
Linux on System z

How to use FC-attached SCSI devices with
Linux on System z
Development stream (Kernel 2.6.35)

SC33-8413-05

���

Linux on System z

How to use FC-attached SCSI devices with
Linux on System z
Development stream (Kernel 2.6.35)

SC33-8413-05

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 89.

This edition applies to the Linux on System z Development stream for kernel 2.6.35 and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Summary of changes . vii
Updates for kernel 2.6.35 . vii
Updates for kernel 2.6.33 . vii
Updates for kernel 2.6.32 . vii

About this document . ix
Who should read this document ix
How this document is organized ix
Conventions used in this book. x

Hexadecimal numbers. x
Highlighting . xi

Other Linux on System z publications xi
Where to find more information xi

Finding IBM books. xii
Supported hardware . xii

Chapter 1. Introducing SAN and FCP 1
The zfcp device driver. 2

Chapter 2. Using N_Port ID Virtualization. 3

Chapter 3. Configuring FCP devices. 5
Step 1: Configuring the IODF . 5
Step 2: Defining zones . 6
Step 3: LUN masking . 6
Step 4: Attaching an FCP device under z/VM 7
Step 5: Configuring the zfcp device driver 7

Chapter 4. Naming SCSI devices persistently using udev 9
Using udev and zfcp . 9
Persistent SCSI device naming 9

Chapter 5. Improving system availability using multipathing. 13
Implementing multipathing with the multipath-tools 13
Configuring multipathing with the device-mapper and multipath-tools 14
Example of a multipath I/O configuration for IBM TotalStorage DS8000 15
Example of a multipath I/O configuration for IBM TotalStorage DS6000 16
Example of multipath I/O devices as physical volumes for LVM2. 17

Chapter 6. Booting the system using SCSI IPL 21
What you should know about SCSI IPL 21
Hardware requirements . 21
SAN addressing . 22
SCSI IPL parameters . 22
SCSI disk installation and preparation 24
SCSI dump . 25
Example: IODF definition . 26
Example: SCSI IPL of an LPAR 26
Example: SCSI IPL of a z/VM guest virtual machine 28
Further reading . 30

Chapter 7. Using SCSI tape and the lin_tape driver 31

© Copyright IBM Corp. 2006, 2010 iii

Chapter 8. Logging using the SCSI logging feature 33
Examples . 34

Chapter 9. Statistics available through sysfs 39
Accessing statistics in sysfs . 39

Example . 40
Interpreting the sysfs statistics 40

Chapter 10. I/O tracing using blktrace 43
Capturing and analyzing I/O data 43

Capturing data on a remote system 44
Parsing captured data . 44
Analyzing data and plotting histograms 45

Available data for I/O requests 46

Chapter 11. Debugging using zfcp traces 47
Interpreting trace records . 48

Chapter 12. Collecting FCP performance data with ziomon 49
What you should know about ziomon. 49
Building a kernel with ziomon 49
Preparing to use ziomon . 49
Working with the ziomon monitor 49

Starting the monitor . 50
Stopping the monitor . 51
Working with the results of monitoring 51

Chapter 13. Creating FCP performance reports 53
ziorep_config - Report on the multipath, SCSI, and FCP configuration 53

Example: Adapter report . 55
Example: Device report . 55
Example: Mapper report . 56

ziorep_utilization - Report on utilization details 56
Examples . 58

ziorep_traffic - Analyze systems I/O traffic through FCP adapters 60
Selecting devices . 61
Aggregating data . 62
Example: Summary (default) report 62
Example: Detailed report . 64

Chapter 14. Investigating the SAN fabric 67
zfcp_ping - Probe a port . 67

Example . 68
zfcp_show - Retrieve SAN details 68

Examples . 69

Chapter 15. Hints and tips . 71
Setting up TotalStorage DS8000 and DS6000 for FCP 71

Further information . 71
Troubleshooting NPIV . 72

Appendix. Traces . 73
SCSI trace . 73
HBA trace. 77
SAN trace. 81
Error recovery trace . 84

iv How to use FC-attached SCSI devices - Kernel 2.6.35

||
||
||
||
||

Trace records and meanings 85
Sample traces . 86

Notices . 89
Trademarks . 90

Glossary . 91

Index . 93

Contents v

vi How to use FC-attached SCSI devices - Kernel 2.6.35

Summary of changes

This revision reflects changes to the Development stream for kernel 2.6.35.

Updates for kernel 2.6.35
This revision contains changes for kernel 2.6.35.

New Information

v With version 2.1 of the HBA API package, you can use the zfcp_ping and
zfcp_show commands to investigate your SAN configuration and solve
configuration problems. (see Chapter 14, “Investigating the SAN fabric,” on page
67).

Changed Information

v None

Deleted Information

v None

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left of
the change.

Updates for kernel 2.6.33
This revision contains changes for kernel 2.6.33.

New Information

v None.

Changed Information

v None

Deleted Information

v Due to updates of the zfcp device driver to use common code Fibre Channel
definitions, the following fields have been deleted from the SAN trace (see “SAN
trace” on page 81):
– The field ls_code.
– The field s_id.
– The field d_id has been removed from the common transport (CT) response

trace.

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left of
the change.

Updates for kernel 2.6.32
This revision contains changes for kernel 2.6.32.

New Information

© Copyright IBM Corp. 2006, 2010 vii

v When booting from a SCSI boot device, you can now specify kernel parameters
in addition to the existing kernel parameters that are used by your boot
configuration, see Chapter 6, “Booting the system using SCSI IPL,” on page 21.

Changed Information

v None

Deleted Information

v None

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left of
the change.

viii How to use FC-attached SCSI devices - Kernel 2.6.35

About this document

This document describes the SCSI-over-Fibre Channel device driver (zfcp device
driver) and related system tools available for Linux® kernel 2.6.35 on IBM® System
z®.

In this document, System z is taken to include zSeries® in 64- and 31-bit mode.

The information provided in this document extends the information already available
in Device Drivers, Features, and Commands, SC33-8411, for the Development
stream.

Information provided in this document applies to Linux in general and does not
cover distribution specific topics. For information specific to the zfcp driver and
system tools available in your Linux distribution refer to the documentation provided
by your Linux distributor.

You can find the latest version of this document on developerWorks® at:
www.ibm.com/developerworks/linux/linux390/development_documentation.html

Who should read this document
This document is intended for Linux administrators and system programmers in
charge of a virtual Linux server farm that runs under z/VM® or natively on System z.

Any zfcp messages logged, for example messages found in /var/log/messages, are
alerts which usually require subsequent intervention by administrators. The new
traces described here provide additional information.

The zfcp traces can be used to advantage by:

v Service personnel who investigate problems

v System administrators with an intermediate or advanced level of FCP experience
who want to understand what is going on underneath the surface of zfcp

v SCSI device driver developers

v Hardware developers and testers

Note
This document is intended for expert users. Be sure you understand the
implications of running traces and debug tools before you attempt to perform
the tasks described in this document.

How this document is organized
The scope of this document is on how to configure, operate and troubleshoot Linux
on System z attached to a SAN environment. The following topics are discussed in
this document:

Chapter 1, “Introducing SAN and FCP,” on page 1 presents a general description of
FCP and SAN. It gives you a general description of the zfcp device driver and how
to configure the device driver.

© Copyright IBM Corp. 2006, 2010 ix

http://www.ibm.com/developerworks/linux/linux390/development_documentation.html
http://www.ibm.com/developerworks/linux/linux390/development_documentation.html

Chapter 2, “Using N_Port ID Virtualization,” on page 3 introduces N_Port
virtualization as it is available on System z9®, and how to use it for improved
access control and simplified system administration.

Chapter 3, “Configuring FCP devices,” on page 5 discusses the concepts of IODF,
zoning, LUN masking, and how to configure the zfcp driver.

Chapter 4, “Naming SCSI devices persistently using udev,” on page 9 explains how
udev can help you with persistent naming of SCSI devices.

Chapter 5, “Improving system availability using multipathing,” on page 13 describes
options and recommendations to improve system availability by using multipath disk
setups.

Chapter 6, “Booting the system using SCSI IPL,” on page 21 introduces the ability
to IPL a zSeries operating system from an FCP-attached SCSI device.

Chapter 7, “Using SCSI tape and the lin_tape driver,” on page 31 describes the
device driver for IBM tape drives (ibmtape).

Chapter 8, “Logging using the SCSI logging feature,” on page 33 contains a
detailed description about the available log areas and recommended log level
settings for certain debugging tasks.

Chapter 9, “Statistics available through sysfs,” on page 39 describes additional
statistics that the zfcp driver provides through sysfs.

Chapter 10, “I/O tracing using blktrace,” on page 43 describes how to use blktrace
to gather some of the zfcp performance statistics.

Chapter 11, “Debugging using zfcp traces,” on page 47 lists the different traces
available.

Chapter 12, “Collecting FCP performance data with ziomon,” on page 49 describes
the performance monitor ziomon.

Chapter 13, “Creating FCP performance reports,” on page 53 describes how you
can use the output from the performance monitor to create reports.

Chapter 14, “Investigating the SAN fabric,” on page 67 describes tools that can help
you to investigate your SAN configuration and solve configuration problems.

Chapter 15, “Hints and tips,” on page 71 offers help with common pitfalls, as well as
troubleshooting using different system facilities and tools.

Conventions used in this book
This section informs you on the styles, highlighting, and assumptions used
throughout the book.

Hexadecimal numbers
Mainframe books and Linux books tend to use different styles for writing
hexadecimal numbers. Thirty-one, for example, would typically read X'1F' in a
mainframe book and 0x1f in a Linux book.

x How to use FC-attached SCSI devices - Kernel 2.6.35

|
|

Because the Linux style is required in many commands and is also used in some
code samples, the Linux style is used throughout this book.

Highlighting
This book uses the following highlighting styles:

v Paths and URLs are highlighted in monospace.

v Variables are highlighted in <italics within angled brackets>.

v Commands in text are highlighted in bold.

v Input and output as normally seen on a computer screen is shown

within a screen frame.
Prompts are shown as number signs:
#

or, for clarity, including the current working directory:
[statistics]#

Other Linux on System z publications
Current versions of the Linux on System z publications can be found at:
www.ibm.com/developerworks/linux/linux390/documentation_dev.html

v Device Drivers, Features, and Commands, SC33-8411

v Using the Dump Tools, SC33-8412

v How to use FC-attached SCSI devices with Linux on System z, SC33-8413

v How to Improve Performance with PAV, SC33-8414

v How to use Execute-in-Place Technology with Linux on z/VM, SC34-2594

v How to Set up a Terminal Server Environment on z/VM, SC34-2596

v Kernel Messages

v libica Programmer’s Reference, SC34-2602

Where to find more information
Books and papers:

v Running Linux on IBM System z9 and zSeries under z/VM, SG24-6311 available
from
www.ibm.com/redbooks/

v Introducing N_Port Identifier Virtualization for IBM System z9, REDP-4125,
available at:
www.ibm.com/redbooks/abstracts/redp4125.html

Web resources:

v IBM mainframe connectivity:
www.ibm.com/systems/z/connectivity/

Note
For prerequisites and restrictions for the tools and device drivers described
here refer to the Development stream pages on developerWorks at:
www.ibm.com/developerworks/linux/linux390/development_restrictions.html

About this document xi

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.redbooks.ibm.com/abstracts/sg246311.html
http://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/abstracts/redp4125.html
http://www.redbooks.ibm.com/redbooks.nsf/redpapers/
http://www.ibm.com/systems/z/connectivity/
http://www.ibm.com/developerworks/linux/linux390/development_restrictions.html

Finding IBM books
The PDF version of this book contains URL links to much of the referenced
literature. For some of the referenced IBM books, links have been omitted to avoid
pointing to a particular edition of a book. You can locate the latest versions of the
referenced IBM books through the IBM Publications Center at:
www.ibm.com/shop/publications/order

Supported hardware
Supported Fibre Channel adapters for IBM System z servers include:

v FICON®

v FICON Express

v FICON Express2

v FICON Express4 (System z9 and later)

v FICON Express8 (System z10™)

A list of supported Fibre Channel devices (switches, tape drives and libraries,
storage boxes) can be found at the following website:

IBM eServer™ I/O Connectivity on zSeries mainframe servers:
www.ibm.com/systems/z/connectivity/

Also see IBM zSeries support of Fibre Channel Protocol for SCSI and FCP
channels at:
www.ibm.com/servers/eserver/zseries/connectivity/fcp.html

To find out whether a combination of device, Linux distribution, and IBM eServer
zSeries is supported, see the individual interoperability matrix for each storage
device. The interoperability matrices are available at:
www.ibm.com/systems/support/storage/config/ssic/index.jsp

For example, the interoperability matrix for IBM TotalStorage® DS8000® can be
found at IBM DS8000 series: Interoperability matrix - IBM TotalStorage Disk Storage
Systems:
www.ibm.com/servers/storage/disk/ds8000/pdf/ds8000-matrix.pdf

xii How to use FC-attached SCSI devices - Kernel 2.6.35

http://www.ibm.com/shop/publications/order
http://www.ibm.com/systems/z/connectivity/
http://www.ibm.com/systems/z/connectivity/fcp.html
http://www.ibm.com/systems/support/storage/config/ssic/index.jsp
http://www.ibm.com/servers/storage/disk/ds8000/pdf/ds8000-matrix.pdf

Chapter 1. Introducing SAN and FCP

Storage area networks (SANs) are specialized networks dedicated to the transport
of mass storage data. SANs are typically used to connect large servers in
enterprise environments with storage systems and tape libraries. These specialized
networks provide reliable and fast data paths between the servers and their storage
devices. Major advantages of a SAN include:

v Consolidating storage devices

v Physically separating storage devices from the servers

v Sharing storage devices among different servers

A typical SAN consists of the following components:

v Servers

v Storage devices

v Switches

Today the most common SAN technology used is the Fibre Channel Protocol
(FCP). Within this technology the traditional SCSI protocol is used to address and
transfer raw data blocks between the servers and the storage devices. This is in
contrast to other storage communication protocols like the Common Internet File
System (CIFS) or the Network File System (NFS) which operate on file level.

Figure 1 shows how the zfcp device driver allows you to connect Linux on System z
to a SAN using FCP. For more details on the zfcp device driver, see “The zfcp
device driver” on page 2.

Each server is equipped with at least one host bus adapter (HBA) which provides
the physical connection to the SAN. In most environments there are multiple HBAs
installed per server to increase the I/O bandwidth and improve data availability. For
System z any supported FCP adapter, such as FICON Express2 and FICON
Express4, can be used for this purpose. In addition, a single Fibre Channel adapter
can be shared among multiple operating system images.

Storage devices used in SANs are disk storage systems and tape libraries. A disk
storage system comprises multiple hard drives combined into one or more RAID
arrays and a controller communicating through one or more HBAs with the SAN.
The usage of RAID arrays and multiple HBAs increases the I/O bandwidth and
improves data availability. The RAID arrays are used to store the user data and the
controller is responsible for providing functions such as I/O processing, data
caching, and system management. The storage available on the RAID arrays is
usually divided into smaller units that are then accessible as a single, logical
storage device, called a logical unit number (LUN), from the SAN.

Figure 1. SAN connected to mainframe through FCP

© Copyright IBM Corp. 2006, 2010 1

Fibre Channel switches connect multiple servers with their storage devices to form
a fiber channel fabric. A fiber channel fabric is a network of Fibre Channel devices
that allows communication and provides functions such a device lookup or access
control. To address a physical Fibre Channel port within a Fibre Channel fabric
each port is assigned a unique identifier called worldwide port name (WWPN).

The zfcp device driver
The zfcp device driver supports SCSI-over-Fibre Channel host bus adapters for
Linux on mainframes. It is the backend for a driver and software stack that includes
other parts of the Linux SCSI stack as well as block request and multipathing
functions, file systems, and SCSI applications. Figure 2. shows how the zfcp device
driver fits into Linux and the SCSI stack.

The zfcp device driver is discussed in detail in Device Drivers, Features, and
Commands, SC33-8411.

Figure 2. The zfcp device driver is a low level SCSI device driver

2 How to use FC-attached SCSI devices - Kernel 2.6.35

http://www.ibm.com/developerworks/linux/linux390/development_documentation.html
http://www.ibm.com/developerworks/linux/linux390/development_documentation.html

Chapter 2. Using N_Port ID Virtualization

Devices attach to the SAN fabric by logging in to it. The device ports are called
target ports or also N_ports. Figure 3 shows an example of a mainframe with two
Linux instances and three devices logged in to the SAN fabric.

In the example, a mainframe is attached to the Fibre Channel fabric through one
physical HBA that is shared by the two Linux instances. Consequently, both Linux
instances are known to the SAN by the same shared WWPN. Thus, from the point
of view of the SAN, the Linux instances become indistinguishable from each other.
This is shown in Figure 4

N_Port ID Virtualization (NPIV) utilizes a recent extension to the International
Committee for Information Technology Standardization (INCITS) Fibre Channel
standard. This extension allows a Fibre Channel HBA to log in multiple times to a
Fibre Channel fabric using a single physical port (N_Port). (The previous
implementation of the standard required a single physical FCP channel for each
login.)

Each login uses a different unique port name, and the switch fabric assigns a
unique Fibre Channel N_Port identifier (N_Port ID) for each login. These virtualized
Fibre Channel N_Port IDs allow a physical Fibre Channel port to appear as
multiple, distinct ports, providing separate port identification and security zoning
within the fabric for each operating system image. The I/O transactions of each
operating system image are separately identified, managed, and transmitted, and
are processed as if each operating system image had its own unique physical

System z

SAN Fabric

Linux A

zfcp

Linux B

zfcp

Target ports
HBA A

HBA B

Worldwide port name

xx.xx...xx

FCP adapter

Physical HBA

Logical HBA

Figure 3. Target ports in a SAN fabric

System z

SAN Fabric

Linux B

I/O

traffic
FCP adapter

WWPN: xx.xx...xxPhysical HBA

Logical HBA

Linux A

WWPN: aa.aa...aa

WWPN: bb.bb...bb

HBA A

HBA B

Figure 4. I/O traffic from two Linux instances are indistinguishable

© Copyright IBM Corp. 2006, 2010 3

N_Port (see Figure 5).

NPIV allows you to implement access control using security zoning. Returning to
our example in Figure 4 on page 3, without NPIV all storage devices are visible to
the Linux instances that share one HBA. With NPIV, you can define what storage
devices the different Linux instances should be able to access.

NPIV support can be configured on the SE per CHPID and LPAR for an FCP
adapter. The zfcp device driver supports NPIV error messages and adapter
attributes. For tips on troubleshooting NPIV, see Chapter 15, “Hints and tips,” on
page 71.

NPIV is available as of IBM System z9 and is applicable to most FICON features
supported on System z9 channel type FCP, except FICON Express. For more
details on configuring NPIV, see Introducing N_Port Identifier Virtualization for IBM
System z9, REDP-4125, available at:
www.redbooks.ibm.com/abstracts/redp4125.html

System z

SAN Fabric

Linux A

Linux B

A B A AB B

WWPN: aa.aa...aa

WWPN: bb.bb...bb

FCP adapter

HBA A

HBA B

Figure 5. NPIV allows initiators of I/O and their traffic to be distinguished in the SAN

4 How to use FC-attached SCSI devices - Kernel 2.6.35

http://www.redbooks.ibm.com/abstracts/redp4125.html
http://www.redbooks.ibm.com/abstracts/redp4125.html
http://www.redbooks.ibm.com/redbooks.nsf/redpapers/

Chapter 3. Configuring FCP devices

Before you begin, ensure that:

v A Fibre Channel host adapter is plugged into the mainframe

v The Fibre Channel host adapter is connected to a Fibre Channel SAN through a
switched fabric connection (unless a point-to-point connection is used)

v The target device is connected to the same Fibre Channel SAN (or through a
point-to-point connection to the Fibre Channel host adapter).

To access a Fibre Channel-attached SCSI device follow these configuration steps:

1. Configure a Fibre Channel host adapter within the mainframe (IODF).

2. Configure zoning for the Fibre Channel host adapter to gain access to desired
target ports within a SAN.

3. Configure LUN masking for the Fibre Channel host adapter at the target device
to gain access to desired LUNs.

4. In Linux, configure target ports and LUNs of the SCSI device at the target port
for use of zfcp.

Note: If the Fibre Channel host adapter is directly attached to a target device
(point-to-point connection), step 2 is not needed.

The configuration steps are explained in more detail in the following sections.

Step 1: Configuring the IODF
This example shows how to configure two ports of a FICON or FICON Express
adapter card for FCP.

1. Define two FCP CHPIDs. Both are given the number 50, one for channel
subsystem 0 and one for channel subsystem 1:

CHPID PATH=(CSS(0),50),SHARED, *
PARTITION=((LP01,LP02,LP03,LP04,LP05,LP06,LP07,LP08,LP09*
,LP10,LP11,LP12,LP13,LP14,LP15),(=)),PCHID=160,TYPE=FCP

CHPID PATH=(CSS(1),50),SHARED, *
PARTITION=((LP16,LP17,LP18,LP19,LP20,LP21,LP22,LP23,LP24*
,LP25,LP26,LP27,LP28,LP29,LP30),(=)),PCHID=161,TYPE=FCP

2. Assign FCP control unit 5402 to the new CHPIDs:

CNTLUNIT CUNUMBR=5402,PATH=((CSS(0),50),(CSS(1),50)),UNIT=FCP

3. Define several logical FCP adapters starting with device number 5400:

IODEVICE ADDRESS=(5400,002),CUNUMBR=(5402), *
PARTITION=((CSS(0),LP01),(CSS(1),LP16)),UNIT=FCP

IODEVICE ADDRESS=(5402,002),CUNUMBR=(5402), *
PARTITION=((CSS(0),LP02),(CSS(1),LP17)),UNIT=FCP

...

IODEVICE ADDRESS=(5460,144),CUNUMBR=(5402), *
PARTITION=((CSS(0),LP15),(CSS(1),LP30)),UNIT=FCP

© Copyright IBM Corp. 2006, 2010 5

Step 2: Defining zones
There are different kinds of zones in a switch or fabric. In port zoning a zone is a
set of Fibre Channel ports where each Fibre Channel port is specified by the port
number at the switch or fabric to which it is connected. Port zoning allows devices
attached to particular ports on the switch to communicate only with devices
attached to other ports in the same zone. The switch keeps a table of ports that are
allowed to communicate with each other.

In WWN zoning a zone is a set of Fibre Channel ports where each Fibre Channel
port is specified by its worldwide name (WWN). WWN zoning allows a device to
communicate only with other devices whose WWNs are included in the same zone,
see Figure 6.

In both cases you need to ensure that the Fibre Channel host adapter and the
target port you want to access are members of the same zone. Otherwise it is
impossible to gain access to the target port.

For further information on how to configure zoning for your setup, refer to the
documentation of your switch.

Step 3: LUN masking
The purpose of LUN masking is to control Linux instance access to the LUNs.
Within a storage device (for example, IBM DS8000) it is usually possible to
configure which Fibre Channel port can access a LUN, see Figure 7 on page 7. You
must ensure that the WWPN of the Fibre Channel host adapter is allowed to access
the desired LUN. Otherwise you might not be able to access the SCSI device. See
also “Troubleshooting NPIV” on page 72.

1

5

2

4

3

System z

Linux A

Linux B

WWPN: aa.aa...aa

WWPN: bb.bb...bb

FCP adapter

HBA A

HBA B

Zone 1

Zone 2

Switch

RAID

Figure 6. Zoning partitions storage resources.

6 How to use FC-attached SCSI devices - Kernel 2.6.35

For further information on how to configure LUN masking for your setup, refer to the
documentation of your storage device.

Step 4: Attaching an FCP device under z/VM
These instructions apply to z/VM only. The device number of the FCP adapter must
be available in your z/VM guest.

If the device number is not available in your z/VM guest already, do either:

v Update the z/VM user directory. To do this, add a DEDICATE statement to the
guest directory:
DEDICATE 5400 5400

v Use the CP ATTACH command to dynamically add the path. To do this, issue a
command of the form:

CP ATTACH 5400 to <userid>

Note that the user directory still needs to be updated in order for the device to
survive a log off.

Step 5: Configuring the zfcp device driver
Once the adapter is online and the port and LUN are properly configured, a new
SCSI device is registered at the SCSI stack.

Example:

v To set zfcp adapter 0.0.5400 online, issue the following command:

chccwdev --online 0.0.5400
Setting device 0.0.5400 online
Done

The chccwdev command is part of s390-tools. For a description of the command
see Device Drivers, Features, and Commands, SC33-8411

v The zfcp device driver automatically attaches remote storage ports to the adapter
configuration at adapter activation as well as when remote storage ports are
added. If you are unsure whether all ports are attached, you can use the
port_rescan attribute. Issue:

Disk system

A

B

A

B

B
SAN Fabric

System z

Linux A

Linux B

WWPN: aa.aa...aa

WWPN: bb.bb...bb

FCP adapter

HBA A

HBA B

Figure 7. LUN masking where Linux A has access to two disks and Linux B has access to
three disks in a disk system

Chapter 3. Configuring FCP devices 7

http://www.ibm.com/developerworks/linux/linux390/development_documentation.html

echo 1 > /sys/bus/ccw/drivers/zfcp/0.0.5400/port_rescan

v To configure a LUN 0x4010403200000000, issue the following command:

cd /sys/bus/ccw/drivers/zfcp/0.0.5400
echo 0x4010403200000000 > 0x500507630303c562/unit_add

If the port and the LUN specify a disk in a storage subsystem you should now see
a new SCSI disk:

lsscsi
[0:0:0:0] disk IBM 2107900 .309 /dev/sda
lszfcp -D
0.0.5400/0x500507630303c562/0x4010403200000000 0:0:0:0

The lszfcp command is part of s390-tools. For a description of the command see
Device Drivers, Features, and Commands, SC33-8411

Now the device, for example /dev/sda, can be used. In our example the disk can
be formatted and mounted. Examples:

v To format a SCSI disk, issue:

fdisk /dev/sda
...

v To generate a file system, issue:

mke2fs -j /dev/sda1

v To mount partition 1 of the SCSI disk, issue:

mount -t ext3 /dev/sda1 /mnt

8 How to use FC-attached SCSI devices - Kernel 2.6.35

http://www.ibm.com/developerworks/linux/linux390/development_documentation.html

Chapter 4. Naming SCSI devices persistently using udev

This chapter describes how to use udev with zfcp and persistent SCSI device
naming.

As of kernel 2.6 Linux distributions use udev as the mechanism to handle devices
that appear or disappear at runtime and to provide a /dev directory that contains a
minimal set of device nodes for devices that are actually used. The udev utility uses
the /sys file system and the hotplug mechanism. Whenever a new device is
detected, the kernel creates the entries in the /sys file system and creates hotplug
events. Finally, the hotplug mechanism triggers udev, which uses a set of rules to
create the device node for the detected device.

An additional benefit of udev is the possibility to create persistent device names. In
contrast to the usual Linux device names, persistent names are independent of the
order in which the devices appear in the system. Based on a given unique property
a device can be recognized and will always be accessible under the same name in
/dev.

Using udev and zfcp
Assuming an example system with two FCP disks and udev, use the following
commands to make the disks accessible:

cd /sys/bus/ccw/drivers/zfcp/0.0.54ae/
echo 1 >online
cd 0x5005076300cb93cb
echo 0x512e000000000000 > unit_add
echo 0x512f000000000000 > unit_add

No further steps are necessary to create the device files if udev is installed and set
up correctly. The new device nodes /dev/sda and /dev/sdb are created automatically
and even the entries for the partitions on the disks, that is, /dev/sda1 will appear. If
the last two commands are issued in reversed order the naming of the disks will
also be reversed. The sd devices /dev/sda, /dev/sdb, and so on, are not persistent.
If one device disappears and another appears on the system, the new device might
take the free name.

You should not directly access a SCSI device in a FC SAN environment: The
storage server might decide to failover to its backup controller, forcing the host
systems to access the storage over another path. If there is no multipath setup in
place, access to the storage is then lost. Using multipathing, the names /dev/sda,
/dev/sdb, and so on, do not matter, as multipathing automatically adds the SCSI
devices to the correct multipath device. See Chapter 5, “Improving system
availability using multipathing,” on page 13 for details.

Persistent SCSI device naming
With udev, you can define naming schemes that provide persistent SCSI device
naming. In persistent naming each device is always assigned the same unique
name, independent of the sequence in which the devices are discovered. If a
distribution has no predefined naming scheme for specific devices, or if a
customized naming scheme is required, you can extend the set of rules for udev.
Examples are given in the following paragraphs.

© Copyright IBM Corp. 2006, 2010 9

To display all information about a disk that is available to udev, use the udevinfo
command:

udevinfo -a -p /sys/class/scsi_generic/sg0

The udevinfo command starts with the device the node belongs to and then walks
up the device chain. For every device found, it prints all possibly useful attributes in
the udev key format. Only attributes within one device section may be used
together in one rule, to match the device for which the node will be created.

device ’/sys/class/scsi_generic/sg0’ has major:minor 21:0
looking at class device ’/sys/class/scsi_generic/sg0’:
SUBSYSTEM=="scsi_generic"
SYSFS{dev}=="21:0"
follow the "device"-link to the physical device:
looking at the device chain at ’/sys/devices/css0/0.0.000e/0.0.54ae/host0/rport-0:0-0/target0:0:0/0:0:0:0’:

BUS=="scsi"
ID=="0:0:0:0"
DRIVER=="sd"
SYSFS{device_blocked}=="0"
SYSFS{fcp_lun}=="0x512e000000000000"
SYSFS{hba_id}=="0.0.54ae"
SYSFS{iocounterbits}=="32"
SYSFS{iodone_cnt}=="0x3a0"
SYSFS{ioerr_cnt}=="0x1"
SYSFS{iorequest_cnt}=="0x3a0"
SYSFS{model}=="2105F20 "
SYSFS{queue_depth}=="32"
SYSFS{queue_type}=="simple"
SYSFS{rev}==".693"
SYSFS{scsi_level}=="4"
SYSFS{state}=="running"
SYSFS{timeout}=="30"
SYSFS{type}=="0"
SYSFS{vendor}=="IBM "
SYSFS{wwpn}=="0x5005076300cb93cb"
...

The combination of wwpn and fcp_lun provide a unique identifier for the device.
Based on this information an additional rule can be written.

Note: To avoid rules being overwritten in case of a udev update, keep additional
rules in an extra file (for example, /etc/udev/rules.d/10-local.rules).

For example, an additional rule to make this specific disk appear as
/dev/my_zfcp_disk is:

KERNEL=="sd*", SYSFS{wwpn}=="0x500507630310c562", \
SYSFS{fcp_lun}=="0x401040c300000000", NAME="%k", SYMLINK+="my_zfcp_disk%n"

Where:

%k refers to the kernel name for the device

%n is substituted by the number given by the kernel

A detailed description of the udev rules can be found on the udev man page.

The new rule will leave the original device names provided by the kernel intact and
add symbolic links with the new device names:

ll /dev/my_zfcp_disk*
lrwxrwxrwx 1 root root 3 Mar 14 16:14 /dev/my_zfcp_disk -> sda
lrwxrwxrwx 1 root root 4 Mar 14 16:14 /dev/my_zfcp_disk1 -> sda1

10 How to use FC-attached SCSI devices - Kernel 2.6.35

A more general rule that applies to all FCP disks and provides a generic persistent
name based on fcp_lun and WWPN can be written as:

KERNEL=="sd*[a-z]", SYMLINK+="scsi/%s{hba_id}-%s{wwpn}-%s{fcp_lun}/disk"
KERNEL=="sd*[0-9]", SYMLINK+="scsi/%s{hba_id}-%s{wwpn}-%s{fcp_lun}/part%n"

Where:

%s points to the information as it was given by the udevinfo command

With these rules, udev will create links similar to the following examples:

ll /dev/scsi/*/*
lrwxrwxrwx 1 root root 9 May 22 15:19

/dev/scsi/0.0.54ae-0x5005076300cb93cb-0x512e000000000000/disk -> ../../sda
lrwxrwxrwx 1 root root 10 May 22 15:19

/dev/scsi/0.0.54ae-0x5005076300cb93cb-0x512e000000000000/part1 -> ../../sda1
lrwxrwxrwx 1 root root 9 May 22 15:19

/dev/scsi/0.0.54ae-0x5005076300cb93cb-0x512f000000000000/disk -> ../../sdb
lrwxrwxrwx 1 root root 10 May 22 15:19

/dev/scsi/0.0.54ae-0x5005076300cb93cb-0x512f000000000000/part1 -> ../../sdb1

Chapter 4. Naming SCSI devices persistently using udev 11

12 How to use FC-attached SCSI devices - Kernel 2.6.35

Chapter 5. Improving system availability using multipathing

Multipath I/O provides failover and might improve performance. You can configure
multiple physical I/O paths between server nodes and storage arrays into a single
multipath device. Multipathing thus aggregates the physical I/O paths, creating a
new device that consists of the aggregated paths.

Linux multipathing provides I/O failover and path load sharing for multipathed block
devices. In Linux, multipathing is implemented with multi-path tools that provide a
user-space deamon for monitoring and an interface to the device mapper. The
device-mapper, which provides a container for configurations, maps block devices
to each other.

A single SCSI device (or a single zfcp unit) constitutes one physical path to the
storage. The multipath user-space configuration tool scans sysfs for SCSI devices
and then groups the paths into multipath devices. This mechanism that
automatically puts each detected SCSI device underneath the correct multipath
device is called coalescing.

Use a multipath setup to access SCSI storage in a FC SAN. The multipath device
automatically switches to an alternate path in case of an interruption on the storage
system controllers or due to maintenance on one path.

The multipath daemon has default configuration entries for most storage systems,
and thus you need only do basic configuration for these systems. This chapter
describes how to access, configure, and use FCP multipathing with Linux kernel 2.6
with minimal setup. This minimal setup uses the default configuration entries. The
following topics are included:

v Using multipath-tools to implement multipathing

v Using the device-mapper and multipath-tools to configure multipathing

Implementing multipathing with the multipath-tools
The multipath-tools project is an Open Source project that implements I/O
multipathing at the operating system level. The project delivers an architecture and
vendor-independent multipathing solution that is based on kernel components and
the following user-space tools:

v The kernel device-mapper module (dm_multipath)

v The hotplug kernel subsystem

v The device naming tool udev

v The user-space configuration tool multipath

v The user-space daemon multipathd

v The user-space configuration tool kpartx to create device maps from partition
tables

Redundant paths defined in Linux appear as separate SCSI devices, one for each
logical path (see Figure 8 on page 14). The device-mapper provides a single block
device for each logical unit (LU) and reroutes I/O over the available paths. You can
partition the device-mapper multipath I/O (MPIO) devices or use them as physical
volumes for LVM or software RAID.

You can use user-space components to set up the MPIO devices and automated
path retesting as follows:

© Copyright IBM Corp. 2006, 2010 13

v Use the multipath command to detect multiple paths to devices. It configures,
lists, and removes MPIO devices.

v Use the multipathd daemon to monitor paths. The daemon tests MPIO devices
for path failures and reactivates paths if they become available again.

Figure 8 shows an example multipath setup with two HBAs each for the mainframe
and the storage subsystem.

Configuring multipathing with the device-mapper and multipath-tools
The multipath-tools package includes settings for known storage subsystems in a
default hardware table, and no additional configuration is required for these devices.
You can specify additional device definitions in /etc/multipath.conf. If the file is
present, its content overrides the defaults. You must include the parameters for the
storage subsystem used either in the default hardware table or in the configuration
file. There is no man page available for this file.

Within the multipath-tools package there is a template configuration, see
/usr/share/doc/packages/multipathtools/multipath.conf.annotated. This file
contains a list of all options with short descriptions.

You can find more information about the MPIO at the following URL in the
Documentation section for the multipath-tools package:
http://christophe.varoqui.free.fr/

You can find more information about the kernel device-mapper components at:
http://sources.redhat.com/dm/

Storage subsystem

LU 1

System z

HBA 1

Linux

Device mapper

SCSI stack

zfcp

QDIO

/sys/block/dm-0

/sys/block/sda

/sys/block/sdb

HBA 2

HBA y

Switch

HBA x

/sysblock/sda

/sysblock/sdb

Figure 8. Multipathing with multipath-tools and device mapper

14 How to use FC-attached SCSI devices - Kernel 2.6.35

Example of a multipath I/O configuration for IBM TotalStorage DS8000
This example shows the special configuration for storage devices like IBM Total
Storage DS8000 with multibus as the path grouping policy.

1. Set the FCP channels online:

chccwdev -e 5222
Setting device 0.0.5222 online
Done
chccwdev -e 1722
Setting device 0.0.1722 online
Done

2. The zfcp device driver automatically attaches remote storage ports to the
adapter configuration at adapter activation as well as when remote storage ports
are added. If you are unsure whether all ports are attached, you can use the
port_rescan attribute. Issue, for example:

echo 1 > /sys/bus/ccw/drivers/zfcp/0.0.1722/port_rescan

Then configure the devices:

echo 0x401040d000000000 > /sys/bus/ccw/devices/zfcp/0.0.1722/0x500507630313c562/unit_add
echo 0x401040d100000000 > /sys/bus/ccw/devices/zfcp/0.0.1722/0x500507630313c562/unit_add
echo 0x401040d200000000 > /sys/bus/ccw/devices/zfcp/0.0.1722/0x500507630313c562/unit_add
echo 0x401040d300000000 > /sys/bus/ccw/devices/zfcp/0.0.1722/0x500507630313c562/unit_add
echo 0x401040d000000000 > /sys/bus/ccw/devices/zfcp/0.0.5222/0x500507630310c562/unit_add
echo 0x401040d100000000 > /sys/bus/ccw/devices/zfcp/0.0.5222/0x500507630310c562/unit_add
echo 0x401040d200000000 > /sys/bus/ccw/devices/zfcp/0.0.5222/0x500507630310c562/unit_add
echo 0x401040d300000000 > /sys/bus/ccw/devices/zfcp/0.0.5222/0x500507630310c562/unit_add

3. Load the dm_multipath module:

modprobe dm_multipath

4. Use the multipath command to detect multiple paths to devices for failover or
performance reasons and coalesce them:

multipath
create: 36005076303ffc56200000000000010d0 undef IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=undef
`-+- policy=’round-robin 0’ prio=2 status=undef

|- 0:0:24:1087389712 sda 8:0 undef ready running
`- 1:0:20:1087389712 sde 8:64 undef ready running

create: 36005076303ffc56200000000000010d1 undef IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=undef
`-+- policy=’round-robin 0’ prio=2 status=undef

|- 0:0:24:1087455248 sdb 8:16 undef ready running
`- 1:0:20:1087455248 sdf 8:80 undef ready running

create: 36005076303ffc56200000000000010d2 undef IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=undef
`-+- policy=’round-robin 0’ prio=2 status=undef

|- 0:0:24:1087520784 sdc 8:32 undef ready running
`- 1:0:20:1087520784 sdg 8:96 undef ready running

create: 36005076303ffc56200000000000010d3 undef IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=undef
`-+- policy=’round-robin 0’ prio=2 status=undef

|- 0:0:24:1087586320 sdd 8:48 undef ready running
`- 1:0:20:1087586320 sdh 8:112 undef ready running

Note that the priority only displays after calling multipath for the first time.

5. Start the multipathd daemon to run a proper working multipath environment:

/etc/init.d/multipathd start

Chapter 5. Improving system availability using multipathing 15

6. Use the following command to display the resulting multipath configuration:

multipath -ll
36005076303ffc56200000000000010d2 dm-2 IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’round-robin 0’ prio=2 status=enabled

|- 0:0:24:1087520784 sdc 8:32 active ready running
`- 1:0:20:1087520784 sdg 8:96 active ready running

36005076303ffc56200000000000010d1 dm-1 IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’round-robin 0’ prio=2 status=enabled

|- 0:0:24:1087455248 sdb 8:16 active ready running
`- 1:0:20:1087455248 sdf 8:80 active ready running

36005076303ffc56200000000000010d0 dm-0 IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’round-robin 0’ prio=2 status=enabled

|- 0:0:24:1087389712 sda 8:0 active ready running
`- 1:0:20:1087389712 sde 8:64 active ready running

36005076303ffc56200000000000010d3 dm-3 IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’round-robin 0’ prio=2 status=enabled

|- 0:0:24:1087586320 sdd 8:48 active ready running
`- 1:0:20:1087586320 sdh 8:112 active ready running

Example of a multipath I/O configuration for IBM TotalStorage DS6000
The following example describes the configuration of one IBM TotalStorage
DS6000™ SCSI device attached through four different FCP channels.

The example shows the special configuration for storage devices with
group_by_prio as the path grouping policy. The Asymmetric Logical Unit Access
(ALUA) tool is used to get the priority for each device. The ALUA tool is part of the
multipath-tools.

1. Set the FCP channels online:

chccwdev -e c20f
Setting device 0.0.c20f online
Done
chccwdev -e c01f
Setting device 0.0.c01f online
Done

2. Configure the devices:

echo 0x4011404500000000 > /sys/bus/ccw/drivers/zfcp/0.0.c20f/0x500507630e8601f9/unit_add
echo 0x4011404600000000 > /sys/bus/ccw/drivers/zfcp/0.0.c20f/0x500507630e8601f9/unit_add
echo 0x4011404700000000 > /sys/bus/ccw/drivers/zfcp/0.0.c20f/0x500507630e8601f9/unit_add
echo 0x4011404800000000 > /sys/bus/ccw/drivers/zfcp/0.0.c20f/0x500507630e8601f9/unit_add
echo 0x4011404500000000 > /sys/bus/ccw/drivers/zfcp/0.0.c01f/0x500507630e0001f9/unit_add
echo 0x4011404600000000 > /sys/bus/ccw/drivers/zfcp/0.0.c01f/0x500507630e0001f9/unit_add
echo 0x4011404700000000 > /sys/bus/ccw/drivers/zfcp/0.0.c01f/0x500507630e0001f9/unit_add
echo 0x4011404800000000 > /sys/bus/ccw/drivers/zfcp/0.0.c01f/0x500507630e0001f9/unit_add

3. Load the dm_multipath module:

modprobe dm_multipath

4. Use multipath to detect multiple paths to devices for failover or performance
reasons and coalesce them:

16 How to use FC-attached SCSI devices - Kernel 2.6.35

multipath
create: 3600507630efe01f90000000000001145 undef IBM,1750500
size=1.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=undef
|-+- policy=’round-robin 0’ prio=50 status=undef
| `- 0:0:0:1078280209 sda 8:0 undef ready running
`-+- policy=’round-robin 0’ prio=10 status=undef

`- 1:0:0:1078280209 sde 8:64 undef ready running
create: 3600507630efe01f90000000000001146 undef IBM,1750500
size=1.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=undef
|-+- policy=’round-robin 0’ prio=50 status=undef
| `- 0:0:0:1078345745 sdb 8:16 undef ready running
`-+- policy=’round-robin 0’ prio=10 status=undef

`- 1:0:0:1078345745 sdf 8:80 undef ready running
create: 3600507630efe01f90000000000001147 undef IBM,1750500
size=1.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=undef
|-+- policy=’round-robin 0’ prio=50 status=undef
| `- 0:0:0:1078411281 sdc 8:32 undef ready running
`-+- policy=’round-robin 0’ prio=10 status=undef

`- 1:0:0:1078411281 sdg 8:96 undef ready running
create: 3600507630efe01f90000000000001148 undef IBM,1750500
size=1.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=undef
|-+- policy=’round-robin 0’ prio=50 status=undef
| `- 0:0:0:1078476817 sdd 8:48 undef ready running
`-+- policy=’round-robin 0’ prio=10 status=undef

`- 1:0:0:1078476817 sdh 8:112 undef ready running

Note that the priority only displays after calling multipath for the first time.

5. Start the multipathd daemon to run a working multipath environment:

/etc/init.d/multipathd start

6. Use the following command to display the resulting multipath configuration:

multipath -ll
3600507630efe01f90000000000001148 dm-3 IBM,1750500
size=1.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
|-+- policy=’round-robin 0’ prio=50 status=enabled
| `- 0:0:0:1078476817 sdd 8:48 active ready running
`-+- policy=’round-robin 0’ prio=10 status=enabled

`- 1:0:0:1078476817 sdh 8:112 active ready running
3600507630efe01f90000000000001147 dm-2 IBM,1750500
size=1.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
|-+- policy=’round-robin 0’ prio=50 status=enabled
| `- 0:0:0:1078411281 sdc 8:32 active ready running
`-+- policy=’round-robin 0’ prio=10 status=enabled

`- 1:0:0:1078411281 sdg 8:96 active ready running
3600507630efe01f90000000000001146 dm-1 IBM,1750500
size=1.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
|-+- policy=’round-robin 0’ prio=50 status=enabled
| `- 0:0:0:1078345745 sdb 8:16 active ready running
`-+- policy=’round-robin 0’ prio=10 status=enabled

`- 1:0:0:1078345745 sdf 8:80 active ready running
3600507630efe01f90000000000001145 dm-0 IBM,1750500
size=1.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
|-+- policy=’round-robin 0’ prio=50 status=enabled
| `- 0:0:0:1078280209 sda 8:0 active ready running
`-+- policy=’round-robin 0’ prio=10 status=enabled

`- 1:0:0:1078280209 sde 8:64 active ready running

Example of multipath I/O devices as physical volumes for LVM2
By default, LVM2 does not consider device-mapper block devices. To enable the
multipath I/O devices for LVM2, change the device section of /etc/lvm/lvm.conf as
follows:

Chapter 5. Improving system availability using multipathing 17

1. Add the directory with the DM device nodes to the array that contains
directories scanned by LVM2. LVM2 will accept device nodes within these
directories only:
scan = ["/dev", "/dev/mapper"]

2. Add device-mapper volumes as an acceptable block devices type:

types = ["device-mapper". 16]

3. Modify the filter patterns, which LVM2 applies to devices found by a scan. The
following line instructs LVM2 to accept the multipath I/O and reject all other
devices.

Note: If you are also using LVM2 on non-multipath I/O devices you will need to
modify this line according to your requirements.

filter = ["a|/dev/disk/by-name/.*|", "r|.*|"]

With the above settings you should be able to use the multipath I/O devices for
LVM2. The next steps are similar for all types of block devices.

The following example shows the steps to create a volume group composed of four
multipath I/O devices. It assumes that the multipath I/O devices are already
configured.

1. List available multipath I/O devices:

multipath -l
36005076303ffc56200000000000010d2 dm-2 IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’round-robin 0’ prio=-2 status=enabled

|- 0:0:24:1087520784 sdc 8:32 active undef running
`- 1:0:20:1087520784 sdg 8:96 active undef running

36005076303ffc56200000000000010d1 dm-1 IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’round-robin 0’ prio=-2 status=enabled

|- 0:0:24:1087455248 sdb 8:16 active undef running
`- 1:0:20:1087455248 sdf 8:80 active undef running

36005076303ffc56200000000000010d0 dm-0 IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’round-robin 0’ prio=-2 status=enabled

|- 0:0:24:1087389712 sda 8:0 active undef running
`- 1:0:20:1087389712 sde 8:64 active undef running

36005076303ffc56200000000000010d3 dm-3 IBM,2107900
size=5.0G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’round-robin 0’ prio=-2 status=enabled

|- 0:0:24:1087586320 sdd 8:48 active undef running
`- 1:0:20:1087586320 sdh 8:112 active undef running

2. Initialize the volume using pvcreate (you must do this before a volume can be
used for LVM2):

pvcreate /dev/mapper/36005076303ffc56200000000000010d0
Physical volume "/dev/mapper/36005076303ffc56200000000000010d0" successfully created

Repeat this step for all multipath I/O devices that you intend to use for LVM2.

3. Create the volume group:

18 How to use FC-attached SCSI devices - Kernel 2.6.35

vgcreate sample_vg /dev/mapper/36005076303ffc56200000000000010d[0123]
Volume group "sample_vg" successfully created

vgdisplay sample_vg
--- Volume group ---
VG Name sample_vg
System ID
Format lvm2
Metadata Areas 4
Metadata Sequence No 1
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 0
Open LV 0
Max PV 0
Cur PV 4
Act PV 4
VG Size 19.98 GB
PE Size 4.00 MB
Total PE 5116
Alloc PE / Size 0 / 0
Free PE / Size 5116 / 19.98 GB
VG UUID Lmlgx9-2A2p-oZEP-CEH3-ZKqc-yTpY-IVOG6v

Now you can proceed normally: Create logical volumes, build file systems and
mount the logical volumes.

Once configured, the multipath I/O devices and LVM2 volume groups can be made
available at startup time. In order to do this, continue with the following additional
steps.

1. Include the zfcp unit configuration in the distribution configuration, see the
documentation of your distribution about how to do this.

2. Update the IPL record:

zipl
Using config file ’/etc/zipl.conf’
Building bootmap in ’/boot/zipl’
Adding IPL section ’ipl’ (default)
Preparing boot device: dasda (2c1a).
Done.

3. Ensure that multipathing and LVM are enabled in the init scripts for your
distribution. Consult the distribution documentation for details.

After re-boot you should see messages that report multipath I/O devices and LVM2
groups, for example:

SCSI subsystem initialized
...
scsi0 : zfcp
qdio: 0.0.181d ZFCP on SC 10 using AI:1 QEBSM:1 PCI:1 TDD:1 SIGA: W AO
scsi1 : zfcp
qdio: 0.0.191d ZFCP on SC 11 using AI:1 QEBSM:1 PCI:1 TDD:1 SIGA: W AO
...
device-mapper: uevent: version 1.0.3
device-mapper: ioctl: 4.16.0-ioctl (2009-11-05) initialised: dm-devel@redhat.com
device-mapper: multipath: version 1.1.1 loaded
device-mapper: multipath round-robin: version 1.0.0 loaded
device-mapper: multipath queue-length: version 0.1.0 loaded
device-mapper: multipath service-time: version 0.2.0 loaded
...

For each SCSI device you will see output messages, for example:

Chapter 5. Improving system availability using multipathing 19

scsi 1:0:20:1087127568: Direct-Access IBM 2107900 .280 PQ: 0 ANSI: 5
scsi 1:0:20:1087127568: alua: supports implicit TPGS
scsi 1:0:20:1087127568: alua: port group 00 rel port 233
scsi 1:0:20:1087127568: alua: rtpg failed with 8000002
scsi 1:0:20:1087127568: alua: port group 00 state A supports tousNA
sd 1:0:20:1087127568: Attached scsi generic sg0 type 0
sd 1:0:20:1087127568: [sda] 10485760 512-byte logical blocks: (5.36 GB/5.00 GiB)
sd 1:0:20:1087127568: [sda] Write Protect is off
sd 1:0:20:1087127568: [sda] Mode Sense: ed 00 00 08
sd 1:0:20:1087127568: [sda] Write cache: enabled, read cache: enabled, doesn’t support DPO or FUA
sda: unknown partition table

sd 1:0:20:1087127568: [sda] Attached SCSI disk

20 How to use FC-attached SCSI devices - Kernel 2.6.35

Chapter 6. Booting the system using SCSI IPL

SCSI IPL (initial program load) is the ability to load a System z operating system
from an FCP-attached SCSI device. This could be a SCSI disk, SCSI CD or SCSI
DVD device. SCSI IPL is a mechanism that expands the set of I/O devices that you
can use during IPL.

Before you begin, see “Hardware requirements.”

What you should know about SCSI IPL
SCSI IPL opens the way to a new set of IPL I/O devices with a somewhat different
processing compared to CCW-based devices.

At first glance, a traditional IPL (also called CCW IPL) and a SCSI IPL are similar:

1. A mainframe administrator initiates an IPL at the SE, HMC, or at a z/VM
console.

2. The machine checks the IPL parameters and tries to access the corresponding
IPL devices.

3. Some code will be loaded from the IPL device into main storage and executed.
Usually this initial code will load some more code into storage until the entire
operating system is in memory.

The difference between SCSI IPL and CCW IPL is the connection to the IPL device.
In the CCW case the IPL device is connected more or less directly to the host. In
contrast, in the SCSI IPL case there could be an entire Fibre Channel SAN between
the host and the IPL device.

In traditional CCW IPL, a channel command word (CCW) contains a command to
perform a read, write, or control operation. A chain of CCWs is called a channel
program, and this will be executed in a channel by channel engines that run
independently of the usual CPUs.

All I/O is controlled by channel programs. I/O devices are identified by a two-byte
device number. The I/O devices are configured within the I/O definition file (IODF).
A CCW IPL is also called 24-bytes-IPL because only one PSW and two CCWs are
read from the disk initially. These 24 bytes are the first stage boot loader and are
enough to allow the reading of more IPL code from the IPL device.

SCSI IPL is more complex than CCW IPL and can:

v Log in to an Fibre Channel fabric.

v Maintain a connection through the Fibre Channel SAN.

v Send SCSI commands and associated data.

To accomplish this, an enhanced set of IPL parameters is required (see “SCSI IPL
parameters” on page 22).

Hardware requirements
To be able to IPL a Linux system from a SCSI disk, the following hardware is
required:

v The SCSI IPL hardware feature.

– On z10 machines, SCSI IPL is a base function.

© Copyright IBM Corp. 2006, 2010 21

– On z9 machines, you require the no-charge feature FC 9904.

– On z990 and older machines, you need to order and install SCSI IPL
separately using Feature Code FC 9904. Models z800 and z900 require an
initial, one-time power-on-reset (POR) of the machine to activate the feature.
Activating the SCSI IPL feature is concurrent on z890, z990, or newer,
machines.

v An FCP channel. This could be any supported adapter card (see “Supported
hardware” on page xii). You must configure the adapter as an FCP adapter card
within your IODF.

v One or more FCP-attached SCSI disks from which to IPL.

Also see your Linux distribution for further prerequisites.

SAN addressing
To access a device within a Fibre Channel SAN the following addressing
parameters are required (see Figure 9.):

v The device number of the FCP adapter (the device-bus ID without the leading
"0.0"). This is a two-byte hexadecimal number specifying the host bus adapter,
and more precisely, the port at the local host bus adapter. This is the only
addressing parameter configured within the IODF. The device-bus ID is the way
out of the mainframe.

v The worldwide port name (WWPN) of your target port. There can be several
hundred storage devices with several ports each within your storage area
network. You must specify the storage device and the entry port into this storage
device. For this reason, each port has a unique number, called the worldwide
port name. This WWPN is eight bytes in length and is, as the name says, unique
worldwide.

The last of the three addressing parameters is the logical unit (LUN). This
parameter specifies the device within the storage controller. There could be several
hundred disks in your storage controller.

SCSI IPL parameters
Use these IPL parameters to configure SCSI IPL.

Load type
Without SCSI IPL there are the two load types, normal and clear. Both are
used to IPL an operating system. The only difference is that the memory will
be cleared before IPL in the second case. SCSI IPL introduces two new

FCP adapter

System z

LUN LUN LUN

Storage controller

SCSI devices

SAN Fabric

Linux

0x6000

Device number

(device_bus_id)

0x5005076300ce93a7

Worldwide port name

(WWPN)

0x1234000000000000

Logical unit number

(LUN)

Figure 9. SAN addressing parameters

22 How to use FC-attached SCSI devices - Kernel 2.6.35

load types called SCSI and SCSI dump. The load type SCSI loads an
operating system from a SCSI device and clears the memory every time.
SCSI dump loads a dump program from a SCSI device. In this case the
memory will not be cleared.

Load address
(Required.) The load address is a 2-byte hexadecimal number. It is the
device number of the FCP adapter and it is NOT associated with an I/O
device, but with the adapter! This is one of the most important differences
compared to CCW IPL. This is the only SCSI IPL parameter defined in the
IODF.

Worldwide port name
(Required.) The worldwide port name (WWPN) is an 8-byte hexadecimal
number and uniquely identifies the FCP adapter port of the SCSI target
device.

Logical unit number
(Required.) The logical unit number (LUN) is an 8-byte hexadecimal number
that identifies the logical unit representing the IPL device.

Boot program selector
(Optional.) Selects a boot configuration, which can be a Linux kernel, a
kernel parameter file, or optionally a ram disk. There could be up to 31
(decimal 0 – 30) different configurations on a single SCSI disk, independent
of on which partition they are stored. The different configurations must be
prepared with the Linux zipl tool. The default value is 0.

There are several possible uses for this parameter. For example, if you
have one production and one development kernel, it allows you to always
IPL the system even if the development kernel does not work. Another use
would be a rescue system, or the same kernel with several different kernel
parameters or ram disks. This parameter adds flexibility to SCSI IPL.

Boot record logical block address
(Optional.) The boot record logical block address specifies the entry or
anchor point to find the operating system on a SCSI disk. A block number
can be specified here. Usually, in Linux, this block is the master boot record
and the first block on the IPL device. With this parameter it is possible to
use a different block as entry point. For example, z/VM does not have a
master boot record. The default value is 0.

Operating system specific load parameters
(Optional.) Operating system specific load parameters are parameters for
the loaded operating system. It is intended to hand over parameters to the
operating system or dump program. This field is only passed through. The
main difference to all other SCSI IPL parameters is that this field is not
used to access the IPL device or the operating system on the IPL device.
This field is currently restricted to 256 Bytes (SE) and 4096 Bytes (z/VM).

For booting Linux, use this field to specify kernel parameters. During the
boot process, these parameters are concatenated to the end of the existing
kernel parameters that are used by your boot configuration. The
specifications must contain ASCII characters only. If characters other than
ASCII are present, the content of the field is ignored during IPL.

If you specify the kernel parameters with a leading equal sign (=), the
existing kernel parameters are ignored and replaced with the kernel
parameters in this field. If you replace the existing kernel parameters, be
sure not to omit any kernel parameters required by your boot configuration.

Chapter 6. Booting the system using SCSI IPL 23

For dump tools, use this field to specify additional dump tool parameters.
Other than with kernel parameters, you cannot replace the existing dump
tool parameters.

Load parameter
This parameter is SCSI IPL independent and can be used as usual. The
loaded operating system receives these IPL parameters at a later point in
time. This parameter is not used to access the IPL device.

The following parameters are not needed for SCSI IPL, but are mentioned for
completeness:

Store status and time-out value
These two parameters are not needed for SCSI IPL. For SCSI IPL, no store
status is required and for SCSI dump a store status command is always
performed.

SCSI disk installation and preparation
Usually the disk preparation is done by a distribution-specific installation tool. If
there is no such tool available or the distribution does not support an installation on
a SCSI disk, it is also possible to perform these steps manually to make a disk
bootable.

The standard Linux disk preparation tool on System z is zipl. The zipl command
writes the boot loader for IBM S/390®, zSeries and System z machines. This
preparation could be done on the command line or using the config file
/etc/zipl.conf. The zipl command prepares SCSI disks as well as ECKD™ DASDs
and it is possible to write several boot configurations (kernel, parameter file, ram
disk) to one disk. This possibility is called boot menu option or multi-boot option.

It is also possible to prepare a SCSI dump disk with the zipl command and it is
possible to have IPL and dump programs on the same disk. See the zipl and
zipl.conf man pages for more information.

The following zipl.conf example defines two boot configurations, scsi-ipl-1 and
scsi-ipl-2, which are selectable with boot program selector 1 and 2. The default boot
program selector 0 will IPL scsi-ipl-2 (the default).

/etc/zipl.conf

[defaultboot]
default = scsi-ipl-1
[scsi-ipl-1]
target = "/boot"
image = "/boot/kernel-image-1"
parmfile = "/boot/parmfile-1"
[scsi-ipl-2]
target = "/boot"
image = "/boot/kernel-image-2"
parmfile = "/boot/parmfile-2"
ramdisk = "/boot/initrd-2"

:menu1
target = "/boot"
1=scsi-ipl-1
2=scsi-ipl-2
default=2

The parameter file parmfile-1 must define the SCSI IPL device by giving the device
bus-ID, the WWPN and the LUN. Example:

24 How to use FC-attached SCSI devices - Kernel 2.6.35

zfcp.device=0.0.3c04,0x500507630310c562,0x4010405f00000000 #Defines the SCSI IPL device
root=/dev/sda1 #Defines the root file system
ro #Mounts the root file system read-only
noinitrd #Suppresses an initial RAM disk
selinux=0
audit=0
audit_enable=0

Note: Using root=/dev/sda1 places the root file system on a single path SCSI
device. For reliable production systems, you should use a multipath setup.
See your distribution documentation about how to configure multipath paths
in the initrd, and how to place the root file system on a multipath device.

Alternatively, you can specify the parameters directly in the zipl.conf:

[scsi-ipl-1]
target = "/boot"
image = "/boot/kernel-image-1"
parameters = "zfcp.device=0.0.3c04,0x500507630310c562,0x4010405f00000000

root=/dev/sda1 ro noinitrd selinux=0 audit=0 audit_enable=0"

This zipl.conf configuration is activated with the following zipl command:

[root@host /]# zipl -m menu1
Using config file ’/etc/zipl.conf’
Building bootmap ’/boot/bootmap’
Building menu ’menu1’
Adding #1: IPL section ’scsi-ipl-1'
Adding #2: IPL section ’scsi-ipl-2'
(default)
Preparing boot device: 08:00
Done.
[root@host /]#

The disk is now bootable and contains two boot configurations, selectable through
the boot program selector parameter bootprog (see also Figure 10 on page 27).
Note that the interactive boot menu is not shown when booting from SCSI.

SCSI dump
SCSI dump is a stand-alone dump to a SCSI disk. It is the IPL of an operating
system-dependent dump program. An initiated SCSI dump always performs a store
status automatically. A reset normal instead of reset clear will be performed which
does not clear the memory.

Machine loader and system dump program run in the same LPAR memory that
must be dumped. For this reason the lower-address area of the LPAR memory are
copied into a reserved area (HSA) of the machine. The system dump program then
reads the first part of the dump from the HSA and the second part from memory.

This is why SCSI dumps are serialized on a machine. There is only one save area
for all LPARs. Normally this does not cause problems because you seldom need a
dump and the HSA is locked less than a second. Should you happen on this short
timeframe, you will get a pop-up window on the SE that tells you what LPAR
currently uses the HSA.

The system dumper under Linux on System z is the zfcpdump command. It is part
of the s390-tools package and must be prepared with the zipl tool.

Chapter 6. Booting the system using SCSI IPL 25

The dump program determines where to put the dump. Currently, the dump
program places the dump on the SCSI disk where the program resides.

The dump disk contains the dump program and a file system. The dump disk is
mountable and all dumps are files. It is possible to have several dumps on one
dump disk.

For more information about the dump utilities see Using the Dump Tools,
SC33-8412.

Example: IODF definition
Here is an example of how the IODF could look. Only the FCP adapter must be
configured within the mainframe. All other parameters must be configured outside
the mainframe, that is, within switches or at the target storage system.

In this example two ports of a FICON or FICON Express adapter card are
configured as FCP. First two FCP CHPIDs are defined, both get the number 50, one
for channel subsystem 0 and one for channel subsystem 1. An FCP control unit
5402 is then assigned to these new CHPIDs. The last step is to define several
logical FCP adapters starting with device number 5400.

CHPID PATH=(CSS(0),50),SHARED, *
PARTITION=((LP01,LP02,LP03,LP04,LP05,LP06,LP07,LP08,LP09*
,LP10,LP11,LP12,LP13,LP14,LP15),(=)),PCHID=160,TYPE=FCP

CHPID PATH=(CSS(1),50),SHARED, *
PARTITION=((LP16,LP17,LP18,LP19,LP20,LP21,LP22,LP23,LP24*
,LP25,LP26,LP27,LP28,LP29,LP30),(=)),PCHID=161,TYPE=FCP

...

CNTLUNIT CUNUMBR=5402,PATH=((CSS(0),50),(CSS(1),50)),UNIT=FCP

...

IODEVICE ADDRESS=(5400,002),CUNUMBR=(5402), *
PARTITION=((CSS(0),LP01),(CSS(1),LP16)),UNIT=FCP

IODEVICE ADDRESS=(5402,002),CUNUMBR=(5402), *
PARTITION=((CSS(0),LP02),(CSS(1),LP17)),UNIT=FCP

...

IODEVICE ADDRESS=(5460,144),CUNUMBR=(5402), *
PARTITION=((CSS(0),LP15),(CSS(1),LP30)),UNIT=FCP

Example: SCSI IPL of an LPAR
Follow these steps to IPL an LPAR from a SCSI disk:

1. Once the SCSI IPL feature is active, the SE or HMC display an enhanced load
panel as shown in Figure 10 on page 27.

26 How to use FC-attached SCSI devices - Kernel 2.6.35

(If the SCSI IPL feature is not enabled, some fields are not visible.) The SE
remembers the last set of specified IPL parameters. It is also possible to set the
SCSI IPL parameters within the activation profile.

2. Specify IPL parameters (see “SCSI IPL parameters” on page 22) and click OK.
The operating system starts.

The only difference to a system that uses CCW IPL are the two messages:

v MLOEVL012I: Machine loader up and running.

v MLOPDM003I: Machine loader finished, moving data to final storage location.

Figure 10. Load panel

Chapter 6. Booting the system using SCSI IPL 27

Figure 11 shows the boot messages.

The kernel parameters show that the root file system of this Linux instance is on a
SCSI disk (/dev/sda1). Production systems should not use /dev/sda1 as a root
device, but use multi-pathing overlying the SCSI devices. See your distribution's
documentation for how to set up multi-pathing.

In Figure 10 on page 27, noresume has been typed into the Operating system
specific load parameters field. In Figure 11 this specification has been
concatenated to the end of the existing boot parameters used by the boot
configuration. This causes a regular boot process, even if the Linux instance had
previously been suspended to a swap partition.

Example: SCSI IPL of a z/VM guest virtual machine
For SCSI IPL in a z/VM guest virtual machine, you specify some of the IPL
parameters with the SET LOADDEV command. A subsequent IPL command with an
FCP adapter as the IPL device uses these parameters. You can use the QUERY
LOADDEV command to display the currently set IPL parameters for a SCSI IPL.

In this example, the WWPN of the remote port through which the SCSI boot disk
can be accessed is set to 5005076300c20b8e and the LUN of the SCSI boot disk to
5241000000000000. The IPL process requires this information to locate the boot disk
in the SAN fabric.

The example assumes that a menu configuration has been written to the boot disk
and specifies the boot configuration (boot program in VM terminology) to be used. If
this specification is omitted for a menu configuration, the default configuration is
used.

Figure 11. Example of a SCSI IPL

28 How to use FC-attached SCSI devices - Kernel 2.6.35

The example also specifies a kernel parameter to be concatenated to the end of the
existing kernel parameters that are used by the boot configuration. Specifying
kernel parameters is optional.

To IPL a z/VM guest virtual machine with the IPL parameters of the example:

1. Log in to a CMS session and attach the FCP adapter to your z/VM guest virtual
machine.

att 50aa *
00: FCP 50AA ATTACHED TO LINUX18 50AA
Ready; T=0.01/0.01 13:16:20

q v fcp
00: FCP 50AA ON FCP 50AA CHPID 40 SUBCHANNEL = 000E
00: 50AA QDIO-ELIGIBLE QIOASSIST-ELIGIBLE
Ready; T=0.01/0.01 13:16:24

The adapter is now available.

2. Set the target port and LUN of the SCSI boot disk.

set loaddev portname 50050763 00c20b8e lun 52410000 00000000
Ready; T=0.01/0.01 13:16:33

3. Specify the boot configuration.

set loaddev bootprog 2

4. Specify the kernel parameter that is to be concatenated at the end of the
existing kernel parameters used by the boot configuration.

set loaddev scpdata 'noresume'

5. Confirm that the parameters have been set correctly.

q loaddev
PORTNAME 50050763 00C20B8E LUN 52410000 00000000
BOOTPROG 2 BR_LBA 00000000 00000000

SCPDATA
0----+----1----+----2----+----3----+----4----+----

0000 NORESUME
Ready; T=0.01/0.01 13:16:38

6. IPL using the device number of the FCP adapter as parameter:

i 50aa
00: HCPLDI2816I Acquiring the machine loader from the processor controller.
00: HCPLDI2817I Load completed from the processor controller.
00: HCPLDI2817I Now starting machine loader.
00: MLOEVL012I: Machine loader up and running (version 0.15).
00: MLOPDM003I: Machine loader finished, moving data to final storage location.
Linux version 2.4.21 (root@tel15v18)(gcc version 3.3 (Red Hat Linux 8.0 3.3-5bb9))

#3 SMP Mon Sep 15 15:28:42 CEST 2003
We are running under VM (64 bit mode)
On node 0 total pages: 32768

The Linux system comes up after the two SCSI IPL machine loader messages.

Chapter 6. Booting the system using SCSI IPL 29

Further reading
v IBM Journal of Research and Development, Vol 48, No ¾, 2004 SCSI initial

program loading for zSeries available from the journal archive at
http://www.research.ibm.com/journal/rdindex.html

v Depending on your machine:
– IBM Corporation, Enterprise Systems Architecture/390 Principles of Operation,

SA22-7201.
– IBM Corporation, z/Architecture® Principles of Operation, SA22-7832.

Both are available through the IBM Publications Center at:
www.ibm.com/shop/publications/order

v I. Adlung, G. Banzhaf, W. Eckert, G. Kuch, S. Mueller, and C. Raisch: FCP for
the IBM eServer zSeries Systems: Access to Distributed Storage, IBM J. Res. &
Dev. 46, No. 4/5, 487–502 (2002).

v IBM Corporation: zSeries z990 System Overview, SA22-1032. This book is
available in PDF format by accessing Resource Link™ at:
www.ibm.com/servers/resourcelink

v IBM Corporation: zSeries Input/Output Configuration Program User’s Guide for
ICP IOCP, SB10-7037; available through the IBM Publications Center.

v ANSI/INCITS, Technical Committee T10: Information Systems–Fibre Channel
Protocol for SCSI, Second Version (FCP-2), American National Standards
Institute and International Committee for Information Standards, Washington, DC,
2001.

v The Master Boot Record (MBR) and Why is it Necessary?, available at:
www.dewassoc.com/kbase/index.html

v R. Brown and J. Kyle: PC Interrupts, A Programmer's Reference to BIOS, DOS,
and Third-Party Calls, Addison-Wesley Publishing Company, Boston, MA, 1994.

30 How to use FC-attached SCSI devices - Kernel 2.6.35

http://www.research.ibm.com/journal/rdindex.html
http://www.ibm.com/shop/publications/order
http://www.ibm.com/servers/resourcelink
http://www.dewassoc.com/kbase/index.html

Chapter 7. Using SCSI tape and the lin_tape driver

To manage IBM TotalStorage or System Storage® devices, use the lin_tape Linux
device driver. This driver replaces the IBMtape device driver. The lin_tape device
driver is open source, but is essentially the same driver.

v The IBMtape device driver and the Open Source version lin_tape are available at
the ftp site:
ftp://ftp.software.ibm.com/storage/devdrvr/Linux

v For the IBMtape device driver installation documentation, see the IBM Tape
Device Drivers Installation and User's Guide available at:
ftp://ftp.software.ibm.com/storage/devdrvr/Doc

© Copyright IBM Corp. 2006, 2010 31

ftp://ftp.software.ibm.com/storage/devdrvr/Linux
ftp://ftp.software.ibm.com/storage/devdrvr/Doc

32 How to use FC-attached SCSI devices - Kernel 2.6.35

Chapter 8. Logging using the SCSI logging feature

This chapter describes the SCSI logging feature, which is of interest primarily for
software developers who are debugging software problems. It can also be useful for
administrators who track down hardware or configuration problems.

The SCSI logging feature can log information such as:

v Initiation of commands

v Completion of commands

v Error conditions

v Sense data for SCSI commands

The information is written into the Linux log buffer and usually appears in
/var/log/messages.

The SCSI logging feature is controlled by a 32 bit value -- the SCSI logging level.
This value is divided into 3-bit fields describing the log level of a specific log area.
Due to the 3-bit subdivision, setting levels or interpreting the meaning of current
levels of the SCSI logging feature is not trivial.

The following logging areas are provided with the SCSI logging feature:

SCSI LOG ERROR RECOVERY
Messages regarding error recovery.

SCSI LOG TIMEOUT
Messages regarding timeout handling of SCSI commands.

SCSI LOG SCAN BUS
Messages regarding bus scanning.

SCSI LOG MLQUEUE
Messages regarding command handling in in SCSI mid-level handling of
scsi commands.

SCSI LOG MLCOMPLETE
Messages regarding command completion in SCSI mid layer.

SCSI LOG LLQUEUE
Messages regarding command handling in low-level drivers (for example,
sd, sg, or sr). (Not used in current vanilla kernel).

SCSI LOG LLCOMPLETE
Messages regarding command completion in low-level drivers. (Not used in
current vanilla kernel).

SCSI LOG HLQUEUE
Messages regarding command handling in high-level drivers (for example,
sd, sg, or sr).

SCSI LOG HLCOMPLETE
Messages regarding command completion in high-level drivers.

SCSI LOG IOCTL
Messages regarding handling of IOCTLs.

Each area has its own logging level. The logging levels can be changed using a
logging word, which can be passed from and to the kernel with a sysctl. The
logging levels can easily be read and set with the scsi_logging_level command (part

© Copyright IBM Corp. 2006, 2010 33

of s390-tools). For a detailed description of the scsi_logging_level tool, see Device
Drivers, Features, and Commands, SC33-8411 available on the developerWorks
website at:
www.ibm.com/developerworks/linux/linux390/development_documentation.html

The following logging levels might be of interest for administrators:

v SCSI LOG MLQUEUE=2 will trace opcodes of all initiated SCSI commands

v SCSI LOG MLCOMPLETE=1 will trace completion (opcode, result, sense data) of
SCSI commands that did not complete successfully in terms of the SCSI stack.
Such commands timed out or need to be retried.

v SCSI LOG MLCOMPLETE=2 will trace completion (opcode, result, sense data) of
all SCSI commands

v SCSI LOG IOCTL=2 will trace initiation of IOCTLs for scsi disks (device,
ioctl-command)

Examples
v Example 1 shows how to set the log level for SCSI_LOG_MLCOMPLETE to 1 to

log all non-successful completions and completions with sense data.

#>scsi_logging_level -s --mlcomplete 1
New scsi logging level:
dev.scsi.logging_level = 4096
SCSI_LOG_ERROR=0
SCSI_LOG_TIMEOUT=0
SCSI_LOG_SCAN=0
SCSI_LOG_MLQUEUE=0
SCSI_LOG_MLCOMPLETE=1
SCSI_LOG_LLQUEUE=0
SCSI_LOG_LLCOMPLETE=0
SCSI_LOG_HLQUEUE=0
SCSI_LOG_HLCOMPLETE=0
SCSI_LOG_IOCTL=0

When configuring a new LUN for zfcp, additional messages appear (in bold):

May 17 12:03:58 t2945012 kernel: Vendor: IBM Model: 2107900 Rev: .203
May 17 12:03:58 t2945012 kernel: Type: Direct-Access ANSI SCSI revision: 05
May 17 12:03:58 t2945012 kernel: sd 0:0:0:0: done SUCCESS 2 sd 0:0:0:0:
May 17 12:03:58 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:03:58 t2945012 kernel: : Current: sense key: Unit Attention
May 17 12:03:58 t2945012 kernel: Additional sense: Power on, reset, or bus device reset occurred
May 17 12:03:58 t2945012 kernel: SCSI device sda: 10485760 512-byte hdwr sectors (5369 MB)
May 17 12:03:58 t2945012 kernel: sda: Write Protect is off
May 17 12:03:58 t2945012 kernel: SCSI device sda: drive cache: write back
May 17 12:03:58 t2945012 kernel: SCSI device sda: 10485760 512-byte hdwr sectors (5369 MB)
May 17 12:03:58 t2945012 kernel: sda: Write Protect is off
May 17 12:03:58 t2945012 kernel: SCSI device sda: drive cache: write back
May 17 12:03:58 t2945012 kernel: sda: sda1 sda2
May 17 12:03:58 t2945012 kernel: sd 0:0:0:0: Attached scsi disk sda

v Example 2 shows how to set the log level for SCSI_LOG_MLCOMPLETE to 2 to
log all command completions:

34 How to use FC-attached SCSI devices - Kernel 2.6.35

http://www.ibm.com/developerworks/linux/linux390/development_documentation.html
http://www.ibm.com/developerworks/linux/linux390/development_documentation.html
http://www.ibm.com/developerworks/linux/linux390/development_documentation.html

#>scsi_logging_level -s --mlcomplete 2
New scsi logging level:
dev.scsi.logging_level = 8192
SCSI_LOG_ERROR=0
SCSI_LOG_TIMEOUT=0
SCSI_LOG_SCAN=0
SCSI_LOG_MLQUEUE=0
SCSI_LOG_MLCOMPLETE=2
SCSI_LOG_LLQUEUE=0
SCSI_LOG_LLCOMPLETE=0
SCSI_LOG_HLQUEUE=0
SCSI_LOG_HLCOMPLETE=0
SCSI_LOG_IOCTL=0

When configuring a new LUN for zfcp, additional log messages appear (in bold):

May 17 12:06:01 t2945012 kernel: 1:0:0:0: done SUCCESS 0 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Inquiry: 12 00 00 00 24 00
May 17 12:06:01 t2945012 kernel: 1:0:0:0: done SUCCESS 0 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Inquiry: 12 00 00 00 a4 00
May 17 12:06:01 t2945012 kernel: Vendor: IBM Model: 2107900 Rev: .203
May 17 12:06:01 t2945012 kernel: Type: Direct-Access ANSI SCSI revision: 05
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 2 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:06:01 t2945012 kernel: : Current: sense key: Unit Attention
May 17 12:06:01 t2945012 kernel: Additional sense: Power on, reset, or bus device reset occurred
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Read Capacity (10): 25 00 00 00 00 00 00 00 00 00
May 17 12:06:01 t2945012 kernel: SCSI device sdb: 10485760 512-byte hdwr sectors (5369 MB)
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 3f 00 04 00
May 17 12:06:01 t2945012 kernel: sdb: Write Protect is off
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 08 00 04 00
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 08 00 20 00
May 17 12:06:01 t2945012 kernel: SCSI device sdb: drive cache: write back
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Read Capacity (10): 25 00 00 00 00 00 00 00 00 00
May 17 12:06:01 t2945012 kernel: SCSI device sdb: 10485760 512-byte hdwr sectors (5369 MB)
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 3f 00 04 00
May 17 12:06:01 t2945012 kernel: sdb: Write Protect is off
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 08 00 04 00
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 08 00 20 00
May 17 12:06:01 t2945012 kernel: SCSI device sdb: drive cache: write back
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:06:01 t2945012 kernel: command: Read (10): 28 00 00 00 00 00 00 00 08 00
May 17 12:06:01 t2945012 kernel: sdb:sdb1 sdb2
May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: Attached scsi disk sdb
...

v Example 3 shows how to set the log level for SCSI_LOG_MLQUEUE to 2 to log
command queueing in the SCSI mid-layer.

#>scsi_logging_level -s --mlqueue 2
New scsi logging level:
dev.scsi.logging_level = 1024
SCSI_LOG_ERROR=0
SCSI_LOG_TIMEOUT=0
SCSI_LOG_SCAN=0
SCSI_LOG_MLQUEUE=2
SCSI_LOG_MLCOMPLETE=0
SCSI_LOG_LLQUEUE=0
SCSI_LOG_LLCOMPLETE=0
SCSI_LOG_HLQUEUE=0
SCSI_LOG_HLCOMPLETE=0
SCSI_LOG_IOCTL=0

Chapter 8. Logging using the SCSI logging feature 35

The output shows Test Unit Ready commands issued by the path checker of
multipathd (from multipath-tools):

May 17 12:07:36 t2945012 kernel: sd 0:0:0:0: send sd 0:0:0:0:
May 17 12:07:36 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:07:37 t2945012 kernel: sd 1:0:0:0: send sd 1:0:0:0:
May 17 12:07:37 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

v Example 4 shows how to set the log level for SCSI_LOG_MLQUEUE and
SCSI_LOG_MLCOMPLETE to 2 to log command queueing and command
completion in the SCSI mid-layer.

#>scsi_logging_level -s --mlqueue 2 --mlcomplete 2
New scsi logging level:
dev.scsi.logging_level = 9216
SCSI_LOG_ERROR=0
SCSI_LOG_TIMEOUT=0
SCSI_LOG_SCAN=0
SCSI_LOG_MLQUEUE=2
SCSI_LOG_MLCOMPLETE=2
SCSI_LOG_LLQUEUE=0
SCSI_LOG_LLCOMPLETE=0
SCSI_LOG_HLQUEUE=0
SCSI_LOG_HLCOMPLETE=0
SCSI_LOG_IOCTL=0

The output shows Test Unit Ready commands issued by the path checker of
multipathd (from multipath-tools). In contrast to the previous example with
additional messages (in bold):

May 17 12:07:56 t2945012 kernel: sd 0:0:0:0: send sd 0:0:0:0:
May 17 12:07:56 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:07:56 t2945012 kernel: sd 0:0:0:0: done SUCCESS 0 sd 0:0:0:0:
May 17 12:07:56 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:07:57 t2945012 kernel: sd 1:0:0:0: send sd 1:0:0:0:
May 17 12:07:57 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:07:57 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:07:57 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

v Example 5 shows how to set the log level for SCSI_LOG_MLQUEUE,
SCSI_LOG_MLCOMPLETE and SCSI_LOG_IOCTL to 2 to log command
queueing and command completion in the scsi mid-layer and IOCTL information.

#>scsi_logging_level -s --mlqueue 2 --mlcomplete 2 --ioctl 2
New scsi logging level:
dev.scsi.logging_level = 268444672
SCSI_LOG_ERROR=0
SCSI_LOG_TIMEOUT=0
SCSI_LOG_SCAN=0
SCSI_LOG_MLQUEUE=2
SCSI_LOG_MLCOMPLETE=2
SCSI_LOG_LLQUEUE=0
SCSI_LOG_LLCOMPLETE=0
SCSI_LOG_HLQUEUE=0
SCSI_LOG_HLCOMPLETE=0
SCSI_LOG_IOCTL=2

The output shows Test Unit Ready commands issued by the path checker of
multipathd (from multipath-tools). In contrast to the previous example, this one
has additional messages (in bold):

36 How to use FC-attached SCSI devices - Kernel 2.6.35

May 17 12:08:17 t2945012 kernel: sd_ioctl: disk=sda, cmd=0x2285
May 17 12:08:17 t2945012 kernel: sd 0:0:0:0: send sd 0:0:0:0:
May 17 12:08:17 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:08:17 t2945012 kernel: sd 0:0:0:0: done SUCCESS 0 sd 0:0:0:0:
May 17 12:08:17 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:08:18 t2945012 kernel: sd_ioctl: disk=sdb, cmd=0x2285
May 17 12:08:18 t2945012 kernel: sd 1:0:0:0: send sd 1:0:0:0:
May 17 12:08:18 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00
May 17 12:08:18 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:
May 17 12:08:18 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

v Example 6 shows how to switch off all SCSI logging levels:

#>scsi_logging_level -s -a 0
New scsi logging level:
dev.scsi.logging_level = 0
SCSI_LOG_ERROR=0
SCSI_LOG_TIMEOUT=0
SCSI_LOG_SCAN=0
SCSI_LOG_MLQUEUE=0
SCSI_LOG_MLCOMPLETE=0
SCSI_LOG_LLQUEUE=0
SCSI_LOG_LLCOMPLETE=0
SCSI_LOG_HLQUEUE=0
SCSI_LOG_HLCOMPLETE=0
SCSI_LOG_IOCTL=0

Chapter 8. Logging using the SCSI logging feature 37

38 How to use FC-attached SCSI devices - Kernel 2.6.35

Chapter 9. Statistics available through sysfs

The zfcp device driver provides statistics through sysfs. This information is based
on subchannel level (virtual adapter). The zfcp device driver queries the adapter
directly for the requested information and in addition latency information is collected
and summarized during the normal operation of the adapter. The statistics cannot
be reset or activated or deactivated manually, however, a deactivate/activate cycle
of the subchannel would have this effect. See Table 1 for available statistic
information.

Table 1. zfcp statistics available through sysfs

Type Description

seconds_active Seconds since the virtual adapter is active

requests Number of requests processed since subchannel activation

megabytes Amount of megabytes transferred since sub- channel activation

utilization Utilization in percent over the last two seconds

cmd_latency Latency for command requests processed

read_latency Latency for read requests processed

write_latency Latency for write requests processed

Accessing statistics in sysfs
You can read the statistics from the files attributes in the sysfs filesystem.
Depending on the information type the location of the attributes varies. The
latencies are provided on a device level and are therefor located in the SCSI device
section. The other statistics are on the subchannel (virtual adapter) level and are
located in the SCSI host section. Reference the following list for a detailed
description of the location of the zfcp statistics.

The zfcp statistics are located as follows:

v /sys/class/scsi_host/host<n>/seconds_active

v /sys/class/scsi_host/host<n>/requests

v /sys/class/scsi_host/host<n>/megabytes

v /sys/class/scsi_host/host<n>/utilization

v /sys/class/scsi_device/<H:C:T:L/device/cmd_latency

v /sys/class/scsi_device/<H:C:T:L>/device/read_latency

v /sys/class/scsi_device/<H:C:T:L>/device/write_latency

where

v <n> denotes an integer, for example host0 or host3 depending on how many
subchannels are configured for the system.

v <H:C:T:L> stands for Host, Channel, Target and Lun and describes the
referenced storage (for example, disk).

© Copyright IBM Corp. 2006, 2010 39

Example
To check for how long the subchannel host0 has been active, issue:

cat /sys/class/scsi_host/host0/seconds_active
66
#

Reading from the file seconds_active with the cat command provides a value of 66
resulting in the information that the subchannel host0 is active for the last 66
seconds. Other attributes can be queried the same way, however, the content might
need to be interpreted differently.

Interpreting the sysfs statistics
seconds_active

The attribute seconds_active is a single value attribute (see above) and
simply gives the seconds the subchannel has been active.

requests
The attribute requests is a three-valued attribute that provides the number
of requests processed since subchannel activation split into the areas of (in
that order):

v Input

v Output

v Control

The following example shows that three input, ten output, and five control
requests were issued since subchannel activation:

[root]# cat /sys/class/scsi_host/host0/requests
3 10 5
[root]#

megabytes
The attribute megabytes is a two-valued attribute providing the amount of
megabytes transferred in and out. The following example shows that 3 MB
were received and 6 MB were sent out since subchannel activation:

[root@T6360007 host0]# cat /sys/class/scsi_host/host0/megabytes
3 6
[root@T6360007 host0]#

utilization
The attribute utilization is a three-valued attribute, showing the utilization of
the processor, bus, and adapter over the last two seconds. The adapter
continuously refreshes the values covering the utilization of the individual
sections over the past two seconds. These values cannot be reset
manually.

cmd_latency, read_latency, and write_latency
Each latency provides seven values as follows:

1. value, minimum fabric latencies [µsec]

2. value, maximum fabric latencies [µsec]

3. value, summarized fabric latencies [µsec]

4. value, minimum channel latencies [µsec]

5. value, maximum channel latencies [µsec]

40 How to use FC-attached SCSI devices - Kernel 2.6.35

6. value, summarized channel latencies [µsec]

7. value, amount of requests

No interpretation or modification of the values is done by the zfcp driver.
The individual values are summed up during normal operation of the virtual
adapter. An overrun of the variables is neither detected nor treated. You
must read the latency twice to make a meaningful statement, because only
the difference between the values of the two reads can be used.

Example: After reading the file twice we have the following values:

Type 1st read 2nd read δ

Fabric 403 821 418

Channel 115 163 48

Count 21 23 2

The average fabric latency (see Figure 12) over two readings is
418/2 = 209µsec

The results for the other values can be calculated accordingly.

Figure 12. SCSI latency breakdown

Chapter 9. Statistics available through sysfs 41

42 How to use FC-attached SCSI devices - Kernel 2.6.35

Chapter 10. I/O tracing using blktrace

You can collect data about I/O requests with the help of blktrace (see Figure 13).
The Linux kernel can collect events about all state changes of I/O requests. Later,
the blktrace utilities can derive data from these events.

Before you begin: I/O tracing with blktrace requires two parts:

v A Linux kernel with the config option CONFIG_BLK_DEV_IO_TRACE enabled.

v The blktrace userspace utilities, available from:
git://git.kernel.dk/blktrace.git

or
http://brick.kernel.dk/snaps/

The blktrace README file tells you where to get the sources, how to use
blktrace and where to find the documentation.

Hint: While the I/O analysis can be run at the system where I/O is actually being
traced, two Linux systems should be used: One that is being traced and the trace
data is being redirected through a network connection to the second one for
evaluation. This minimizes the impact on the system being traced.

Capturing and analyzing I/O data
Capturing and analyzing the I/O data involves different tools:

blktrace
captures the data from the running kernel, optionally sends it over the
network to minimize the impact on the running system and stores the data
in a binary format.

blkparse
parses the data captured by blktrace, displays it in a readable format, adds
a summary and creates data usable by btt.

btt does further analysis and can create histogram data for plotting with Grace4
or other plotting tools.

S
CS

I s
ta

ck
is
su

es
I/O

I/O passes through
QDIO and z/VM

I/O
re

ce
ive

d
by

FC
P

ch
an

ne
l

zfcp
prepares
I/O

Res
po

ns
e
di

sp
at

ch
ed

by
FC

P
ch

an
ne

l

Res
po

ns
e
re

ce
ive

d
by

zf
cp

Res
po

ns
e
re

ce
ive

d
by

S
CS

I s
ta

ck

Time

Overall SCSI latency

measured by blktrace

Latency reported

by FCP channel

zf
cp

is
su

es
I/O

SCSI stack
prepares I/O

bl
kt

ra
ce

di
sp

at
ch

bl
kt

ra
ce

co
m

pl
et

ed

Figure 13. Latency reported by blktrace

© Copyright IBM Corp. 2006, 2010 43

git://git.kernel.dk/blktrace.git
http://brick.kernel.dk/snaps/

This section gives a short overview of how to get the I/O trace data. The blktrace
documentation contains more examples of data that is available.

Capturing data on a remote system
On the system where the captured data should be stored start blktrace in server
mode. This system should have a good network connectivity to the system being
traced:

blktrace -l

On the system that is being traced run blktrace in client mode. For example to trace
the SCSI disk on device /dev/sda and send the trace data to the system t6345030. .
. run:

blktrace -h t6345030.mysystem.com -d /dev/sda
blktrace: connecting to t6345030.mysystem.com
blktrace: connected!

blktrace on the server side now shows that there is a connection from the system
being traced:

server: connection from 9.152.37.153

Now run the I/O load that should be traced. Afterwards, stop the blktrace client and
then the blktrace server with ctrl-c. Both acknowledge this by printing a summary of
the data that was traced:
Device: sda
CPU 0: 0 events, 66471 KiB data
CPU 1: 0 events, 53906 KiB data
Total: 0 events (dropped 0), 120377 KiB data

The trace data is now available on the system where the server side of blktrace
was running:

ls -l 9.152.37.153-2007-10-31-11\:38\:40/
total 120512
-rw-rw-r-- 1 schmichr schmichr 68065624 Oct 31 12:40 sda.blktrace.0
-rw-rw-r-- 1 schmichr schmichr 55199600 Oct 31 12:40 sda.blktrace.1

Parsing captured data
You can run captured data through blkparse. Running the created data through
blkparse creates a text file with the I/O events and a summary. It also creates
optionally a binary file for later processing with btt:

blkparse -D 9.152.37.153-2007-10-31-11\:38\:40/ sda -d events.bin \
> events.txt

If only read requests or only write requests should be analyzed by blkparse or later
by btt, -a read or -a write can be added to the blkparse command line. The end of
the text log file shows as part of a summary the number of read and write requests
and the total amount of read and written data. The same text file also lists all
events related to I/O requests that have been captured by blktrace. The summary at
the end looks like this:

44 How to use FC-attached SCSI devices - Kernel 2.6.35

Total (sda):
Reads Queued: 60, 240KiB Writes Queued: 1,257K, 5,030MiB
Read Dispatches: 60, 240KiB Write Dispatches: 15,153, 5,030MiB
Reads Requeued: 0 Writes Requeued: 75
Reads Completed: 60, 240KiB Writes Completed: 15,078, 5,030MiB
Read Merges: 0, 0KiB Write Merges: 1,242K, 4,970MiB
IO unplugs: 1,193 Timer unplugs: 859

Throughput (R/W): 2KiB/s / 46,340KiB/s

Analyzing data and plotting histograms
You can run the binary file created by blkparse through btt for further analysis:

btt -i events.bin -o btt.out

The file btt.out.avg now contains a summary of the data. The most interesting line is
the one labeled D2C. It shows the latencies for SCSI requests from the point when
they have been dispatched to the device driver (D) to the completion of the request
(C):
==================== All Devices ====================

ALL MIN AVG MAX N
--------------- ------------- ------------- ------------- -----------
Q2Q 0.000000072 0.000086313 5.453721801 1257686
Q2I 0.000000359 0.000000516 0.023150311 1257687
I2D 0.000000933 0.003573727 0.487170508 1267275
D2C 0.000363719 0.034028080 0.708048174 1257687
Q2C 0.000395336 0.037609824 0.708064315 1257687

btt.out_qhist.dat has histogram data about the request sizes, more specifically these
are the sizes of the request initially created. The unit of the histogram buckets are
blocks counts, one block has 512 bytes in Linux. btt.out_dhist.dat shows the same
histogram but from the requests issued to the device driver, this means after
adjacent requests have been merged. The data from btt can be plotted directly with
the Grace plotting tool:

xmgrace btt.out_qhist.dat
xmgrace btt.out_dhist.dat

Since the output from btt is a histogram in a plain text file, the data can also be
imported into other plotting tools. btt can also produce a listing showing the history
of each I/O request:

btt -p per_io.dump -i events.bin -o btt.out

per_io.dump now lists this from the initial request creation (Q) to completion (C)
with start address of the request on the block device (15926) and the number of
512 byte blocks (8):
8,0 : 108.544109552 Q 15926+8

108.544112927 I 15926+8
108.544111412 G 15926+8
108.544115662 D 15926+8
108.548892005 C 15926+8

A detailed description is available in the blktrace User Guide, available as
blktrace.pdf in the blktrace userspace utilities.

Chapter 10. I/O tracing using blktrace 45

Available data for I/O requests
blkparse Reads summary

The output of blkparse contains a summary of the analyzed data. The
"Reads" columns shows the number of read requests processed ("Queued",
"Dispatched" and "Completed") together with the total amount of data read
with these requests.

blkparse Writes summary
The same information as for the read requests is also provided for the write
requests. The available data shows the number of write requests and the
amount of data written.

Request sizes
The average size of read and write requests can be obtained from the
blkparse summary by dividing the total amount of data by the amount of
requests. A histogram showing the request sizes is available from the btt
analysis tool.

Request latencies
The latencies of requests can be retrieved from the btt analysis tool. The
D2C ("dispatched" to "completion") latency tracks the time from the request
being issued to the device driver to the time of the request completion.

Queue depth
The listing per CPU in the blkparse summary also shows the maximum
number of pending read and write requests in the "Read depth" and "Write
depth" field.

Note: Only block devices like disks and CD-ROMs can be traced with blktrace. If
the data has been captured from a tape drive, then the data analysis with btt
is not available: btt uses the sector number of each I/O request for mapping
the blktrace events to the originating requests. With tape drives, there are no
sector numbers and the Linux block layer simply passes "0" for the sector of
the blktrace events.

46 How to use FC-attached SCSI devices - Kernel 2.6.35

Chapter 11. Debugging using zfcp traces

Traces exploit the debug feature for FCP. This chapter describes the format of the
traces and what information you can get with the different level settings.

The base directory for trace entries is s390dbf.

pwd
/sys/kernel/debug/s390dbf

For each FCP subchannel, there are separate trace areas (seen as separate
directories) for the different aspects of FCP operation, that is, Linux SCSI, FCP
channel, SAN, and error recovery. The name of a trace area comprises the driver's
name (zfcp), an FCP subchannel's bus ID, and a trace area. The name is of the
following form:
driver_busid_area

For example, an FCP subchannel SAN trace area might be called
zfcp_0.0.50d5_san.

ll -d zfcp*
drwxr-xr-x 2 root root 0 Aug 8 15:02 zfcp_0.0.50d5_rec
drwxr-xr-x 2 root root 0 Aug 8 15:02 zfcp_0.0.50d5_hba
drwxr-xr-x 2 root root 0 Aug 8 15:02 zfcp_0.0.50d5_san
drwxr-xr-x 2 root root 0 Aug 8 15:02 zfcp_0.0.50d5_scsi

All traces have a debug view seen as a file named structured. Every event traced
by the FCP driver results in a trace record, which is a structured set of relevant
information gathered for the respective condition from various sources. Each entry
of a trace record consists of a name and a value. If you work with zfcp traces, work
with the "structured" view rather than the "hex_ascii" view.

ll zfcp_0.0.50d5_san
total 0
--w------- 1 root root 0 Aug 8 15:02 flush
-r-------- 1 root root 0 Aug 8 15:02 hex_ascii
-rw------- 1 root root 0 Aug 8 15:02 level
-rw------- 1 root root 0 Aug 8 15:02 pages
-r-------- 1 root root 0 Aug 8 15:02 structured

Note: The traces described herein might be changed in future releases.
Particularly, trace refinements might comprise:
v Addition, removal or modification of single trace record fields.
v Reclassification of trace record with regard to their verbosity level.
v Addition or removal of trace records.
v Addition or removal of entire trace areas.

Figure 14 on page 48 illustrates the different trace areas. The traces capture the
interactions between:
v The zfcp driver and the Linux SCSI subsystem (SCSI trace)
v The zfcp driver and the FCP subchannel (HBA trace)
v The zfcp driver and the storage area network (SAN trace)

© Copyright IBM Corp. 2006, 2010 47

Interpreting trace records
Interpretation of individual trace records might require additional documentation or
other sources of information, for example FCP and SCSI standards, FCP Channel
documentation, Linux documentation, or even Linux source code.

Entries in trace records reflect current values of respective structures as described
below, or, if this information or these structures are not accessible, zeroes. For
example, if some fields of a trace record indicate that some operation has not
finished or failed, then the content of other fields of the same record might be
empty or not valid, because it would have been derived from a successful
completion. In other cases, the content of some fields might reflect data from a
previous iteration, for example the result of the last retry. This kind of information
can be valuable as well, and has therefore been intentionally retained. Users of zfcp
traces are encouraged to use common sense and, if in doubt, check the Linux
source code to judge the content of individual trace records.

Table 2. Sample trace record

Entry Value Meaning

timestamp 3331355552811473 Time when the event occurred.

cpu 01 Number of the CPU where the event occurred.

tag iels Incoming ELS

fsf_reqid 0x29e8a00 Pointer to fsf_req used to convey the FCP_CMND
IU and to retrieve the FCP_RSP IU, also the
request identifier.

fsf_seqno 0x00000000 The fsf_req sequence number.

s_id 0xfffffd Sender (switch).

d_id 0x653b13 Recipient (FCP subchannel).

ls_code 0x61 ELS is RSCN (State Change Notification).

payload 6104000800650713 Destination ID (D_ID) of the port for which the
state change is reported.

Storage controller

SCSI devices

System z

FCP adapter

Linux

SCSI stack

SCSI core

zfcp device driver

SAN switch

SCSI trace

HBA trace

SAN trace

Figure 14. zfcp traces

48 How to use FC-attached SCSI devices - Kernel 2.6.35

Chapter 12. Collecting FCP performance data with ziomon

The performance monitor ziomon collects data relevant to FCP performance, such
as the FCP I/O configuration, I/O workload, and the utilization of FCP resources.
You can use ziomon for performance problem determination and capacity planning.

What you should know about ziomon
The ziomon monitor collects FCP performance relevant data over a specified period
of time. The monitor uses a block I/O layer tracing tool, blktrace. Monitoring data is
written to disk periodically. ziomon builds up a history of monitoring data, which can
be consumed and analyzed by tools on top of ziomon.

The ziomon monitor determines the FCP subchannel used to access a SCSI
device. The monitor collects performance data for both SCSI devices and
corresponding FCP subchannels.

Building a kernel with ziomon

This section is intended for those who want to build their own kernel. It describes
the options you must select in the Linux configuration menu to include ziomon.

The ziomon monitor has no kernel options of its own, but a dependency on the
block I/O layer tracing option. You need to select the kernel configuration option
CONFIG_BLK_DEV_IO_TRACE to be able to monitor performance with ziomon.

Preparing to use ziomon
When you collect traces with ziomon, you require 2 MB of Vmalloc space for each
SCSI device node and CPU. For instance, if you have a single SCSI device
attached through multipathing as /dev/sda, /dev/sdb and /dev/sdc on a system
with two CPUs, you would need 3×2×2 MB = 12 MB of Vmalloc space. To check the
amount of available Vmalloc space, issue the command:
cat /proc/meminfo | grep Vmalloc

The ziomon data collection process can be corrupted if the cpuplugd deamon is
running. Disable cpuplugd for the duration of the data collection process. To check
whether the cpuplugd deamon is running use:
service cpuplugd

See Device Drivers, Features, and Commands, SC33-8411 for further details on
cpuplugd.

Working with the ziomon monitor
This section describes typical tasks that you need to perform when working with the
ziomon monitor.

v Starting the monitor

v Stopping the monitor

v Working with the results of monitoring

Enable the block layer (common code option)(CONFIG_BLOCK)
Support for tracing block io actions (CONFIG_BLK_DEV_IO_TRACE)

© Copyright IBM Corp. 2006, 2010 49

http://www.ibm.com/developerworks/linux/linux390/development_documentation.html

Starting the monitor
To start the ziomon monitor, use the ziomon command:

ziomon syntax

�� �
- i 60

ziomon - d <n> - o <logfile> <device>
- f - l <limit> - i <n>

- h
- v
- V

��

where:

-f or --force
forces the start of data collection even though there is insufficient free disk
space.

-l or --size-limit
defines the upper limit of the output files. Must include one of the suffixes M
(megabytes), G (gigabytes) or T (terabytes). Note that this is only a tentative
value that can be slightly exceeded.

-i or --interval-length
specifies the elapsed time between writing data to disk in seconds. Defaults to
60 seconds.

-d or --duration
specifies the monitoring duration in minutes. Must be a multiple of the interval
length.

-o or --outfile
specifies the prefix for the log file, configuration file and aggregation file.

<device>
denotes one or more device names separated by blanks. If <device> denotes a
device mapper device, ziomon resolves all of its paths, that is, all SCSI devices
grouped to that multipathing device. For this purpose ziomon uses information
provided by "multipath -l". ziomon then monitors those SCSI devices. The
device mapper device itself is not monitored.

-h or --help
displays help information for the command.

-v or --version
displays version information for the command.

-V or --verbose
displays more information for the command.

Examples
v Assume data should be collected for devices /dev/sda, /dev/sdg and /dev/sdp for

5 minutes. Data should be sampled every 20 seconds. The collected data size
should not exceed 50 MB. The output files should use the basename
"trace_data":

ziomon -i 20 -d 5 -l 50M -o trace_data /dev/sda /dev/sdg /dev/sdp

50 How to use FC-attached SCSI devices - Kernel 2.6.35

v Assume data should be collected for a SCSI tape device. To do this, use the
respective SCSI generic device instead (for example /dev/sg1) since the actual
tape device (for example /dev/st0) can be accessed by one process only:

ziomon -i 20 -d 5 -l 50M -o scsi_trace_data /dev/sg1

Stopping the monitor
The ziomon monitor will stop running after the period of time you specified when
you started it. If you need to stop the monitor before the time period runs out, issue
the command:
[Ctrl] C

Working with the results of monitoring
ziomon produces output files with a prefix that you specify when starting the
monitor:

v <filename>.cfg, holds various configuration data from the system. This is a
snapshot of certain subtrees of the filesystem in tgz format, that is, /sys and
/proc.

v <filename>.log, holds the raw data samples taken during the data collection
phase in a binary format.

v <filename>.agg, (optional). When <filename>.log threatens to become larger than
the allowed limit old sample data is aggregated into this file to make room for
more recent data. This file is also in a binary format. If no limit has been
specified or the collected data takes less than the limit, this file will not be
created.

You can read the monitoring files on other systems than the one where data was
collected, in particular, you can read and analyze data collected on System z on a
different Linux architecture, such as x86 architecture.

Chapter 12. Collecting FCP performance data with ziomon 51

52 How to use FC-attached SCSI devices - Kernel 2.6.35

Chapter 13. Creating FCP performance reports

Using the output from ziomon (see Chapter 12, “Collecting FCP performance data
with ziomon,” on page 49), you can create three performance reports by using the
commands:

v ziorep_config: Generates a report for the FCP I/O configuration.

v ziorep_utilization: Generates a report for FCP adapter utilization.

v ziorep_traffic: Generates a report for FCP adapters' I/O traffic.

For ziorep_utilization and ziorep_traffic, you can narrow the results down to a
specific date range or aggregate data over time. Furthermore, ziorep_traffic allows
more fine-grained device selection as well as aggregation of data on different
device levels.

See the respective man pages for detailed information about the reports.

ziorep_config - Report on the multipath, SCSI, and FCP configuration
The purpose of the ziorep_config report is to visualize the SCSI-, FCP- and
multipath-configuration of the system. You can control the report using command
line switches. The report is usable on both a preprocessed configuration file or
configuration directory-tree and on a live system. The report is described in more
detail in the example section.

All parameters must be specified fully. Short-versions, such as using 3c07 for the
subchannel-ID, are not allowed. Hexadecimal values must be specified with a
leading X'0x' and must always be lowercase. All WWPNs and LUNs must be
specified as 16-digit hexadecimal values. Leading and trailing zeros are vital and
must be included.

ziorep_config syntax

��

-A
-t -i <src-file > -a <adapter>

<src-dir>
ziorep_config -D D options

-M M options

-i <src-file >
<src-dir>

-h
-v

��

D options:

-t -i <src-file > -a <adapter> -p <WWPN> -l <LUN> -s <shost> -d <sdev>
<src-dir>

M options:

-t -i <src-file > -a <adapter> -p <WWPN> -s <shost> -m <mdev>
<src-dir>

where:

© Copyright IBM Corp. 2006, 2010 53

-t or --topline
prints a header for column description. The default is to print no header,
which is useful if the results are imported by another application. For
example:

ziorep_config -D -t

-i or --input <src-file | src-dir>
specifies the configuration file created by ziomon as source.

-a or --adapter <adapter>
limits the output to the list of adapters specified, for example:

ziorep_config -a 0.0.3c07 -a 0.0.3d07

-p or --port <WWPN>
limits the output to the list of remote-ports specified, for example:

ziorep_config -D -p 0x5005123456789000 -p 0x5005123456789001

-l or --lun <LUN>
limits the output to the list of FCP-LUNs specified, for example:

ziorep_config -D -l 0x401040a600000000 -l 0x401040a700000000

-s or --scsi <shost>
limits the output to the list of SCSI hosts specified, for example:

ziorep_config -D --scsi host0 -s host1 -s host5

-d or --device <sdev>
limits the output to the list of SCSI devices specified, for example:

ziorep_config -D --device sda -d sdb -d sde

-m or --mdev <mdev>
limits the output to the list of multipath devices specified, for example:

ziorep_config -M -m 36005076303ffc56200000000000010a6

-A or --Adapter
prints the adapter report, this is the default.

-D or --Device
prints the device report.

-M or --Map
prints the multipath mapper report.

-h or --help
prints this help text.

-v or --version
prints version information.

54 How to use FC-attached SCSI devices - Kernel 2.6.35

Example: Adapter report
The first example shows the output of the adapter report. This is the default report.
The adapter report shows important information about the currently attached FCP
adapters.

ziorep_config

Host: host0
CHPID: 36
Adapter: 0.0.3c07
Sub-Ch.: 0.0.0010
Name: 0x5005076401a07163
P-Name: 0x5005076401a07163
Version: 0x0003
LIC: 0x0000c74c
Type: NPort (fabric via point-to-point)
Speed: 2 Gbit
State: Online
Host: host1

CHPID: 37
Adapter: 0.0.3d07
Sub-Ch.: 0.0.0011
Name: 0x5005076401e07163
P-Name: 0x5005076401e07163
Version: 0x0003
LIC: 0x0000c74c
Type: NPort (fabric via point-to-point)
Speed: 2 Gbit
State: Online

In the report, the fields have the following meanings:
Host: SCSI host ID, see lsscsi command
CHPID: Channel Path ID
Adapter: Bus-ID of the adapter
Sub-Ch.: Subchannel-ID
Name: adapters current WWPN
P-Name: adapters permanent WWPN
Version: adapter version
LIC: licensed internal code, microcode version
Type: current connection type
Speed: current connection speed
Status: current adapter status

Example: Device report
In the second example, the device report lists all configured SCSI devices with their
corresponding FCP representation. The example shows the output of the device
report limiting the output to the two adapters 0.0.3c07 and 0.0.3d07 with an enabled
topline (table header).

ziorep_config -D -t -a 0.0.3c07 -a 0.0.3d07

adapter remote port LUN SCSI gen_dev scsi_dev MM type model vendor H:C:T:L
===
0.0.3c07 0x500507630300c562 0x401040a600000000 host0 /dev/sg0 /dev/sda 8:0 Disk 2107900 IBM 0:0:0:1084637200
0.0.3c07 0x500507630300c562 0x401040a700000000 host0 /dev/sg1 /dev/sdb 8:16 Disk 2107900 IBM 0:0:0:1084702736
0.0.3c07 0x500507630300c562 0x401040a800000000 host0 /dev/sg2 /dev/sdc 8:32 Disk 2107900 IBM 0:0:0:1084768272
0.0.3c07 0x500507630300c562 0x401040a900000000 host0 /dev/sg3 /dev/sdd 8:48 Disk 2107900 IBM 0:0:0:1084833808
0.0.3c07 0x500308c141699001 0x0000000000000000 host0 /dev/sg4 /dev/st0 9:0 Tape ULT3580-TD2 IBM 0:0:23:0
0.0.3d07 0x500507630300c562 0x401040a600000000 host1 /dev/sg5 /dev/sde 8:64 Disk 2107900 IBM 1:0:10:1084637200
0.0.3d07 0x500507630300c562 0x401040a700000000 host1 /dev/sg6 /dev/sdf 8:80 Disk 2107900 IBM 1:0:10:1084702736

Chapter 13. Creating FCP performance reports 55

In the report, the fields have the following meanings:
adapter Bus-ID of the adapter
remote port WWPN of the remote storage port
LUN logical unit number of the FCP device
SCSI SCSI host ID
gen_dev SCSI generic device
scsi_dev SCSI device (block-, char-)
MM major:minor number of the SCSI device
type type of device (such as Disk, or Tape)
vendor vendor of the corresponding storage device
H:C:T:L Host:Channel:Target:LUN path mapping of the target device

Example: Mapper report
The mapper report displays the relation between the configured multipath devices
and the corresponding SCSI- and FCP-devices. The following example shows the
output of the mapper report sorted in the order of multipath devices, remote ports
and adapters. Multipath devices can be found in the sysfs under the directory
/dev/mapper or displayed using the multipath utilities.

ziorep_config -M -t

adapter remote_port scsi_dev multipath_device
===
0.0.3c07 0x500507630300c562 /dev/sda /dev/mapper/36005076303ffc56200000000000010a6
0.0.3d07 0x500507630300c562 /dev/sde /dev/mapper/36005076303ffc56200000000000010a6
0.0.3c07 0x500507630300c562 /dev/sdb /dev/mapper/36005076303ffc56200000000000010a7
0.0.3d07 0x500507630300c562 /dev/sdf /dev/mapper/36005076303ffc56200000000000010a7
0.0.3c07 0x500507630300c562 /dev/sdc /dev/mapper/36005076303ffc56200000000000010a8
0.0.3c07 0x500507630300c562 /dev/sdd /dev/mapper/36005076303ffc56200000000000010a9

In the report, the fields have the following meanings:
adapter Bus-ID of the adapter.
remote port WWPN of the remote storage port.
scsi_dev Fully qualified path of the SCSI device.
multipath_device

Fully qualified path of the multipath device.

ziorep_utilization - Report on utilization details
The purpose of the ziorep_utilization report is to provide a central, detailed
analysis of adapters' utilizations, errors, and queue fill levels. The data can be
aggregated over time, to make it easier to hunt down resource shortages and
critical situations for further analysis. This report uses the data as collected by the
ziomon performance monitor, see Chapter 12, “Collecting FCP performance data
with ziomon,” on page 49, and displays the data in a comprehensible manner.

56 How to use FC-attached SCSI devices - Kernel 2.6.35

ziorep_utilization syntax

�� ziorep_utilization
-b <begin> -e <end> -i <time>

�

� � <filename>
-x -s -c <chpid> -t <num>

��

where:

-b <begin> or --begin=<begin>
reports data starting from <begin>. Defaults to the start of available data.
The format is YYYY-MM-DD HH:MM[:SS], for example, -b "2008-03-21 09:08".
The actual dates used will be rounded to the nearest data collection frame.
That is, if you started the data collection at 17:00:00 with an interval length
of 15 seconds, a specified time of 17:01:32 would be rounded to 17:01:30.

-e <end> or --end=<end>
reports data ending at <end>. Defaults to end of available data. Format is
YYYY-MM-DD HH:MM[:SS], for example: -e "2008-03-21 09:08:57"

-i <time> or--interval <time>
sets the aggregation interval to <time> in seconds. Must be a multiple of
the interval size of the source data. Set to 0 to aggregate over all data.

When the source data was collected using ziomon, a value was specified
for the duration between two consecutive data samples. Using -i it is
possible to aggregate that source data to achieve a more coarse resolution.
Specifying anything other than a multiple or 0 will result in an error.

-s or --summary
shows a summary of the data.

-c or --chpid <chpid>
selects physical adapter in hex, for example -c 32a. You can specify
multiple physical adapters by using multiple -c command line switches.

-x or --export-csv
exports data to files in CSV format.

-t or --topline <num>
repeats topline after every ’num’ frames. Specify 0 for no repeat (default).

<filename>
The name of the log file from which you want to generate the report.

-h or --help
displays short usage text on console. See the ziorep_utilization man page
for more details.

-v or --version
displays version number on console, and exit.

-V or --verbose
displays more information while processing.

Chapter 13. Creating FCP performance reports 57

Examples
This example shows how the summary option lists the date ranges of the collected
data, its interval length, and the involved hardware:

./ziorep_utilization -s multipath_stress.log

Data Summary

Aggregated range: 2008-11-13 08:56:49 to 2008-11-13 16:12:53
Detailed range: 2008-11-13 16:12:57 to 2008-11-13 20:56:45
Interval length: 4 seconds
HBA/CHPID: 0.0.3c40/52

0.0.3c00/50
WWPN/LUN (dev): 500507630313c562/4013401500000000 (/dev/sda)

500507630303c562/4013401500000000 (/dev/sdb)
500507630313c562/4013401400000000 (/dev/sdc)
500507630303c562/4013401400000000 (/dev/sdd)
500507630313c562/4013401a00000000 (/dev/sde)
500507630303c562/4013401a00000000 (/dev/sdf)
500507630313c562/4013401c00000000 (/dev/sdg)
500507630303c562/4013401c00000000 (/dev/sdh)
500507630313c562/4013401800000000 (/dev/sdi)
500507630303c562/4013401800000000 (/dev/sdj)
500507630313c562/4013401b00000000 (/dev/sdk)
500507630303c562/4013401b00000000 (/dev/sdl)
500507630313c562/4013401700000000 (/dev/sdm)
500507630303c562/4013401700000000 (/dev/sdn)

This example shows the output from an input file containing data for two physical
adapters with two virtual adapters hosted on each:

./ziorep_utilization multipath_stress -e "2008-11-13 16:13:09"
CHP|adapter in %-|--bus in %---|--cpu in %---|
ID min max avg min max avg min max avg
2008-11-13 16:12:53 Aggregated Frame
52 0 57 2.4 2 53 22.4 2 15 5.1
50 0 59 2.5 2 52 22.4 2 15 5.1
16:12:57
52 9 9 9.0 29 29 29.0 4 4 4.0
50 12 12 12.0 28 28 28.0 3 3 3.0
16:13:01
52 1 1 1.0 24 24 24.0 3 3 3.0
50 1 1 1.0 29 29 29.0 4 4 4.0
16:13:05
52 10 10 10.0 25 25 25.0 3 3 3.0
50 4 4 4.0 25 25 25.0 3 3 3.0
...
2008-11-14 00:00:01
...
CHP Bus-ID |--qdio util.i.%--|queu|fail|-thp / MB/s--|I/O reqs-|
ID min max avg full erc rd wrt rd wrt
2008-11-13 16:12:53 Aggregated Frame
50/0.0.3c00 0.0 100.0 96.7 28K 0 16.5 5.8 2.0M 455K
52/0.0.3c40 0.0 100.0 96.6 28K 0 15.5 5.0 2.0M 463K
16:12:57
50/0.0.3c00 0.0 100.0 97.2 0 0 10.4 6.2 4.4K 812
52/0.0.3c40 0.0 100.0 96.8 0 0 8.1 6.4 5.2K 894
16:13:01
50/0.0.3c00 0.0 100.0 97.3 0 0 9.9 12.1 3.5K 248
52/0.0.3c40 0.0 100.0 97.7 0 0 10.1 14.5 2.5K 175
16:13:05
50/0.0.3c00 0.0 100.0 98.5 0 0 8.2 7.2 3.5K 116
52/0.0.3c40 0.0 100.0 98.0 0 0 10.3 8.1 3.7K 113
...
2008-11-14 00:00:01
...

58 How to use FC-attached SCSI devices - Kernel 2.6.35

Note that numbers can be abbreviated if space does not suffice. For example,
17 361 can be abbreviated to 17K.

The meaning of the columns is as follows:
CHPID The device's three character channel path ID.
Bus-ID The device's eight character bus-ID.
adapter, bus, and cpu

The respective utilizations as reported by the FCP adapter statistics
in percent. For example, a value of 37.2 represents a value of 37.2
percent.

fail erc The number of error recovery conditions.
qdio utilization

The min, max and avg columns give the minimum, maximum and
average outbound queue utilization respectively.

queu full The number of instances where a request to the adapter could not
be submitted due to no empty slots left in the outbound queue.

thp / MB/s This is the average throughput over time (volume transmitted /
elapsed time) in megabytes per second, not over number of
requests (sum over all request throughputs / number of requests)!

This means that a long-running request with a significantly different
throughput profile from the rest will have a bigger impact than a
brief one with the same throughput profile would. This gives a better
impression of the overall profile and especially makes requests with
very low throughputs have a bigger impact, making it easier to
detect anomalies.

The abbreviations rd and wrt mean read and write throughput
respectively.

I/O reqs is the number of I/O requests processed in the respective interval.

The abbreviations rd and wrt mean read and write requests
respectively.

Note that the output comes in two parts: The first part gives the utilization of the
whole physical adapter, while the second part gives data for all virtual adapters.

Each new day will be marked by a respective line as will each interval. All
applicable adapters are then listed on individual lines for each timeslot. The label
Aggregated highlights ranges in the data where the source data was already
aggregated and hence cannot be processed further. If you select a timeframe that
touches the range in which only aggregated data is available, the complete
aggregated data will be reprinted. However, this can only be at most one dataset
per device, and will only appear as the first line in the output.

In this example an interval length of 0 is chosen, causing all data in the specified
timeframe to be aggregated into a single entry:

./ziorep_utilization multipath_stress.log -i 0
CHP|adapter in %-|--bus in %---|--cpu in %---|
ID min max avg min max avg min max avg
2008-11-13 20:56:45
52 0 57 1.4 2 53 22.3 2 15 5.0
50 0 59 1.5 2 52 22.3 2 15 5.0
CHP Bus-ID |--qdio util.i.%--|queu|fail|-thp / MB/s--|I/O reqs-|
ID min max avg full erc rd wrt rd wrt
2008-11-13 20:56:45
50/0.0.3c00 0.0 100.0 96.7 30K 0 16.5 5.8 2.0M 455K
52/0.0.3c40 0.0 100.0 96.6 31K 0 15.5 5.0 2.0M 463K

Chapter 13. Creating FCP performance reports 59

ziorep_traffic - Analyze systems I/O traffic through FCP adapters
The ziorep_traffic command produces a report that provides a central, detailed
analysis of the systems I/O traffic through FCP adapters. The main focus is on the
latencies as they appear in the channel, fabric, or the whole I/O subsystem. The
data can be:

v Aggregated over time

v Reduced to certain devices only

This report uses data as collected by the ziomon utility (see Chapter 12, “Collecting
FCP performance data with ziomon,” on page 49).

ziorep_traffic syntax

�� ziorep_traffic
-b <begin> -e <end> -i <time>

�

� � � �

-c <chpid> -u <id> -p <port>
�

� � � �

-l <lun> -d <fdev> -m <mdev> -t <num>
�

�
-x -s -D -C a

u
p
m
A

<filename> ��

where:

-b <begin> or --begin=<begin>
reports data starting from <begin>. Defaults to the start of available data.
The format is YYYY-MM-DD HH:MM[:SS], for example, -b "2008-03-21 09:08".
The actual dates used will be rounded to the nearest data collection frame.
That is, if you started the data collection at 17:00:00 with an interval length
of 15 seconds, a specified time of 17:01:32 would be rounded to 17:01:30.

-e <end> or --end=<end>
reports data ending at <end>. Defaults to end of available data. Format is
YYYY-MM-DD HH:MM[:SS], for example: -e "2008-03-21 09:08:57"

-i <time> or --interval <time>
sets the aggregation interval to <time> in seconds. Must be a multiple of
the interval size of the source data. Set to 0 to aggregate over all data.

When the source data was collected using ziomon, a value was specified
for the duration between two consecutive data samples. Using -i it is
possible to aggregate that source data to achieve a more coarse resolution.
Specifying anything other than a multiple or 0 will result in an error.

60 How to use FC-attached SCSI devices - Kernel 2.6.35

-c or --chpid <chpid>
selects a physical adapter in hexadecimal, for example -c 32a. You can
specify multiple physical adapters by using -c multiple times.

-u or --bus-id <ID>
selects by bus-ID, for example: -u 0.0.7f1d

-p or --port <port>
selects by target port, for example: -p 0x500507630040710b

-l or --lun <LUN>
selects by LUN, for example: -l 0x4021402200000000

-d or --device <fdev>
selects by device, for example: -d sda

-m or --mdev <mdev>
selects by multipath device, for example: -m 36005076303ffc1040002120

-t or --topline <num>
repeats topline after every ’num’ frames. Specify 0 for no repeat (default).

-x or --export-csv
exports data to files in CSV format.

-s or --summary
shows a summary of the data.

-D or --detailed
prints histograms instead of univariate statistics.

-C or --collapse <val>
collapses data for multiple instances of a device into a single one. See
“Aggregating data” on page 62 for the a, u, p, m, and A options. See the
ziorep_traffic man page for more details.

<filename>
The name of the log file from which you want to generate the report.

-h or --help
displays a short usage text on console. For more details, see the
ziorep_traffic man page.

-v or --version
displays the version on the console, and exit.

-V or --verbose
displays more information while processing.

Selecting devices
The ziorep_traffic command offers a wide variety of options to specify which
devices to consider: -c, -u, -p, -l, -m and -d. These options specify devices on
different levels and can be freely combined. The resulting devices are the
combination of all devices specified.

Examples:

v Use same-level selection criteria to select a combination of devices. For
example, to select two bus IDs:

-u 0.0.7133 -u 0.0.7173

Chapter 13. Creating FCP performance reports 61

v Multipath devices specified using -m are resolved to all respective paths. For
example, to specify all paths connecting through 36005076303ffc1040002120 as
well as the devices sda, sdc and the lun 0x4021402200000000:

-m 36005076303ffc1040002120 -l 0x4021402200000000 -d sda -d sdc

v To specify intersecting devices, for example where portA is connected (among
others) to busA, essentially all devices that are connected to busA are
considered:

-u busA -p portA

Note: To select all LUNs on a specific storage server, it is necessary to specify all
ports of that storage server.

Aggregating data
No matter what option is being used to select devices, the result will have data of
LUN granularity. If you want to aggregate the data, add the -C option. The -C option
takes one of the following parameters:
a Aggregate all data on a physical adapter level. That is, data for all

LUNs that are connected through the same physical adapter will be
aggregated.

u Aggregate all data on a virtual adapter level. That is, data for all
LUNs that are connected through the same virtual adapter will be
aggregated.

p Aggregate all data on a port level. That is, data for all LUNs that
are connected through the same port will be aggregated.

m Aggregate all data on a multipath device level. Only useful when
devices were specified through -d. That is, data for all paths
available for a multipath device will be aggregated.

A Aggregate all data on a global level. That is, data for all specified
LUNs will be aggregated.

If you select devices using -c, -u, -p, -l, -m or -d, only those devices will be
considered for aggregation. For example, consider multipath device
36005076303ffc1040002120 with paths sda and sdb, and 36005076303ffc1040002121
with paths sdc and sdd.

Example: If you run:

-C m -m 36005076303ffc1040002120 -d sdc

all paths (namely sda and sdb) for device 36005076303ffc1040002120 will be
aggregated, but only a single one for multipath device 36005076303ffc1040002121.

Example: Summary (default) report
Table 3 on page 63 shows an example of the default report:

62 How to use FC-attached SCSI devices - Kernel 2.6.35

Ta
bl

e
3.

E
xa

m
pl

e
of

de
fa

ul
t

re
po

rt

#
./

zi
or

ep
_t

ra
ff

ic
st

re
ss

_s
in

gl
e.

lo
g

-e
"2

00
8-

11
-1

1
19

:5
9:

45
"

-l
40

c1
40

31
00

00
00

00
-l

40
c1

40
35

00
00

00
00

WW
PN

LU
N

|I
/O

rt
MB

/s
|t

hr
p

in
MB

/s
|-

--
-I

/O
re

qu
es

ts
--

--
|-

I/
O

su
bs

.
la

t.
in

us
--

|-
-c

ha
nn

el
la

t.
in

ns
--

-

-f
ab

ri
c

la
t.

in
us

--
-|

mi
n

ma
x

av
g

st
de

v
#r

eq
s

rd
wr

t
bi

di
mi

n
ma

x
av

g
st

de
v

mi
n

ma
x

av
g

st
de

v
mi

n
ma

x
av

g
st

de
v

20
08

-1
1-

11
19

:5
7:

37
50

05
07

63
03

1b
44

8e
:4

0c
14

03
10

00
00

00
0

0
10

3K
0.

1
98

1.
1

73
57

6.
0K

1.
4K

0
36

0
3.

0M
72

.2
4K

71
.0

5G
0

91
M

28
4.

3K
5.

58
9T

0
3.

0M
67

.5
5K

64
.1

9G
50

05
07

63
03

1b
44

8e
:4

0c
14

03
50

00
00

00
0

0
12

7K
0.

1
1.

13
0K

78
38

6.
1K

1.
7K

0
32

3
3.

5M
79

.9
4K

72
.3

2G
0

22
M

28
7.

9K
76

2.
4G

0
3.

5M
75

.4
7K

69
.2

9G
19

:5
8:

37
50

05
07

63
03

1b
44

8e
:4

0c
14

03
10

00
00

00
0

0
12

6K
0.

1
1.

70
9K

86
11

7.
8K

83
2

0
28

2
57

M
94

.5
2K

86
4.

8G
0

66
M

28
3.

7K
3.

46
2T

0
3.

8M
76

.9
8K

12
0.

5G
50

05
07

63
03

1b
44

8e
:4

0c
14

03
50

00
00

00
0

0
94

.1
K

0.
1

1.
48

9K
74

04
6.

7K
74

0
0

31
8

70
M

93
.7

8K
1.

39
6T

0
71

M
21

9.
1K

1.
57

9T
0

4.
1M

71
.3

5K
99

.0
1G

19
:5

9:
37

50
05

07
63

03
1b

44
8e

:4
0c

14
03

10
00

00
00

0
0

97
.7

K
0.

1
1.

69
5K

62
80

4.
9K

1.
4K

0
32

4
45

M
12

4.
0K

43
4.

8G
0

47
M

36
3.

7K
2.

31
2T

0
3.

4M
11

1.
3K

10
4.

1G
50

05
07

63
03

1b
44

8e
:4

0c
14

03
50

00
00

00
0

0
10

9K
0.

1
1.

15
3K

74
40

5.
6K

1.
9K

0
38

3
64

M
14

1.
0K

65
2.

3G
0

53
M

34
3.

9K
1.

45
2T

0
3.

4M
12

8.
1K

10
7.

4G

Chapter 13. Creating FCP performance reports 63

Note that numbers can be abbreviated if space does not suffice. For example,
3 489 345 is abbreviated as 3.5M.

The report columns have the following meanings:

first column
Device identifier, depends on -C option.

I/O rt MB/s
Applies to an individual request and its total processing time, including
channel latency. Specifies the I/O rate of the respective device during the
interval the request was processed. The min and max entries give the
minimum and maximum rate respectively. Given in megabytes per second.

thrp in MB/s
Applies to the entire device and includes all requests. Measures the
throughput of the device while active. The avg and stdev entries give the
average utilization and its standard deviation respectively. Note that
because multiple requests are processed at the same time it is possible for
avg to be higher than max. Given in megabytes per second.

I/O requests
The numbers of respective requests. Bidi represents bi-directional requests.

I/O subsystem latencies
Latencies in the I/O subsystem.

channel latencies
Latencies on the channel.

fabric latencies
Roundtrip time of the request in the fabric.

Example: Detailed report
Table 4 on page 65 shows an example of a detailed report. Note that this report is
additionally collapsed by port.

64 How to use FC-attached SCSI devices - Kernel 2.6.35

Ta
bl

e
4.

E
xa

m
pl

e
of

de
ta

ile
d

re
po

rt

#
./
zi
or
ep
_t
ra
ff
ic

st
re
ss
_s
in
gl
e.
lo
g
-e

"2
00
8-
11
-1
1
19
:5
9:
45
"
-l

40
c1
40
31
00
00
00
00

-l
40
c1
40
35
00
00
00
00

-D

-
--
--
--
--
--
--
--
--
--
--
-I
/O

re
qu
es
t
si
ze
s
in

KB
yt
es
--
--
--
--
--
--
--
--
--
--
--
--
--
--
|

0
1

2
4

8
16

32
64

12
8

25
6

51
2

1K
2K

4K
8K

>8
K

-
--
--
--
--
--
--
--
--
--
--
-I
/O

su
bs
ys
te
m
la
te
nc
y
in

us
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-|

0
8

16
32

64
12
8

25
6

51
2

1K
2K

4K
8K

16
K

32
K

64
K
12
8K

25
6K

51
2K

1M
2M

4M
8M

16
M

32
M

>3
2M

-
--
--
--
--
--
--
--
--
--
--
-c
ha
nn
el

la
te
nc
y
in

ns
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-|

0
1K

2K
4K

8K
16
K

32
K

64
K

12
8K

25
6K

51
2K

1M
2M

4M
8M

16
M

32
M

64
M
12
8M

>1
28
M

WW
PN

LU
N

-
--
--
--
--
--
--
--
--
--
--
-f
ab
ri
c
la
te
nc
y
in

us
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
|

0
8

16
32

64
12
8

25
6

51
2

1K
2K

4K
8K

16
K

32
K

64
K
12
8K

25
6K

51
2K

1M
2M

4M
8M

16
M

32
M

>3
2M

20
08
-1
1-
11

19
:5
7:
37

50
05
07
63
03
1b
44
8e
:4
0c
14
03
10
00
00
00
0

0
0

0
77
9

63
1.
5K

57
7
1.
7K

1.
6K

97
8

22
5

0
0

0
0

0
0

0
0

0
0

0
0

2
19

12
4

56
2
2.
1K

2.
3K

1.
3K

22
6

13
9

20
5

16
1
15
1

99
30

0
0

0
0

0
0

0
0

0
41
4
3.
3K

1.
4K

46
1

61
7

60
8

27
7

14
5

11
3

30
7

3
4

4
0

0
0

0
0

0
0

4
13

62
22
1

69
1
2.
1K

2.
3K

1.
1K

15
9

12
8

20
6

13
3
14
8

99
28

0
0

0
0

50
05
07
63
03
1b
44
8e
:4
0c
14
03
50
00
00
00
0

0
0

0
76
2

76
1.
5K

63
2
1.
8K

1.
6K

1.
2K

23
9

0
0

0
0

0
0

0
0

0
0

0
0

8
15

13
6

58
5
2.
1K

2.
4K

1.
4K

20
2

14
3

23
8

25
3
18
6
13
2

18
0

0
0

0
0

0
0

0
0

41
9
3.
4K

1.
3K

52
8

69
9

54
4

43
6

33
4

18
2

50
9

3
0

0
0

0
0

0
0

0
0

3
12

66
24
0

75
0
2.
1K

2.
4K

1.
2K

13
6

11
8

28
5

19
4
19
2
11
8

17
0

0
0

0
19
:5
8:
37

50
05
07
63
03
1b
44
8e
:4
0c
14
03
10
00
00
00
0

0
0

0
50
6
10
1
2.
1K

1.
1K

2.
4K

1.
1K

1.
0K

27
3

0
0

0
0

0
0

0
0

0
0

0
0

14
95

61
5

1.
7K

2.
8K

2.
0K

62
2

10
8

12
5

16
4

80
91

20
4

61
0

0
0

34
M

0
0

0
0

0
53
2
4.
0K

1.
7K

59
5

59
5

47
7

27
6

22
5

12
4

43
14

13
7

0
0

0
0

0
0

0
0

17
45

22
3

82
9

1.
9K

2.
7K

1.
8K

47
4

31
83

16
3

70
89

20
4

56
0

0
0

0
50
05
07
63
03
1b
44
8e
:4
0c
14
03
50
00
00
00
0

0
0

0
46
6

97
1.
9K

1.
0K

2.
0K

80
4

92
2

14
9

0
0

0
0

0
0

0
0

0
0

0
0

6
60

49
2

1.
4K

2.
4K

1.
6K

59
2

96
18
0

15
4

97
14
4
12
6

38
0

0
0

34
M

0
0

0
0

0
45
8
3.
4K

1.
4K

55
2

52
7

46
4

24
8

17
6

95
37

4
4

1
1

0
0

0
0

0
0

0
11

54
21
6

70
8

1.
6K

2.
3K

1.
4K

45
4

16
13
0

14
0

86
14
2
12
5

37
0

0
0

0
19
:5
9:
37

50
05
07
63
03
1b
44
8e
:4
0c
14
03
10
00
00
00
0

0
0

0
55
4

46
1.
3K

27
1
1.
4K

1.
1K

1.
2K

39
9

0
0

0
0

0
0

0
0

0
0

0
0

10
68

25
0

65
2
1.
7K

1.
6K

75
7

28
4

10
0

28
6

14
0
18
3
29
1

6
0

0
0

17
M

0
0

0
0

0
27
2
2.
5K

1.
1K

37
5

53
0

54
2

45
0

23
3

13
6

61
13

10
3

0
0

0
0

0
0

0
0

9
33

15
4

39
5

81
1
1.
7K

1.
5K

59
0

20
3

64
29
3

10
9
18
3
28
9

4
0

0
0

0
50
05
07
63
03
1b
44
8e
:4
0c
14
03
50
00
00
00
0

0
0

0
62
8

58
1.
5K

50
0
1.
8K

1.
3K

1.
4K

25
5

0
0

0
0

0
0

0
0

0
0

0
0

2
21

19
6

72
6
1.
9K

2.
0K

82
3

29
0

14
9

37
1

30
2
43
6
23
7

22
0

0
0

17
M

0
0

0
0

0
28
5
2.
7K

1.
4K

54
2

62
5

69
2

55
7

42
1

19
6

29
11

4
1

0
0

0
0

0
0

0
0

13
26

12
0

44
8

98
4
1.
9K

1.
8K

60
0

18
0

84
38
2

28
4
44
0
23
2

22
0

0
0

0

Chapter 13. Creating FCP performance reports 65

66 How to use FC-attached SCSI devices - Kernel 2.6.35

Chapter 14. Investigating the SAN fabric

As of version 2.1 the HBA API package includes two commands, zfcp_ping and
zfcp_show that help you to investigate your SAN fabric. These commands can
probe ports and retrieve information about ports in the attached storage servers and
in interconnect elements such as switches, bridges, and hubs.

Because the commands are processed by the SAN management server,
information can be obtained about ports and interconnect elements that are not
connected to your FCP channel. Thus, zfcp_ping and zfcp_show can help to
identify configuration problems in a SAN.

Before you start:

v The HBA API package, version 2.1 or later, must be installed and configured.
See the readme file in the package for instructions. You can obtain the package
at www.ibm.com/developerworks/linux/linux390/zfcp-hbaapi.html.

v At least one FCP channel must be online.

v The management server of the SAN to be investigated must be accessible.

zfcp_ping - Probe a port
The zfcp_ping command uses the SAN management server to send one or more
requests to a particular port within the SAN and to collect responses from the port.

zfcp_ping syntax

�� zfcp_ping
-a <adapter> -c <count> -t <token>

�

�
-v -d

<port> ��

where:

-a <adapter>
specifies the FCP channel through which the management server of the SAN is
accessed. <adapter> can be the bus ID, the host name assigned to the FCP
channel, the WWPN of the channel port, or the port ID of the channel port. If
omitted, any configured FCP channel is used.

-c <count>
specifies the number of requests to be sent. If omitted, three requests are sent.

-t <token>
specifies a number to identify the first request. Consecutive numbers identify
subsequent requests if more than one request is sent. <token> must be a
hexadecimal number in the range 1 to 0x7FFFFFFF.

-v provides verbose output.

-d provides very detailed output; for expert users only.

<port>
specifies the port to be probed. <port> can be the WWPN or the ID of the port.

© Copyright IBM Corp. 2006, 2010 67

|

|

|
|
|
|

|
|
|
|

|

|
|
|

|

|

|
|

|
|
|

|

||||||||||||||||||||||||||
|

|
|||||||||||||||||||||

||||

|

|
|
|
|
|

|
|

|
|
|
|

||

||

|
|

http://www.ibm.com/developerworks/linux/linux390/zfcp-hbaapi.html

-h displays help information for the command. To view the man page, enter
man zfcp_ping.

-V displays version information.

Example
This example probes a port with WWPN 0x50050763030b0562.

zfcp_ping -t97 0x50050763030b0562
Sending PNG from BUS_ID = 0.0.3c02 speed=4 Gbit/s
echo received from WWPN (0x50050763030b0562) tok=97 time=1.365 ms
echo received from WWPN (0x50050763030b0562) tok=98 time=2.750 ms
echo received from WWPN (0x50050763030b0562) tok=99 time=2.058 ms
---------- ping statistics -----------
min/avg/max = 1.365/2.058/2.750 ms

zfcp_show - Retrieve SAN details
The zfcp_show command retrieves information about the SAN topology and details
about the SAN components. The command output can be extensive. Consider
using command options to limit the scope of the command.

zfcp_show syntax

�� zfcp_show
-a <adapter> -i <domain> -p <value>

�

�
-o
-O

-t -c -n -v -d
��

where:

-a <adapter>
specifies the FCP channel through which the management server of the SAN is
accessed. <adapter> can be the bus ID, the host name assigned to the FCP
channel, the WWPN of the channel port, or the port ID of the channel port. If
omitted, any configured FCP channel is used.

-i <domain>
limits the output to a particular SAN domain.

-p <value>
limits the output to a particular port that is attached to the SAN switch, for
example, a target port of a storage controller. <value> can be the WWPN or the
port ID of the attached port.

-o limits the output to ports that are online.

-O limits the output to ports that are offline.

-t shows the SAN topology only.

-c creates output im CSV format.

-n directs the command to the local name server and limits the output to
information available to the local name server.

68 How to use FC-attached SCSI devices - Kernel 2.6.35

||
|

||

|

|

|
|
|
|
|
|
|
|
||

|
|

|
|
|
|

|

||||||||||||||||||||||||||
|

|
||

||||

|

|
|
|
|
|

|
|

|
|
|
|

||

||

||

||

||
|

-v provides verbose output. The command output can be extensive even without
verbose output.

-d provides very detailed output; for expert users only.

-h displays help information for the command. To view the man page, enter
man zfcp_show.

-V displays version information.

Examples
v This example shows the beginning of the default command output for a SAN.

zfcp_show
Interconnect Element Name 0x100000051e4f7c00
Interconnect Element Domain ID 005
Interconnect Element Type Switch
Interconnect Element Ports 224

ICE Port 000 Online
Attached Port [WWPN/ID] 0x50050763030b0562 / 0x650000 [N_Port]

ICE Port 001 Online
Attached Port [WWPN/ID] 0x50050764012241e5 / 0x650100 [N_Port]

ICE Port 002 Online
Attached Port [WWPN/ID] 0x5005076303008562 / 0x650200 [N_Port]

ICE Port 003 Offline
ICE Port 004 Online

Attached Port [WWPN/ID] 0x5005076303140335 / 0x650400 [N_Port]
ICE Port 005 Online

Attached Port [WWPN/ID] 0x5005076303104562 / 0x650500 [N_Port]
...

In the output, the lines beginning with “ICE Port” specify switch ports and the
lines beginning with “Attached Port” specify the ports of the attached nodes.

v This example shows the verbose equivalent of the previous example.

Chapter 14. Investigating the SAN fabric 69

||
|

||

||
|

||

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|

zfcp_show -v
Using adapter BUS_ID 0.0.3c02

Name 0x5005076401a241e5
N_Port_ID 0x657700
OS-Device /dev/bsg/fc_host0
Speed 4 GBit/s

Interconnect Element Name 0x100000051e4f7c00
Interconnect Element Domain ID 005
Interconnect Element Type Switch
Interconnect Element Ports 224
Interconnect Element Vendor Brocade Communications, Inc.
Interconnect Element Model 62.3
Interconnect Element Rel. Code v6.2.0g
Interconnect Element Log. Name fcsw14

ICE Port 000 Online [0x200000051e4f7c00]
ICE Port Type SFP with serial ID Short wave laser - SN (850nm) [F_Port]

Attached Port [WWPN/ID] 0x50050763030b0562 / 0x650000 [N_Port]

ICE Port 001 Online [0x200100051e4f7c00]
ICE Port Type SFP with serial ID Short wave laser - SN (850nm) [F_Port]

Attached Port [WWPN/ID] 0x50050764012241e5 / 0x650100 [N_Port]

ICE Port 002 Online [0x200200051e4f7c00]
ICE Port Type SFP with serial ID Short wave laser - SN (850nm) [F_Port]

Attached Port [WWPN/ID] 0x5005076303008562 / 0x650200 [N_Port]

ICE Port 003 Offline [0x200300051e4f7c00]

ICE Port 004 Online [0x200400051e4f7c00]
ICE Port Type SFP with serial ID Short wave laser - SN (850nm) [F_Port]

Attached Port [WWPN/ID] 0x5005076303140335 / 0x650400 [N_Port]

ICE Port 005 Online [0x200500051e4f7c00]
ICE Port Type SFP with serial ID Short wave laser - SN (850nm) [F_Port]

Attached Port [WWPN/ID] 0x5005076303104562 / 0x650500 [N_Port]
...

v This example shows part of the CSV equivalent of the previous examples.

zfcp_show -c
...
ICE-name,domain,ICE-type,ppn,status,port name,port module type,
...port TX type,port type,att. port name,att. port ID,att. port type
0x100000051e4f7c00,005,Switch,000,Online,0x200000051e4f7c00,SFP with serial ID,
...Short wave laser - SN (850nm),F_Port,0x50050763030b0562,0x650000,N_Port
...

v This example shows information as provided by a local name server.

zfcp_show -n
Local Port List:
0x500507630313c562 / 0x656000 [N_Port] proto = SCSI-FCP FICON
0x50050764012241e4 / 0x656100 [N_Port] proto = SCSI-FCP
0x5005076303048335 / 0x656300 [N_Port] proto = SCSI-FCP FICON
0x5005076401221b97 / 0x656400 [N_Port] proto = SCSI-FCP
0x500507630300c562 / 0x656500 [N_Port] proto = SCSI-FCP FICON
0x5005076401a23517 / 0x656700 [N_Port] proto = SCSI-FCP
0x5005076401a219a0 / 0x656800 [N_Port] proto = SCSI-FCP
0x5005076401a0b7bf / 0x656900 [N_Port] proto = SCSI-FCP
0x500507640120b9a3 / 0x656a00 [N_Port]
0x500507630310c562 / 0x657000 [N_Port] proto = SCSI-FCP FICON
0x5005076401a241e4 / 0x657100 [N_Port] proto = SCSI-FCP
...

70 How to use FC-attached SCSI devices - Kernel 2.6.35

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|
|
|
|
|
|
|
||

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

Chapter 15. Hints and tips

This chapter discusses some common problems and ways to steer clear of trouble.

Setting up TotalStorage DS8000 and DS6000 for FCP

There are three things you should be aware of when configuring the TotalStorage
system:

v New mask: For the logical volume number X'abcd' the LUN ID will be:
X'40ab40cd00000000'.

v Using the correct WWPN. Every port has a WWPN, but the one you need is the
storage controller WWPN, as illustrated in Figure 15. Talk to the person who
configures the switches to find out what the correct WWPN is.

v The "Host Ports" (nomenclature used by the storage description) at the storage
side must be configured to allow the access from the FCP adapter's port being
used. The FCP port is illustrated in Figure 15.

v The zoning of the switch (if the FCP adapter is not directly connected to the
storage's host ports) must be configured properly (see the documentation related
to the switch being used).

Further information
v The IBM TotalStorage DS6000 Series: Concepts and Architecture, SG24-6471.

v The IBM TotalStorage DS8000 Series: Concepts and Architecture, SG24-6452.

v IBM System Storage DS8000: Host Systems Attachment Guide, SC26-7917.

v IBM System Storage DS6000: Host Systems Attachment Guide, GC26-7680.

FICON Express

or FICON

System z

LUN LUN LUN

Storage controller

SCSI devices

SAN Fabric

Linux

wwpnFCP port

Figure 15. A storage system connected to a mainframe

© Copyright IBM Corp. 2006, 2010 71

Troubleshooting NPIV
If NPIV is not working as expected, first check whether the adapter supports NPIV.

If the adapter supports NPIV, check the error messages to find more details about
what is wrong.

If NPIV is enabled on an FCP adapter that is used by zfcp, some NPIV-specific
messages may be logged on the system console and in /var/log/messages. The
messages might help to understand the cause of the link down problem, for
example on cable disconnect:

zfcp.7d6999: 0.0.c419: There is no light signal from the local fibre channel cable

When the link is restored, you might get the following message:

zfcp.ac341f: 0.0.c419: The local link has been restored

72 How to use FC-attached SCSI devices - Kernel 2.6.35

Appendix. Traces

While any zfcp messages found in /var/log/messages are alerts which usually
require intervention by administrators, the traces described herein provide additional
information. Administrators alerted by some kernel message might find it
advantageous to examine these traces among other additional sources of
information, such as hardware messages on the SE, FC analyzer traces, SAN
component specific information, and other Linux data. While events found in the
described traces do not necessarily indicate abnormal behavior, they might provide
clues on how an abnormal behavior has evolved.

The zfcp device driver deploys separate trace areas (seen as separate directories)
for each FCP subchannel, or virtual FCP HBA. For each FCP subchannel, there are
separate trace areas (seen as separate directories) for different aspects of the zfcp
device driver's operation, that is Linux SCSI, FCP channel, SAN, and error
recovery.

SCSI trace
This trace holds data records, which describe events related to the interaction
between the zfcp driver and the Linux SCSI subsystem, that is,

v Information about SCSI commands passed through the zfcp driver

v Error recovery events executed by the zfcp driver on behalf of the SCSI stacks
recovery thread

v Other noteworthy events indicated to the Linux SCSI stack by the zfcp driver

Trace records for the following events are available:

v SCSI command completion (see Table 6 on page 74)

v SCSI command abort (see Table 7 on page 75)

v SCSI logical unit and target reset (see Table 8 on page 76)

Trace records for other events to be added later might be:

v FCP transport class-related events (new SCSI stack interface)

The naming scheme for this type of trace is:

v zfcp_$<$busid$>$_scsi, e.g. zfcp_0.0.4000_scsi (for kernel 2.6)

v zfcp_$<$devno$>$_scsi, e.g. zfcp_4000_scsi (for kernel 2.4)

The following rules apply to the naming of individual fields of SCSI trace records:

v All fields with a prefix of scsi refer to Linux SCSI stack data structures, most
notably the scsi_cmnd data structure.

v All fields with a prefix of fcp refer to data structures defined in FCP standards,
most notably the FCP_CMND and FCP_RSP information units.

v All fields with a prefix of fsf refer to data structures defined by zSeries-specific
FCP documents.

The new traces are implemented in the new source code file: drivers/s390/scsi/
zfcp_dbf.c. Calls to trace functions defined in the source code file can be found
throughout the zfcp driver source code.

Debug feature levels enable you to adjust which events are traced (see Table 5 on
page 74).

© Copyright IBM Corp. 2006, 2010 73

Table 5. SCSI Trace, Verbosity Levels

Level Events

0 n/a

1 SCSI command abort, SCSI logical unit, or target reset.

2 n/a

3 (default) SCSI command completion tagged "erro".

4 SCSI command completion tagged "retr".

5 SCSI command completion tagged "clrf" or "fail".

6 SCSI command completion tagged "norm".

Table 6. SCSI trace, SCSI command completion

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 "rslt"

tag2 4 v "norm" if the command completes with a good SCSI
status (no sense data).

v "erro" if the command completes with a SCSI status
other than good.

v "retr" if the command completes with a good SCSI
status after being retried.

v "fail" if the command cannot be sent.

v "clrf" if the command is flushed from an internal retry
queue (kernel 2.4 only).

scsi_id 4 SCSI ID as seen by the SCSI stack.

scsi_lun 4 SCSI LUN as seen by the SCSI stack.

scsi_result 4 SCSI result from the scsi_cmnd including the so-called
host byte, status byte, driver byte, and message byte.

scsi_cmnd 8 Pointer to the scsi_cmnd structure.

scsi_serial 8 Serial number assigned to the scsi_cmnd by the SCSI
stack on submission.

scsi_opcode 16 SCSI opcode as copied from the scsi_cmnd to
FCP_CMND IU, it is truncated if necessary.

scsi_retries 1 Number of retries the SCSI stack makes for the
scsi_cmnd.

scsi_allowed 1 Maximum number of retries allowed for the scsi_cmnd
by the upper-level SCSI driver (for example, sd or st).

fsf_reqid 8 Pointer to the fsf_req structure used to convey the
FCP_CMND IU and to retrieve the FCP_RSP IU, also
the request identifier.

fsf_seqno 4 fsf_req sequence number.

fsf_issued 8 Time when the fsf_req is issued.

fcp_rsp_validity 1 Various validity bits as found in the FCP_RSP IU.

fcp_rsp_scsi_status 1 SCSI status from the FCP_RSP IU.

fcp_rsp_resid 4 Residual count for data underrun from the FCP_RSP
IU.

74 How to use FC-attached SCSI devices - Kernel 2.6.35

Table 6. SCSI trace, SCSI command completion (continued)

Field Bytes Description

fcp_rsp_code 1 RSP_CODE as defined in the FCP_RSP IU.

fcp_sns_info_len 4 Length in bytes of the SCSI sense data in the
FCP_RSP IU.

fcp_sns_info 0-256 SCSI sense data from FCP_RSP IU, it is truncated if
needed .

Table 7. SCSI trace, SCSI command abort

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 "abrt"

tag2 4 v "okay" if the abort request completes successfully.

v "fail" if the abort request completes unsuccessfully.

v "lte1" if the command finishes before an abort
request is issued.

v "lte2" if the command finishes before an abort
request is processed.

v "nres" if the abort request cannot be issued due to
resource constraints.

v "fake" if the command is aborted from the internal
retry queue, the command has not been sent (kernel
2.4 only).

scsi_id 4 SCSI ID as seen by the SCSI stack.

scsi_lun 4 SCSI LUN as seen by the SCSI stack.

scsi_result 4 SCSI result from the scsi_cmnd including the so-called
host byte, status byte, driver byte, and message byte.

scsi_cmnd 8 Pointer to the scsi_cmnd structure.

scsi_serial 8 Serial number assigned to scsi_cmnd by the SCSI
stack on submission.

scsi_opcode 16 SCSI opcode as copied from scsi_cmnd to the
FCP_CMND IU, it is truncated if needed.

scsi_retries 1 Number of retries that the SCSI stack makes for the
scsi_cmnd.

scsi_allowed 1 Maximum number of retries allowed for the scsi_cmnd
by upper-level SCSI driver (for example, sd or st).

fsf_reqid 8 Pointer to the fsf_req structure used to convey
FCP_CMND IU and to retrieve the FCP_RSP IU (the
request that is to be aborted), also the request identifier.

fsf_seqno 4 fsf_req sequence number.

fsf_issued 8 Time when fsf_req was issued.

fsf_reqid_abort 8 Pointer to the fsf_req structure used to convey the SCSI
command abort, also the request identifier.

fsf_seqno_abort 4 fsf_req sequence number.

fsf_issued_abort 8 Time when fsf_req was issued.

Appendix. Traces 75

Table 8. SCSI Trace, SCSI Logical Unit and Target Reset

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 v "lrst" for logical unit reset

v "trst" for target reset

tag2 4 v "okay" if the reset completes successfully.

v "fail" if the reset completes unsuccessfully.

v "nsup" if the reset completes unsuccessfully and the
device indicates that this task management function is
not supported (usually only for logical unit reset).

v "nres" if the reset cannot be issued due to resource
constraints.

scsi_id 4 SCSI ID as seen by the SCSI stack

scsi_lun 4 SCSI LUN as seen by the SCSI stack

scsi_result 4 SCSI result from the scsi_cmnd including the so-called
host byte, status byte, driver byte, and message byte

scsi_cmnd 8 Pointer to the scsi_cmnd structure

scsi_serial 8 Serial number assigned to the scsi_cmnd by the SCSI
stack on submission

scsi_opcode 16 SCSI opcode as copied from the scsi_cmnd to
FCP_CMND IU, it is truncated if needed

scsi_retries 1 Number of retries that the SCSI stack makes for the
scsi_cmnd

scsi_allowed 1 Maximum number of retries allowed for the scsi_cmnd by
upper-level SCSI driver (for example, sd or st)

fsf_reqid 8 Pointer to fsf_req used to convey the FCP_CMND IU and
to retrieve the FCP_RSP IU, also the request identifier

fsf_seqno 4 fsf_req sequence number

fsf_issued 8 Time when fsf_req was issued

fsf_reqid_reset 8 Pointer to the fsf_req structure used to convey reset
request, also the request identifier

fsf_seqno_reset 4 fsf_req sequence number

fsf_issued_reset 8 Time when fsf_req was issued

The following sample trace shows normal SCSI command completion (loglevel 6):

76 How to use FC-attached SCSI devices - Kernel 2.6.35

timestamp 3331567109686553
cpu 01
tag rslt
tag norm
scsi_id 0x00000001
scsi_lun 0x00000000
scsi_result 0x00000000
scsi_residual 0x00000000
scsi_cmnd 0x2a45000
scsi_serial 0x00000000000000ef
scsi_opcode 28000043 463e0000 08000000 00000000
scsi_retries 0x00
scsi_allowed 0x05
scsi_state 0x1003
scsi_ehstate 0x0000
scsi_owner 0x0102
fsf_reqid 0x8a7b800
fsf_seqno 0x000000f5
fsf_elapsed 0x00000000
fcp_rsp_validity 0x00
fcp_rsp_scsi_status 0x00
fcp_rsp_resid 0x00000000
fcp_rsp_code 0x00
fcp_sns_info_len 0x00000000
fcp_sns_info

HBA trace
This trace holds data records which describe events related to the interaction
between the zfcp driver and an FCP subchannel (or, in Linux lingo, a SCSI host or
an HBA), i.e. information about the protocol used for hardware-software
communication, I/O requests and other requests by the FCP channel executed on
behalf of the Linux device driver, and other noteworthy events indicated to the Linux
device driver by the FCP channel.

So far, trace records for the following events are available:

v FSF request completion (see Table 10 on page 78).

v unsolicited status (see Table 16 on page 79).

v QDIO error conditions (see Table 17 on page 80).

The naming scheme for this type of trace is:

v zfcp_$<$busid$>$_hba, e.g. zfcp_0.0.4000_hba (for kernel 2.6)

v zfcp_$<$devno$>$_hba, e.g. zfcp_4000_hba (for kernel 2.4)

Debug feature levels allow you to adjust which events are traced (see Table 9).

Table 9. HBA Trace, Verbosity Levels

Level Events

0 QDIO error conditions

1 FSF request completion tagged "perr" , FSF request completion
tagged "ferr"

2 Unsolicited status

3 (default) n/a

4 FSF request completion tagged "open"

5 FSF request completion tagged "qual"

6 FSF request completion tagged "norm"

Appendix. Traces 77

The internal representation of a single HBA trace record consumes 120 bytes. That
is why about 34 HBA events can be stored in each page of the trace buffer.

Table 10. HBA Trace, FSF Request Completion

Field Bytes Description

timestamp 8 Time when the event occurred

cpu 1 Number of the CPU where the event occurred

tag 4 "resp"

tag2 4 v "perr" if the request completes with a condition
indicated by an FSF protocol status

v "ferr" if the request completes with a condition
indicated by an FSF status

v "qual" if the request completes successfully but the
FCP adapter delivers some information into the FSF
status qualifier or the FSF protocol status qualifier

v "open" for the requests open port and open LUN with
successful completion (to log the access control
information)

Otherwise "norm" (most good completions)

fsf_command 4 FSF command code as issued to the FCP channel

fsf_reqid 8 Pointer to the fsf_req structure used to convey the FSF
command, also request identifier

fsf_seqno 4 fsf_req sequence number

fsf_issued 8 Time when fsf_req was issued

fsf_prot_status 4 FSF protocol status as received in the FCP Channel
response

fsf_status 4 FSF status as received in the FCP Channel response

fsf_prot_status_qual 16 FSF protocol status qualifier as received the FCP
Channel response

fsf_status_qual 16 FSF status qualifier as received in the FCP Channel
response

fsf_req_status 4 zfcp internal status of fsf_req

sbal_first 1 Index of the first SBAL used in the QDIO outbound
queue to convey the request to theFCP Channel

sbal_curr 1 Index of the last SBAL used in the QDIO outbound
queue to convey the request to the FCP Channel

sbal_last 1 Index of the last SBAL available in the QDIO outbound
queue to convey the request to the FCP Channel

pool 1 v "1" if fsf_req originated from the low memory
emergency pool

v Otherwise "0"

n/a n/a FSF command-specific data, if any (see table Table 11
on page 79 up to and including table Table 15 on page
79).

78 How to use FC-attached SCSI devices - Kernel 2.6.35

Table 11. HBA Trace, FSF Request Completion, Send FCP Command (FSF Command 0x1)

Field Bytes Description

scsi_cmnd 8 Pointer to the scsi_cmnd structure (field unavailable for
task management function)

scsi_serial 8 Serial number assigned to the scsi_cmnd by the SCSI
stack on submission (field unavailable for task
management function)

Table 12. HBA Trace, FSF Request Completion, Abort FCP Command (FSF Command 0x2)

Field Bytes Description

fsf_reqid 8 Pointer to the fsf_req structure used to convey the FSF
command that is to be aborted, also the request identifier.

fsf_seqno 4 fsf_req sequence number that is to be aborted.

Table 13. HBA Trace, FSF Request Completion, Open Port, Close Port, Close Physical Port
(FSF Commands 0x5, 0x8, 0x9)

Field Bytes Description

wwpn 8 World-wide port name of the N_Port that is opened or
closed.

d_id 3 Destination ID of the N_Port that is opened or closed.

port_handle 4 Port handle assigned by the FCP Channel to the N_Port
that is opened or closed.

Table 14. HBA Trace, FSF Request Completion, Open LUN, Close LUN (FSF Commands
0x6, 0x7)

Field Bytes Description

wwpn 8 World-wide port name of the N_Port used to access the
LUN that is opened or closed.

fcp_lun 8 FCP_LUN of the logical unit that is opened or closed.

port_handle 4 Port handle assigned by the FCP Channel to the N_Port
used to access the LUN that is opened or closed.

lun_handle 4 LUN handle assigned by the FCP Channel to the logical
unit that is opened or closed.

Table 15. HBA Trace, FSF Request Completion, Send ELS (FSF Command 0xb)

Field Bytes Description

d_id 3 Destination ID of the N_Port that is the addressee of ELS.

ls_code 1 Link Service command code.

Table 16. HBA Trace, Unsolicited Status

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 The number of CPU where the event occurred.

tag 4 "stat"

Appendix. Traces 79

Table 16. HBA Trace, Unsolicited Status (continued)

Field Bytes Description

tag2 4 v "fail" if the status read buffer cannot be made available to
the FCP Channel.

v "dism" if the FCP adapter dismisses the unsolicited
status.

v "read" if the unsolicited status is received.

failed 1 Number of status read buffers that cannot be made
available to the FCP Channel.

status_type 4 Status type as reported by the FCP Channel.

status_subtype 4 Status subtype as reported by the FCP Channel.

queue_designator 8 Queue designator as reported by the FCP Channel.

Table 17. HBA Trace, QDIO Error Conditions

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 "qdio"

qdio_error 4 As passed by the qdio module

sbal_index 1 Number of a first SBAL entry

sbal_count 1 Count of processed SBAL entries

The following sample trace shows completion of the FSF request open port:

timestamp 3331041709650204
cpu 01
tag resp
tag open
fsf_command 0x00000005
fsf_reqid 0x1725000
fsf_seqno 0x00000001
fsf_prot_status 0x00000001
fsf_status 0x00000000
fsf_prot_status_qual 00000000 00000000 00000000 00000000
fsf_status_qual 00020000 00000000 00000000 00000000
fsf_req_status 0x00000010
fsf_elapsed 0x00000000
sbal_first 0x11
sbal_curr 0x11
sbal_last 0x00
pool 0x00
erp_action 0x17c1c88
wwpn 0x0000000000000000
d_id 0xfffffc
port_handle 0x00000348

This sample trace shows the unsuccessful completion of the FCP command:

80 How to use FC-attached SCSI devices - Kernel 2.6.35

timestamp 3331041721819760
cpu 00
tag resp
tag ferr
fsf_command 0x00000001
fsf_reqid 0x3377800
fsf_seqno 0x0000001f
fsf_prot_status 0x00000100
fsf_status 0x000000af
fsf_prot_status_qual 00000000 00000000 00000000 00000000
fsf_status_qual 00000001 00000001 000002f4 00000000
fsf_req_status 0x00000010
fsf_elapsed 0x00000000
sbal_first 0x2f
sbal_curr 0x2f
sbal_last 0x52
pool 0x00
erp_action 0x0
scsi_cmnd 0x2a45000
scsi_serial 0x000000000000001b

This sample trace shows the incoming unsolicited status:

timestamp 3331261848311062
cpu 00
tag stat
tag read
failed 0x00
status_type 0x00000002
status_subtype 0x00000000
queue_designator 00000000 00000000

SAN trace
This trace holds data records, which describe events related to the interaction
between the zfcp driver and the FC storage area network (that is, everything
beyond the FCP Channel), that is:

v Information about notifications received from the storage area network

v Requests sent to the storage area network, which are not directly related to SCSI
I/O (FC-0 upto FC-3 layers, as well as FC-GS)

Trace records for the following events are available:

v Incoming extended link service (ELS) requests (see Table 19 on page 82).

v ELS request sent to another FC port (see Table 19 on page 82).

v ELS response received from another FC port (see Table 19 on page 82).

v Common transport (CT) request sent to the fabric switch (see Table 20 on page
82).

v CT response received from the fabric switch (see Table 21 on page 83).

The naming scheme for this type of trace is:

v zfcp_<device_bus_id>_san, for example: zfcp_0.0.4000_san (for kernel 2.6)

v zfcp_<device_number>_san, for example: zfcp_4000_san (for kernel 2.4)

Debug feature levels enable you to adjust which events are traced (see Table 18 on
page 82).

Appendix. Traces 81

Table 18. SAN trace, verbosity levels

Level Events

0 n/a

1 Incoming extended link services (ELS).

2 ELS request sent to another FC port, ELS response received from
another FC port.

3 (default) CT request sent to the fabric switch, CT response received from the
fabric switch.

4 n/a

5 n/a

6 n/a

The internal representation of a single SAN trace record consumes 76 bytes. That
is why about 53 SAN events can be stored in each page of the trace buffer. This
number can be reduced by extensive use of variable length fields, such as ELS
payload.

Table 19. SAN trace, ELS

Field Bytes Description

timestamp 8 Time when event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 v "iels" for the incoming ELS

v "oels" for the ELS request sent to another FC port

v "rels" for the ELS response received from another FC
port

fsf_reqid 8 Pointer to the fsf_req structure used to convey ELS, also
the request identifier.

fsf_seqno 4 fsf_req sequence number.

d_id 3 Destination ID (D_ID) of N_Port that is the addressee of
ELS.

payload 0-1024 Additional information (payload) from ELS, it is truncated if
needed.

Table 20. SAN Trace, CT request sent to fabric switch

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 "octc"

fsf_reqid 8 Pointer to the fsf_req structure used to convey the CT
request, also the request identifier.

fsf_seqno 4 fsf_req sequence number.

d_id 3 Destination ID (D_ID) of the N_Port that is the addressee
of the CT request.

cmd_req_code 2 Command code from CT_IU.

revision 1 Revision from CT_IU.

gs_type 1 GS_Type from CT_IU.

82 How to use FC-attached SCSI devices - Kernel 2.6.35

Table 20. SAN Trace, CT request sent to fabric switch (continued)

Field Bytes Description

gs_subtype 1 GS_Subtype from CT_IU.

options 1 Options from CT_IU.

max_res_size 2 Maximum/residual size from CT_IU.

payload 0-24 Additional information (payload) from CT_IU, it is truncated
if needed.

Table 21. SAN trace, CT response received from fabric switch

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 "rctc"

fsf_reqid 8 Pointer to fsf_req structure used to convey the CT request,
also the request identifier.

fsf_seqno 4 fsf_req sequence number.

cmd_rsp_code 2 Response code from the CT_IU.

revision 1 Revision from CT_IU.

reason_code 1 Reason code from CT_IU.

reason_code_expl 1 Reason code explanation from CT_IU.

vendor_unique 1 Vendor unique from CT_IU.

payload 0-24 Additional information (payload) from CT_IU, it is truncated
if needed.

The following sample trace shows two events for CT request and response on the
CT request:

timestamp 01263215485:512217187
cpu 00
tag octc
fsf_reqid 0x534
fsf_seqno 0x00000521
d_id 0xfffffc
cmd_req_code 0x0121
revision 0x01
gs_type 0xfc
gs_subtype 0x02
options 0x00
max_res_size 0x03fc

50050763 031b0104

timestamp 01263215485:512907187
cpu 01
tag rctc
fsf_reqid 0x534
fsf_seqno 0x00000521
cmd_rsp_code 0x8002
revision 0x01
reason_code 0x00
reason_code_expl 0x00
vendor_unique 0x00
max_res_size 0x0000

00686100

This trace shows request and response of ELS command:

Appendix. Traces 83

timestamp 01263285611:549574125
cpu 01
tag oels
fsf_reqid 0x104
fsf_seqno 0x000000f3
d_id 0x68fc80

52000000 00000400 50050764 01e071b2 50050764 00c2d09e 00686000

timestamp 01263285611:549885125
cpu 00
tag rels
fsf_reqid 0x104
fsf_seqno 0x000000f3
d_id 0x68fc80

02000000 0068fc80 50050763 0e860521 50050763 0efe0521 0068fc80

One more sample trace for incoming ELS:

timestamp 01263215449:82362062
cpu 01
tag iels
fsf_reqid 0x3
fsf_seqno 0x00000000
d_id 0xfffffd

61040008 00686100

Error recovery trace
The error recovery trace can assist you in understanding operations related to zfcp
error recovery. The naming scheme of the new zfcp error recovery trace is:
zfcp_<bus_ID>_rec, for example, zfcp_0.0.4000_rec.

Trace records are available for the following events:

v Trigger for zfcp error recovery (see Table 23 on page 85)

v State changes of adapters, ports and units (see Table 24 on page 85)

v Processing of error recovery actions (see Table 25 on page 86)

v Operations of an zfcp error recovery thread (see Table 26 on page 86)

You can adjust the events traced by using the debug feature levels described in
Table 22. See the S/390 debug feature (s390dbf) for details on how to use it.

Table 22. Trace levels for the error recovery trace

Level Events

0 n/a

1 Trigger for error recovery - started action (records tagged "trigger").

2 n/a

3 (default) State changes of adapters, ports and units (records tagged "target")

4 Trigger for error recovery - skipped action (records tagged "trigger")

5 Processing of error recovery actions (record tagged "action")

6 Operations of zfcp error recovery threads (records tagged "thread")

84 How to use FC-attached SCSI devices - Kernel 2.6.35

Trace records and meanings
Table 23. Trigger for zfcp error recovery

Field

Size of
field
[Bytes] Description

timestamp 8 time when event occurred

cpu 1 number of CPU where event occurred

tag 4 "trigger"

hint n/a explanation string for id field

id 1 unique identifier for trace event

reference 8 additional reference, e.g. request which caused recovery
being triggered

erp_action 8 address of error recovery structure

requested 1 action initially requested

executed 1 action actually triggered

wwpn 8 WWPN

fcp_lun 8 FCP_LUN

adapter_status 4 adapter status flags

port_status 4 port status flags

unit_status 4 unit status flags

Table 24 shows state changes of adapters, ports, and units.

Table 24. State changes of adapters, ports, and units

Field

Size of
field
[Bytes] Description

timestamp 8 time when event occurred

cpu 1 number of CPU where event occurred

tag 4 "target"

hint n/a explanation string for id field

id 1 unique identifier for trace event

reference 8 additional reference, e.g. request which caused recovery
being triggered

status 4 status flags of adapter, port or unit

erp_count 4 number of recovery attempts

d_id 4 D_ID

wwpn 8 WWPN

fcp_lun 8 FCP_LUN

Table 25 on page 86 shows error recovery actions.

Appendix. Traces 85

Table 25. Processing of error recovery actions

Field

Size of
field
[Bytes] Description

timestamp 8 time when event occurred

cpu 1 number of CPU where event occurred

tag 4 "action"

hint n/a explanation string for id field

id 1 unique identifier for trace event

erp_action 8 address of error recovery structure

fsf_req 8 address of request issued on behalf of error recovery

status 4 status flags of adapter, port or unit

step 4 current step of error recovery action

Table 26. Operations of a zfcp error recovery thread

Field

Size of
field
[Bytes] Description

timestamp 8 time when event occurred

cpu 1 number of CPU where event occurred

tag 4 "thread"

hint n/a explanation string for id field

id 1 unique identifier for trace event

total 4 number of actions pending for thread

ready 4 number of actions waiting to be processed by thread

running 4 number of actions executing running some
asynchronous job

Sample traces
The following sample trace shows port recovery being triggered after a port has
been added through the sysfs interface:

timestamp 01209072237:768244062
cpu 00
tag trigger
hint sysfs port addition
id 91
reference 0x0000000000000000
erp_action 0x000000002dbb5f10
requested 2
executed 2
wwpn 0x500507630300c562
fcp_lun 0x0000000000000000
adapter_status 0x5400092e
port_status 0x41000000
unit_status 0x00000000

The following sample trace shows a logical unit connection becoming available:

86 How to use FC-attached SCSI devices - Kernel 2.6.35

timestamp 01209072237:818326187
cpu 00
tag target
hint unblock unit
id 20
reference 0x0000000000000000
status 0x55000000
erp_count 0
d_id 0x652113
wwpn 0x500507630300c562
fcp_lun 0x401040d400000000

The following sample trace shows a recovery action being processed after an
associated request has been finished:

timestamp 01209119319:782763250
cpu 01
tag action
hint recovery action ready for next step
id 146
erp_action 0x000000002b7356e8
fsf_req 0x000000002a544800
status 0x00000000
step 0x00002000

The following sample trace shows a recovery thread being notified and becoming
ready for another recovery action that needs attention:

timestamp 01209119319:782767312
cpu 01
tag thread
hint ready
id 2
total 6
ready 1
running 5

Appendix. Traces 87

88 How to use FC-attached SCSI devices - Kernel 2.6.35

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information about the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user's responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

© Copyright IBM Corp. 2006, 2010 89

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at
www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

90 How to use FC-attached SCSI devices - Kernel 2.6.35

http://www.ibm.com/legal/copytrade.shtml

Glossary

CIFS. Common Internet File System.

Common Internet File System. A protocol that
enables collaboration on the Internet by defining a
remote file-access protocol that is compatible with the
way applications already share data on local disks and
network file servers.

FCP. Fibre Channel Protocol.

Fibre Channel Protocol. The serial SCSI command
protocol used on fibre-channel networks.

HBA. Host bus adapter.

host bus adapter. An interface card that connects a
host bus, such as a peripheral component interconnect
(PCI) bus, to the storage area network (SAN)

logical unit number. In the SCSI standard, a unique
identifier used to differentiate devices, each of which is
a logical unit (LU).

LUN. Logical unit number.

Network File System. A protocol, developed by Sun
Microsystems, Incorporated, that allows a computer to
access files over a network as if they were on its local
disks.

NFS. Network File System.

NPIV. N_Port ID Virtualization.

N_Port ID Virtualization. The virtualization of target
ports, where an HBA performs multiple logins to a Fibre
Channel fabric using a single physical port (N_port),
thereby creating a unique port name for each login.
These virtualized Fibre Channel N_Port IDs allow a
physical Fibre Channel port to appear as multiple,
distinct ports.

port zoning. Defining a set of Fibre Channel ports
where each Fibre Channel port is specified by the port
number at the switch or fabric to which it is connected.

RAID. Redundant Array of Independent Disks.

Redundant Array of Independent Disks. A collection
of two or more disk physical drives that present to the
host an image of one or more logical disk drives. In the
event of a single physical device failure, the data can be
read or regenerated from the other disk drives in the
array due to data redundancy.

SAN. storage area network.

Storage area network. A dedicated storage network
tailored to a specific environment, combining servers,
storage products, networking products, software, and
services.

WWPN zoning. Defining a set of Fibre Channel ports
where each Fibre Channel port is specified by its
WWPN.

zoning. In fibre-channel environments, the grouping of
multiple ports to form a virtual, private, storage network.
Ports that are members of a zone can communicate
with each other, but are isolated from ports in other
zones.

© Copyright IBM Corp. 2006, 2010 91

92 How to use FC-attached SCSI devices - Kernel 2.6.35

Index

A
adapter

host bus 1
port, configuring for FCP 5
setting online 7

adapters
Fibre Channel supported xii

B
boot program selector, SCSI IPL parameter 23
boot record logical block address, SCSI IPL

parameter 23
booting the system 21

C
CCW 21
channel command word 21
CIFS 1
command

lszfcp 8
multipath 16
multipathd 36
scsi_logging_level 33
set loaddev 29
udevinfo 10
zfcp_ping 67
zfcp_show 68
zfcpdump 25
zipl 24

Common Internet File System 1
CONFIG_BLK_DEV_IO_TRACE 49

kernel configuration menu options 49
CT 81

D
data collection

ziomon 49
debugging

using SCSI logging feature 33
using traces 47

developerWorks 34
device

interoperability matrix xii
SCSI, persistent naming 9

dm_multipath module 16
DS8000

configuration 15
dump, SCSI 25

E
ELS 81, 82
ERROR RECOVERY logging area 33

error recovery trace 84
error recovery actions 86
samples 86
state changes of adapters, ports, and units 85
thread operations 86
trace levels 84
trace records and meanings 85

extended link services (ELS) 82

F
fabric

fiber channel 2
zones 6

FCP 1
FCP device

accessing 5
attaching under z/VM 7
configuring 5

FCP performance reports 53
Fibre Channel adapters

supported xii
Fibre Channel Protocol 1

H
hardware

supported xii
HBA 1
HBA API 2.0 67
HLCOMPLETE logging area 33
HLQUEUE logging area 33
host bus adapter 1

I
information

IBM Publication Center xii
referenced xii
where to find xi

initial program load 21
IOCTL logging area 33
IODF 26

configuring 5
IPL 21

sequence 21

K
kernel configuration menu options

CONFIG_BLK_DEV_IO_TRACE 49

L
LLCOMPLETE logging area 33
LLQUEUE logging area 33
load address, SCSI IPL parameter 23

© Copyright IBM Corp. 2006, 2010 93

load parameter, SCSI IPL parameter 24
load type, SCSI IPL parameter 22
logging word 33
logical unit number 1
logical unit number, SCSI IPL parameter 23
lszfcp command 8
LUN 1

configuring 8
masking 6

M
MLCOMPLETE logging area 33
MLQUEUE logging area 33
MPIO 13
multipath

for DS8000 15
multipath command 16
multipath I/O 13

example 16
multipath tools

using to configure 14
multipath-tools 13
multipathing 13

configuring 14
multipath-tools 13

N
N_port 3
N_Port ID Virtualization

supporting zfcp device driver 3
Network File System 1
NFS 1
notices 89
NPIV

access control 4
supporting zfcp device driver 3
troubleshooting 72

O
Operating system specific load parameters 23

P
persistent device naming 9
port

configuring for FCP 5
investigating details 68
verifying 67

port zoning 6
prerequisites xi
problems, common 71

R
report

ziorep_config 53
ziorep_traffic 60

report (continued)
ziorep_utilization 56

restrictions xi

S
SAN

addressing 22
introduction 1

SAN trace 81
CT request sent to fabric switch 82
CT response received from fabric switch 83
ELS 82
verbosity levels 82

SCAN BUS logging area 33
SCSI

dump 25
installing Linux on disk 24
logging level 33
persistent device naming 9

SCSI IPL 21
further reading 30
hardware requirements 21
LPAR 26
parameters 22
z/VM guest 28

SCSI logging feature 33
logging areas 33
logging word 33

scsi_logging_level command 33
set loaddev command 29
storage

devices in SAN 1
further information 71
interoperability matrix i
setup for FCP 71

storage area network
introduction 1

store status, SCSI IPL parameter 24
switch 2

zones 6
System z

meaning ix

T
time-out value, SCSI IPL parameter 24
TIMEOUT logging area 33
TotalStorage 71
trace records 48
traces 73

trace areas 73
trademarks 90

U
udev 9

example of use 9
rules 10

94 How to use FC-attached SCSI devices - Kernel 2.6.35

W
worldwide port name 2
worldwide port name, SCSI IPL parameter 23
WWN zoning 6
WWPN 2

Z
zfcp

traces 47
zfcp device driver

architecture ix
configuring 7
description 2

zfcp_ping, command 67
zfcp_show, command 68
zfcpdump command 25
ziomon

data collection 49
ziorep_config

options 53
syntax 53

ziorep_config report 53
example adapter report 55
example device report 55
example mapper report 56

ziorep_traffic 53
aggregating data 62
example detailed report 64
example summary report 62
selecting devices 61

ziorep_traffic report 60
syntax 60

ziorep_utilization
examples 58
syntax 57

ziorep_utilization report 56
zipl command 24
zipl.conf example 24
zoning

port 6
WWN 6

Index 95

96 How to use FC-attached SCSI devices - Kernel 2.6.35

Readers’ Comments — We'd Like to Hear from You

Linux on System z
How to use FC-attached SCSI devices with Linux on System z
Development stream (Kernel 2.6.35)

Publication No. SC33-8413-05

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM
business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the
personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via e-mail to: eservdoc@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We'd Like to Hear from You
SC33-8413-05

SC33-8413-05

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Research & Development GmbH
Information Development
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC33-8413-05

	Contents
	Summary of changes
	Updates for kernel 2.6.35
	Updates for kernel 2.6.33
	Updates for kernel 2.6.32

	About this document
	Who should read this document
	How this document is organized
	Conventions used in this book
	Hexadecimal numbers
	Highlighting

	Other Linux on System z publications
	Where to find more information
	Finding IBM books

	Supported hardware

	Chapter 1. Introducing SAN and FCP
	The zfcp device driver

	Chapter 2. Using N_Port ID Virtualization
	Chapter 3. Configuring FCP devices
	Step 1: Configuring the IODF
	Step 2: Defining zones
	Step 3: LUN masking
	Step 4: Attaching an FCP device under z/VM
	Step 5: Configuring the zfcp device driver

	Chapter 4. Naming SCSI devices persistently using udev
	Using udev and zfcp
	Persistent SCSI device naming

	Chapter 5. Improving system availability using multipathing
	Implementing multipathing with the multipath-tools
	Configuring multipathing with the device-mapper and multipath-tools
	Example of a multipath I/O configuration for IBM TotalStorage DS8000
	Example of a multipath I/O configuration for IBM TotalStorage DS6000
	Example of multipath I/O devices as physical volumes for LVM2

	Chapter 6. Booting the system using SCSI IPL
	What you should know about SCSI IPL
	Hardware requirements
	SAN addressing
	SCSI IPL parameters
	SCSI disk installation and preparation
	SCSI dump
	Example: IODF definition
	Example: SCSI IPL of an LPAR
	Example: SCSI IPL of a z/VM guest virtual machine
	Further reading

	Chapter 7. Using SCSI tape and the lin_tape driver
	Chapter 8. Logging using the SCSI logging feature
	Examples

	Chapter 9. Statistics available through sysfs
	Accessing statistics in sysfs
	Example

	Interpreting the sysfs statistics

	Chapter 10. I/O tracing using blktrace
	Capturing and analyzing I/O data
	Capturing data on a remote system
	Parsing captured data
	Analyzing data and plotting histograms

	Available data for I/O requests

	Chapter 11. Debugging using zfcp traces
	Interpreting trace records

	Chapter 12. Collecting FCP performance data with ziomon
	What you should know about ziomon
	Building a kernel with ziomon
	Preparing to use ziomon
	Working with the ziomon monitor
	Starting the monitor
	Examples

	Stopping the monitor
	Working with the results of monitoring

	Chapter 13. Creating FCP performance reports
	ziorep_config - Report on the multipath, SCSI, and FCP configuration
	Example: Adapter report
	Example: Device report
	Example: Mapper report

	ziorep_utilization - Report on utilization details
	Examples

	ziorep_traffic - Analyze systems I/O traffic through FCP adapters
	Selecting devices
	Aggregating data
	Example: Summary (default) report
	Example: Detailed report

	Chapter 14. Investigating the SAN fabric
	zfcp_ping - Probe a port
	Example

	zfcp_show - Retrieve SAN details
	Examples

	Chapter 15. Hints and tips
	Setting up TotalStorage DS8000 and DS6000 for FCP
	Further information

	Troubleshooting NPIV

	Appendix. Traces
	SCSI trace
	HBA trace
	SAN trace
	Error recovery trace
	Trace records and meanings
	Sample traces

	Notices
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Z

	Readers’ Comments — We'd Like to Hear from You

