
January 2012
Linux on IBM System z

WebSphere Application Server
Horizontal Versus Vertical JVM
Stacking Report

Linux end-to-end Performance Team:
Dr. Juergen Doelle,
David Sadler

 1

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

 1

Table of Contents
Introduction.. 2
Summary.. 3
Test environment.. 3

Hardware ...4
Network setup..4
Storage server ...5
Software...5

System setup ... 5
Basic setup..5
z/VM guest setup...5

WebSphere Application Server setup ... 7
Workload description ... 8
Test methodology and scenarios.. 8

Test scenarios ...9
Measurement results .. 11

Test scenario 1: Guest scaling ..12
Test scenario 2: Varying the number of virtual CPUs for 20 guests..18
Test scenario 3: Varying the number of virtual CPUs for 200 guests......................................19
Test scenario 4: Virtual CPU scaling and WebSphere threads...20

Setup tests... 21
Setup test 1: Large guests ..21
Setup test 2: Using a shared minidisk for WebSphere binaries with and without MDC..........23

Reference .. 26

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Introduction
This report presents performance data for a test that compares the effects of WebSphere Application Server
vertical JVM stacking to horizontal JVM stacking.

Customers have often asked for guidance on how best to implement a WebSphere Application Server multiple
server environment. The question is whether it is better to host all WebSphere Application Servers on a single
(vertical JVM1 stacking) z/VM® guest, or distribute the servers across multiple guests (horizontal JVM stacking). In
the past, it has been found that two portal servers on the same z/VM guest provided better performance than
having them distributed across two z/VM guests.

There are two mechanisms that work against each other:

 The management overhead in z/VM scales with the number of guests.

 The management overhead and resource competition in Linux® scales with the number of JVMs per Linux
instance.

This means, for example, that having all JVMs in one Linux guest provides the lowest z/VM overhead, but the
highest overhead in Linux. But one JVM per guest and many guests result in the opposite behavior. The question
is which of these mechanisms has the higher impact, and are there are other, currently unknown, factors that also
have an impact on the system. The expectation is that the optimal scenario is somewhere in between the extreme
ends.

This report gives the results for the following environments:

 All JVMs in one guest (full vertical stacking)
 One JVM in each guest, and many guests (full horizontal stacking)
 Configurations in between

The workload used in driving the various WebSphere Application Server environments was a simple web services
application that did not require any database.

The number of JVMs (200) used in the test was held constant. With only one guest in the configuration, the 200
WebSphere Application Servers (JVMs) are defined on one guest. With two guests, each guest runs 100
WebSphere Application Servers. As the number of guests are scaled, the number of WebSphere Application
Servers (JVMs) defined per guest decreases. However, the total number of WebSphere Application Servers (JVMs)
under test is always held at 200.

As an additional test, the use of shared mini-disks or a DCSS for the WebSphere installation was analyzed, to
determine if there are criteria that favor one or the other setup.

1 JVM - Java Virtual Machine, which is the core of one WebSphere Application Server instance.

 2

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Summary
In the workload used in these tests, there appears to be little difference in throughput between Vertical
WebSphere® JVM stacking or Horizontal WebSphere JVM stacking.

However, LPAR CPU utilization is a different story. Some configurations seem to consume less CPU resources
than others, where both ends of the scale are high in CPU load.

 The lowest load was observed at 10 JVMs per guest (20 guests)

 The highest load was observed at 200 JVMs per guest (one guest)

z/VM overhead is not a contributor to the observed higher LPAR CPU load. In spite of this, it was very impressive
to see how easily z/VM was able to handle 200 guests under load. The increased load comes from Linux,
WebSphere, and JAVA™. The number of virtual CPUs seems to determine how many JVM threads are actively
consuming CPU resources.

From the test results, the following recommendations could be given:

1. In the case where the CPU load per guest is less than one CPU, it seems that the WebSphere Application
Server runs more efficiently with two virtual CPUs than with one virtual CPU.

2. Do not size the guest with more virtual CPUs than required for one WebSphere instance. This might limit
the number of JVMs stacked in one guest, and therefore avoid a shortage in guest CPU resources.

3. Running with CPU overcommitment had a lower impact. But when recommendation 1 would cause very
high levels of CPU overcommitment (such as 16:1), it was found that it is better to use one virtual CPU for
the WebSphere guests, instead of two.

The use of a DCSS for the WebSphere installation tree has a very low impact on throughput. But the use of a
DCSS has a significant impact on CPU utilization. The additional effort related to using a DCSS makes it
attractive only when the number of guests using the DCSS exceeds a certain number. This number was found to
be 10 guests in the test environment. With fewer guests, the use of a shared minidisk instead of a DCSS consumes
fewer CPU resources. In the case where the system runs with memory constraints, the DCSS might provide
additional advantages in saving memory.

If you have large z/VM guests and questions about the use of SET REORDER for your system, contact IBM z/VM
Level 2 for further analysis and help.

Test environment
The test environment used for the WebSphere Application Server JVM stacking tests consisted of IBM
zEnterprise™ 196 hardware and various software.

 3

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Hardware
The tests were done on an IBM zEnterprise 196 (z196) processor. Table 1 lists the hardware used.

Table 1. Hardware used for WebSphere Application Server horizontal versus vertical stacking test

System Operating System
Number of

CPUs
Memory

size Network Architecture

One LPAR z/VM version 6.1 24 200 GB Two 1 Gb Ethernet

 2 VSWITCH

IBM z196

1 - 200 Linux
guests

SUSE Linux SLES 11
SP1

24 - 1 Virtual
CPUs

200 - 1 GB 2 VSWITCH z/VM guest

- 2 GB DCSS

Total

IBM z196 physical: 24 200 GB Two 1 Gb Ethernet IBM System z®
LPAR

4 workload
generators

Red Hat Enterprise
Linux AS Release 4 U3

4 4 GB One 1 Gb Ethernet IBM System x®

The test environment was one LPAR on an IBM zEnterprise 196 with:

 24 CPUs
 200 GB memory
 8 FICON® channels
 Two 1 Gb OSA Express 3 connections

Network setup
All guests and clients are connected to two VSWITCHs. Each VSWITCH is assigned one OSA port.

The workload drivers were evenly divided between VSWITCHs. Half the drivers were attached to half the
WebSphere Servers through VSWITCH1, and the other half through VSWITCH2.

 4

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Storage server
The z/VM and Linux guest systems used in this study were allocated in an IBM System Storage® DS8000®, which
used the IBM ECKD™ format and FICON channels.

Software
Table 2 lists the software used to test WebSphere Application Server horizontal versus vertical stacking.

Table 2. Software used for WebSphere Application Server horizontal versus vertical stacking test

Product Version and release Comments

SOA based workload generator IBM internal

WebSphere Application Server 7.1 Latest patch level

SUSE Linux SLES 11 SP1 Latest patch level, (2.6.32.27-0.2.2.s390x.rpm)

z/VM 5.4 RSU 0902 Latest RSU

System setup
This section describes the steps necessary to set up the systems for the WebSphere Application Server JVM
stacking tests.

Basic setup

 The LPAR size is the same in all test cases.

 The number of JVMs are the same in all test cases.

 The z/VM and Linux guests do not have any memory constraints. There is no memory overcommitment.

 Focus is on transactional throughput, as reported by the workload driver.

 The final results are expressed as throughput and total CPU utilization versus the number of JVMs per
guest.

z/VM guest setup
Each z/VM Linux guest was defined on minidisks. The guest IDs used were LNX00001 through LNX00200.
Table 3 shows the minidisk sizes used.

 5

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Table 3. z/VM guest minidisk sizes

Guest ID Minidisk address Minidisk size Function

LNX00001 - LNX00002 100
 101
 102
 103
 107

 60
 1609
 1669
 3338
 5008

 /boot
 /usr/share
 /usr/local
 /
 /opt/wasprofiles

LNX00003 - LNX00004 100
 101
 102
 103
 107

 60
 1609
 1669
 3338
 1500

 /boot
 /usr/share
 /usr/local
 /
 /opt/wasprofiles

LNX00005 - LNX00200 100
 101
 102
 103
 107

 60
 1609
 200
 3338
 1000

 /boot
 /usr/share
 /usr/local
 /
 /opt/wasprofiles

Shared minidisks 104
 105

 5800
 200

 WebSphere binaries
 WebSphere .nif

The Linux guests were cloned from a master Linux image with the process outline in the following documents:

 Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS
www.vm.ibm.com/linux/dcss/ror-s11.pdf

 z/VM and Linux on IBM System z, The Virtualization Cookbook for SLES 10 SP2
www.redbooks.ibm.com/redbooks/pdfs/sg247493.pdf

WebSphere was installed and set up following the process outlined in:

 How to - Share a WebSphere Application Server V7 installation among many Linux for IBM System z
www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101817

Then the shared WebSphere installation was copied from the two mini disks to two DCSSs. The DCSSs were
defined as follows:

cp defseg S11WAS70 3331f00-33a1eff sr loadnshr
cp defseg S11WASNF 33a1f00-33d1eff sr loadnshr

 6

http://www.vm.ibm.com/linux/dcss/ror-s11.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247493.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247493.pdf
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101817
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101817

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

On the Linux guests, the DCSSs are mounted as read only files with the -xip (execute in place) option. This
output is from the mount command:

/dev/dcssblk0 on /opt/IBM/WebSphere type ext2
(ro,noatime,nodiratime,xip,acl,user_xattr)
/dev/dcssblk1 on /opt/.ibm/.nif type ext2
(ro,noatime,nodiratime,xip,acl,user_xattr)

WebSphere Application Server setup
WebSphere Application Server, Network Deployment, Version 7.0 was used to create the test environment.
Figure 1 illustrates the new server creation.

There is a one-to-one relationship between the node and application server profiles. When a profile is federated
into a deployment manager cell, that profile becomes a node in the cell. Then, when another profile is federated
into that same cell, that profile becomes a second and unique node in the cell, and so on. The deployment
manager administrator console can be used to create new application servers, which become new nodes in the
cell.

 Figure 1. WebSphere Administrator console: New server creation

 7

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

WebSphere administration scripts were used to create the required 200 nodes within a single deployment
manager cell for a single z/VM guest. For multiple guest tests, the number of nodes required on each guest ranged
form: 100, 50, 25, 20, 10, 4, 2, to 1. Each guest was set up as a unique deployment manager cell. WebSphere
administration scripts were used to create the appropriate number of nodes within the cell.

Workload description
A SOA (Service Oriented Architecture) based workload was used in a stand-alone mode (no database required).

It models a motor insurance company. There are three major facets to the company infrastructure:

 Claims services (designed as Web Services)
 Call Center Claims application
 Third party gateway

For this measurement, the Claims services facet was used. This facet uses only the Web Services feature of
WebSphere. The Claims services facet can use multiple payload sizes for both the request and response. This test
used a payload size of 10 KB for both request and response.

Test methodology and scenarios
This section is an overview of how the WebSphere Application Servers are configured to compare vertical JVM
stacking to horizontal JVM stacking. The test scenarios are also described.

These specific attributes and parameters were used in the test methodology:

 The WebSphere binaries are loaded from a shared DCSS mounted with the -xip option.

 Alternatively, WebSphere binaries are loaded from a shared minidisk.

 The physical resources in terms of processors, memory, network cards, and so on are kept constant throughout
the test.

 The number of JVMs in the LPAR are kept constant throughout the test. The number of JVMs represents the
total workload that the customer needs to run.

 The workload configuration per JVM is kept constant, which means the load level created from the workload
driver is the same in all cases.

 These parameters are varied:
– The number of guests
– The number of virtual CPUs (VCPUs) per guest, which varies the total number of virtual CPUs in use.
– The number of virtual CPUs per guest followed the rule that no guest should have more virtual CPUs

than the z/VM has physical CPUs.
– The distribution of the JVMs among the guests.

 The WebSphere parameters were adjusted so that no swap space is used on any guest configuration.

 The following fields were set in all the WebSphere Application Servers:

 8

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

WebSphere configuration:

 Enforce Java2 Security: false

Servers:
 server1

 EJB/ORB --
 NoLocalCopies: true
 Web --
 Min WebContainer Pool Size: 20
 Max WebContainer Pool Size: 20
 JVM --
 Min JVM Heap Size: 700
 Max JVM Heap Size: 700
 Verbose GC: true
 Generic JVM Arguments:

 Logging --
 System Log Rollover Type: NONE
 Trace Specification: *=all=disabled
 Rollover Size: 100
 Max Backup Files: 10
 Misc ---
 Enable PMI Service: false

 Uninstall default apps: true

Test scenarios
Six test scenarios were used, two of which were for setup parameters:

Test scenario 1: Guest scaling
Scale the number of guests: 2, 4, 10, 20, 50, 100, 200, and distribute the JVMs as described in Table 4.

Table 4. Test scenario 1 - Guest scaling: Test case configurations

Number of
JVMs per

guest

Number
of guests

Number of
virtual

CPUs per
guest

Total
number of

virtual
CPUs

Ratio of
virtual to

real
CPUs

Number of
JVMs per

virtual CPU

Guest
memory

size in GB

Total virtual
memory

size in GB

Comments

200 1 24 24 1.0:1 8.3 200 200

100 2 12 24 1.0:1 8.3 100 200

 9

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

 10

Number of
JVMs per

guest

Number
of guests

Number of
virtual

CPUs per
guest

Total
number of

virtual
CPUs

Ratio of
virtual to

real
CPUs

Number of
JVMs per

virtual CPU

Guest
memory

size in GB

Total virtual
memory

size in GB

Comments

50 4 6 24 1.0:1 8.3 50 200

20 10 3 30 1.3:1 6.7 20 200

10 20 2 40 1.7:1 5.0 10 200

CPU over
commitment

4 50 1 50 2.1:1 4.0 4 200

2 100 1 100 4.2:1 2.0 2 200

1 200 1 200 8.3:1 1.0 1 200

Uniprocessor
and CPU over
commitment

The results of this test can be found in Test scenario 1: Guest scaling.

Test scenario 2: Varying the number of virtual CPUs for 20 guests

A CPU scaling was done for the 20 guest scenario with 10 JVM per guest.

The results of this test can be found in Test scenario 2: Varying the number of virtual CPUs for 20 guests.

Test scenario 3: Varying the number of virtual CPUs for 200 guests

A CPU scaling was also done for the 200 guest scenario with one JVM per guest.

The results of this test can be found in Test scenario 3: Varying the number of virtual CPUs for 200 guests.

Test scenario 4: Virtual CPU scaling and WebSphere threads

The number of virtual CPUs was varied to values of: 1, 2, 3, and 24.

The results of this test can be found in Test scenario 4: Virtual CPU scaling and WebSphere threads.

Setup test 1: Large guests

Define a single guest with 200 WebSphere Application Server nodes.

The results of this test can be found in Setup test 1: Large guests.

Setup test 2: Using a shared minidisk for WebSphere binaries with and without MDC

Replace the DCSS within the WAS installation tree by a shared read-only disk, enabled for MiniDiskCache.

Repeat the test without MiniDiskCache.

The results of this test can be found in Setup test 2: Using a shared minidisk for WebSphere binaries with and
without MDC.

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Measurement results
This section presents the results of four tests that compare the effects of WebSphere Application Server vertical
JVM stacking to horizontal JVM stacking, when altering various parameters.

 Test scenario 1: Guest scaling

 Test scenario 2: Varying the number of virtual CPUs for 20 guests

 Test scenario 3: Varying the number of virtual CPUs for 200 guests

 Test scenario 4: Virtual CPU scaling and WebSphere threads

Two setup-related tests were also performed. They are described in Setup tests.

 11

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Test scenario 1: Guest scaling
Guest scaling was done to observe the impact on CPU utilization.

Figure 2 shows the throughput and CPU load as the number of guests is scaled from 1 to 200, according to
Table 4. The total number of JVMs is kept at a constant value of 200. The constant value is maintained by
decreasing the number of JVMs per guest as the number of guests goes up.

 Figure 2. Guest scaling: Throughput and CPU load as the number of JVMs per guest is increased

Observations

The impact of distributing the number of JVMs (WebSphere Application Servers) across z/VM guests has a
moderate effect on throughput. There is a 3% difference between the maximum throughput and the minimum
throughput. One JVM per guest (200 guests) has the highest throughput. The scenario with 10 guests and 20
JVMs per guest has the lowest throughput.

 With 10 guests and 20 JVMs per guest, we start to observe CPU overcommitment. The CPU overcommitment
continues up to the 200 guests with one JVM per guest test.

 12

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

 The scenarios with 50 guests (four JVMs per guest) and more are Linux Uniprocessor environments. These
environments do not have the Linux overhead related to multiprocessor environments, for example there are
no spin locks.

 The environment was defined to never have memory overcommitment.

The most important impact is in the LPAR CPU load. The effect of stacking JVMs on fewer guests is significant.
The difference between the maximum load (13.7 IFLs) with 200 JVMs per guest and the minimum load (8.8
IFLs) with 10 JVMs per guest is nearly 4 IFLs. A setup with 20 or more JVMs per guest could be considered
untypical. For more common configurations, with 1 - 20 JVMs per guest, the variation is approximately 19%.
There is a difference of 2 IFLs between the minimum and the maximum.

Conclusion
In the workload used in these tests, there appears to be little difference in throughput between vertical
WebSphere JVM stacking and horizontal WebSphere JVM stacking.

However, LPAR CPU utilization is a different story. Some configurations seem to consume considerably fewer
CPU resources than others. The next step is to identify the cause of that variation.

z/VM CPU load
To understand better what causes this large difference in CPU load, the following two figures show the behavior
of the z/VM CPU load as the number of guests are scaled from 1 to 200.

As the z/VM Control Program runs, it records how it spends its time on each of its logical CPUs. z/VM accrues the
time for each logical CPU into four categories:

1. Time that the virtual CPU spends running guests, referred to as guest time, virtual time, or emulation time.
All three terms have the same meaning.

2. Time that the virtual CPU spends running the Control Program, doing work in support of a specific action
taken by a specific guest. An example is to drive a virtual network interface. Referred to as CP time.

3. Time that the virtual CPU spends running the Control Program, doing system management functions. These
functions are not attributable to the direct actions of any guest, and therefore are not chargeable to any guest.
Referred to as system time.

The values used in this paper were obtained from the z/VM Perfkit report FCX144 PROCLOG.

This report shows the logical CPUs utilization with the four z/VM time categories combined as follows:

1. The Emulation time is time spent running guests, assigned to category 1 above.

2. The User time is the sum of categories 1 and 2 above. In other words, time either used directly by guests or
directly chargeable to them as Control Program overhead that they caused.

3. The System time is category 3, nonchargeable Control Program overhead.

 13

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Figure 3 shows the amount of CPU spent for Emulation, CP, and System when scaling the number of JVMs per
guest.

020406080100120140160180200
0

2

4

6

8

10

12

14

WebSphere JVMs stacking - 200 JVMs
z/VM CPU load (CP=User minus Emulation time, Total=User plus System time)

CP (attributed to the guest) Emulation

System (CP time not attributed to the guest)

Number of JVMs per guest (Total always 200)

C
P

U
lo

a
d

(N
u
m

b
e
r

o
f
F

L
s
)

Guests 1 2 4 10 20 200

Figure 3. Amount of CPU spent for Emulation (guest load), CP (effort attributed to the guest), and System (CP overhead)
in z/VM, when scaling the number of JVMs per guest

Observation
The Emulation load (Linux guest load) is the major component of the total load. This component causes the
major contribution in the variation in CPU load. The variation for CP and System CPU is very moderate.

Conclusion
The variation in CPU load is not caused by virtualization overhead. The reason must be a condition inside the
Linux guests.

 14

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

To better depict the JVM scaling impact on the effort expended from z/VM, Figure 4 shows only CP and System
CPU.

 Figure 4. z/VM CP and System load when scaling the number of JVMs per guest

Observations
When scaling the number of JVMs per guest, the characteristics for z/VM management effort change. With many
JVMs per guest, System time is the highest, and it is much greater than the effort CP attributes to the guest.

In a medium area, from 100 to 10 JVMs per guest, it is constant. Each part has nearly the same size and both
values are lowest. When the number of guests increases by about 50, and the level of CPU overcommitment
increases above two, both parameters increase heavily. But the CP time attributed to the guest becomes much
higher.

However, the sum of CP effort varies from 0.4 to 1 IFL, which could be considered low when compared to the
total system load.

 15

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Conclusion
This view shows the contribution of the virtualization to CPU cost. The highest efforts are related to the extreme
scenarios: either one very large guest that handles everything, or a high number of small guests that drive a low
workload. One obvious component of the latter scenario is that z/VM has to emulate a very large number of
virtual network devices (shown as CP effort attributed to the guest).

Linux CPU load
Figure 5 shows the CPU utilization from inside Linux, in order to understand where the CPU cycles are spent in
Linux.

 Figure 5. CPU utilization in Linux when scaling the number of JVMs per guest

Observations
The Linux user utilization is the major contributor to overall utilization. This utilization is attributed to
WebSphere and Java processing. System CPU utilization decreases with the decreasing number of JVMs per
system until 20 guests (10 JVMs per guest). Then, the CPU utilization starts to increase again when the number of
CPUs per guest is one, with 200 JVMs.

 16

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

The difference between maximum user CPU at 200 JVMs per guest and minimum user CPU at 10 JVMs per guest
is 3.2 IFLs. The corresponding variation in system CPU is approximately 0.8 IFLs.

Conclusions
The major amount of CPU is spent in the user space, which means CPU cycles consumed by the JVMs. The major
contribution to the large variation in CPU load comes from the user space. But the effort for the Linux system is
also a contributor.

What is observed so far with regards to CPU load:

 A high number of JVMs (in the order of 50 - 200) in large guests leads to the highest CPU consumption from
all the scenarios. The scenario with 200 JVMs in one guest is also related to the highest values for CP system
time (not attributed to guests) and Linux system time. But in all scenarios, the major contribution is the CPU
consumed by the Linux user space, which is the CPU consumed by the JVMs themselves.

 The scenario with a very low number of JVMs per guest (1 or 2) and many guests was only slightly better. Here,
the z/VM CP effort attributed to the guests is the highest compared to the other scenarios. This effort is caused
by the large number of guests managed, and corresponds to the increasing amount of virtual network interfaces
to the VSWITCHs.

 The total amount of Linux system time is also increasing. This increase relates to the fact that the reduction in
system CPU per guest does not scale to the same extent as the number of systems increases. For example, the
system CPU load per guest in the 200 guest scenario is only 36% less than with 100 guests, and not 50% less.
The CPU time spent on the JVMs themselves is still the largest part, but it is lower at the other end of the
scale, with many JVMs in large guests.

 For our scenarios, the best setup observed was the scenario with 10 JVMs per guest and 20 guests. This
scenario shows the lowest CPU utilization in all categories at throughput very close to the maximum.

 Running with overcommitted CPUs by itself has a lower impact. The ideal solution had a virtual to physical
CPUs ratio of 1.7:1, which is also overcommitted, and it consumes less CPU than the scenario with a 1.2:1
ratio. There are no idling systems.

 More critical seem to be the uniprocessor scenarios. In these test cases, the system CPU in Linux increases
heavily.

 17

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Test scenario 2: Varying the number of virtual CPUs for 20 guests
To analyze the impact of the number of virtual CPUs per guest in more detail, the number of CPUs in the most
favorite scenario with 10 JVMs per guest and 20 guests was scaled. Originally it ran with two virtual CPUs.

Figure 6 shows the effects of running the workload with 20 guests, and scaling the number of virtual CPUs per
guest.

 Figure 6. Throughput and LPAR CPU load - 20 guests (Emulation = guest load)

Observations
Varying the number of virtual CPUs of the guests (level of CPU overcommitment) at the lowest observed LPAR
CPU load (20 guests, 10 JVMs per guest) shows a moderate effect on throughput. Throughput at one virtual CPU
is the lowest, and at three virtual CPUs throughput is the highest. The difference between the minimum and
maximum is 5%. The impact on LPAR CPU load is significant. Two virtual CPUs has the lowest CPU utilization,
and three virtual CPUs has the highest. The difference between the minimum and maximum is 3.6 IFLs. CP
effort is nearly constant; the variation is caused by the emulation part of the CPU load.

Comparing the 20 guest load at three virtual CPUs per guest against the 10 guest load at three virtual CPUs per
guests shows that the 20 guest load is approximately 1 IFL higher.

 18

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Conclusions
It seems that in this scenario, the WebSphere Application Server runs better with two virtual CPUs than with one.
The difference between LPAR load and Emulation (CP consumed by the guest) represents the effort expended by
the z/VM CP load module. This value is fairly constant, indicating that the reason for the variation in CPU load is
not z/VM overhead, but the JVMs. The load of a single guest is less than 1 IFL.

Test scenario 3: Varying the number of virtual CPUs for 200 guests
A CPU scaling was also done for the 200 guest scenario with one JVM per guest. This test was done to verify that
the recommendation for running WebSphere with two virtual CPUs is valid in extreme scenarios, where the level
of CPU overcommitment is very high.

Figure 7 show the effects of running the workload with 200 guests, but changing the number of virtual CPUs from
1 to 2 per guest.

 Figure 7. Throughput and LPAR CPU load - 200 guests (Emulation = guest load)
Observations
With 200 guests, the two virtual CPU case has a slightly lower throughput and a considerably higher LPAR CPU
load. The LPAR CPU load increases by 2.3 IFLs, the emulation part increases only by 1.9 IFLs

 19

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Conclusions
The major contribution of the increase in CPU load still comes from the Linux guest (Emulation). But the
increase of the level of CPU overcommitment from 8.3:1 to 16.7:1 causes an expected increase in z/VM effort to
manage 400 virtual CPUs on 24 real CPUs. It is impressive to see that z/VM is able to handle such an excessively
large number of virtual CPUs with such a low impact on total throughput.

This test also shows that the earlier finding, that the WebSphere guest runs better with two CPUs than with one
for this workload, is no longer valid with these high levels of CPU overcommitment.

Test scenario 4: Virtual CPU scaling and WebSphere threads
This test varies the number of virtual CPUs, and records the number of WebSphere Application Server threads
and CPU time used by these threads.

Figure 8 graphs the CPU time spent as reported from the Linux ps -eLf command. The times are reported in
whole seconds, which can lead to a high degree of error when using many threads.

 Figure 8. Scaling the number of JVMs per guest: CPU time used by WebSphere versus threads

 20

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Observations
The total number of threads used becomes higher as the number of virtual CPUs increases. The number of
threads used at 20 guest with three virtual CPUs is 60% higher than with one virtual CPU. The number of
threads used at one guest and 24 virtual CPUs is 120% higher. The number of CPU seconds consumed increases
also, but more slowly. The scenario with three virtual CPUs consumed 30% more CPU time in total, and the
scenario with 24 virtual CPUs consumed 51% more.

Conclusions
There seems to be a correlation between the number of CPUs and the number of threads utilizing CPU resources.
With more CPUs, more threads are active.

However, the throughput across these points is similar. Part of this increase is probably due to polling.

Be aware that these values for CPU consumption time are correlated with a significant variation attributed to
rounding to the nearest whole second for each of approximately 20,000 threads.

Recommendation
Do not assign more virtual CPUs to a WebSphere guest than are required. In the test environment, it was
observed that even the load from a single WebSphere server is lower than 1 CPU. Two virtual CPUs for each of
the 20 guests provided the best results.

Setup tests
This section presents the results of two setup tests. The first test uses a large single z/VM guest. The second test
uses a shared minidisk for WebSphere binaries, with and without MDC.

Setup test 1: Large guests
The test with a large single guest revealed an interesting observation when looking at the CPU utilization. There
are downward spikes at regular intervals. The single guest has a defined virtual memory size of 200 GB.

In z/VM, for each virtual machine there is a list of frames of real memory that are associated with that virtual
machine. This list (UFO List - User Frame Owned List) is structured to facilitate finding frames of memory with
different characteristics. There are two functions in z/VM to manage that list, Demand Scan and Page Reorder (or
simply Reorder).

Demand Scan is most commonly started when z/VM detects that it has insufficient frames on its available lists.
Reorder runs regardless of the status of the available list. Reorder also has a changing threshold that is partly
based on the DASD paging rate. As DASD paging increases, Reorder is performed more frequently. Reorder does
not really reorder pages. It is more accurate to think of it as reordering a set of pointers to pages. This is the
process that is used to make sure that the virtual machine frame list (UFO List) is valid.

 21

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Part of the Reorder process deals with the hardware reference bit. Therefore, the time that it takes for the
Reorder process to run is dependent on the number of resident pages of a virtual machine (because each resident
page is mapped to a real frame of memory). A larger virtual machine is not a problem for Reorder, unless all the
pages are resident. While Reorder is running for a virtual machine, it is stopped. All virtual machines go through
Reorder at one time or another.

There are a number of factors that affect how long Reorder takes to complete. A very rough rule of thumb is one
second for every 8 GB of resident memory. For virtual machines with more than one virtual processor, all
processors are stopped during Reorder processing. While Reorder could occur for multiple virtual machines at the
same time, it would still result in serializations of the individual virtual machines being reordered. Reorder
processing does not serialize the z/VM system as a whole.

For more information about the use of Page Reordering and guidance on enabling and disabling it, see, the
Reorder web page: http://www.vm.ibm.com/perf/tips/reorder.html

If you have questions about the use of the SET REORDER command for your system, contact IBM z/VM support
for assistance.

The downward spikes that are observed in Figure 9 can be attributed to the Page Reorder function described
above.

 Figure 9. Real CPU utilization with Page Reorder enabled

 22

http://www.vm.ibm.com/perf/tips/reorder.html

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

There is a z/VM service APAR that gives the administrator the option to disable Page Reorder for a guest ID. The
APAR was installed, and the Page Reorder function was set off for the guest. Figure 10 shows the CPU utilization
with Page Reorder set off. There are no longer any downward spikes.

 Figure 10. Real CPU utilization with Page Reorder disabled

Based on the behavior of the Page Reordering function, Page Reordering was set OFF for all tests environments
where the guests virtual memory size was 8 GB or larger, which is not critical because all tests run without
memory overcommitment.

Setup test 2: Using a shared minidisk for WebSphere binaries with and without MDC
This scenario replaces the DCSS with a minidisk for sharing the WebSphere binaries between guests. This test
compares the minidisk environment to the DCSS environment.

Figure 11 and Figure 12 show the results for throughput and CPU utilization.

 23

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

 Figure 11. Throughput: DCSS versus minidisk

 Figure 12. LPAR CPU utilization: DCSS versus minidisk

 24

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Observations
There is very little difference in throughput. The LPAR CPU utilization has a significant impact. For a small
number of guests (1 - 4), CPU utilization for the minidisk case is less than the DCSS case: 1.4 IFLs compared to
2.2 IFLs. Ten guests is the break even point. With more than ten guests, the DCSS case has the lower CPU
utilization: 1.5 IFLs compared to 2.2 IFLs.

Conclusion
Once again, in regard to throughput all these changes have a very low impact. But there is a significant impact in
regard to CPU utilization. The additional effort related to using DCSS makes it only attractive when the amount of
guests using it exceeds a certain number. With less than 10 guests, it is more efficient using a shared disk. The
scenarios with more than 10 guests has a significant reduction in CPU utilization from using a DCSS.

There appears to be no advantage to minidisk caching, however it also is not a disadvantage. This result seemed
to be caused by the caching in Linux in the page cache. The MDC might become more important if Linux runs
with memory constraint.

 25

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

Reference
These references provide details about the test environment and test setup.

 Overview of SOABench
http://w3.tap.ibm.com/w3ki/display/SOAB/SOABench+-+The+IBM+SOA+Benchmark

 z/VM and Linux on IBM System z The Virtualization Cookbook for SLES 10 SP2
www.redbooks.ibm.com/redbooks/pdfs/sg247493.pdf

 How to - Share a WebSphere Application Server V7 installation among many Linux for IBM System z systems
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=ZSW03055USEN

 A study to three areas of application for a large DCSS: sharing code, sharing read-only data, and using a DCSS
as a swap device
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_vm.html#dcss

 Sharing and Maintaining SLES 11 Linux under z/VM using DCSSs and an NSS
www.vm.ibm.com/linux/dcss/ror-s11.pdf

 For more information about the use of a DCSS under z/VM
http://www.vm.ibm.com/linux/dcss/

 For more information to z/VM and page reorder
http://www.vm.ibm.com/perf/tips/reorder.html

 26

http://w3.tap.ibm.com/w3ki/display/SOAB/SOABench+-+The+IBM+SOA+Benchmark
http://www.redbooks.ibm.com/redbooks/pdfs/sg247493.pdf
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=ZSW03055USEN
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_vm.html#dcss
http://www.vm.ibm.com/linux/dcss/ror-s11.pdf
http://www.vm.ibm.com/linux/dcss/
http://www.vm.ibm.com/perf/tips/reorder.html

WebSphere Application Server Horizontal versus Vertical JVM Stacking Report

®
Copyright IBM Corporation 2012

IBM Systems and Technology Group
Route 100
Somers, New York 10589
U.S.A.

Produced in the United States of America,
01/2012

IBM, IBM logo, ECKD, FICON, System Storage, System x, System z, WebSphere, zEnterprise and z/VM are trademarks or
registered trademarks of the International Business Machines Corporation.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and
Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

All statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice, and represent goals
and objectives only.

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks
in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as
the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload
processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the
performance ratios
stated here.

 ZSW03213-USEN-00

27

