to distribute large/high network loads across multiple processor
cores. To address this, the feature Receive Packet Steering (RPS) was developed.

RPS uses a hash algorithm, based on packet IP addresses and ports, to distribute
received network traffic across multiple cores. The hash ensures packets for the
same data stream are processed on the same CPU.

RPS is specified and configured separately for each network device. Each device
has a setting in sysfs. The location of the settings is:

/sys/class/net/<device/queues/rx-<queue#>/rps_cpus
where:

<device>
specifies the actual name of the interface device

rx-<queue#>
represents the network queue number being set

and

Chapter 7. Network Performance Tuning 45

An example output of this value might be:

[root@kvmhost ~] # cat /sys/class/net/eth0/queues/rx-0/rps_cpus
0000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000

The setting is comma-delimited bitmap of CPUs. The CPU numbers are from 0 to
maxcpus-1. CPU 0 is the rightmost or low order bit. The default value of all bits
being 0 (off) means to RPS being disabled. Each number in the bitmap is a hex
value and specifies four CPU bit locations. To enable RPS for 1 or more CPUs, the
individual bitmask for the selected CPUs must be set to 1. For example, if CPUs
0-3 are to be enabled for RPS, the following invocation would be used:

Groot@kvmhost ~] # echo 0xf > /sys/class/net/eth@/queus/rx-0/rps_cpus)

Display the resulting bitmap:

[root@kvmhost ~] # cat /sys/class/net/eth0/queues/rx-0/rps_cpus
0000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,0000000F

The benefits realized from setting RPS bitmap will vary depending on workload
characteristics. Based on measurements conducted on our KVM test systems,
setting the bitmap value corresponding to the total number of CPUs configured for
the KVM host has obtained the best overall improvement.

This setting is recommended for the KVM host only.
Sharing an OSA adapter across multiple LPARs

IBM Z systems are designed to share many system resources across multiple
LPARs configured on the system. This is true for CPUs, memory, IO and other
adapters.

The tests conducted for this paper have shown that while an OSA adapter is easily
shared across several LPARs, when multiple LPARs are driving extremely high
loads using a shared OSA adapter, that the peak network performance is less than
when each LPAR is using a separate OSA adapter.

To obtain the highest level of network performance across multiple LPARs running
KVM guests on a single system, it is recommended that each KVM host LPAR be
configured to use a separate OSA adapter.

Network stack settings

This topic lists the recommended tunings for the network subsystem settings.
net.core.netdev_max_backlog

This parameter sets the maximum size of the network interface's receive queue.
The queue is used to store received frames after removing them from the network
adapter's ring buffer. High speed adapters should use a high value to prevent the
queue from becoming full and dropping packets causing retransmits. The default
value of netdev_max_backlog is typically 1000 frames.

For the OSA adapters used in IBM Z platforms, a value of 25000 works well for
most workloads.

46 KVM Network Performance - Best Practices and Tuning Recommendations

net.core.rmem_max / net.core.wmem_max

Increase TCP read/write buffers to enable scaling to a larger window size. Larger
windows increase the amount of data to be transferred before an acknowledgement
(ACK) is required. This reduces overall latencies and results in increased
throughput.

This setting is typically set to a very conservative value of 262,144 bytes. It is
recommended this value be set as large as the kernel allows. The value used in
here was 4,136,960 bytes. However, 4.x kernels accept values over 16MB.

TCPIP IPv4 settings

This topic lists all the adjustments that were made to the IPV4 settings.

net.ipv4.tcp_congestion_control

“Network congestion in data networking [...]” “is the reduced quality of service
that occurs when a network node is carrying more data than it can handle. Typical
effects include queueing delay, packet loss or the blocking of new connections.”
“Networks use congestion control and congestion avoidance techniques to try to
avoid congestion collapse.”"

TCP supports a number of network congestion-avoidance algorithms, each in a
separate loadable module. Most Linux distribution default to using the Reno
algorithms. A list of modules available to your Linux installation can be obtained
with the following command:

C[root@kvmhost ~] # sysctl net.ipv4.tcp_available_congestion_control)

The default algorithm for most kernels is reno'>. The recommended algorithm is
cubic®. The scope of testing only evaluated the algorithms available in this Linux
distribution. Other post-install module could be better suited to your specific
workload environment. For a more comprehensive list of algorithms which may be
available for the Linux distribution being used, see:

|https://en.wikipedia.org/wiki/TCP congestion-avoidance algorithm#Algorithms|

net.ipv4.tcp_fin_timeout

This parameter determines the length of time an orphaned (unreferenced)
connection will wait before it is aborted at the local end. This parameter is
especially helpful for when something happens to the remote peer which prevents
or excessively delays a response. Since each socket used for connections consumes
approximately 1.5K bytes of memory, the kernel must pro-actively abort and purge
dead or stale resources.

The default value for this parameter is typically 60 (seconds).

C[root@kvmhost ~] # sysctl net.ipv4.tcp_fin_timeout net.ipv4.tcp_fin_timeout = 60)

11.[Network Congestion: Wikipedial
12.[TCP Tahoe and Reno: TCP Congestion Avoidance: Wikipedial
13.|Cubic TCP: TCP Cogestion Avoidance: Wikipedial

Chapter 7. Network Performance Tuning 47

https://en.wikipedia.org/wiki/TCP_congestion-avoidance_algorithm#Algorithms
https://en.wikipedia.org/wiki/Network_congestion#Avoidance
https://en.wikipedia.org/wiki/TCP_congestion-avoidance_algorithm#TCP_Tahoe_and_Reno
https://en.wikipedia.org/wiki/CUBIC_TCP

For workloads or systems that generate or support high levels of network traffic, it
can be advantageous to more aggressively reclaim dead or stale resources. For
these configurations, it is recommended to reduce this value to below 10 (seconds).

net.ipv4.tcp_limit_output_bytes

Using this parameter, TCP controls small queue limits on per TCP socket basis.
TCP tends to increase the data in-flight until loss notifications are received. With
aspects of TCP send auto-tuning, large amounts of data might get queued at the
device on the local machine, which can adversely impact the latency for other
streams. tcp_limit_output_bytes limits the number of bytes on a device to reduce
the latency effects caused by a larger queue size.

The default value is 262,144 bytes. For workloads or environments where latency is
higher priority than throughput, lowering this value can improve latency. For these
tests, this value was set to 131,072 bytes.

net.ipv4.tcp_low_latency

The normal TCP stack behavior is set to favor decisions that maximize network
throughput. This parameter, when set, tells TCP to instead make decisions that
would prefer lower latency.

The default value is 0 (off). For workloads or environments where latency is a
higher priority, the recommended value is 1 (on).

net.ipv4.tcp_max_tw_buckets

Specifies the maximum number of sockets in the “time-wait” state allowed to exist
at any time. If the maximum value is exceeded, sockets in the “time-wait” state are
immediately destroyed and a warning is displayed. This setting exists to thwart
certain types of “Denial of Service” attacks. Care should be exercised before
lowering this value. When changed, its value should be increased, especially when
more memory has been added to the system or when the network demands are
high and environment is less exposed to external threats.

The default value is 262,144. When network demands are high and the
environment is less exposed to external threats the value can be increased to
450,000.

net.ipv4.tcp_rmem

Contains three values that represent the minimum, default and maximum size of
the TCP socket receive buffer.

The minimum represents the smallest receive buffer size guaranteed, even under
memory pressure. The minimum value defaults to 1 page or 4096 bytes.

The default value represents the initial size of a TCP sockets receive buffer. This
value supersedes net.core.rmem_default used by other protocols. The default
value for this setting is 87380 bytes. It also sets the tcp_adv_win_scale and
initializes the TCP window size to 65535 bytes.

48 KVM Network Performance - Best Practices and Tuning Recommendations

The maximum represents the largest receive buffer size automatically selected for
TCP sockets. This value does not override net.core.rmem_max. The default value
for this setting is somewhere between 87380 bytes and 6M bytes based on the
amount of memory in the system.

The recommendation is to use the maximum value of 16M bytes or higher (kernel
level dependent) especially for 10 Gigabit adapters.

net.ipv4.tcp_tw_reuse
Permits sockets in the “time-wait” state to be reused for new connections.

In high traffic environments, sockets are created and destroyed at very high rates.
This parameter, when set, allows “no longer needed” and “about to be destroyed”
sockets to be used for new connections. When enabled, this parameter can bypass
the allocation and initialization overhead normally associated with socket creation
saving CPU cycles, system load and time.

The default value is 0 (off). The recommended value is 1 (on).

Note: Consult with your technical expert to ensure this change is valid in your
configuration.

net.ipv4.tcp_wmem

Similar to the net.ipv4.tcp_rmem this parameter consists of 3 values, a minimum,
default, and maximum.

The minimum represents the smallest receive buffer size a newly created socket is
entitled to as part of its creation. The minimum value defaults to 1 page or 4096
bytes.

The default value represents the initial size of a TCP sockets receive buffer. This
value supersedes net.core.rmem_default used by other protocols. It is typically set
lower than net.core.wmem_default. The default value for this setting is 16K bytes.

The maximum represents the largest receive buffer size for auto-tuned send buffers
for TCP sockets. This value does not override net.core.rmem max. The default
value for this setting is somewhere between 64K bytes and 4M bytes based on the
amount of memory available in the system.

The recommendation is to use the maximum value of 16M bytes or higher (kernel
level dependent) especially for 10 Gigabit adapters.

Network interface settings

This topic lists the changes that were made to all the network interfaces used for
the network measurements.

This includes all the interfaces used in the KVM guests as well as the KVM guest

interfaces in the KVM hosts (that is, Macvtap# or vnet#) as well as the KVM host
OSA interfaces including any configured software bridges for settings that apply.

Chapter 7. Network Performance Tuning 49

Maximum Transmission Unit

“Maximum transmission unit (MTU) is the maximum size (in bytes) of one packet
of data that can be transferred in a network. All hops (a portion of a signal's
journey from source to receiver) that are a part of the communication must be able
to receive and transmit at the same MTU. However, if one of the hops in the
network path is using a lower MTU size than the originating host, the package is
retransmitted in a smaller size.

The default MTU size for Ethernet devices is 1500 bytes. In a distributed
environment it is necessary to configure all Linux servers and switches/routers to
communicate at the same MTU size to take advantage of it. In a Linux on System
z® environment, it is a relatively low effort to set up all internal communication
using 8992 bytes of MTU size.

By adjusting the MTU sizes, you can improve the performance of your application
and database servers.

For example, typically, the larger the packet size, the better the performance
because fewer packets are needed to communicate between the driver and the
database. Fewer packets means fewer network round trips to and from the
application. Fewer packets also require less disassembly and reassembly, and
ultimately, use less CPU.'*"1

The testing performed here compares a normal and large MTU size. The normal or
default MTU size typically used is 1500 bytes and for a larger MTU size 9000 bytes
tends to be the common choice. While 9000 bytes is typically used as a large MTU
size, it also spans more than two physical 4K pages of memory. The larger MTU
size tested here was adjusted down to fit exactly in to 2 4K pages which equals
8192 bytes.

The degree of improvement varies depending on whether the KVM guests are
running on a single KVM host or on separate KVM hosts.

14.[Set up Linux on IBM System z for Production|

50 KVM Network Performance - Best Practices and Tuning Recommendations

www.redbooks.ibm.com/abstracts/sg248137.html

140
120
100
80
60
40
20

o

-20

% improvement using MTU 8192

better = higher throughput or lower transaction times or lower cpu consumption

B throughput
M transaction times
u] | - i --_-il _— uperf Cllent Cpu

rrlc-1x1---1

rrlc-1x1--10
rrlc-1x1--50
rrlc-1x1-250

rrlc-200x1000---1
rrlc-200x1000--10

MTU 8192 compared to MTU 1492 on 1 LPAR

Throughput, Transaction Times, CPU Efficiency
higher bars are better

W uperf server cpu

rrlc-200x1000--50
rrlc-200x1000-250
rrlc-200x30k---1
rrlc-200x30k--10
rrlc-200x30k--50
rrlc-200x30k-250
str-readx30k---1
str-readx30k--10
str-readx30k--50
str-readx30k-250
str-writex30k---1
str-writex30k--10
str-writex30k--50
str-writex30k-250

Workload Tests

Figure 17. Throughput, Latency and CPU efficiency using a large MTU size vs the default MTU size with KVM guests
running on a single KVM host LPAR

shows the improvements when a large MTU size is used between KVM
guests running on the same KVM host. In this configuration, improvements are
seen when the datagram or payload size is larger than the default MTU size. Three
workload test types have payload sizes of 30K bytes. Each of these workload test
types obtain substantial (up to 120%) improvements in throughput, latency and
CPU efficiency when the larger MTU size is used.

Chapter 7. Network Performance Tuning 51

85
75
65
55
45
35
25
15

% improvement using MTU 8192
a1

MTU 8192 compared to MTU 1492 across 2 LPARs

Throughput, Transaction time, CPU efficiency
higher bars are better

better = higher throughput or shorter transaction times or lower cpu consumption

rrlc-1x1---1

B throughput
‘ ‘ ‘ M transaction time
‘ | I I uperf client cpu
"1 | . Bl wil B I ik m uperf server cpu

rrlc-1x1--50
rrlc-1x1-250

rrlc-200x1000---1

rrlc-1x1—10
rrlc-200x1000--10

rr1c-200x1000--50
rrlc-200x1000-250
rrlc-200x30k---1
rrlc-200x30k--10
rrlc-200x30k--50
rrlc-200x30k-250
str-readx30k---1
str-readx30k--10
str-readx30k--50
str-readx30k-250
str-writex30k---1
str-writex30k--10
str-writex30k--50
str-writex30k-250

Workload Tests

Figure 18. Throughput, latency and CPU consumption using normal and large MTU sizes with KVM guests running on
separate LPARs

In we can see the improvements of a larger MTU size when KVM guests
are running on separate KVM hosts. In this configuration, the maximum
throughput is limited to the speed of the physical network fabric. Here the larger
MTU size provides 5-20% improvement in throughput and transaction time in all
but 2 workload test types. From a CPU perspective the efficiency improved by
25-75% across all test types.

These results clearly indicate that using a larger MTU size provides improvements
in almost all use case scenarios and is the recommendation to use to configure
your environments. However, to take advantage of the potential gains, the entire
network path must be configured to use the larger MTU size. This may not always
be possible based on external factors such as hardware limitations or restrictions
enforced by other shared network infrastructure systems and components.

The MTU size can be set dynamically using the command:

C[r‘oot@kvm(hostlguest) ~] # ip link set dev {interface} mtu NEWMTUSIZE)

However this method of setting the MTU size is not persistent across reboots.

To make the change persistent it is recommended to include the MTU= paremeter
in the “ifcfg-{interface}” file for the target interface.

MTU=8192

52 KVM Network Performance - Best Practices and Tuning Recommendations

After making this change, the interface must be restarted for the change to take
effect. To stop and start the interface use these commands:

([root@kvm(host|guest) ~] # ifdown {interface}; ifup {interface})

Note: The MTU size will typically default to the smallest MTU size in the
transmission path between source and target endpoints. When running KVM
guests and communicating external to host, the host may or may not be an active
participant of the communication path MTU size determination, depending on the
network model used by the guest.

Note: When using MacVTap which uses a direct connection to a host interface, the
host is not an active participant in the transmission path's MTU size determination.
In this case, if the MTU size in the host is smaller than the MTU size of the KVM
guest and the KVM guest attempts to send packets that are larger than the MTU
size in the host, those packets will stall in the host. The host will not fragment the
larger packets down to fit in to its MTU and the connection will hang until it times
out. It is therefore necessary to set the host MTU size equal to or greater than the
MTU size set in the KVM guests.

buffer_count

The buffer count parameter is a network parameter for QDIO devices for
[Linux on IBM Z]. This parameter allows Linux servers to receive more
network packets in order to increase throughput. The default buffer count value
for [Linux on IBM Z] is 16 . This parameter must be defined for each network
device and allocates 1 MB of memory. A buffer count of 128 leads to 8 MB of
memory consumption.

You can check the actual buffer count by using the 1sqeth -p <interface>
command.

The configuration of the buffer count must be done with the virtual interface in
an offline state.'

It is recommended to add this setting in “ifcfg-{interface}” file for the target
interface. The OPTIONS= parameter needs to be added or edited to include
“buffer_count=128""

OPTIONS="buffer_count=128"
The interface must be restarted for the change to take effect.
Network checksumming

The OSA network cards support two checksumming options. The first option is to
use software checksumming and the second option is to perform checksumming in
the hardware (on the OSA card).

To reduce the load from the CPUs and perform checksumming faster, the
checksumming setting was changed from the default of software checksumming to
hardware checksumming.

The option is changed in “ifcfg-{interface}” file for the target interface. The
OPTIONS= parameter should be added or edited to include
“checksumming=hw_checksumming”.

15.Set up Linux on IBM System z for Production|

Chapter 7. Network Performance Tuning 53

www.redbooks.ibm.com/abstracts/sg248137.html

(:[root@kvm(hostlguest) ~] # OPTIONS="checksumming=hw_checksumming" :)

After making this change, the interface must be restarted for the change to take
effect.

Transmit (TX) Queue length

“There is a setting available to adjust the size of the queue between the kernel
network subsystems and the driver for network interface card. Like with other
buffers, it is recommended to appropriate set the queue size to prevent losses
resulting from buffer overflows. Therefore careful tuning is required to ensure that
the sizes of the queues are optimal for your network connection.”

“These settings are especially important for TCP as losses on local queues will
cause TCP to fall into congestion control — which will limit the TCP sending rates.
Meanwhile, full queues will cause packet losses when transporting udp packets.”

“There are two queues to consider, the netdev_backlog (see
‘net.core.netdev_max_backlog’ in [“Network stack settings” on page 46) which
relates to the receive queue size and txqueuelen which determines the transmit
queue size.”'®

The default transmit queue size (txqueuelen setting) for a network device on IBM
Z is 1000. This value is adequate for Gigabit network devices. However, for devices
with 10 Gbs or greater, the txqueuelen setting should be increased to avoid
overflows that drop packets.

Similarly, choosing a value that is too large can cause added overhead resulting in
higher network latencies.

To query the transmit queue size of the device on your system use either of the
following:

\

[root@kvm(host|guest) ~] # ifconfig <interface-name>

ethO Link encap:Ethernet HWaddr e4:1f:13:ba:c7:04

inet addr:9.53.92.168 Bcast:9.53.92.255 Mask:255.255.255.0
inet6 addr: fe80::e61f:13ff:feba:c704/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:165275988 errors:0 dropped:0 overruns:0 frame:0

TX packets:169557966 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:87361147022 (87.3 GB) TX bytes:117748544954 (117.7 GB)

-

The transmit queue size is highlighted.

or

[root@kvm(host|guest) ~] # ip link show dev <interface-name>

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group
default glen 1000

link/ether e4:1f:13:ba:c7:04 brd ff:ff:ff:ff:ff:ff

The reported transmit queue size value is highlighted in both examples.

16.|http:/ /datatag.web.cern.ch /datatag /howto/ tcp.html|

54 KVM Network Performance - Best Practices and Tuning Recommendations

http://datatag.web.cern.ch/datatag/howto/tcp.html

To change the default txqueuelen value, either of the following will work:

C[root@kvm(host|guest) ~] # ifconfig <interface-name> txqueuelen <new-value>)
or
C[root@kvm(host|guest) ~]# ip link set txqueuelen <new-value> dev <interface-name>)

To determine the optimal setting for your environment and workload some
experimentation may be required. The txqueuelen value that produced the best
results for our tests was 2500. This value is good starting point.

KVM settings

This topic describes the KVM settings that were used for this study.
halt_poll_ns

On newer kernel releases there is a KVM module parameter /sys/module/kvm/
parameters/halt_pol1_ns that can be used to alter the behavior of how idle KVM
guest virtual CPUs (vcpus) are handled.

When a vcpu in a KVM guest has no work to do (no threads waiting to run),
QEMU traditionally halts the idle vcpus. This setting specifies a period of time (in
nanoseconds) that a vepu will wait and poll looking for new work before the vepu
is halted.

When new work arrives during the polling period (before the vcpu is halted), the
vcpu is immediately ready to execute the work. If the vepu has been halted when
new work arrives, the vepu must be brought out of the halt state before the new
work can be started. The time it takes to transition the vcpu from halted to
running state induces additional latency which negatively impacts latency sensitive
workloads.

The introduction of the polling period can improve the responsiveness of small
payload transactional network workloads.

Specifying a poll time in general is expected to have a potentially negative impact
to CPU utilization. Instead of halting a vepu immediately, the vepu is now polling
(looping) while it waits for new work. The additional poll time can increase the
CPU utilization.

So this setting attempts to balance the trade-off of potentially increased CPU
consumption in order to provide better responsiveness and lower latencies to
improve throughput and operations/sec. The amount of polling time that is ideal
for a particular network workload can vary. Users can experiment with different
values to find whats optimal for their workloads.

Chapter 7. Network Performance Tuning 55

40
30
20
10

o

-10

% improvement with halt_poll_ns setto 80us

rrlc-1x1---1

Halt_poll_ns 80us compared to disabled on 1 LPAR with MTU 1492

better = higher throughput, shorter transaction time, higher cpu efficiency

rrlc-1x1--10
rrlc-1x1--50
rrlc-1x1-250

rrlc-200x1000---1
rr1c-200x1000--10

Throughput, Transaction time & CPU Efficiency
higher is better

B Throughput
B Transaction time
MHN |I_- B I
. B et Tl b =1 Uperf client cpu

W Uperf server cpu

rrlc-200x1000--50
rrlc-200x1000-250
rrlc-200x30k---1
rrlc-200x30k--10
rrlc-200x30k--50
rrlc-200x30k-250
str-readx30k---1
str-readx30k--10
str-readx30k--50
str-readx30k-250
str-writex30k---1
str-writex30k--10
str-writex30k--50
str-writex30k-250

Workload Tests

Figure 19. halt_poll_ns improvements to transactional workloads

Experiments were conducted using the uperf workloads defined earlier. For these
workload tests, a halt_pol11_ns value of 80,000 ns produced the best overall results.
In we see a number of the small payload transactional tests get up to
35% improvement with most seeing little or no negative impact to CPU efficiency.

To see what poll time value is set use the following command:

C[root@kvmhost ~] # cat /sys/module/kvm/parameters/halt_poll_ns)

A value of 0 means halt_poll_ns is disabled.

To enable or change the polling time, specify a non-zero value using the command:

Gf echo 80000 > /sys/module/kvm/parameters/halt_pol1_ns)

Changes to this setting are immediately available to running KVM guests with no
restarts required.

In a environment where CPU resources are highly over-committed, this setting
might be counterproductive.

56 KVM Network Performance - Best Practices and Tuning Recommendations

Chapter 8. Summary

KVM provides open source virtualization for IBM Z and the LinuxONE platforms.

Using the combination of KVM virtualization and IBM Z and LinuxONE, a wide
variety of network centric workloads are supported by IBM Z hardware. With an
understanding of the network characteristics important to your environment, and
knowledge of the KVM and Linux environment, you can optimize a system more
quickly to achieve better performance while reducing the resource consumption
leading to better efficiency and system utilization. This paper highlights
considerations to help you achieve these goals, to better reach your requirements

and to more fully exploit the potential of your IBM Z machines.

The table below summarizes, from the data presented earlier, the network
configuration that achieved better overall performance characteristics:

LPAR/MTU Small transactional Large transactional Streaming workload

configuration workload workload characteristics
characteristics characteristics

1 LPAR / small MTU | MacVTap MacVTap MacVTap

1 LPAR / large MTU |MacVTap MacVTap MacVTap

2 LPARs / small
MTU

MacVTap better at
higher user loads

MacVTap marginally
better

Open vSwitch used
less CPU

2 LPARs / large
MTU

MacVTap better at
higher user loads

Open vSwitch better
at higher user loads

Open vSwitch used
less CPU at higher
user loads

Note: For single LPAR with large MTU size or multiple LPARs with either MTU
size, the differences between Open vSwitch and the Linux bridge are negligible as
they delivered nearly equivalent performance characteristics. In this case, aspects

other than performance might influence your choice of bridge.

© Copyright IBM Corp. 2016, 2018

57

58 KVM Network Performance - Best Practices and Tuning Recommendations

References

View a list of documents referenced in this white paper.

12.
13.

. Ihttps: / /en.wikipedia.org /wiki/ IBM_Z|

https:/ /www.ibm.com /support/knowledgecenter/linuxonibm/liaaf/ |
Inz_r_kvm_base.html|

[https:/ /en.wikipedia.org /wiki/Logical_partition|
[www.redbooks.ibm.com /abstracts /sg248137 html|
[http:/ /virt kernelnewbies.org /MacVTap|

Ihttp: / / www.uperf.org /|

[https:/ /en.wikipedia.org /wiki/Private_network]

https:/ /access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux /|
6/html/Deployment_Guide/s2-networkscripts-interfaces_network-bridge html|

[http:/ /openvswitch.org/|

. |https:/ /en.wikipedia.org /wiki/Network_congestion#Avoidance]

. |nttps:/ /en.wikipedia.org /wiki/TCP_congestion-|

avoidance_algorithm#TCP_Tahoe_and_Reno|
[https:/ /en.wikipedia.org /wiki/CUBIC_TCP|
[http:/ / datatag.web.cern.ch/datatag /howto /tcp.html|

© Copyright IBM Corp. 2016, 2018 59

https://en.wikipedia.org/wiki/IBM_Z
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_kvm_base.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_kvm_base.html
https://en.wikipedia.org/wiki/Logical_partition
www.redbooks.ibm.com/abstracts/sg248137.html
http://virt.kernelnewbies.org/MacVTap
http://www.uperf.org/
https://en.wikipedia.org/wiki/Private_network
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces_network-bridge.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces_network-bridge.html
http://openvswitch.org/
https://en.wikipedia.org/wiki/Network_congestion#Avoidance
https://en.wikipedia.org/wiki/TCP_congestion-avoidance_algorithm#TCP_Tahoe_and_Reno
https://en.wikipedia.org/wiki/TCP_congestion-avoidance_algorithm#TCP_Tahoe_and_Reno
https://en.wikipedia.org/wiki/CUBIC_TCP
http://datatag.web.cern.ch/datatag/howto/tcp.html

60 KVM Network Performance - Best Practices and Tuning Recommendations

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2016, 2018 61

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N

Rochester, MN 55901

USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

62 KVM Network Performance - Best Practices and Tuning Recommendations

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at |ttp:/ /www.ibm.com/legal /copytrade.shtml|

Adobe is either registered trademarks or trademark of Adobe Systems Incorporated
in the United States, and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal Use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative works of these publications, or any
portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of the manufacturer.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,
software or other intellectual property contained therein.

Notices 63

http://www.ibm.com/legal/copytrade.shtml

The manufacturer reserves the right to withdraw the permissions granted herein
whenever, in its discretion, the use of the publications is detrimental to its interest
or, as determined by the manufacturer, the above instructions are not being
properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF
THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED "AS-IS" AND
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A
PARTICULAR PURPOSE.

64 KVM Network Performance - Best Practices and Tuning Recommendations

Notices 65

®
lyplt
[ty

	Contents
	Figures
	About this publication
	Chapter 1. Overview
	Chapter 2. Introduction
	Chapter 3. Test environment
	Single KVM host
	Multiple KVM hosts
	KVM guest configuration
	KVM host network configuration
	Operating system versions

	Chapter 4. Network workload
	Chapter 5. Testing methodology
	Chapter 6. KVM Host Networking Configuration Choices
	OSA interface traffic forwarding
	KVM default NAT-based networking
	Using a Linux Bridge
	Using Open vSwitch
	Using the MacVTap driver
	Network Configuration Pros and Cons
	MacVTap driver considerations
	Open vSwitch considerations
	Linux bridge

	Chapter 7. Network Performance Tuning
	General system settings
	Network stack settings
	TCPIP IPv4 settings
	Network interface settings
	KVM settings

	Chapter 8. Summary
	References
	Notices
	Trademarks
	Terms and conditions

