
Linux on System z Web 2.0

Setting up a Web 2.0 stack on

SUSE Linux Enterprise Server 10 SP2

August 2008

���

Linux on System z Web 2.0

Setting up a Web 2.0 stack on

SUSE Linux Enterprise Server 10 SP2

August 2008

���

Note

Before using this document, be sure to read the information in “Notices” on page 47.

First Edition – August 2008

This edition applies to SUSE Linux Enterprise Server 10 SP2 only.

© Copyright International Business Machines Corporation 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Introduction 1

What is Web 2.0? 1

The Web 2.0 stack components 1

Applications exploiting the Web 2.0 stack 2

Web 2.0 on Linux on System z 3

System requirements for the Web 2.0 stack 4

Assumptions for this whitepaper 4

Where to find this document 4

Chapter 2. Setup of Databases 5

Setup of MySQL 5

Installation of MySQL 5

Lifecycle of MySQL 5

Basic configuration of MySQL 7

Setup of PostgreSQL 8

Installation of PostgreSQL 9

Lifecycle of PostgreSQL 9

Basic configuration of PostgreSQL 11

Chapter 3. Setup of Apache HTTP

Server 13

Installation of Apache HTTP Server 13

Verification of the Apache HTTP Server

installation 13

Lifecycle of Apache HTTP Server 13

Overview of Apache HTTP server modules 15

Adding support for PHP 15

Installation of mod_php 16

Creation of a PHP 'Hello World!' Web example 16

Database connectors for PHP 16

Adding support for Perl 17

Installation of mod_perl 17

Creation of a Perl 'Hello World!' example . . . 18

Database connectors for Perl 18

Installing additional Perl modules using CPAN 18

Adding support for Python 18

Installation of mod_python 19

Creation of a Python 'Hello World!' example . . 20

Database connectors for Python 20

Adding support for Ruby 21

Installation of mod_ruby 21

Installation of eRuby 22

Creation of a Ruby CGI 'Hello World!' example 23

Creation of a Ruby Server Page 'Hello World!'

example 23

Database connectors for Ruby 23

Installing additional Ruby libraries using

RubyGems 24

Setup of Ruby on Rails 24

Chapter 4. Setup of Apache Tomcat . . 27

Installation of Apache Tomcat 27

Verifying the Java installation 27

Verifying the Apache Tomcat installation . . . 28

Important folders in Apache Tomcat 28

Lifecycle of Apache Tomcat 28

The Apache Tomcat administration tools 30

Adding support for JSP and Servlet API 30

Installation of JSP and Servlet API libraries . . . 30

Creation of a JSP 'Hello World!' example . . . 31

Creation of a Servlet 'Hello World!' example . . 32

Adding Database connectors 33

Setup of MySQL connector 33

Setup of PostgreSQL connector 34

Chapter 5. Setup of Caches 35

Setup of Squid 35

Installation of Squid 35

Lifecycle of Squid 35

Basic configuration of Squid 37

Setup of memcached 38

Installation of memcached 38

Lifecycle of memcached 38

Chapter 6. Setup of AJAX support . . . 41

Installation of the Dojo Toolkit 41

Example for using Dojo 41

Appendix. Packages for the Web 2.0

stack 45

Notices 47

Trademarks 48

© Copyright IBM Corp. 2008 iii

iv Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Chapter 1. Introduction

In recent years, the traditional way to use the Internet has changed significantly.

Web administrators who published information on the Internet invite their

community to contribute to the company's Web pages. Applications like Wikis,

Blogs, Content Management Systems and a couple of others are providing this new

functionality to the Web administrators.

The variety of available open source Web 2.0 applications require a proper setup of

server components. These server components and their setup for SUSE Linux

Enterprise Server 10 SP2 on Linux® on System z™ are described in this whitepaper.

What is Web 2.0?

The key question which needs to be addressed is: What is Web 2.0?

Tim O’Reilly defines the Web 2.0 as

1

Web 2.0 is the business revolution in the computer industry caused by the

move to the Internet as platform, and an attempt to understand the rules for

success on that new platform.

This new perspective changed the usage of the Internet significantly. In the past,

system administrators were required to prevent users to access their private

application interfaces from Web applications to avoid security issues. Of course,

security issues are still required to be prevented, but APIs have been defined to

allow reuse by 3rd party Web applications.

Data that was earlier only available for customers who paid for it is now opened

up for public use. Who imagined ten years ago that satellite images of the whole

world would be freely available and accessible by a well defined, public API?

Additionally, Web applications are getting more dynamic and more flexible due to

new technologies. AJAX is one example to increase the performance of a Web 2.0

application by receiving data asynchronously from different services. Functionality

of desktop application like drag and drop are available through JavaScript™

libraries.

All of this created a new spirit around the Internet and this is called Web 2.0.

The Web 2.0 stack components

In general, the Web 2.0 stack is based on the software solution stack called LAMP

(acronym for ″Linux, Apache, MySQL, PHP (Perl and/or Python)″). Some

enhancements to the LAMP stack are getting into the spotlight when the

discussion moves to Web 2.0.

The following figure gives an overview about the Web 2.0 stack components

1. see http://radar.oreilly.com/archives/2006/12/web-20-compact-definition-tryi.html

© Copyright IBM Corp. 2008 1

Database

MySQL, PostgreSQL

Web server

Apache HTTP server, Apache Tomcat

Programming Languages

PHP, Perl, Python, Ruby, Java™

Frameworks

Dojo (AJAX support), Ruby on Rails

Caches

memcached, Squid

 A system administrator does not have to install all Web 2.0 stack components at

once. The selection is dependent on the Web 2.0 application and its functionality.

i.e. if the Web 2.0 application offers information which is very static, it would make

sense to establish a cache, but if the information is updated frequently then a cache

is not the best choice.

The appendix gives an overview on all packages which are used in this document.

Applications exploiting the Web 2.0 stack

On the Internet, various open source Web 2.0 applications are available. In a

follow-up whitepaper, the setup of some popular Web 2.0 applications running on

Linux on System z will be described in detail.

The Web 2.0 stack which is described in this document enables a system

administrator to choose the Web 2.0 application which fits best to the requirements.

A list of very popular Web 2.0 applications is shown in the table below.

Figure 1. Web 2.0 stack components

2 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Table 1. Open Source Web 2.0 applications

Application Type Application name

Wiki MediaWiki

MoinMoin

Confluence

XWiki

Blogs Wordpress

Mephisto

Movable Type

Content Management Systems (CMS) Typo3

Drupal

OpenCMS

Apache Lenya

Business Applications osCommerce

Web 2.0 on Linux on System z

Why run the Web 2.0 stack on Linux on System z?

High availability

A System z enterprise mainframe offers a high available environment by

default. This reduces system outages which are related to hardware issues.

Resource utilization

Rarely used Linux on System z virtual server machines running on z/VM®

are swapped out and the resources are made available for other virtual

machines. The swap in of a Linux on System z virtual server is hardly

noticed by the user.

Vertical Scalability

By default, Linux on System z virtual servers running on z/VM are

enabled for vertical scalability. This means a Linux on System z virtual

server can be empowered with additional memory or CPU power on the

fly.

Rapid deployment

If the vertical scalability is not sufficient, a new Linux on System z virtual

server can be deployed within a couple of minutes.

Performance

Connections between virtual servers on System z can make use of the

HiperSockets™ technology to speed up communication.

Consolidation/TCO

The different Web 2.0 stack components might be running on dedicated

server machines. Linux servers can be consolidated to run on one physical

System z machine. This saves power, space in the computer center and

reduces the administration effort.

Chapter 1. Introduction 3

System requirements for the Web 2.0 stack

The system requirements for a Web 2.0 stack setup are closely related to the

requirements of the Web 2.0 application. An application which is based on a large

database requires more system resources like CPU and memory than an

application which is running the application logic as client-side JavaScript.

The system requirements are investigated in more detail in a follow-up whitepaper

which explains the Web 2.0 applications in more detail.

Assumptions for this whitepaper

System administrators who read this document should be familiar, how to setup

YaST to include the SUSE Linux Enterprise Server 10 SP2 DVD image and the

related SDK DVD image as install sources.

Where to find this document

You can find the latest version of this document on the developerWorks® Web site

at http://www.ibm.com/developerworks/linux/linux390/distribution_hints.html

4 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Chapter 2. Setup of Databases

In general, Web applications deal with a lot of information which is displayed to

the user. To get a structured and stable environment in place which guarantees

consistency and persistency, databases are used. By default, SUSE Linux Enterprise

Server 10 SP2 includes two popular databases: MySQL and PostgreSQL.

MySQL is one of the key components of the software solution stack called LAMP.

Many Web 2.0 applications support both databases, so it is up to the system

administrator which one to use.

Setup of MySQL

MySQL is a SQL database management system (DBMS), which has become one of

the most popular open source database systems.

Some key characteristics - ease of use, reliability, security and performance at close

to zero cost - increased the usage of MySQL, especially in Web applications.

Detailed information about MySQL is available at http://www.mysql.org

Installation of MySQL

The installation of the MySQL is straight forward as the packages are included in

SUSE Linux Enterprise Server 10 SP2. Install the MySQL server and the MySQL

client packages by using the following command:

yast -i mysql mysql-client

The mysql-client package includes a command line client for MySQL. This client is

required for administration purposes of the database server.

To access the MySQL database from a Web application, a client for the related

programming language is required. For the programming languages mentioned in

this document, different client implementations are available. The setup of these

clients are described in the section where the setup of the programming languages

is described.

Verifying the MySQL installation

To verify MySQL has been installed correctly, run the following command:

mysql -V

mysql Ver 14.12 Distrib 5.0.26, for ibm-linux (s390x) using readline 5.1

The output should look similar to the above.

Lifecycle of MySQL

Lifecycle operations of Linux services like starting/stopping are basic functionality.

In general, the lifecycle functionality is supported by a command line tool named

service. The tool allows, dependent on the supported functionality of the service

specific script, to start, stop and restart a server. Apart from that, the current status

© Copyright IBM Corp. 2008 5

of a server can be displayed. In the following, a walkthrough is shown for the

MySQL server. This walkthrough assumes that this is the initial startup right after

the packages have been installed.

1. Verifying the current status of the server

To get the current status of the MySQL server, run the following command:

service mysql status

Checking for service MySQL: unused

The status unused indicates that the MySQL server is not started.

2. Starting the server for the first time

To start the MySQL server, run the following command

service mysql start

Creating/Updating MySQL privilege database...

Installing all prepared tables

Fill help tables

(......)

Updating MySQL privilege database...

Fixing privilege tables...

Starting service MySQL done

The output displays some initialization steps which indicate that the MySQL

server has been started for the first time. After the startup is completed, verify

the status of the MySQL server by running:

service mysql status

Checking for service MySQL: running

As shown, the MySQL server is running as expected.

3. Restarting the server

Another useful functionality is the restart where it is possible to stop and start

the server with one single command. To restart the MySQL server, run the

following command:

service mysql restart

Shutting down service MySQL done

Starting service MySQL done

Once the restart completes, verify the status of the MySQL server by running:

service mysql status

Checking for service MySQL: running

As expected, the MySQL server is running again.

4. Stopping the server

To stop the MySQL server, run the following command:

service mysql stop

Shutting down service MySQL done

Again, the status can be verified by running:

6 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

service mysql status

Checking for service MySQL: unused

As expected, the MySQL server is not running anymore.

To start the MySQL server at boot time, the command chkconfig is used. Decide

first in which runlevel the MySQL server should start. Runlevels are used to

coordinate the startup of services during boot time. In the following example, the

runlevels 3 and 5 are used as both support networking:

chkconfig --level 35 mysql on

To verify the setup use

chkconfig --list mysql

mysql 0:off 1:off 2:off 3:on 4:off 5:on 6:off

Now, the MySQL server starts during boot time of runlevels 3 and 5. To deactivate

this behavior again, run:

chkconfig mysql off

Again, to verify the setup use

chkconfig --list mysql

mysql 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Basic configuration of MySQL

MySQL delivers several example configuration files in its packages. At least four

different flavours of the server configuration are available. These additional

configuration files are located in the folder /usr/share/mysql and are named:

v my-small.cnf

v my-medium.cnf

v my-large.cnf

v my-huge.cnf

The MySQL documentation offers additional information on which configuration

file to choose for a given scenario. For example, the my-small.cnf file can be used

as the configuration for the MySQL server. The following steps should be

processed to activate the predefined configuration:

cp /usr/share/mysql/my-small.cnf /etc/my.cnf

chown root:root /etc/my.cnf

chmod 644 /etc/my.cnf

One of the first issues when dealing with any common resource is to ensure its

security. At the beginning the password for the database superuser is set properly

by running the following commands:

Chapter 2. Setup of Databases 7

mysqladmin -u root password <’new-password’>

mysqladmin -u root -h <your_host_name> password <’new-password’>

or by using the MySQL console:

mysql -u root

 mysql> SET PASSWORD FOR ’root’@’localhost’ = PASSWORD(’<new_password>’);

 mysql> SET PASSWORD FOR ’root’@’<your_host_name>’ = PASSWORD(’<new_password>’);

 mysql> quit

Note: As this is the superuser for all databases, use a strong password

The second recommended security measure is to remove anonymous accounts

from the server. Access is granted only to those users specifically enabled.

mysql -u root -p

 mysql> DELETE FROM mysql.user WHERE User = ’’;

 mysql> FLUSH PRIVILEGES;

 mysql> SELECT Host, User FROM mysql.user;

 mysql> quit

To get the list of users which have database access privileges, run the following

command:

mysql -u root -p

 mysql> select user,host from mysql.user;

+------+----------------------------------+

| user | host |

+------+----------------------------------+

| root | localhost |

| root | machine.example.com |

+------+----------------------------------+

 mysql> quit

Note: Applications connecting to the MySQL server’s databases should use an

account with minimum privileges required for its actions. This helps to

prevent malicious code from accessing other databases and data.

The configuration shown in this chapter does not cover all security aspects of

MySQL. For more detailed information, refer to the MySQL documentation.

Setup of PostgreSQL

PostgreSQL is an advanced object-relational database management system.

Numerous features such as stored procedures, functions and triggers are included.

All of these are blocks of code to be executed by the server and can be written in

SQL or some compatible languages like C, C++, Java, PHP, Perl, Python, Ruby, etc.

PostgreSQL provides a MVCC (Multi-Version Concurrency Control), eliminating

read locks efficiently, different rules to rewrite incoming queries, etc. These features

are very advanced, and very similar to the ones offered by commercial alternatives.

Detailed information about PostgreSQL and the supported functionality is available

at http://www.postgres.org

8 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Installation of PostgreSQL

PostgreSQL has been included in various Linux distributions for some time. The

installation process is straight forward. The database server can be installed by

running the following command:

yast -i postgresql postgresql-server

Next to the PostgreSQL server, the client which is required to maintain the

databases is installed also.

To access the PostgreSQL database from a Web application, a client for the related

programming language is required. For the programming languages mentioned in

this document, different client implementations are available. The setup of these

clients are described in the section where the setup of the programming languages

is described.

Verifying the PostgreSQL installation

Checking whether the PostgreSQL package has been installed is done in the same

way as with other servers. To retrieve the version of PostgreSQL the following

command is performed:

postgres -V

postgres (PostgreSQL) 8.1.11

The output should look similar to the above.

Lifecycle of PostgreSQL

Once these basic PostgreSQL packages are installed, lifecycle operations can be

performed like starting/stopping the server. In the following, a walkthrough is

shown for the PostgreSQL server. This walkthrough assumes that this is the initial

startup right after the packages have been installed.

1. Verifying the current status of the server

To get the current status of the PostgreSQL server, run the following command:

service postgresql status

Checking for PostgreSQL: unused

The status unused indicates that the PostgreSQL server is not started.

2. Starting the server for the first time

To start the PostgreSQL server, run the following command

service postgresql start

Initializing the PostgreSQL database at location /var/lib/pgsql/data done

Starting PostgreSQL done

The output displays an initialization step which indicates that the PostgreSQL

server has been started for the first time. After the startup is completed, verify

the status of the PostgreSQL server by running:

service postgresql status

Checking for PostgreSQL: running

Chapter 2. Setup of Databases 9

As shown, the PostgreSQL server is running as expected.

3. Restarting the server

Another useful functionality is the restart where it is possible to stop and start

the server with one single command. To restart the PostgreSQL server, run the

following command:

service postgresql restart

Shutting down PostgreSQLpostmaster stopped

 done

Starting PostgreSQL done

Once the restart completes, verify the status of the PostgreSQL server by

running:

service postgresql status

Checking for PostgreSQL: running

As expected, the PostgreSQL server is running again.

4. Stopping the server

To stop the PostgreSQL server, run the following command:

service postgresql stop

Shutting down PostgreSQLpostmaster stopped

 done

Again, the status can be verified by running:

service postgresql status

Checking for PostgreSQL: unused

As expected, the PostgreSQL server is not running anymore.

To start the PostgreSQL server at boot time, the command chkconfig is used.

Decide first in which runlevel the PostgreSQL server should start. Runlevels are

used to coordinate the startup of services during boot time. In the following

example, the runlevels 3 and 5 are used as both support networking:

chkconfig --level 35 postgresql on

To verify the setup use

chkconfig --list postgresql

postgresql 0:off 1:off 2:off 3:on 4:off 5:on 6:off

Now, the PostgreSQL server starts during boot time of runlevels 3 and 5. To

deactivate this behavior again, run:

chkconfig postgresql off

Again, to verify the setup use

10 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

chkconfig --list postgresql

postgresql 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Basic configuration of PostgreSQL

PostgreSQL does not allow remote connections by default. To enable remote

connections a parameter needs to be set in the file /etc/sysconfig/postgresql. This

file governs optional PostgreSQL startup parameters and needs to be created if it

does not already exist on the system.

In the file find the reference to POSTGRES_OPTIONS. This should be changed to

set the -i parameter at startup. The example below shows an extract of the file with

POSTGRES_OPTIONS set to -i:

Path: Applications/PostgreSQL

Description: The PostgreSQL Database System

Type: string()

Default: ""

ServiceRestart: postgresql

The options that are given to the PostgreSQL master daemon on startup.

See the manual pages for postmaster and postgres for valid options.

Don’t put "-D datadir" here since it is set by the startup script

based on the variable POSTGRES_DATADIR above.

POSTGRES_OPTIONS="-i"

Run the following command to restart the PostgreSQL server:

service postgresql restart

The client authentication is controlled by a configuration file, which traditionally is

named pg_hba.conf. This file is stored in the database folder /var/lib/pgsql/data.

One possible scenario is to allow connections from local and from a specific subnet.

The following example shows how this works for the subnet 192.168.12.0/24. Local

users can connect only to their own databases (databases with the same name as

their database user name), administrators can connect to all databases and client

connections from a subnet of 192.168.12.x can connect to the databases db1 and

db2. For all users, authentication is required.

TYPE DATABASE USER CIDR-ADDRESS METHOD

local sameuser all md5

local all @admins md5

host db1,db2 all 192.168.12.0/24 md5

The configuration shown in this chapter does not cover all security aspects of

PostgreSQL. For more detailed information, refer to the PostgreSQL

documentation.

Chapter 2. Setup of Databases 11

12 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Chapter 3. Setup of Apache HTTP Server

The Apache HTTP Server, also known as Apache, is a secure, reliable and efficient

Web server. It is highly configurable and extensible with lots of third party

modules and Apache is available for a wide variety of operating systems including

Linux, UNIX®, Mac OS X, Microsoft® Windows® and several others.

Apache became the Web server component of the popular software solution stack

called LAMP. Extending this concept, the Apache HTTP Server is a key component

of the defined Web 2.0 stack also.

The Apache HTTP server is well documented. A good reference is the Apache Web

page at http://httpd.apache.org

Installation of Apache HTTP Server

Apache is one of the key components of the World Wide Web, and is included in

SUSE Linux Enterprise Server 10 SP2. The installation is performed using the

following command:

yast -i apache2 apache2-doc apache2-example-pages apache2-prefork

This installs the Apache HTTP server with some documentation and an example

page.

Verification of the Apache HTTP Server installation

To verify the installation of Apache, run the following command:

apache2ctl -v

Server version: Apache/2.2.3

Server built: Apr 23 2008 22:56:54

The output should look similar to the above.

To connect with a Web browser to the Apache HTTP server, the server needs to be

started. Use the following command to start the server:

service apache2 start

Open a Web browser and enter the URL http://localhost. A default Web page gets

displayed indicating that the Apache HTTP server is running properly.

Lifecycle of Apache HTTP Server

Once these basic Apache HTTP server packages are installed, lifecycle actions can

be performed like starting/stopping the server. In the following, a walkthrough is

shown for the Apache HTTP server. This walkthrough assumes that this is the

initial startup right after the packages have been installed and the server is not

running.

1. Verifying the current status of the server

© Copyright IBM Corp. 2008 13

To get the current status of the Apache HTTP server, run the following

command:

service apache2 status

Checking for httpd2: unused

The status unused indicates that the Apache HTTP server is not started.

2. Starting the server for the first time

To start the Apache HTTP server, run the following command

service apache2 start

Starting httpd2 (prefork) done

After the startup is completed, verify the status of the Apache HTTP server by

running:

service apache2 status

Checking for httpd2: running

As shown, the Apache HTTP server is running as expected.

3. Restarting the server

Another useful functionality is the restart where it is possible to stop and start

the server with one single command. To restart the Apache HTTP server, run

the following command:

service apache2 restart

Shutting down httpd2 (waiting for all children to terminate) done

Starting httpd2 (prefork) done

Once the restart completes, verify the status of the Apache HTTP server by

running:

service apache2 status

Checking for httpd2: running

As expected, the Apache HTTP server is running again.

4. Stopping the server

To stop the Apache HTTP server, run the following command:

service apache2 stop

Shutting down httpd2 (waiting for all children to terminate) done

Again, the status can be verified by running:

service apache2 status

Checking for httpd2: unused

As expected, the Apache HTTP server is not running anymore.

To start the Apache HTTP server at boot time, the command chkconfig is used.

Decide first in which runlevel the Apache HTTP server should start. Runlevels are

14 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

used to coordinate the startup of services during boot time. In the following

example, the runlevels 3 and 5 are used as both support networking:

chkconfig --level 35 apache2 on

To verify the setup use

chkconfig --list apache2

apache2 0:off 1:off 2:off 3:on 4:off 5:on 6:off

Now, the Apache HTTP server starts during boot time of runlevels 3 and 5. To

deactivate this behavior again, run:

chkconfig apache2 off

Again, to verify the setup use

chkconfig --list apache2

apache2 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Overview of Apache HTTP server modules

The Apache server modules are software elements which extend Apache’s

functionality. There are modules available to add server-side programming

language support, authentication schemes and a lot of additional functionality.

By default, the Apache HTTP server has already some modules loaded, statically

and dynamically. To display the list of configured modules, run the following

command:

apache2ctl -t -D DUMP_MODULES

During the installation of Apache HTTP server extensions additional modules are

installed, but those might not be enabled. To get a list of all available modules,

run:

a2enmod -l

A module is enabled by running

a2enmod <name_of_module>

A module is disabled by running

a2dismod <name_of_module>

Adding support for PHP

One of the general purposes for the development of PHP was to create a scripting

language which suites Web development requirements perfectly. For this reason,

PHP is supported in most Web server environments running on various operating

systems.

Chapter 3. Setup of Apache HTTP Server 15

The extendible approach for PHP allows to install additional functionality which a

Web application can make use of, like clients for databases.

Further information about PHP and additional libraries is available at

http://php.net

Installation of mod_php

The Apache HTTP server can be enhanced by installing the package

apache2-mod_php5. This is processed by using the following command:

yast -i apache2-mod_php5

Apart from the apache2-mod_php5 package other dependent packages such as

php5 are installed if they are not available on the system.

To enable the PHP support in the Apache HTTP server, the newly installed module

needs to be enabled.

a2enmod mod_php5

service apache2 restart

During the installation process of PHP, one additional configuration file is created

in the Apache server configuration folder. This file is located at

/etc/apache2/conf.d/php5.conf and includes a definition for the module to

configure the interpreter to do its work when a PHP page is requested.

Creation of a PHP 'Hello World!' Web example

To check whether PHP is working correctly within Apache, create a file named

/srv/www/htdocs/test.php with the following content:

<html>

 <head>

 <title>Hello, World! - PHP</title>

 </head>

 <body>

 <?php

 print 'Hello, World!
';

 print 'The time on the server is ';

 print strftime('%H:%M:%S');

 ?>

 </body>

</html>

This newly created PHP script can be accessed by opening up a Web browser at

http://localhost/test.php. A Web page is shown which displays 'Hello World!'

along with the current time.

Database connectors for PHP

As an example for additional libraries, PHP provides database connectors to the

MySQL and PostgreSQL databases. These can be installed using the following

command:

yast -i php5-mysql php5-pgsql

These two PHP extensions can be installed separately also.

16 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Adding support for Perl

One of the most popular scripting languages is Perl. In general, Perl is based on

other programming languages such as C, shell scripting (sh), AWK and Lisp. This

enables users to make use of a very powerful text manipulation engine.

Another benefit is the amount of additional modules which are available for Perl.

These modules add ease of use and interoperability with other tools or software

components to the portfolio of the basic Perl functionality.

Further information about Perl is available at http://www.perl.org.

Installation of mod_perl

apache2-mod_perl is an Apache enhancement which integrates the Perl interpreter

into the Apache HTTP server.

One benefit of the integration from Perl with Apache is that the startup time for

any HTTP request for a Web page returned by a Perl script is reduced. The Perl

scripts are compiled once and rerun every time a request occurs. To install the Perl

module for Apache, run the following command:

yast -i apache2-mod_perl

Apart from the apache2-mod_perl package other dependent packages such as the

core Perl package are installed if they are not available on the system.

The installation of apache2-mod_perl integrates two new configuration files into

the Apache HTTP setup: /etc/apache2/mod_perl-startup.pl and

/etc/apache2/conf.d/mod_perl.conf

The file /etc/apache2/mod_perl-startup.pl includes a list of additional Perl

modules which are pre-loaded by Apache. This mechanism speeds up the

processing of Perl scripts since basic modules which are required for processing are

already ready to use.

The second configuration file /etc/apache2/conf.d/mod_perl.conf includes the

setup for the Perl interpreter. In the default configuration, a folder named

/srv/www/cgi-bin is enabled to serve Perl scripts. This location can be accessed

by a Web browser at two different URLs:

v http://localhost/perl/<script-name>

v http://localhost/cgi-perl/<script-name>

Dependent on the URL used, different handlers are used to run the Perl script.

Any modification to the configuration files requires a restart of the Apache HTTP

server to implement the new configuration.

To enable the Perl support in the Apache HTTP server, the new installed module

needs to be enabled. Run:

a2enmod mod_perl

service apache2 restart

To get more information about the setup of apache2-mod_perl, refer to the

documentation at http://perl.apache.org

Chapter 3. Setup of Apache HTTP Server 17

Creation of a Perl 'Hello World!' example

Based on the previously explained configuration, setup a 'Hello World!' example.

Therefore create a file named /srv/www/cgi-bin/hello.pl with the following

content:

#!/usr/bin/perl

Hello.pl

print "Content-type: text/html\n\n";

print "<html>";

print "<head><title>Hello World! - Perl</title></head>";

print "<body>Hello, World!
";

($sec,$min,$hr) = localtime();

print "The time on the server is $hr:$min:$sec";

print "</body></html>";

Once the file is created, open up a Web browser on the system where the Web

server is running and use the following two URLs:

v http://localhost/perl/hello.pl

v http://localhost/cgi-perl/hello.pl

Database connectors for Perl

As an example for additional libraries, Perl provides database connectors to the

MySQL and PostgreSQL databases. The connector for PostgreSQL is available on

the SDK image only. Therefore add the SDK image to the installation sources.

Afterwards run the following command to install the connectors:

yast -i perl-DBI perl-DBD-mysql perl-DBD-Pg

For Perl, the generic database interface needs to be installed to be able to use the

MySQL or PostgreSQL interfaces of Perl. The MySQL and PostgreSQL interfaces

can be installed separately also.

Installing additional Perl modules using CPAN

Web applications might require additional Perl modules to be installed, which are

not part of SUSE Linux Enterprise Server 10 SP2. For this case the CPAN

interactive shell can be used to add the missing module to the system in a

comfortable way. At the first time, CPAN runs through an initialization process.

This process analyzes the system and offers default settings which work for most

environments.

To install e.g. the Perl-CGI-Session library with CPAN, perform as follows:

perl -MCPAN -e shell

cpan> install CGI::Session

...

cpan> quit

This installs the perl-CGI-Session module which is now ready to use.

Adding support for Python

Python is another popular scripting language. Some key characteristics are that the

language is very easy to learn and the code is required to be well structured which

eases up the maintenance.

18 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Support for Python is available on most of the platforms, including Linux, Unix,

Mac OS X, Windows, OS/2®, etc.

Further information about Python is available at http://www.python.org.

Installation of mod_python

The Apache HTTP server can easily be equipped to support Python. The required

packages are all included in SUSE Linux Enterprise Server 10 SP2. To install the

Python module for Apache, run the following command:

yast -i apache2-mod_python

Apart from the apache-mod_python package other dependent packages such as the

core Python package are installed if they are not available on the system.

Setting up Python handlers for Apache needs to be done manually. Python offers

three different standard handlers to execute Python code within Apache: Publisher

handler, PSP handler and CGI handler.

Using the Publisher handler

To enable the Publisher handler, a folder needs to be configured in the

Apache HTTP server to which the publisher handler is assigned. Create a

file named /etc/apache2/conf.d/mod_python-publisher.conf with the

following content:

<Directory /srv/www/htdocs/python>

 SetHandler mod_python

 PythonHandler mod_python.publisher

 PythonDebug On

</Directory>

This configuration enables the folder /srv/www/htdocs/python to serve

Python scripts by making use of the Publisher handler.

Using the PSP handler

To enable the Python Server Pages create a file named

/etc/apache2/conf.d/mod_python-psp.conf with the following content:

<Directory /srv/www/htdocs/python-psp>

 AddHandler mod_python .psp

 PythonHandler mod_python.psp

 PythonDebug On

</Directory>

This configuration enables the folder /srv/www/htdocs/python-psp to

deliver Python Server Pages using the PSP handler.

Using the CGI handler

Using the CGI handler is not recommend. It is only intended to migrate

legacy code away from CGI.

To enable the Python support in Apache, the new installed module needs to be

enabled and the server needs to be restarted. Run:

a2enmod mod_python

service apache2 restart

Chapter 3. Setup of Apache HTTP Server 19

To get more information about mod_python, refer to the documentation at

http://www.modpython.org

Creation of a Python 'Hello World!' example

For the two Python specific handlers separate 'Hello, World!' examples need to be

created. The environment for the examples is based on the configuration described

above.

For the Publisher handler example, create a file named /srv/www/htdocs/
python/index.py with the following content:

from mod_python import apache

import time

def index(req):

 req.content_type = 'text/html'

 req.write('<html>')

 req.write('<head><title>Hello, World! - Python</title></head>')

 req.write('<body>Hello, World!
')

 req.write('The time on the server is ')

 req.write(str(time.strftime("%H:%M:%S")))

 req.write('</body></html>')

The PSP handler is slightly different since it allows embedding Python code into

HTML code. A file named /srv/www/htdocs/python-psp/hello.psp is created

with the following content:

<html>

 <head>

 <title>Hello, World! - Python PSP</title>

 </head>

 <body>

 <% import time %>

 Hello, World!

 The time on the server is <%=time.strftime("%H:%M:%S")%>

 </body>

</html>

To give the two 'Hello, World!' examples a try, open a Web browser on the machine

where the Web server is running and have a look at the result of the following two

URLs:

The Publisher handler 'Hello, World!'

v http://localhost/python

v http://localhost/python/index

v http://localhost/python/index/index

The PSP handler 'Hello, World!'

http://localhost/python-psp/hello.psp

Database connectors for Python

As an example for additional libraries, Python provides database connectors to the

MySQL and PostgreSQL databases. These can be installed using the following

command:

yast -i python-mysql PyGreSQL

These two Python extensions can be installed separately also.

20 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Adding support for Ruby

Ruby is a object-oriented programming language. The language gained large

popularity boost in 2004 when the Web application framework “Ruby on Rails”

was released. Additionally, implementations for virtual machines also became very

popular. Such implementations are for example JRuby for the Java virtual machine

or IronRuby for the .NET framework.

Interpreters for Ruby are available for Windows, Mac OS X, Linux and several

other operating systems.

To get more information about Ruby, refer to the project Web page at

http://ruby-lang.org.

Installation of mod_ruby

mod_ruby enables the execution of Ruby scripts by the Apache HTTP server. It

embeds the Ruby interpreter to run the scripts natively in the Apache HTTP server.

The mod_ruby package is not part of SUSE Linux Enterprise Server 10 SP2. To

enable the Apache HTTP server with native Ruby support, a tarball needs to be

downloaded from the Internet at http://www.modruby.net/en/index.rbx/
mod_ruby/download.html. During time of writing the stable version of mod_ruby

was 1.2.6.

Prior to compiling mod_ruby some dependencies need to be resolved. Install the

Ruby interpreter and the Apache Portable Runtime libraries along with the related

development packages. The Ruby interpreter is available on the SUSE Linux

Enterprise Server 10 SP2 SDK image. This needs to be available as installation

source. Use the following commands to install the dependent packages:

yast -i apache2-devel libapr1 libapr1-devel libapr-util1 libapr-util1-devel

yast -i ruby ruby-devel

To install mod_ruby perform the following steps:

tar xzf mod_ruby-1.2.6.tar.gz

cd mod_ruby-1.2.6/

./configure.rb --with-apr-includes=/usr/include/apr-1

make

make install

The 'make install' step integrates mod_ruby into the Apache HTTP server

infrastructure. During this step the configuration for mod_ruby is not enabled and

needs to be done manually.

A file which includes the configuration needs to be created in the Apache HTTP

server environment. Create the file /etc/apache2/conf.d/mod_ruby.conf with the

following content:

Chapter 3. Setup of Apache HTTP Server 21

LoadModule ruby_module /usr/lib/apache2/mod_ruby.so

<IfModule mod_ruby.c>

 RubyRequire apache/ruby-run

 <Location /ruby>

 SetHandler ruby-object

 RubyHandler Apache::RubyRun.instance

 Options +ExecCGI

 </Location>

 <Files *.rbx>

 SetHandler ruby-object

 RubyHandler Apache::RubyRun.instance

 </Files>

</IfModule>

To enable the configuration for mod_ruby, use the following commands:

a2enmod mod_ruby

service apache2 restart

Installation of eRuby

eRuby allows embedding of Ruby code into HTML files similar to other

approaches like ASP, JSP or PSP. It is not part of SUSE Linux Enterprise Server 10

SP2, but it is available on the related SDK image. To install eRuby support for

Apache HTTP server, add the SDK image to the Installation Sources for the

Software Management tool and use the following command:

yast -i ruby ruby-devel eruby

In the previous section, mod_ruby was setup to serve Ruby CGI scripts. To setup

eRuby, the configuration file /etc/apache2/conf.d/mod_eruby.conf is created with

the following content:

AddType application/x-httpd-eruby .rhtml

Action application/x-httpd-eruby "/cgi-bin/eruby"

This requires adding the eRuby executable to the /cgi-bin directory. A symbolic

link is created by using

ln -s $(which eruby) /srv/www/cgi-bin

Once this symbolic link is in place, the folder cgi-bin needs to be allowed to follow

symbolic links. In the file /etc/apache2/default-server.conf append the

'+FollowSymLinks' value to the Options attribute of the <Directory

″/srv/www/cgi-bin″> entry.

This new functionality is activated once the Apache HTTP server is restarted. Use

the following command to restart the server:

service apache2 restart

Note: SELinux might reject the execution of eRuby because of the symbolic link.

One possible solution is to disable SELinux for the Apache HTTP server. In

22 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

many environments, disabling SELinux is not acceptable; therefore refer to

the documentation at http://www.nsa.gov/selinux/ on how to setup

SELinux properly.

Creation of a Ruby CGI 'Hello World!' example

Based on the previously explained environment, setup a 'Hello World!' example for

CGI Ruby. Create a folder named /srv/www/htdocs/ruby:

mkdir /srv/www/htdocs/ruby

In this folder, create a file named /srv/www/htdocs/ruby/hello.rbx with the

following content:

require "cgi"

cgi = CGI.new("html4")

cgi.out {

 cgi.html {

 cgi.head { cgi.title {"Hello, World! - Ruby"} } +

 cgi.body {

 "Hello, World!
" +

 Time.now.strftime("The time on the server is %H:%M:%S")

 }

 }

}

This file requires the executable flag to be set

chmod +x /srv/www/htdocs//var/www/html/ruby/hello.rbx

The Web page is reached by a locally started Web browser at the URL

http://localhost/ruby/hello.rbx

Creation of a Ruby Server Page 'Hello World!' example

Based on the previously explained environment, setup a 'Hello World!' example for

eRuby. Create a file named /srv/www/htdocs/hello.rhtml with the following

content:

<html>

 <head>

 <title>Hello, World! - eRuby</title>

 </head>

 <body>

 <%= "Hello, World!" %>

 <%= Time.now.strftime("The time on the server is %H:%M:%S") %>

 </body>

</html>

The Web page is reached by a locally started Web browser at the URL

http://localhost/hello.rhtml

Database connectors for Ruby

As an example for additional libraries, Ruby provides database connectors to the

MySQL and PostgreSQL databases. These can be installed using the following

command:

yast -i ruby-mysql rubygem-ruby-postgres

Chapter 3. Setup of Apache HTTP Server 23

The MySQL and PostgreSQL interfaces can be installed separately also.

Installing additional Ruby libraries using RubyGems

RubyGems is a packaging system for Ruby, similar to the CPAN tool of Perl.

RubyGems allows the installation of additional Ruby libraries from a dedicated

server. This is a very useful mechanism to increase the functionality of the Ruby

installation if a package is missing in the distribution.

RubyGems is available on the SUSE Linux Enterprise Server 10 SP2 SDK image

and is installed by using the following command:

yast -i rubygems

Once RubyGems is installed on the system it can be used to enhance the Ruby

installation with additional libraries such as tzinfo:

gem install tzinfo --remote

This installs the Ruby tzinfo package.

Setup of Ruby on Rails

Ruby on Rails is a ruby-based framework for developing Web applications. It

emphasizes ″convention over configuration″, is following the MVC

(Model-View-Controller) pattern, making Web development faster and more

efficient and Web applications easier to maintain.

To get more information on Rails refer to the project Web page at

http://rubyonrails.org.

Installation of Ruby on Rails

Ruby on Rails is available from the SUSE Linux Enterprise Server 10 SP2 SDK

image and is installed using the following command:

yast -i rubygem-rails rubygem-rake

Verifying the Ruby on Rails installation: Check the version number by running

the following command:

rails -v

Rails 2.0.2

The output should look similar to the above.

Creation of a Ruby on Rails example

One way to run a Rails application in a production environment is to start the

default Ruby application server on port 80. This approach - while being sufficient

for a small installation - has the drawback of the default HTTP port now being

bound exclusively to one single Rails application. The following example session

shows how to create and run a Rails application.

24 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

service apache2 stop

cd /srv/www/htdocs/

rails www.rubytest.example.com

....

cd www.rubytest.example.com

RAILS_ENV=production ruby script/server -p 80

Note: Running 'RAILS_ENV=production ruby script/server -p 80' requires

rubygems of version 0.9.4 to be installed. The SDK actually includes only

version 0.9.2. Follow the instruction which is shown in the output of the

command 'ruby script/server' to upgrade to the appropriate version of

rubygems.
To verify the Rails example, start a Web browser on the machine where the Rails

application server is running and direct to the URL http://localhost. A 'Welcome

aboard' screen comes up with some information how to proceed further activities

on the Web application.

Deployment of Ruby on Rails applications

By default, the Rails application server is bound exclusively to a single port. This

indicates that, if a Rails application is bound to port 80, the Apache HTTP server is

not able to make use of this port anymore. A number of deployment options have

been established to address this issue, including: running the Web application as a

FastCGI process, using JRuby to deploy to a Java application server or forwarding

requests from Apache or another Web server to a Ruby application server like

Mongrel.

The latter method is used in the configuration example given below: requests are

forwarded by the Apache HTTP server to a single Mongrel backend server using

mod_proxy.

For further information about Mongrel visit the project Web site at

http://mongrel.rubyforge.org

The Mongrel Web server package is available on the SUSE Linux Enterprise Server

10 SP2 SDK image and is installed using the following command:

yast -i rubygem-daemons rubygem-mongrel

Then, the configuration for the Apache HTTP needs to be modified. Add a new

virtual host by creating a file named /etc/apache2/vhosts.d/rubytest.conf with the

following content2:

ProxyRequests off

<VirtualHost *:80>

 ServerName www.rubytest.example.com

 ProxyPass / http://127.0.0.1:8000/

 ProxyPassReverse / http://127.0.0.1:8000

 ProxyPreserveHost on

</VirtualHost>

Additionally, the Apache HTTP server needs to be setup to map requests for the

new server name to the new virtual host. Therefore, the NameVirtualHost attribute

2. This configuration is taken from http://mongrel.rubyforge.org/wiki/Apache where additional information is available about the

integration of Mongrel into Apache

Chapter 3. Setup of Apache HTTP Server 25

needs to be configured in the file /etc/apache2/listen.conf. Since this is dependent

on the individual Network setup, refer to the documentation of Apache HTTP

server.

Afterwards make sure mod_proxy and proxy_http are enabled:

a2enmod mod_proxy

a2enmod proxy_http

Start the rails application in production mode on port 8000 by executing the

following commands:

cd /srv/www/htdocs/www.rubytest.example.com

mongrel_rails start -d -p 8000 -e production

Note: When multiple Ruby on Rails Web applications are intended to run

simultaneously on the same system, each Web application must be assigned

to a unique port number. Therefore the configuration of the virtual host

given in the rubytest.conf file needs to be duplicated with another

ServerName. Additionally the ports of the ProxyPass and ProxyPassReverse

attributes have to match the port specified during startup of the Web

application.
Finally, restart Apache:

service apache2 restart

Make sure the application is running by opening http://localhost in a browser.

The default ″Welcome aboard″ page should now appear.

26 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Chapter 4. Setup of Apache Tomcat

Apache Tomcat is a Servlet container which is compliant with the official

specifications for the Java Servlet and JavaServer Pages technologies, providing an

environment for Java code to run in cooperation with a Web server. The Java

Servlet and JavaServer Pages specifications are developed by Sun under the Java

Community Process. The two Java Specification Requests, JSR53 and JSR154 specify

the Servlet API and the Java ServerPages API.

Further information about Apache Tomcat is available at the project Web page

http://tomcat.apache.org.

Installation of Apache Tomcat

Apache Tomcat is a Web server which supports the JSP and Servlet standards. Java

needs to be installed as a prerequisite to the Apache Tomcat server.

In this document Java 1.5.0 from IBM® is used. This is included in SUSE Linux

Enterprise Server 10 SP2. Install the Java packages by using the following

command:

yast -i java-1_5_0-ibm java-1_5_0-ibm-devel jpackage-utils

Verifying the Java installation

Confirm that Java has been installed successfully by running the following

command:

java -version

java version "1.5.0"

Java(TM) 2 Runtime Environment, Standard Edition (build pxz64dev-20080315 (SR7))

IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 Linux s390x-64 j9vmxi6423-20080315 ...

J9VM - 20080314_17962_lHdSMr

JIT - 20080130_0718ifx2_r8

GC - 200802_08)

JCL - 20080314

The output should look similar to the above.

Note: If the output reports a different version of Java, but the 1.5.0 version has

been installed, it might be the case that the version 1.5.0 is not set to be the

one used by the system. The tool update-alternatives is used to switch the

Java version used by the system. Use 'update-alternatives --config java' to

select the right Java version.

 Once the correct Java version has been installed, install Apache Tomcat by running:

yast -i tomcat5 tomcat5-admin-webapps tomcat5-webapps

This installs the Apache Tomcat server and some administrative Web applications

which allow some basic configuration of the Apache Tomcat server. Additionally,

several example Web applications for Apache Tomcat are installed.

© Copyright IBM Corp. 2008 27

Verifying the Apache Tomcat installation

To verify if the Apache Tomcat server is working properly, the server itself needs

to be started. Therefore, run the following command:

service tomcat5 start

Open a Web browser on the server where the Apache Tomcat server is running

and open the URL http://localhost:8080. The default Apache Tomcat Web page is

shown which offers some examples, documentation and administration pages.

Important folders in Apache Tomcat

There is an environment variable with special importance, $CATALINA_HOME.

This environment variable is defined in /etc/tomcat5/tomcat5.conf and points to

the root of the Apache Tomcat server installation – the default is

/usr/share/tomcat5. These are some of the key Apache Tomcat folders, all relative

to $CATALINA_HOME:

v $CATALINA_HOME/bin - Startup, shutdown, and other scripts.

v $CATALINA_HOME/conf - Configuration files and related DTDs. The most

important file is the server.xml which is the main configuration file for Apache

Tomcat.

v $CATALINA_HOME/logs - Default location of log files.

v $CATALINA_HOME/webapps - This is where additional Web applications are

installed.

Important folders for storing library files are:

v $CATALINA_HOME/common/lib - Library files used by Apache Tomcat and

Web applications.

v $CATALINA_HOME/shared/lib - Library files used across Web applications

only.

Lifecycle of Apache Tomcat

Once these basic Apache Tomcat server packages are installed, lifecycle actions can

be performed like starting/stopping the server. In the following, a walkthrough is

shown for the Apache Tomcat server. This walkthrough assumes that this is the

initial startup right after the packages have been installed and the server is not

running.

1. Verifying the current status of the server

To get the current status of the Apache Tomcat server, run the following

command:

service tomcat5 status

Checking for Tomcat (/srv/www/tomcat5/base/) unused

The status unused indicates that the Apache Tomcat server is not started.

2. Starting the server

To start the Apache Tomcat server, run the following command

service tomcat5 start

Starting Tomcat (/srv/www/tomcat5/base/) done

28 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

After the startup is completed, verify the status of the Apache Tomcat server by

running:

service tomcat5 status

Checking for Tomcat (/srv/www/tomcat5/base/) running

As shown, the Apache Tomcat server is running as expected.

3. Restarting the server

Another useful functionality is the restart where it is possible to stop and start

the server with one single command. To restart the Apache Tomcat server, run

the following command:

service tomcat5 restart

Shutting down tomcat (/srv/www/tomcat5/base/) done

Starting Tomcat (/srv/www/tomcat5/base/) done

Once the restart completes, verify the status of the Apache Tomcat server by

running:

service tomcat5 status

Checking for Tomcat (/srv/www/tomcat5/base/) running

As expected, the Apache Tomcat server is running again.

4. Stopping the server

To stop the Apache Tomcat server, run the following command:

service tomcat5 stop

Shutting down tomcat (/srv/www/tomcat5/base/) done

Again, the status can be verified by running:

service tomcat5 status

Checking for Tomcat (/srv/www/tomcat5/base/) unused

As expected, the Apache Tomcat server is not running anymore.

To start the Apache Tomcat server at boot time, the command chkconfig is used.

Decide first in which runlevel the Apache Tomcat server should start. Runlevels

are used to coordinate the startup of services during boot time. In the following

example, the runlevels 3 and 5 are used as both support networking:

chkconfig --level 35 tomcat5 on

To verify the setup use

chkconfig --list tomcat5

tomcat5 0:off 1:off 2:off 3:on 4:off 5:on 6:off

Now, the Apache Tomcat server starts during boot time of runlevels 3 and 5. To

deactivate this behavior again, run:

chkconfig tomcat5 off

Chapter 4. Setup of Apache Tomcat 29

Again, to verify the setup use

chkconfig --list tomcat5

tomcat5 0:off 1:off 2:off 3:off 4:off 5:off 6:off

The Apache Tomcat administration tools

Two main administration tools are included in the package tomcat5-admin-
webapps called admin and manager.

The admin tool is used to configure the Apache Tomcat server itself. It provides

functionality for user, group and role management. Additionally the debug level

can be modified for an application or the whole server.

The manager tool provides functionality for the Web application lifecycle. Web

applications can be deployed, started, stopped and Web application specific

options can be modified.

By default, user access to these tools is not configured and has to be granted

manually. The installation of Apache Tomcat includes a file called

/etc/tomcat5/base/tomcat-users.xml which is used to assign roles to groups or

users. For example, the user tomcat is assigned to the roles tomcat, admin and

manager. Another user admin is assigned to the role admin and the user manager

to the role manager. Such a setup is shown in the following:

<?xml version=’1.0’ encoding=’utf-8’?>

<tomcat-users>

 <role rolename="tomcat"/>

 <role rolename="admin"/>

 <role rolename="manager"/>

 <user username="tomcat" password="tomcat1" roles="tomcat,admin,manager"/>

 <user username="admin" password="tomcat2" roles="admin"/>

 <user username="manager" password="tomcat3" roles="manager"/>

</tomcat-users>

Afterwards the two administration applications can be accessed by using the URL

http://localhost:8080/admin and http://localhost:8080/manager/html.

Adding support for JSP and Servlet API

Installation of JSP and Servlet API libraries

The Apache Tomcat installation requires the JSP and Servlet libraries. Therefore an

installation of additional packages is not required.

In general the JSP implementation classes and the JSP Standard Tag Library are

included in the following packages:

v jakarta-taglibs-standard

v servletapi5

The content of these packages is included into the Apache Tomcat environment

during their installation.

30 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Creation of a JSP 'Hello World!' example

The verification of the JSP installation is a bit more complex than the other

verification processes. First, create a folder where the JSP file is stored. This

example uses the folder named /usr/share/tomcat5/webapps/sample-jsp:

mkdir /usr/share/tomcat5/webapps/sample-jsp

Once this folder is created, create a file named /usr/share/tomcat5/webapps/
sample-jsp/hello.jsp which contains:

<%@page import="java.util.Date" %>

<%@page import="java.text.DateFormat" %>

<DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html>

 <head>

 <title>Hello, World! - JSP</title>

 </head>

 <body>

 <% String hwStr = "Hello World!\n"; %>

 <% String timeStr = "The time on the server is "; %>

 <% DateFormat currentTime = DateFormat.getTimeInstance(DateFormat.FULL); %>

 <%= hwStr %>

 <%= timeStr + currentTime.format(new Date()) %>

 </body>

</html>

As well as the JSP file, create a folder which includes information about the Web

application:

mkdir /usr/share/tomcat5/webapps/sample-jsp/WEB-INF

This folder includes one additional file - web.xml - which can define various

settings for the Web application. To keep this example simple it only includes the

application name. The file /usr/share/tomcat5/webapps/sample-jsp/WEB-INF/
web.xml needs to be created with the following content:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/dtd/web-app_2_2.dtd">

<web-app>

 <display-name>JSP - Hello, World!</display-name>

</web-app>

To complete the setup the new Web application needs to be deployed into the

Apache Tomcat server. This is done by using the manager application. In the page

at http://localhost:8080/manager/html, the application stored in the path

sample-jsp needs to be started. Once the application is running, it can be accessed

at http://localhost:8080/sample-jsp/hello.jsp.

Note: Depending on the setup of Apache Tomcat the Web application example

might be auto-deployed. In this case, the Web application is activated once

the Apache Tomcat server is restarted.

Chapter 4. Setup of Apache Tomcat 31

Creation of a Servlet 'Hello World!' example

The verification of the Servlet follows the same procedure as the JSP example.

First, create a folder where the Servlet and related filers are stored. This example

uses the folder named /usr/share/tomcat5/webapps/sample-servlet.

mkdir /usr/share/tomcat5/webapps/sample-servlet

mkdir /usr/share/tomcat5/webapps/sample-servlet/WEB-INF

mkdir /usr/share/tomcat5/webapps/sample-servlet/WEB-INF/classes

mkdir /usr/share/tomcat5/webapps/sample-servlet/WEB-INF/classes/sample

The Servlet file is named /usr/share/tomcat5/webapps/sample-servlet/WEB-
INF/classes/sample/HelloWorldServlet.java and includes the following content:

package sample;

import java.io.*;

import java.util.Date;

import java.text.*;

import javax.servlet.http.*;

import javax.servlet.*;

public class HelloWorldServlet extends HttpServlet {

 public void doGet (HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<head><title>Hello, World! - Servlet</title></head>");

 out.println("<body>");

 out.println("Hello, World!
");

 DateFormat currentTime = DateFormat.getTimeInstance(DateFormat.FULL);

 out.println("The time on the server is " + currentTime.format(new Date()));

 out.println("</body></html>");

 out.close();

 }

}

This Java source file needs to be compiled by using the following commands:

cd /usr/share/tomcat5/webapps/sample-servlet/WEB-INF/classes

javac -cp /usr/share/java/servletapi5.jar sample/HelloWorldServlet.java

In the folder /usr/share/tomcat5/webapps/sample-servlet/WEB-INF, a web.xml

file needs to be created with the following content:

32 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/dtd/web-app_2_2.dtd">

<web-app>

 <display-name>Servlet - Hello, World!</display-name>

 <servlet>

 <servlet-name>HelloWorld</servlet-name>

 <servlet-class>sample.HelloWorldServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>HelloWorld</servlet-name>

 <url-pattern>hello-servlet</url-pattern>

 </servlet-mapping>

</web-app>

To complete the setup, the new Web application needs to be deployed into the

Apache Tomcat server. This is done by using the manager application. In the page

at http://localhost:8080/manager/html, the application stored in the path

sample-servlet needs to be started. Once the application is running, it can be

accessed at http://localhost:8080/sample-servlet/hello-servlet.

Note: Dependent on the setup of Apache Tomcat, the Web application example

might be auto-deployed. In this case, the Web application is activated once

the Apache Tomcat server is restarted.

Adding Database connectors

Web applications which are deployed into the Apache Tomcat server may need to

connect to databases. This section explains how to add database connectors for

MySQL and PostgreSQL into the Apache Tomcat environment.

Setup of MySQL connector

The MySQL JDBC driver which is called 'MySQL Connector/J' is not included in

SUSE Linux Enterprise Server 10 SP2. An archive is available at the MySQL

development download page http://dev.mysql.com/downloads/connector/j/
5.1.html .

To allow system-wide access to the MySQL Connector/J, the JAR file included in

the archive needs to be integrated into the Java system environment. This file

needs to be copied into the /usr/share/java folder which is a well known folder

for Java libraries, created during the installation of Java and JPackage. The

following example shows how to setup the connector for system-wide usage:

tar zxf mysql-connector-java-5.1.6.tar.gz

cd mysql-connector-java-5.1.6

cp mysql-connector-java-5.1.6-bin.jar /usr/share/java/

cd /usr/share/java

chmod 644 mysql-connector-java-5.1.6-bin.jar

ln -s mysql-connector-java-5.1.6-bin.jar mysql-connector-java.jar

Note: Version 5.1.5 is used in the examples throughout this document

To integrate MySQL Connector/J integrated into the Apache Tomcat environment,

create a link from the JAR file into the folder $CATALINA_HOME/common/lib of

the Apache Tomcat server. Create the link as follows:

Chapter 4. Setup of Apache Tomcat 33

ln -s /usr/share/java/mysql-connector-java.jar /usr/share/tomcat5/common/lib/

The JDBC driver is available for usage after a restart of the Apache Tomcat server

has been performed.

service tomcat5 restart

Setup of PostgreSQL connector

The PostgreSQL JDBC driver is included in SUSE Linux Enterprise Server 10 SP2

and can be installed using the following command:

yast -i postgresql-jdbc

The installed package includes different versions of the JDBC driver for

PostgreSQL. The different versions belong to the different version of the Java

installation. This document is based on Java 1.5.0 which requires making use of the

JDBC3 driver for PostgreSQL. To add this specific JDBC driver to the Apache

Tomcat configuration, a link from the JDBC driver into the folder

$CATALINA_HOME/common/lib of the Apache Tomcat server needs to be

created. Create the link as follows:

ln -s /usr/share/pgsql/postgresql-8.1-404.jdbc3.jar /usr/share/tomcat5/common/lib/

The JDBC driver is available for usage after restarting the Apache Tomcat server.

service tomcat5 restart

34 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Chapter 5. Setup of Caches

Setup of Squid

Squid is a caching proxy for the Web supporting various protocols like HTTP,

HTTPS, FTP and more. It is mainly used for two different purposes, Web caching

reducing bandwidth and response times on the client side, and speeding up the

delivery of Web elements by caching frequently-repeated requests on the server

side. Nevertheless, it fits perfectly with roles such as proxying Secure Sockets

Layer (SSL) requests and caching of Domain Name Server (DNS) lookups, and

perform transparent caching. Squid also supports a wide variety of caching

protocols, such as Internet Cache Protocol, (ICP) the Hyper Text Caching Protocol,

(HTCP) the Cache Array Routing Protocol (CARP), and the Web Cache

Coordination Protocol (WCCP).

Squid has extensive granular access control mechanisms and allows monitoring of

critical parameters via the Simple Network Management Protocol (SNMP).

To get more information on Squid refer to the documentation at

http://www.squid-cache.org

Installation of Squid

The Squid server is also part of SUSE Linux Enterprise Server 10 SP2. Use the

following command to install the package:

yast -i squid

Note: The Squid server requires the network setup to provide a fully qualified

domain name (FQDN). Review /etc/hosts to make sure that a FQDN is

provided.

Verification of the Squid installation

To verify the installation of Squid, use the following command:

squid -v

Squid Cache: Version 2.5.STABLE12

(...)

The output in this document shows the version number. From the output of the

command, several configuration parameters and values are displayed also.

Lifecycle of Squid

Once these basic Squid server packages are installed, lifecycle actions can be

performed like starting/stopping the server. In the following, a walkthrough is

shown for the Squid server. This walkthrough assumes that this is the initial

startup right after the packages have been installed.

1. Verifying the current status of the server

To get the current status of the Squid server, run the following command:

service squid status

Checking for WWW-proxy squid unused

© Copyright IBM Corp. 2008 35

The status unused indicates that the Squid server is not started.

2. Starting the server for the first time

To start the Squid server, run the following command

service squid start

Starting WWW-proxy squid (/var/cache/squid) done

After the startup is completed, verify the status of the Squid server by running:

service squid status

Checking for WWW-proxy squid running

As shown, the Squid server is running as expected.

3. Restarting the server

Another useful functionality is the restart where it is possible to stop and start

the server with one single command. To restart the Squid server, run the

following command:

service squid restart

Shutting down WWW-proxy squid done

Starting WWW-proxy squid (/var/cache/squid) done

Once the restart completes, verify the status of the Squid server by running:

service squid status

Checking for WWW-proxy squid unused

As expected, the Squid server is running again.

4. Stopping the server

To stop the Squid server, run the following command:

service squid stop

Shutting down WWW-proxy squid done

Again, the status can be verified by running:

service squid status

Checking for WWW-proxy squid unused

As expected, the Squid server is not running anymore.

To start the Squid server at boot time, the command chkconfig is used. Decide first

in which runlevel the Squid server should start. Runlevels are used to coordinate

the startup of services during boot time. In the following example, the runlevels 3

and 5 are used as both support networking:

chkconfig --level 35 squid on

To verify the setup use

chkconfig --list squid

squid 0:off 1:off 2:off 3:on 4:off 5:on 6:off

36 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Now, the Squid server starts during boot time of runlevels 3 and 5. To deactivate

this behavior again, run:

chkconfig squid off

Again, to verify the setup use

chkconfig --list squid

squid 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Basic configuration of Squid

In SUSE Linux Enterprise Server 10 SP2, a version of Squid 2.5 is included. The

documentation for this version is delivered within the Squid RPM package. It

includes several examples of possible configurations and is stored in

/usr/share/doc/packages/squid.

To cover all the configuration scenarios is beyond the scope of this whitepaper. As

an example for a Squid configuration, the setup for a reverse proxy is given. Refer

to the documentation for additional information.

Configuring the Squid server as a reverse proxy

Reverse proxy cache, also known as Web server acceleration, is a method of

reducing the load on a busy Web server by using a Web cache between the server

and the Internet. Another benefit is improved security. Additionally it is one of

many ways to improve the scalability without increasing the maintenance of the

server too much. A good use case of a reverse proxy is to reduce the workload on

a Web server that provides both static and dynamic content. The static content can

be cached on the reverse proxy while the Web server is freed up to better handle

the dynamic content.

In the scenario where the Web server is running on a different machine, the

configuration of the Squid server in /etc/squid/squid.conf looks like the

following:

http_port 80 # Port of Squid proxy

httpd_accel_host <your_webservers_ip> # IP address of Web server

httpd_accel_port 80 # Port of Web server

httpd_accel_single_host on # Forward uncached requests to single host

httpd_accel_with_proxy on

httpd_accel_uses_host_header off

If the Web server runs on the same machine as the Squid server is running, the

Web server must be re-configured to run on a different port than 80, e.g. 81. The

reason is that clients connect to the Squid server which acts between the clients

and the Web server. Therefore, the configuration in /etc/squid/squid.conf needs to

be modified to redirect requests to port 81 of the local machine:

http_port 80 # Port of Squid proxy

httpd_accel_host localhost # IP address of Web server

httpd_accel_port 81 # Port of Web server

httpd_accel_single_host on # Forward uncached requests to single host

httpd_accel_with_proxy on

httpd_accel_uses_host_header off

Chapter 5. Setup of Caches 37

Setup of memcached

Memcached is a distributed memory system for caching purposes. In general it is

used to speed up communication between a Web application and a database. The

result is to reduce response time for highly frequented Web pages and lesser load

of the database server.

There are several client APIs available to access the memcached server. All of the

programming languages described in this book, Java, PHP, Perl, Python and Ruby,

are supported with a memcached client API.

There are various public Web sites which make use of memcached such as

SourceForge, Wikipedia, YouTube, Facebook and many others.

More information is available on the memcached project Web page at

http://www.danga.com/memcached.

Installation of memcached

Memcached is not part of SUSE Linux Enterprise Server 10 SP2 itself. At the

moment, packages for memcached are only available from the Internet. The official

Web site for memcached is http://www.danga.com/memcached/download.bml.

At time of writing, the latest version is 1.2.5.

Prior to compiling the sources, other dependent packages such as gcc must be

installed:

yast -i gcc

Process the following steps to compile and install memcached:

tar xzf memcached-1.2.5.tar.gz

cd memcached-1.2.5

./configure --prefix=""

make

make install

For the configure command, the parameter prefix is set to an empty string to avoid

the installation moving files to a location other than that required by memcached.

Verification of the memcached installation

To verify the build and installation of memcached, run the following command:

make test

This runs several tests for the memcached and report success or any kind of

failure.

Lifecycle of memcached

The memcached service can be started up with several command line options.

Memcached daemons can be started on as many spare machines as required. The

memcached daemon has no configuration file, just a few command line options.

For example to start memcached as a daemon process using 2GB of memory and

38 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

listening on IP 10.0.0.40 on port 11211. The user name needs to be submitted only

for the case when running as root. Start memcached by running the following

command:

 # memcached -d -m 2048 -l 10.0.0.40 -p 11211 -u root

To get an overview for all command line options, refer to the memcached

documentation.

Note: Memcached lacks authentication and security features, meaning it should

only be used on servers with an appropriate firewall set up. By default,

memcached uses the port 11211.

The memcached daemon process can be stopped by running the following

command:

killproc memcached

Chapter 5. Setup of Caches 39

40 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Chapter 6. Setup of AJAX support

Web 2.0 applications are getting more flexible and more dynamic due to the

enablement of functionalities like "Asynchronous JavaScript and XML" (AJAX) or

"Drag and Drop". Several frameworks have been created to offer a set of these

functionality in a bundled package. The Dojo toolkit is one of the most popular

frameworks which offers a lot of support to the developer of Web 2.0 applications.

Installation of the Dojo Toolkit

The installation of the Dojo toolkit is easy to handle. Right now there are no RPM

packages available, but a tarball is available from the Dojo project Web site at

http://dojotoolkit.org.

Extract the tarball and move the extracted files into a folder where the Web server

has access to. The example below shows how to extract the tarball and move the

content into the folder /srv/www/htdocs.

tar xzf dojo-release-1.1.1.tar.gz

mv dojo-release-1.1.1 /srv/www/htdocs

Example for using Dojo

This section shows how to create an example which displays the current time,

updated every second.

The Apache HTTP server needs to be setup to support PHP and Dojo as

previously described. PHP scripts need to have the executable flag set.

To give an example, two files need to be created. The first, time.html, should be

placed in the /srv/www/htdocs folder. It should include the following source

code:

© Copyright IBM Corp. 2008 41

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Dojo example: AJAX clock</title>

 <script type="text/javascript" src="dojo-release-1.1.1/dojo/dojo.js"

 djConfig="parseOnLoad: true"></script>

 <style type="text/css">

 @import "dojo-release-1.1.1/dijit/themes/tundra/tundra.css";

 @import "dojo-release-1.1.1/dojo/resources/dojo.css";

 </style>

 <style type="text/css">

 #error, #main {

 margin: auto;

 margin-top: 120px;

 text-align: center

 }

 #error {

 font-size: 120%;

 }

 #main input,button {

 font-size: 400%; width: 250px

 }

 </style>

 <script type="text/javascript">

 dojo.require("dojo.parser");

 dojo.require("dojox.timing");

 dojo.require("dijit.form.TextBox");

 dojo.require("dijit.form.Button");

 var timer;

 var startClock = function() {

 timer.start();

 }

 var stopClock = function() {

 timer.stop();

 }

 var getCurrentTime = function() {

 console.debug("Timer ticked: Requesting time from server")

 // Performs the AJAX request to the URL specified;

 // After the request is sent and the response is received,

 // the load event is triggered, which in turn sets the new

 // value of the clock widget.

 dojo.xhrGet({

 url: "http://localhost/time.php",

 handleAs: "text",

 timeout: 4000,

 load: function(response) {

 dojo.byId("error").innerHTML = "";

 dijit.byId("clock").setValue(response);

 },

 error: function(response) {

 dojo.byId("error").innerHTML = response;

 }

 });

 }

42 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

dojo.addOnLoad(function() {

 // Create a new timer that fires a tick every second

 timer = new dojox.timing.Timer(1000);

 // Every tick will lead to updating the text box with the current

 //time value from the server

 timer.onTick = getCurrentTime;

 dojo.connect(dojo.byId("clock-start"), ’onclick’, startClock);

 dojo.connect(dojo.byId("clock-stop"), ’onclick’, stopClock);

 });

 </script>

</head>

<body class="tundra">

 <div id="error"></div>

 <div id="main">

 <input id="clock" dojoType="dijit.form.TextBox" style="" value="" />

 <button id="clock-start" dojoType="dijit.form.Button">Start the clock</button>

 <button id="clock-stop" dojoType="dijit.form.Button">Stop the clock</button>

 </div>

</body>

The second file, time.php, is stored in the /srv/www/htdocs folder also. It should

include the following source code:

<?php

 // Returns the server time as HH:MM:SS

 echo (date ("H").":".date("i").":".date("s"));

?>

To run the example, a Web browser needs to be opened on the machine where the

Web server is running and pointed to the URL http://localhost/time.html

Chapter 6. Setup of AJAX support 43

44 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Appendix. Packages for the Web 2.0 stack

The following table includes an overview of all packages used in this document

 Table 2. Package overview of Web 2.0 stack in SUSE Linux Enterprise Server 10 SP2

Component Package Name Version Source

MySQL mysql 5.0.26-12 SLES10 SP2

mysql-client 5.0.26-12 SLES10 SP2

PostgreSQL postgresql 8.1.11-0.2 SLES10 SP2

postgresql-server 8.1.11-0.2 SLES10 SP2

Apache HTTP server apache2 2.2.3-16.18 SLES10 SP2

apache2-devel 2.2.3-16.18 SLES10 SP2

apache2-doc 2.2.3-16.18 SLES10 SP2

apache2-example-
pages

2.2.3-16.18 SLES10 SP2

apache2-prefork 2.2.3-16.18 SLES10 SP2

apache2-mod_php5 5.2.5-9.5 SLES10 SP2

apache2-mod_perl 2.0.2-14.2 SLES10 SP2

apache2-mod_python 3.1.3-60.9 SLES10 SP2

mod_ruby 1.2.6 Internet Download at

http://
www.modruby.net/
en/index.rbx/
mod_ruby/
download.html

eruby 1.0.5-13.3 SLES10 SDK

libpar1 1.2.2-13.2 SLES10 SP2

libapr1–devel 1.2.2-13.2 SLES10 SP2

libapr-util1 1.2.2-13.2 SLES10 SP2

libapr-util1-devel 1.2.2-13.2 SLES10 SP2

Apache Tomcat tomcat5 5.0.30-27.26 SLES10 SP2

tomcat5-webapps 5.0.30-27.26 SLES10 SP2

tomcat5-admin-
webapps

5.0.30-27.26 SLES10 SP2

PHP php5-mysql 5.2.5-9.5 SLES10 SP2

php5-pgsql 5.2.5-9.5 SLES10 SP2

Perl perl-DBI 1.50-13.2 SLES10 SP2

perl-DBD-mysql 3.0002-15.2 SLES10 SP2

© Copyright IBM Corp. 2008 45

Table 2. Package overview of Web 2.0 stack in SUSE Linux Enterprise Server 10

SP2 (continued)

Component Package Name Version Source

perl-DBD-Pg 1.43-13.4 SLES10 SDK

Python python-mysql 1.2.0-17.2 SLES10 SP2

PyGreSQL 3.7-14.2 SLES10 SP2

Java java-1_5_0-ibm 1.5.0_sr7-0.2 SLES10 SP2

java-1_5_0-ibm-devel 1.5.0_sr7-0.2 SLES10 SP2

jpackage-utils 1.6.3-18.4 SLES10 SP2

mysql-connector-java 5.1.6 Internet Download at

http://
dev.mysql.com/
downloads/
connector/j/5.1.html

postgresql-jdbc 8.1.11-0.2 SLES10 SP2

Ruby ruby 1.8.4-17.16 SLES10 SDK

ruby-devel 1.8.4-17.16 SLES10 SDK

rubygems 0.9.2-4.3 SLES10 SDK includes

0.9.2 - Version

upgrade from

Internet

rubygem-rails 2.0.2-0.3 SLES10 SDK

rubygem-rake 0.8.1-0.3 SLES10SDK

rubygem-daemons 0.4.4-1.4 SLES10SDK

rubygem-mongrel 0.3.13-2.4 SLES10 SDK

ruby-mysql 2.7.1-1.4 SLES10 SDK

rubygem-ruby-
postgres

0.7.1–2006.04.06-2.4 SLES10 SDK

Squid squid 2.5STABLE12-18.9 SLES10 SP2

memcached memcached 1.2.5-1 Internet Download at

http://
www.danga.com/
memcached/
download.bml

Dojo dojo-release 1.1.1 Internet Download at

http://
dojotoolkit.org/
downloads

46 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY

10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

© Copyright IBM Corp. 2008 47

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of the International Business Machines

Corporation in the United States, other countries, or both:

developerWorks, HiperSockets, IBM, OS/2, System z, z/VM

The following terms are trademarks of other companies:

Java, JavaScript, and all Java-based trademarks are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft

Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names may be trademarks or service marks

of others.

48 Setting up a Web 2.0 stack on SLES10 SP2 (August 2008)

����

	Contents
	Chapter 1. Introduction
	What is Web 2.0?
	The Web 2.0 stack components
	Applications exploiting the Web 2.0 stack
	Web 2.0 on Linux on System z
	System requirements for the Web 2.0 stack
	Assumptions for this whitepaper
	Where to find this document

	Chapter 2. Setup of Databases
	Setup of MySQL
	Installation of MySQL
	Verifying the MySQL installation

	Lifecycle of MySQL
	Basic configuration of MySQL

	Setup of PostgreSQL
	Installation of PostgreSQL
	Verifying the PostgreSQL installation

	Lifecycle of PostgreSQL
	Basic configuration of PostgreSQL

	Chapter 3. Setup of Apache HTTP Server
	Installation of Apache HTTP Server
	Verification of the Apache HTTP Server installation

	Lifecycle of Apache HTTP Server
	Overview of Apache HTTP server modules
	Adding support for PHP
	Installation of mod_php
	Creation of a PHP Hello World! Web example
	Database connectors for PHP

	Adding support for Perl
	Installation of mod_perl
	Creation of a Perl Hello World! example
	Database connectors for Perl
	Installing additional Perl modules using CPAN

	Adding support for Python
	Installation of mod_python
	Creation of a Python Hello World! example
	Database connectors for Python

	Adding support for Ruby
	Installation of mod_ruby
	Installation of eRuby
	Creation of a Ruby CGI Hello World! example
	Creation of a Ruby Server Page Hello World! example
	Database connectors for Ruby
	Installing additional Ruby libraries using RubyGems
	Setup of Ruby on Rails
	Installation of Ruby on Rails
	Creation of a Ruby on Rails example
	Deployment of Ruby on Rails applications

	Chapter 4. Setup of Apache Tomcat
	Installation of Apache Tomcat
	Verifying the Java installation
	Verifying the Apache Tomcat installation
	Important folders in Apache Tomcat

	Lifecycle of Apache Tomcat
	The Apache Tomcat administration tools
	Adding support for JSP and Servlet API
	Installation of JSP and Servlet API libraries
	Creation of a JSP Hello World! example
	Creation of a Servlet Hello World! example

	Adding Database connectors
	Setup of MySQL connector
	Setup of PostgreSQL connector

	Chapter 5. Setup of Caches
	Setup of Squid
	Installation of Squid
	Verification of the Squid installation

	Lifecycle of Squid
	Basic configuration of Squid
	Configuring the Squid server as a reverse proxy

	Setup of memcached
	Installation of memcached
	Verification of the memcached installation

	Lifecycle of memcached

	Chapter 6. Setup of AJAX support
	Installation of the Dojo Toolkit
	Example for using Dojo

	Appendix. Packages for the Web 2.0 stack
	Notices
	Trademarks

