Using the Dump Tools on SUSE Linux Enterprise Server 12 SP3
Using the Dump Tools
on SUSE Linux Enterprise Server 12 SP3
Before using this information and the product it supports, read the information in "Notices" on page 71.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planning for dumps</td>
<td>1-6</td>
</tr>
<tr>
<td>2</td>
<td>Using kdump</td>
<td>7-11</td>
</tr>
<tr>
<td>3</td>
<td>Using a DASD dump device</td>
<td>13-18</td>
</tr>
<tr>
<td>4</td>
<td>Using DASD devices for multi-volume dump</td>
<td>21-24</td>
</tr>
<tr>
<td>5</td>
<td>Using a tape dump device</td>
<td>25-30</td>
</tr>
<tr>
<td>6</td>
<td>Using a SCSI disk dump device</td>
<td>31-36</td>
</tr>
<tr>
<td>7</td>
<td>Creating dumps on z/VM with VMDUMP</td>
<td>39-41</td>
</tr>
<tr>
<td>8</td>
<td>Creating live-system dumps with zgetdump</td>
<td>45-49</td>
</tr>
<tr>
<td>9</td>
<td>Processing dumps</td>
<td>49-51</td>
</tr>
<tr>
<td>A</td>
<td>Obtaining a dump with limited size</td>
<td>53-63</td>
</tr>
<tr>
<td>B</td>
<td>Command summary</td>
<td>63-67</td>
</tr>
<tr>
<td>C</td>
<td>Installing the DASD or SCSI dump tool with YaST</td>
<td>69-73</td>
</tr>
</tbody>
</table>

Summary of changes
- Updates for SUSE Linux Enterprise Server SP3
- Updates for SUSE Linux Enterprise Server SP1

About this document
- Other relevant Linux on IBM z Systems publications
- Device nodes used in this publication

Chapter 1. Planning for dumps
- Tools overview
- kdump
- Stand-alone tools
- The VMDUMP tool
- Live-system dump
- Maximum dump size by tool
- Dump methods compared
- Automatic dumping
- Testing automatic dump-on-panic
- Sharing dump devices between different versions of Linux

Chapter 2. Using kdump
- Howkdump works on IBM Z
- Setting up kdump
- Initializing a dump
- z/VM guest example
- LPAR example

Chapter 3. Using a DASD dump device
- Installing the DASD dump tool
- Initializing a DASD dump
- z/VM guest example
- Dumping an LPAR using the HMC or SE web interface example
- Remote trigger example
- Automatic dump example
- Copying the dump from DASD with zgetdump

Chapter 4. Using DASD devices for multi-volume dump
- Installing the multi-volume DASD dump tool
- Initializing a multi-volume DASD dump
- Copying a multi-volume dump to a file

Chapter 5. Using a tape dump device
- Installing the tape dump tool
- Initiating a tape dump
- z/VM guest example
- LPAR example
- Copying the dump from tape
- Preparing the dump tape
- Using the zgetdump tool to copy the dump
- Checking whether a dump is valid, and printing the dump header

Chapter 6. Using a SCSI disk dump device
- Installing the SCSI disk dump tool
 - Example
 - Initiating a SCSI dump
 - z/VM guest example
 - LPAR examples
 - Automatic dump example
 - Copying the dump from SCSI disks with zgetdump
 - Printing the SCSI dump header

Chapter 7. Creating dumps on z/VM with VMDUMP
- Initiating a dump with VMDUMP
 - z/VM guest example
 - Copying the dump to Linux

Chapter 8. Creating live-system dumps with zgetdump
- Creating a kernel dump on a live system
- Opening a live-system dump with the crash tool

Chapter 9. Processing dumps
- Reducing dump size
 - Compressing a dump using makedumpfile
 - Compressing a dump using gzip and split
 - Preparing for analyzing a dump
 - Sending a dump to IBM Support

Appendix A. Obtaining a dump with limited size

Appendix B. Command summary
- zipl - Prepare devices for stand-alone dump
- zgetdump - Copy and convert kernel dumps
- dumpconf - Configure panic or PSW restart action
- crash - Analyze kernel dumps
- vmconvert - Convert z/VM VMDUMPS for Linux
- vmur - Receive dumps from the z/VM reader

Appendix C. Installing the DASD or SCSI dump tool with YaST

Accessibility

Notices

Trademarks

Index
Summary of changes

Updates for SUSE Linux Enterprise Server SP3

This edition (SC34-2746-02) contains changes related to SUSE Linux Enterprise Server SP3.

New information

- Information pertaining to preparing and planning for dumps is now collected in a new chapter, see Chapter 1, “Planning for dumps,” on page 1.
- Information about how to process a dump is now collected in a new chapter, see Chapter 9, “Processing dumps,” on page 45.

Changed Information

- Examples from the former “Appendix A. Examples for initiating dumps” have been integrated into their respective chapters.

This revision also includes maintenance and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Deleted Information

- “Sharing dump devices” has been removed. The information is still available in older versions of this book.
- “Dumping NSSs” has been removed. The information is still available in older versions of this book.

Updates for SUSE Linux Enterprise Server SP1

This edition (SC34-2746-01) contains changes related to SUSE Linux Enterprise Server SP1.

New information

- You can now create and analyze kernel dumps of Linux instances that run on an LPAR with multithreading enabled. See “Tools overview” on page 1.

Changed Information

- More details are given about using the diag288 watchdog for triggering a kdump under Linux on z/VM®. See “Initiating a dump” on page 10.
- More details are given about using zgetdump, zipl, and the crash utility for sharing dump devices between Linux versions. See “Sharing dump devices between different versions of Linux” on page 6.
- More details are given about files needed for dump analysis. See “Preparing for analyzing a dump” on page 48.

This revision also includes maintenance and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.
Deleted Information

- None.
About this document

This book describes tools for obtaining dumps of Linux for IBM® z Systems™ instances running SUSE Linux Enterprise Server 12 SP3. This book describes how to use DASD, channel-attached tape, and SCSI disks, as well as how to use kdump and VMDUMP.

Unless stated otherwise, all z/VM related information in this document assumes a current z/VM version, see www.vm.ibm.com/techinfo/lpmigr/vmleos.html.

As of July 2017, IBM z Systems is re-branded to IBM Z. In this document, Linux on z Systems refers to Linux running on LinuxONE or an IBM mainframe, including all IBM mainframe systems supported by SUSE Linux Enterprise Server 12 SP3 for z Systems. In particular, this includes IBM z13™ (z13), IBM zEnterprise® BC12 (zBC12), IBM zEnterprise EC12 (zEC12), IBM zEnterprise 196 (z196), and IBM zEnterprise 114 (z114) mainframes.

You can find the latest version of this document on developerWorks® at www.ibm.com/developerworks/linux/linux390/documentation_suse.html.

Authority

Most of the tasks described in this document require a user with root authority. In particular, writing to most of the described sysfs attributes requires root authority.

Throughout this document, it is assumed that you have root authority.

Other relevant Linux on IBM z Systems publications

Go to IBM Knowledge Center or to developerWorks for Linux on IBM z Systems publications about SUSE Linux Enterprise Server 12 SP3.

You can find the latest versions of these publications on IBM Knowledge Center at www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_suse.html or on developerWorks at www.ibm.com/developerworks/linux/linux390/documentation_suse.html

• Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP3, SC34-2745
• Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP3 as a KVM Guest, SC34-2756
• Kernel Messages on SUSE Linux Enterprise Server 12 SP3, SC34-2747

For each of the following publications, you can find the version that most closely reflects SUSE Linux Enterprise Server 12 SP3:
• How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
• libica Programmer’s Reference, SC34-2602
• Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
• Secure Key Solution with the Common Cryptographic Architecture Application Programmer’s Guide, SC33-8294
• Linux on z Systems Troubleshooting, SC34-2612
Device nodes used in this publication

There can be multiple device nodes for the same device.

The DASD and tape examples in this publication use the standard device nodes. You can also use the device nodes that udev creates for you. The SCSI examples use multipath device nodes.
Chapter 1. Planning for dumps

Be prepared before disaster strikes! Consider what dump method you want to use, what size dumps you need to handle, and what possibilities exist to limit the size or spread the dump over several devices.

Tools overview

Different tools can be used for obtaining dumps for instances of SUSE Linux Enterprise Server 12 SP3 running on IBM Z mainframes.

As of IBM z13, simultaneous multithreading is available for Linux in LPAR mode. SUSE Linux Enterprise Server 12 SP3 includes dump tools that can create dumps for both Linux instances with and without SMT enablement.

Dump tools from earlier versions of SUSE Linux Enterprise Server are restricted to Linux instances without SMT enablement. Do not use dump disks that were prepared with stand-alone dump tools of earlier versions to create dumps of SMT-enabled Linux instances.

You can use the dump analysis tool crash to analyze a dump. Depending on your service contract, you might also want to send a dump to IBM support to be analyzed.

Table 1 summarizes the available dump tools:

<table>
<thead>
<tr>
<th>Dump aspect</th>
<th>kdump</th>
<th>DASD</th>
<th>Multi-volume DASD</th>
<th>SCSI</th>
<th>Tape</th>
<th>VMDUMP</th>
<th>Live-system dump with zgetdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>z/VM and LPAR</td>
<td>z/VM and LPAR</td>
<td>z/VM and LPAR</td>
<td>z/VM and LPAR</td>
<td>z/VM only</td>
<td>z/VM and LPAR</td>
<td></td>
</tr>
<tr>
<td>System size</td>
<td>Large</td>
<td>Small</td>
<td>Large</td>
<td>Large</td>
<td>Large</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Medium</td>
<td>Any available medium</td>
<td>ECKD” or FBA (see note 2 on page 2)</td>
<td>ECKD DASD</td>
<td>SCSI partition</td>
<td>Tape cartridges</td>
<td>z/VM reader</td>
<td>Any available medium</td>
</tr>
<tr>
<td>Compression possible</td>
<td>While writing</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes (see note 1 on page 2)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dump filtering possible</td>
<td>While writing</td>
<td>When copying</td>
<td>When copying</td>
<td>When copying</td>
<td>When copying</td>
<td>When copying</td>
<td>No</td>
</tr>
<tr>
<td>Disruptive (see note 3 on page 2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stand-alone</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1. Dump tools summary
Note:
1. For dump system sizes, see also "Maximum dump size by tool” on page 3.
2. SCSI disks can be emulated as FBA disks. This dump method can, therefore, be used for SCSI-only z/VM installations.
3. In this context, disruptive means that the dump process kills a running operating system.

kdump

The kdump tool is made available through a Linux kernel and initial RAM disk that are preloaded in memory, along with a production system.

You do not have to install kdump on a dedicated dump device. The kdump system can access the memory that contains the dump of the production system through a procfs file.

Filtering out extraneous memory pages and compression can take place while the dump is written to persistent storage or transferred over a network. The smaller dump size can significantly reduce the write or transfer time, especially for large production systems.

Because kdump can write dumps through a network, existing file system facilities can be used to prevent multiple dumps from being written to the same storage space. Sharing space for dumps across an enterprise is possible.

Stand-alone tools

Stand-alone tools are installed on a device on which you perform an IPL. Different tools are available depending on the device type.

Four stand-alone dump tools are shipped in the s390-tools package as part of the `zipl` package:

- DASD dump tool for dumps on a single DASD device
- Multi-volume DASD dump tool for dumps on a set of ECKD DASD devices
- Tape dump tool for dumps on (channel-attached) tape devices
- SCSI disk dump tool for dumps on SCSI disks

You need to install these tools on the *dump device*. A dump device is used to initiate a stand-alone dump by IPL-ing the device. It must have a stand-alone dump tool installed and should provide enough space for the dump.

Typically, the system operator initiates a dump after a system crash, but you can initiate a dump at any time. To initiate a dump, you must IPL the dump device. This process is destructive, that is, the running Linux operating system is killed. The IPL process writes the system memory to the IPL device (DASD device, tape, or SCSI disk).

You can configure a dump device that is automatically used when a kernel panic occurs. For more information, see “dumpconf - Configure panic or PSW restart action” on page 61.

GRUB 2 usage: You cannot use GRUB 2 to install the standalone dump tools. You must use the `zipl` command as described in this document for the dump tools.
For more information about `zipl`, see "zipl - Prepare devices for stand-alone dump" on page 53.

The VMDUMP tool
The VMDUMP tool is a part of z/VM and does not need to be installed separately.

Dumping with VMDUMP is not destructive. If you dump an operating Linux instance, the instance continues running after the dump is completed.

VMDUMP can also create dumps for z/VM guests that use z/VM named saved systems (NSS).

Do not use VMDUMP to dump large z/VM guests; the dump process is very slow. Dumping 1 GB of storage can take up to 15 minutes depending on the used storage server and z/VM version.

For more information about VMDUMP, see z/VM CP Commands and Utilities Reference, SC24-6175.

Live-system dump
You can create a kernel dump from a live system without disruption.

Use the `zgetdump` tool that is shipped with the s390-tools package to create a kernel dump while the Linux system continues running. No dump device must be prepared, because the `/dev/crash` device node is used to create the dump.

Maximum dump size by tool
The dump size depends on the size of the system for which the dump is to be created.

All dump methods require persistent storage space to hold the kernel and user space of this system.

kdump
Initially uses the memory of the Linux instance for which a dump is to be created, and so supports any size. A persistent copy can be written to any medium of sufficient size. While writing, the dump size can be reduced through page filtering and compression.

DASD
Depends on the disk size. For example, ECKD model A provides several hundreds of GB, depending on the storage server model. To write a large memory dump to single volume DASD, you can use:

- 3390 model 9 (up to 45 GB)
- 3390 model A (up to 1 TB)

Multivolume DASD
Can be up to the combined size of 32 DASD partitions. To write a large memory dump to multiple DASD volumes, you can use up to 32 DASDs:

- 32 x 3390 model 9 (up to 1.4 TB)
- 32 x 3390 model A (up to 32 TB)

SCSI
Depends on the capacity of the SCSI disk and which other data it contains. To write a large memory dump to SCSI disk, you can use:
z/VM emulated FBA device that represents a real SCSI disk

FBA disks can be defined with the CP command SET EDEVICE. These disks can be used as single-volume DASD dump disks. The SCSI disk size depends on your storage server setup.

SCSI disk

The SCSI disk size depends on your storage server setup. For SCSI dump partitions greater than 2 TB, you must use the GPT disk layout.

Channel-attached tape

Depends on the tape drive. For example, IBM TotalStorage Enterprise Tape System 3592 supports large dumps and also offers hardware compression. For large memory dumps, cartridges with up to 10 TB capacity are available.

VMDUMP

Depends on the available spool space. The slow dump speed can lead to very long dump times for large dumps. Although technically possible, the slow dump speed makes VMDUMP unsuitable for large dumps.

zgetdump live-system dump

The dump can be written to any medium of sufficient size.

See “Reducing dump size” on page 45 for information specific to large dumps.

Dump methods compared

The process for preparing a dump device and obtaining a dump differs for the available dump methods.

<table>
<thead>
<tr>
<th>Dump aspect</th>
<th>kdump</th>
<th>Stand-alone tools</th>
<th>VMDUMP</th>
<th>Live-system dump with zgetdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td>Reserve memory with the crashkernel= kernel parameter</td>
<td>Write the stand-alone dump tool to the dump device (zipl)</td>
<td>Define the panic shutdown action (dumpconf)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Load the kdump kernel and the initial RAM disk into the memory of the production system. Use kexec or systemctl start kdump</td>
<td>Define the panic shutdown action (dumpconf)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dump trigger</td>
<td>Automatic: Kernel panic Initiated by operator: PSW restart</td>
<td>Automatic: Kernel panic Initiated by operator: IPL of the dump device</td>
<td>Automatic: Kernel panic Initiated by operator: z/VM CP VMDUMP command</td>
<td>Initiated by operator: zgetdump invocation</td>
</tr>
<tr>
<td>Initial dump space</td>
<td>Memory</td>
<td>Dump device</td>
<td>Spool device</td>
<td>Memory</td>
</tr>
<tr>
<td>Accessing the initial dump</td>
<td>Through /proc/vmcore from the kdump instance (automatically done by kdump initrd)</td>
<td>Using zgetdump from a new Linux instance</td>
<td>Using vmur -c from a new Linux instance</td>
<td>Through /dev/crash</td>
</tr>
</tbody>
</table>
Table 2. Comparing the dump methods (continued)

<table>
<thead>
<tr>
<th>Dump aspect</th>
<th>kdump</th>
<th>Stand-alone tools</th>
<th>VMDUMP</th>
<th>Live-system dump with zgetdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copying the initial dump to the final dump store (and releasing the initial dump space)</td>
<td>Copied from the kdump instance to any available storage (automatically done by kdump initrd)</td>
<td>Copied from the new Linux instance to any available storage</td>
<td>Copied from the new Linux instance to any available storage</td>
<td>Copied from the current Linux instance to any available storage</td>
</tr>
<tr>
<td>Optional: Filtering the initial dump</td>
<td>Using /proc/vmcore and makedumpfile on the kdump instance (automatically done by kdump initrd)</td>
<td>Using zgetdump and makedumpfile on the new Linux instance</td>
<td>Using zgetdump and makedumpfile on the new Linux instance</td>
<td>Not recommended</td>
</tr>
</tbody>
</table>

Automatic dumping

You can configure a dump device that is automatically used when a kernel panic occurs.

If you set up kdump, a kernel panic or PSW restart automatically triggers a dump. You can also use dumpconf to set up automatic dumping for standalone tools, or for your backup dump solution.

See “dumpconf - Configure panic or PSW restart action” on page 61 for how to set up dumpconf. Once you have set up the automation, you can cause a kernel panic to test the configuration.

Testing automatic dump-on-panic

Cause a kernel panic to confirm that your dump configuration is set up to automatically create a dump if a kernel panic occurs.

Before you begin

You need a Linux instance with active magic sysrequest functions.

Procedure

Crash the kernel with a forced kernel panic.

<table>
<thead>
<tr>
<th>If your method for triggering the magic sysrequest function is:</th>
<th>Enter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A command on the 3270 terminal or line-mode terminal on the HMC</td>
<td>^c</td>
</tr>
<tr>
<td>A command on the hvc0 terminal device</td>
<td>^ctrl+c</td>
</tr>
<tr>
<td>Writing to procfs</td>
<td>echo c > /proc/sysrq-trigger</td>
</tr>
</tbody>
</table>

Note: ^ctrl+c means pressing c while holding down the control key. For more details about the magic sysrequest functions, see the documentation in the Linux source tree at /usr/src/linux/Documentation/sysrq.txt (requires installation of the kernel-source package).
Results

The production system crashes. If kdump is set up correctly, the kdump kernel is booted, the dump is created (the default directory is /var/crash), and your production system is rebooted.

Sharing dump devices between different versions of Linux

Do not share dump devices between Linux installations with different major releases.

For example, do not share dump devices between SUSE Linux Enterprise Server 11 and SUSE Linux Enterprise Server 12.

Always use the zgetdump command and the crash utility that are delivered with your latest version of SUSE Linux Enterprise Server. The latest crash utility can process dumps that are created from Linux instances of the same or in earlier versions of SUSE Linux Enterprise Server.

The latest zgetdump command can process dumps that are created with the zip1 (s390-tools package) version in the same or in earlier versions of SUSE Linux Enterprise Server.

As of SUSE Linux Enterprise Server 12 SP3, zip1 can prepare disks for dumps of SMT-enabled Linux instances. You can use a dump disk that is prepared with an SMT-enabled zip1 version for both Linux instances with and without SMT enablement.
Chapter 2. Using kdump

You can use kdump to create system dumps for instances of SUSE Linux Enterprise Server.

Advantages of kdump

kdump offers these advantages over other dump methods:

- While writing the dump, you can filter out extraneous pages and compress the dump, and so handle large dumps in a short time.
- When writing dumps over a network, you can use existing file system facilities to share dump space without special preparations.

Shortcomings of kdump

kdump has these drawbacks:

- kdump cannot be used for issues that occur before kdump is initialized, for example, for early boot problems. For such cases, use a standalone dump tool.
- kdump is not as reliable as the stand-alone dump tools. For critical systems, you can set up stand-alone dump tools as a backup, in addition to the kdump configuration (see “Failure recovery and backup tools” on page 9).
- kdump cannot dump a z/VM named saved system (NSS).
- For production systems that run in LPAR mode, kdump consumes memory (see “Memory consumption” on page 8).

How kdump works on IBM Z

You can set up kdump according to your needs.

With kdump, you do not need to install a dump tool on the storage device that is to hold a future dump. Instead, you use a kdump kernel, a Linux instance that controls the dump process.

The kdump kernel occupies a reserved memory area within the memory of the production system for which it is set up. The reserved memory area is defined with the crashkernel= kernel parameter. After the production system is started, the kdump init service loads the kdump kernel and its initial RAM disk (initrd) into the reserved memory area with the kexec tool.
At the beginning of the dump process, the reserved memory area is exchanged with the lower memory regions of the crashed production system. The kdump system is then started and runs entirely in the memory that was exchanged with the reserved area. From the running kdump kernel, the memory of the crashed production system can be accessed as a virtual file, /proc/vmcore.

This process is fast because the kdump kernel is started from memory, and no dump data needs to be copied up to this stage. For SUSE Linux Enterprise Server, the makedumpfile tool in the kdump initrd writes a filtered and compressed version of the dump to a file on persistent storage, locally or over a network. Again, this method saves time because the dump is reduced in size while it is written or transferred.

By default, kdump initrd automatically IPLs the production system after the dump is written.

Memory consumption

Although each Linux instance must be defined with additional memory for kdump, the total memory consumption for your z/VM installation does not increase considerably.
On most architectures, the inactive kdump system consumes the entire memory that is reserved with the `crashkernel=` kernel parameter.

For Linux on z/VM, only the kdump image and its initial RAM disk consume actual memory. The remaining reserved memory is withheld by the z/VM hypervisor until it is required in exchange for the lower memory region of the crashed production system.

Because the kdump image and initial RAM disk are not used during regular operations, z/VM swaps them out of memory some time after IPL. Thereafter, no real memory is occupied for kdump until it is booted to handle a dump.

For Linux in LPAR mode, the reserved memory area consumes real memory.

Failure recovery and backup tools

If kdump fails, stand-alone dump tools or VMDUMP can be used as backup tools. Backup tools are, typically, set up only for vital production systems.

Because of being preloaded into memory, there is a small chance that parts of kdump are overwritten by malfunctioning kernel functions. The kdump kernel is, therefore, booted only if a checksum assures the integrity of the kdump kernel and initial RAM disk. This failure can be recovered automatically by setting up a backup dump tool with the `dumpconf` service or through a backup dump that is initiated by a user. See "dumpconf - Configure panic or PSW restart action" on page 61.

A second possible failure is the kdump system itself crashing during the dump process. This failure occurs, for example, if the reserved memory area is too small for the kdump kernel and user space. For this failure, initiate a backup dump, which captures data for both the crashed production system and the crashed kdump kernel. You can separate this data with the `zgetdump --select` option. See "zgetdump - Copy and convert kernel dumps" on page 55.

Setting up kdump

SUSE Linux Enterprise Server 12 SP3 provides two ways of setting up kdump.

About this task

You can choose between the following methods of setting up kdump:

- The kdump configuration utility in YaST: Graphical tool with kdump configuration options.
- Manually, using the configuration file `/etc/sysconfig/kdump`. For a configuration example, see the chapter about kexec and kdump in the *System Analysis and Tuning Guide*, available at www.suse.com/documentation.

What to do next

You can check whether kdump is set up with the lsshut command. If the command lists kdump as a shutdown action, kdump is configured. For example:
As a backup, you can set up a stand-alone dump tool in addition to kdump. See "dumpconf - Configure panic or PSW restart action" on page 61 about how to run a backup tool automatically, if kdump fails.

Initiating a dump

A kernel panic automatically triggers the dump process with kdump. If this automation fails, there are other methods you can use to trigger the dump process.

About this task

With kdump installed, a kernel panic or PSW restart trigger kdump rather than the shutdown actions defined in `/sys/firmware`. The definitions in `/sys/firmware` are used only if an integrity check for kdump fails (see also "Failure recovery and backup tools" on page 9 and "dumpconf - Configure panic or PSW restart action" on page 61).

To trigger kdump, use one of the methods according to your environment:

- **For Linux on z/VM:** Run the z/VM CP `system restart` command. See "z/VM guest example" for an example.
- **For Linux in LPAR mode:** Run the PSW `restart` task on the HMC. See "LPAR example" on page 11 for an example.

Tip: On both z/VM and LPAR you can use the diag288 watchdog to trigger kdump. The default setup triggers the correct actions. For more details about the diag288 watchdog, see *Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP3, SC34-2745*.

Results

After kdump is triggered, first kernel messages from the booting kdump kernel and later dump progress messages are issued. The messages are written to the Operating System Messages applet of the HMC for LPAR and to the 3270 terminal for z/VM. The kdump scripts copy the dump and reboot automatically.

What to do next

Verify that your production system is up and running again. Send the created dump to your support organization.

z/VM guest example

With kdump you do not need a dump device to initiate the dump.
Before you begin

Your Linux instance must have been set up for kdump as described in “Setting up kdump” on page 9.

Procedure

Issue the `system restart` z/VM CP command, for example from a 3270 terminal emulation for the Linux instance to be dumped:

```
#cp system restart
```

Boot messages for the kdump kernel indicate that the dump process has started.

LPAR example

You can initiate a kdump process on an LPAR from an HMC (Hardware Management Console) or SE (Support Element).

About this task

The following description refers to an HMC, but the steps also apply to an SE.

Procedure

1. In the navigation pane of the HMC, expand Systems Management and Servers and select the mainframe system you want to work with. A table of LPARs is displayed in the content area.
2. Select the LPAR for which you want to initiate the dump.
3. In the Tasks area, click PSW restart, which is located in the Recovery section. This initiates the dump process. Figure 3 on page 12 shows an example of an HMC with a selected mainframe system and LPAR. The PSW restart task can be seen in the Tasks area.
4. Wait until the dump process completes. Click the Operating System Messages icon for progress and error information.

Results

kdump automatically collects the dump and reboots Linux.
Chapter 3. Using a DASD dump device

To use a DASD dump device, you need to install the stand-alone DASD dump tool and perform the dump process. Then, copy the dump to a file in a Linux file system.

DASD dumps are written directly to a DASD partition that is not formatted with a file system. The following DASD types are supported:
- ECKD DASDs
 - 3380
 - 3390
- FBA DASDs

Installing the DASD dump tool

Install the DASD dump tool on an unused DASD partition. Dumps are written to this partition.

Before you begin

You need an unused DASD partition with enough space (memory size + 10 MB) to hold the system memory. If the system memory exceeds the capacity of a single DASD partition, use the multivolume dump tool, see Chapter 4, “Using DASD devices for multi-volume dump,” on page 21.

GRUB 2 usage: You cannot use GRUB 2 to install the standalone dump tools. You must use the `zipl` command as described in this document for the dump tools.

About this task

The examples in assume that `/dev/dasdc` is the dump device and that you want to dump to the first partition `/dev/dasdc1`.

The steps that you need to perform for installing the DASD dump tool depend on your type of DASD, ECKD or FBA:
- If you are using an ECKD-type DASD, perform all three of the following steps.
- If you are using an FBA-type DASD, skip steps 1 and 2 and perform step 3 only.

Procedure

1. ECKD only: Format your DASD with `dasdfmt`. Use a block size of 4 KB. For example:
   ```bash
   # dasdfmt -f /dev/dasdc -b 4096
   ```

2. ECKD only: Create a partition with `fdasd`. The partition must be sufficiently large (the memory size + 10 MB). For example:
   ```bash
   # fdasd /dev/dasdc
   ```

3. Install the dump tool with the `zipl` command. Specify the dump device on the command line. For example:
Initiating a DASD dump

You can initiate a dump from a DASD device.

Procedure

To obtain a dump with the DASD dump tool, perform the following main steps:

1. Stop all CPUs.
2. Store status on the IPL CPU.
3. IPL the dump tool on the IPL CPU.

Note: Do not clear storage!

The dump process can take several minutes depending on the device type you are using and the amount of system memory. After the dump completes, the IPL CPU should go into disabled wait.

The following PSW indicates that the dump process completed successfully:

(64-bit) PSW: 00020000 80000000 00000000 00000000

Any other disabled wait PSW indicates an error.

After the dump tool is IPLed, messages that indicate the progress of the dump are written to the console:

```
Dumping 64 bit OS
00000032 / 00000256 MB
00000064 / 00000256 MB
00000096 / 00000256 MB
00000128 / 00000256 MB
00000160 / 00000256 MB
00000192 / 00000256 MB
00000224 / 00000256 MB
00000256 / 00000256 MB
Dump successful
```

Results

You can IPL Linux again.

z/VM guest example

In this example, a dump to DASD device 193 is initiated from z/VM.

Example

If 193 is the dump device:

```
# cp cpu all stop
# cp store status
# cp i 193
```
On z/VM, a three-processor machine in this example, you will see messages about the disabled wait:

01: The virtual machine is placed in CP mode due to a SIGP stop from CPU 00.
02: The virtual machine is placed in CP mode due to a SIGP stop from CPU 00.
"CP entered; disabled wait PSW 00020000 80000000 00000000 00000000"

You can now IPL your Linux instance and resume operations.

Dumping an LPAR using the HMC or SE web interface example

In this example, an LPAR dump to a DASD device is initiated from an HMC (Hardware Management Console) or SE (Support Element).

About this task

The following description refers to an HMC, but the steps also apply to an SE.

Procedure

1. In the navigation pane of the HMC, expand Systems Management and Servers and select the mainframe system you want to work with. A table of LPARs is displayed in the content area.
2. Select the LPAR for which you want to initiate the dump.
3. In the **Tasks** area, click **Stop all** (which is located in the **Recovery** section) to stop all CPUs. Confirm when you are prompted to do so.
4. In the **Tasks** area, click **Load** to display the Load panel. Figure 4 on page 16 shows an example of an HMC with a selected mainframe system and LPAR. The **Load** and **Stop all** tasks can be seen in the Tasks area.
5. Select Load type “Normal”.

6. Select the Store status check box.

7. Type the device number of the dump device into the Load address field. To IPL from a subchannel set other than 0, specify five digits: The subchannel set ID followed by the device number, for example 1E711. Figure 5 shows a Load panel with all entries and selections required to start the dump process for a DASD or tape dump device.

Figure 4. HMC with the Load and Stop all tasks

Figure 5. Load panel for dumping to DASD
8. Click OK to start the dump process.
9. Wait until the dump process completes. Click the **Operating System Messages** icon for progress and error information.

Results

When the dump has completed successfully, you can IPL Linux again.

Remote trigger example

You can trigger HMC or SE activities remotely by using the `snipl` command.

Before you begin

As of `snipl` version 2.1.9, the `snipl` command can be used for dump handling. The required setup for `snipl` usage and further details are described in *Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP3, SC34-2745*. You can dump to a DASD disk.

About this task

For example, assume that you have a `snipl` configuration file `/etc/snipl.conf` containing the following specifications:

```
server=myse9.example.com
image=LPARLNX1
image=LPARLNX2

server=myse5.example.com
image=LPRLNX05
```

Further assume that you have prepared a dump DASD (in this example with device number 5199) with the `zipl` tool.

Procedure

Use the following `snipl` commands to write a memory dump of `LPARLNX1` to the prepared DASD:

1. Stop the CPUs:

   ```
   # snipl LPARLNX1 --stop
   Server myse9.example.com from config file /etc/snipl.conf is used
   processing......
   LPARLNX1: acknowledged.
   ```

2. IPL the dump tool on DASD 5199, prepared with the dump tool:

   ```
   # snipl LPARLNX1 --load -A 5199 --storestatus
   Server myse9.example.com from config file /etc/snipl.conf is used
   processing......
   LPARLNX1: acknowledged.
   ```

3. Monitor the dump progress:
Automatic dump example

On both z/VM and LPAR, you can use the dumpconf service to set up automatic dumping. In this example, a dump is automatically triggered when a kernel panic occurs.

About this task

Use the dumpconf service to set up automatic dumping. To set up dumping, edit the configuration file /etc/sysconfig/dumpconf.

Example

Example configuration for a CCW dump device (DASD):

```
ON_PANIC=dump
DUMP_TYPE=ccw
DEVICE=0.0.4714
```

For details on how to set up dumpconf, see “dumpconf - Configure panic or PSW restart action” on page 61.

Copying the dump from DASD with zgetdump

You can copy a DASD dump to a file system by using the zgetdump tool.

About this task

By default, the zgetdump tool takes the dump device as input and writes its contents to standard output. To write the dump to a file system, you must redirect the output to a file.

Procedure

Assuming that the dump is on DASD device /dev/dasdc1 and you want to copy it to a file named dump.elf:

```
# zgetdump /dev/dasdc1 > dump.elf
```

What to do next

You can use zgetdump to display information about the dump. See “Checking whether a DASD dump is valid and printing the dump header” on page 59 for an example.
For general information about `zgetdump`, see "zgetdump - Copy and convert kernel dumps" on page 55 or the man page.
Chapter 4. Using DASD devices for multi-volume dump

You can handle large dumps, up to the combined size of 32 DASD partitions, by creating dumps across multiple volumes.

Before you begin

You need to prepare a set of ECKD DASD devices for a multivolume dump, and install the stand-alone dump tool on each DASD device that is involved. Then, perform the dump process, and copy the dump to a file in a Linux file system.

GRUB 2 usage: You cannot use GRUB 2 to install the standalone dump tools. You must use the zipl command as described in this document for the dump tools.

About this task

You can specify up to 32 partitions on ECKD DASD volumes for a multivolume dump. The dump tool is installed on each volume involved. The volumes must be:

- In subchannel set 0.
- Formatted with the compatible disk layout (cdl, the default option when using the dasdfmt command.)

You must specify block size 4096 for dasdfmt.

For example, Figure 6 shows three DASD volumes, dasdb, dasdc, and dasdd, with four partitions selected to contain the dump. To earmark the partition for dump, a dump signature is written to each partition.

Figure 6. Three DASD volumes with four partitions for a multivolume dump

The partitions need to be listed in a configuration file, for example:
See “Installing the multi-volume DASD dump tool” for how to create the configuration file. All three DASD volumes are prepared for IPL; regardless of which you use the result is the same.

The following sections will take you through the entire process of creating a multi-volume dump.

Installing the multi-volume DASD dump tool

This example shows how to perform the dump process on two partitions, /dev/dasdc1 and /dev/dasdd1, which reside on ECKD volumes /dev/dasdc and /dev/dasdd.

About this task

Assume that the corresponding device bus-IDs (as displayed by `1sdasd`) are 0.0.4711 and 0.1.4712.

Procedure

1. Format both dump volumes with `dasdfmt`. The command shown uses the default cdI (compatible disk layout) and specifies a block size of 4KB.

   ```bash
   # dasdfmt -f /dev/dasdc -b 4096
   # dasdfmt -f /dev/dasdd -b 4096
   ```

2. Create the partitions with `fdasd`. The sum of the partition sizes must be sufficiently large (the memory size + 10 MB):

   ```bash
   # fdasd /dev/dasdc
   # fdasd /dev/dasdd
   ```

3. Create a file named `mvdump.conf` containing the device nodes of the two partitions, separated by one or more line feed characters (0x0a). The file’s contents are as follows:

   ```
   /dev/dasdc1
   /dev/dasdd1
   ```

4. Prepare the volumes using the `zipl` command. Specify the dump list on the command line.

 Command line example:

   ```bash
   # zipl -M mvdump.conf
   Dump target: 2 partitions with a total size of 1234 MB.
   Warning: All information on the following partitions will be lost!
   /dev/dasdc1
   /dev/dasdd1
   Do you want to continue creating multi-volume dump partitions (y/n)?
   ```
Results

Now the two volumes /dev/dasdc and /dev/dasdd with device numbers 0.0.4711 and 0.1.4712 are prepared for a multi-volume dump. Use the --device option of zgetdump to display information about these volumes:

```
# zgetdump -d /dev/dasdc
Dump device info:
  Dump tool..........: Multi-volume DASD dump tool
  Version...........: 2
  Architecture......: s390x (64 bit)
  Dump size limit...: none
  Force specified...: no
Volume 0: 0.0.4711 (online/valid)
Volume 1: 0.1.4712 (online/valid)
```

During zipl processing both partitions were earmarked for dump with a valid dump signature. The dump signature ceases to be valid when data other than dump data is written to the partition. For example, writing a file system to the partition overwrites the dump signature. Before writing memory to a partition, the dump tool checks the partition’s signature and exits if the signature is invalid. Thus any data inadvertently written to the partition is protected.

You can circumvent this protection, for example, if you want to use a swap space partition for dumping, by using the zipl command with the --force option. This option inhibits the dump signature check, and any data on the device is overwritten. Exercise great caution when using the force option.

The zipl command also takes a size specification, see Appendix A, “Obtaining a dump with limited size,” on page 51. For more details about the zipl command, see “zipl - Prepare devices for stand-alone dump” on page 53.

Initiating a multi-volume DASD dump

After preparing the DASD volumes, you can initiate a multi-volume dump by performing an IPL from one of the prepared volumes.

Procedure

To obtain a dump with the multivolume DASD dump tool, perform the following main steps:

1. Stop all CPUs.
2. Store status on the IPL CPU.
3. IPL the dump tool using one of the prepared volumes, either 0.0.4711 or 0.1.4712.

Note: Do not clear storage!

For an example performed for a single DASD on the HMC, see “Dumping an LPAR using the HMC or SE web interface example” on page 15. For an example performed for a single DASD on z/VM, see “z/VM guest example” on page 14.

The dump process can take several minutes depending on each volume’s block size and the amount of system memory. After the dump has completed, the IPL CPU should go into disabled wait.

The following PSW indicates that the dump process has completed successfully:
Any other disabled wait PSW indicates an error.

After the dump tool is IPLed, messages that indicate the progress of the dump are written to the console:

Dumping 64 bit OS
Dumping to: 0.0.4711
00000128 / 00001024 MB
00000256 / 00001024 MB
00000384 / 00001024 MB
00000512 / 00001024 MB
Dumping to: 0.1.4712
00000640 / 00001024 MB
00000768 / 00001024 MB
00000896 / 00001024 MB
00001024 / 00001024 MB
Dump successful

Results

You can IPL Linux again.

Copying a multi-volume dump to a file

Use the `zgetdump` command to copy the multi-volume dump.

About this task

This example assumes that the two volumes `/dev/dasdc` and `/dev/dasdd` (with device bus-IDs 0.0.4711 and 0.1.4712) contain the dump. Dump data is spread along partitions `/dev/dasdc1` and `/dev/dasdd1`.

Procedure

Use `zgetdump` without any options to copy the dump parts to a file:

```
# zgetdump /dev/dasdc > dump.elf
Format Info:
Source: s390mv
Target: elf

Copying dump:
00000000 / 00001024 MB
00000099 / 00001024 MB
00000171 / 00001024 MB
00000341 / 00001024 MB
00000512 / 00001024 MB
00000683 / 00001024 MB
00000853 / 00001024 MB
00001024 / 00001024 MB
Success: Dump has been copied
```

If you want to only check the validity of the multivolume dump rather than copying it to a file, use the `-info` option with `zgetdump`. See “Checking whether a DASD dump is valid and printing the dump header” on page 59 for an example.
Chapter 5. Using a tape dump device

You can use a channel-attached tape as a dump device. To use a tape, you need to install the stand-alone tape dump tool and perform the dump process. Then, copy the dump to a file in a Linux file system.

The following tape devices are supported:
- 3480
- 3490
- 3590
- 3592

The following sections take you through the entire process of creating a dump on a tape device.

Installing the tape dump tool

Install the tape dump tool on the tape that is to hold the dump.

Before you begin

Have enough empty tapes ready to hold the system memory (memory size + 10 MB).

GRUB 2 usage: You cannot use GRUB 2 to install the standalone dump tools. You must use the `zipl` command as described in this document for the dump tools.

About this task

The examples assume that `/dev/ntibm0` is the tape device that you want to dump to.

Procedure

1. Insert an empty dump cartridge into your tape device.
2. Ensure that the tape is rewound.
3. Install the dump tool by using the `zipl` command. Specify the dump device on the command line. For example:

   ```bash
   # zipl -d /dev/ntibm0
   ```

Initiating a tape dump

Initiate a tape dump by performing an IPL on the IPL CPU.

Procedure

To obtain a dump with the tape dump tool, perform the following main steps:

1. Ensure that the tape is rewound.
2. Stop all CPUs.
3. Store status on the IPL CPU.
4. IPL the dump tool on the IPL CPU.
Note: Do not clear storage!
The dump tool writes the number of dumped MB to the tape drive message display.
The dump process can take several minutes, depending on the device type you are using and the amount of system memory available. When the dump is complete, the message dump*end is displayed and the IPL CPU goes into disabled wait.
The following PSW indicates that the dump process completed successfully:

(64-bit) PSW: 00020000 80000000 00000000 00000000

Any other disabled wait PSW indicates an error.

After the dump tool is IPLed, messages that indicate the progress of the dump are written to the console:

Dumping 64 bit OS
00000032 / 00000256 MB
00000064 / 00000256 MB
00000096 / 00000256 MB
00000128 / 00000256 MB
00000160 / 00000256 MB
00000192 / 00000256 MB
00000224 / 00000256 MB
00000256 / 00000256 MB

Dump successful

Messages might be shown on the tape display.

number
 The number of MB dumped.
dump*end
 The dump process ended successfully.
5. You can IPL Linux again.

z/VM guest example
You can initiate a dump to tape from a Linux instance that is running as a z/VM guest.

Procedure

If 193 is the tape device:
1. Rewind the tape:

 #cp rewind 193

2. Stop all CPUs:

 #cp cpu all stop

3. Store status:

 #cp store status

4. IPL the tape device:

 #cp i 193
Results

On z/VM, a three-processor machine in this example, you will see messages about the disabled wait:

| 01: The virtual machine is placed in CP mode due to a SIGP stop from CPU 00. |
| 02: The virtual machine is placed in CP mode due to a SIGP stop from CPU 00. |
| "CP entered; disabled wait PSW 00020000 80000000 00000000 00000000" |

You can now IPL your Linux instance and resume operations.

LPAR example

You can initiate a dump to tape on an LPAR from an HMC (Hardware Management Console) or SE (Support Element).

About this task

The following description refers to an HMC, but the steps also apply to an SE.

Procedure

1. In the navigation pane of the HMC, expand Systems Management and Servers and select the mainframe system you want to work with. A table of LPARs is displayed in the content area.
2. Select the LPAR for which you want to initiate the dump.
3. In the Tasks area, click Stop all to stop all CPUs. Confirm when you are prompted to do so.
4. In the Tasks area, click Load to display the Load panel. Figure 7 on page 28 shows an example of an HMC with a selected mainframe system and LPAR. The Load and Stop all tasks can be seen in the Tasks area.
5. Select Load type “Normal”.
6. Select the Store status check box.
7. Type the device number of the dump device into the Load address field. To IPL from a subchannel set other than 0, specify five digits: The subchannel set ID followed by the device number, for example 1E711. Figure 8 shows a Load panel with all entries and selections required to start the dump process for a channel-attached tape dump device.
8. Click OK to start the dump process.
9. Wait until the dump process completes. Click the Operating System Messages icon for progress and error information.

Results

When the dump has completed successfully, you can IPL Linux again.

Copying the dump from tape

You can copy a tape dump to a file system by using the \texttt{zgetdump} tool.

Before you begin

The \texttt{mt} utility must be installed.

Preparing the dump tape

You need to rewind the tape, and find the correct position on the tape to start copying from.

About this task

Use the \texttt{mt} tool to manipulate the tape.

Procedure

1. Rewind the tape.

 For example:

 \begin{verbatim}
 # mt -f /dev/ntibm0 rewind
 \end{verbatim}

2. Skip the first file on the tape (this file is the dump tool itself).

 For example:

 \begin{verbatim}
 # mt -f /dev/ntibm0 fsf
 \end{verbatim}

Using the \texttt{zgetdump} tool to copy the dump

Use the \texttt{zgetdump} tool to copy the dump file from the tape to a file system.

Before you begin

The tape must be in the correct position (see “Preparing the dump tape”).

About this task

By default, the \texttt{zgetdump} tool takes the dump device as input and writes its contents to standard output. To write the dump to a file system, you must redirect the output to a file.

The example assumes that the dump is on tape device \texttt{/dev/nt1bm0}.
Procedure

Copy the dump from tape to a file named dump.elf in the file system:

```
# zgetdump /dev/ntibm0 > dump.elf
```

For general information on zgetdump, see "zgetdump - Copy and convert kernel dumps" on page 55 or the man page.

Checking whether a dump is valid, and printing the dump header

To check whether a dump is valid, use the zgetdump command with the -i option.

Procedure

1. Ensure that the volume is loaded.
2. Skip the first file on the tape (this is the dump tool itself):

```
# mt -f /dev/ntibm0 fsf
```

3. Issue the zgetdump command with the -i option:

```
# zgetdump -i /dev/ntibm0
```

The zgetdump command goes through the dump until it reaches the end. See also "Using zgetdump to copy a tape dump" on page 58.
Chapter 6. Using a SCSI disk dump device

To use a SCSI dump device you need to install the stand-alone SCSI dump tool, perform the dump process, and copy the dump to a file in a Linux file system.

Installing the SCSI disk dump tool

You install the SCSI dump tool with the `zipl` command.

Before you begin

The dump partition needs enough free space (memory size + 10 MB) to hold the system memory.

GRUB 2 usage: You cannot use GRUB 2 to install the standalone dump tools. You must use the `zipl` command as described in this document for the dump tools.

Example

A partition on a SCSI disk is used as dump partition.

About this task

This example assumes that `/dev/mapper/36005076303ff04d01000000000000020c0` is the dump device, and that you want to dump to the first partition, `/dev/mapper/36005076303ff04d010000000000000000020c0-part1`. Always use multipath devices instead of single path SCSI disk device nodes, if possible.

Procedure

1. Create a partition with `fdisk` or `parted`, or the expert partitioner of `yast disk`, using the PC-BIOS or GPT layout.
 For example:
   ```bash
   # fdisk /dev/mapper/36005076303ff04d01000000000000020c0
   ```

2. Install the dump tool by using the `zipl` command. Specify the dump partition on the command line: For example:
   ```bash
   # zipl -d /dev/mapper/36005076303ff04d01000000000000020c0-part1
   ```

Results

When you perform an IPL from any of the paths of `/dev/mapper/36005076303ff04d01000000000000020c0` by using boot program selector 1 or 0 (default), the memory dump is written directly to partition 1 of `/dev/mapper/36005076303ff04d010000000000000000020c0`. For LPAR, the boot program selector is located on the load panel, see Figure 10 on page 35 for an example. For z/VM, the boot program selector is configured with `CP SET DUMPDEV BOOTPROG`, see “z/VM guest example” on page 32.
Initiating a SCSI dump

To initiate the dump, IPL the SCSI dump tool by using the SCSI dump load type. To IPL the dump tool, specify its WWPN, LUN, and device-bus ID.

About this task

The dump process can take several minutes depending on the device type you are using and the amount of system memory. The dump progress and any error messages are reported on the operating system messages console for LPAR, or on the 3270 console for a z/VM guest.

Procedure

IPL the SCSI dump tool. After the dump tool is IPLed, messages that indicate the progress of the dump are written to the console:

```
Linux System Dumper starting

Version 3.0 (64 bit)
Linux version ...

Dump start at:.
Fri, 9 Dec 2016 13:22:55 +0000

Dump parameters:.
  devno....: 0.0.4711
  wwpn.....: 0x4712076300ce93a7
  lun......: 0x4712000000000000
  conf......: 0
  partition: /dev/sda1

Writing dump:
  0 of 6144 MB  0.0%  0 MB/s unknown ETA
2489 of 6144 MB 40.5% 277 MB/s 0:00:13 ETA
5114 of 6144 MB 83.2% 269 MB/s 0:00:03 ETA
6144 of 6144 MB 100.0% 267 MB/s 0:00:00 ETA

Dump successful.
```

Results

The dump process copies the dump to the dump partition. When the dump completes successfully, you can IPL Linux again. You can then extract the dump from the dump partition into a file.

z/VM guest example

You can initiate a dump to a SCSI disk using z/VM.

About this task

Assume your SCSI dump disk has the following parameters:

- WWPN: 4712076300ce93a7
- LUN: 4712000000000000
- FCP adapter device number: 4711
Results

Messages on the operating system console will show when the dump process is finished.

Example

```bash
# cp set dumpdev portname 47120763 00ce93a7 lun 47120000 00000000
# cp ipl 4711 dump
```

What to do next

You can now IPL your Linux instance and resume operations.

LPAR examples

You can initiate a dump to SCSI disk of a Linux instance running on an LPAR from an HMC (Hardware Management Console) or SE (Support Element) through a web interface or remotely through snipl.

HMC or SE web interface

You can initiate a dump to SCSI disk of a Linux instance running on an LPAR from an HMC or SE web interface.

About this task

The following description refers to an HMC, but the steps also apply to an SE.

Procedure

1. In the navigation pane of the HMC, expand Systems Management and Servers and select the mainframe system you want to work with. A table of LPARs is displayed in the content area.
2. Select the LPAR for which you want to initiate the dump.
3. In the **Tasks** area, click **Load** to display the Load panel. Figure 9 on page 34 shows an example of an HMC with a selected mainframe system and LPAR. The **Load** task can be seen in the **Tasks** area.
4. Select Load type “SCSI dump”.
5. Type the device number of the FCP adapter for the SCSI disk into the Load address field.
6. Type the World Wide Port name of the SCSI disk into the World wide port name field.
7. Type the Logical Unit Number of the SCSI disk into the Logical unit number field.
8. Type 0 in the Boot program selector field.
9. Accept the defaults for the remaining fields. Figure 10 on page 35 shows a Load panel with all entries and selections required to start the SCSI dump process.
10. Click OK to start the dump process.

11. Wait until the dump process completes. Click the Operating System Messages icon for progress and error information.

Results

When the dump has completed successfully, you can IPL Linux again.

HMC or SE remote API using snipl

You can trigger HMC or SE activities remotely by using the `snipl` command.

About this task

As of snipl version 2.1.9 the `snipl` command can be used for dump handling. The required setup for `snipl` usage and further details are described in Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP3, SC34-2745. You can dump to a SCSI disk.

Assume you want to write a memory dump to a SCSI disk with:

- A WWPN of 4712076300ce93a7
- A LUN of 4712000000000000
- An FCP adapter with device number 4711

Procedure

To write the dump, issue a `snipl` command like the following:

```
# snipl LPRLNX05 --scsidump -A 4711 --wwpn_scsiload 4712076300ce93a7 --lun_scsiload 4712000000000000  
```

Server myse5.example.com from config file /etc/snipl.conf is used

processing...

LPRLNX05: acknowledged.
Automatic dump example

On both z/VM and LPAR, you can use the dumpconf service to set up automatic
dumping. In this example, a dump is automatically triggered when a kernel panic
occurs.

About this task

To set up dumping using dumpconf, edit the configuration file
/etc/sysconfig/dumpconf.

Example

Example configuration for an FCP dump device (SCSI disk), where the disk has
device bus ID 0.0.4711, the WWPN is 0x4712076300ce93a7, and the LUN is
0x4712000000000000:

```
ON_PANIC=dump
DUMP_TYPE=fcp
DEVICE=0.0.4711
WWPN=0x4712076300ce93a7
LUN=0x4712000000000000
BOOTPROG=0
BR_LBA=0
```

For details on how to set up dumpconf, see "dumpconf - Configure panic or PSW
restart action" on page 61.

Copying the dump from SCSI disks with zgetdump

You can copy a SCSI dump to a file system using the zgetdump tool.

About this task

By default, the zgetdump tool takes the dump device as input and writes its
contents to standard output. To write the dump to a file system, you must redirect
the output to a file.

Procedure

Assuming that the dump is on SCSI partition /dev/mapper/
36005076303fffd4010000000000020c0-part1 and you want to copy it to a file
named dump.elf:

```
# zgetdump /dev/mapper/36005076303fffd4010000000000020c0-part1 > dump.elf
```

What to do next

You can use zgetdump to display information about the dump. See "Checking
whether a SCSI dump is valid and printing the dump header" on page 59 for an
example. For general information about zgetdump, see "zgetdump - Copy and
convert kernel dumps" on page 55 or the man page.

Printing the SCSI dump header

To print the dump file header, use zgetdump with the -i option.
Procedure

Specify the `zgetdump` command with the `-i` option:

```
# zgetdump -i /dev/mapper/36005076303fffdd401000000000000020c0-part1
```

General dump info:
- Dump format........: elf
- Version............: 1
- UTS node name......: mylnxsys
- UTS kernel release.: 3.12.25-2-default
- UTS kernel version.: #1 SMP Mon Jul 28 12:18:48 UTC 2014 (1b84426)
- System arch........: s390x (64 bit)
- CPU count (online): 3
- Dump memory range..: 768 MB

Memory map:
```
0000000000000000 - 000000002fffffff (768 MB)
```
Chapter 7. Creating dumps on z/VM with VMDUMP

Use VMDUMP to create dumps on z/VM systems, using the z/VM reader as the dump medium.

About this task

Do not use VMDUMP to dump large z/VM guests; the dump process is very slow. Dumping 1 GB of storage can take up to 15 minutes depending on the used storage server and z/VM version.

This section describes how to create a dump with VMDUMP, how to transfer the dump to Linux, and how to convert the z/VM dump to a convenient format. VMDUMP does not need to be installed separately.

The following sections take you through the process of creating a dump with VMDUMP.

Initiating a dump with VMDUMP

Start the VMDUMP process with the CP VMDUMP command.

Procedure

Issue the following command from the 3270 console of the z/VM guest virtual machine:

```
#CP VMDUMP
```

Results

z/VM CP temporarily stops the z/VM guest virtual machine and creates a dump file. The dump file is stored in the reader of the z/VM guest virtual machine. After the dump is complete, the Linux on z/VM instance continues operating.

You can use the TO option of the VMDUMP command to direct the dump to the reader of another guest virtual machine of the same z/VM system.

Example

To write the dump to the reader of z/VM guest virtual machine linux02 issue:

```
#CP VMDUMP TO LINUX02
```

For more information about VMDUMP refer to z/VM CP Commands and Utilities Reference, SC24-6175.

z/VM guest example

You can initiate a dump of Linux instances running under z/VM by using VMDUMP.
Procedure

To initialize a dump with `VMDUMP`, issue this command from the console of your z/VM guest virtual machine:

```
# cp vmdump
```

Results

Dumping does not force you to perform an IPL. If the Linux instance ran as required before dumping, it continues running after the dump is completed.

Copying the dump to Linux

Copy the dump from the z/VM reader using the `vmur` command.

Procedure

1. Find the spool ID of the `VMDUMP` spool file in the output of the `vmur li` command:

```
# vmur li
ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
T6360025 0463 V DMP 000020222 001 NONE 06/11 15:07:42 VMDUMP FILE T6360025
```

In the example the required `VMDUMP` file spool ID is 463.

2. Copy the dump into your Linux file system using the `vmur receive` command. To convert the dump into a format that can be processed with the Linux dump analysis tool `crash`, convert the dump using the `--convert` option:

```
# vmur rec 463 -c myvmdump
vmdump information:
architecture: 64 bit (big)
storage.....: 256 MB
date........: Thu Feb  5 08:39:48 2009
cpus........: 1
256 of 256 |#::::::::::::::::::::::::::::::::::::::::::::::::::| 100%
```

Results

The created file, named `myvmdump`, can now be used as input to `crash`.
Chapter 8. Creating live-system dumps with zgetdump

If you require a kernel dump of a Linux instance, but no downtime is acceptable, you can create a kernel dump from a live system without disruption.

Because the Linux system continues running while the dump is written, and kernel data structures are changing during the dump process, the resulting dump contains inconsistencies. The faster the dump process completes, the fewer inconsistencies the resulting live-system dump will contain. Therefore, run the dump process with the highest acceptable priority.

You can change the scheduling priority with the nice command. For example, use `nice -n -20` to set the highest possible priority.

Creating a kernel dump on a live system

You can create non-disruptive kernel dumps on a running Linux system with the `zgetdump` tool.

Before you begin

- The dump directory needs enough free space (memory size + 10 MB) to hold the system memory.
- Ensure that during the dump process no memory hotplug or CPU hotplug is performed.
- If applicable, stop the cpuplugd service by issuing the command:

  ```
  # service cpuplugd stop
  ```

- Load the crash kernel module by issuing the command:

  ```
  # modprobe crash
  ```

Procedure

1. Optional: Use the `-i` option to print information for the currently running Linux image:

   ```
   # zgetdump -i /dev/crash
   General dump info:
   Dump format........: devmem
   Dump method........: live
   UTS node name......: mylnxsys
   UTS kernel release.: 3.12.25-2-default
   UTS kernel version.: #1 SMP Mon Jul 28 12:18:48 UTC 2014 (1b84426)
   System arch........: s390x (64 bit)
   Dump memory range.: 896 MB
   Memory map:
   0000000000000000 - 0000000037ffffff (896 MB)
   ```

2. Create a dump from a live system by specifying `/dev/crash` as input dump and redirecting the output to a dump file. Run the dump process with a high priority.

   ```
   # nice -n -20 zgetdump /dev/crash > dump.elf
   ```
Optionally, you can also specify a target dump format with the -f option:

```
# zgetdump /dev/crash -f elf > dump.elf
```

3. Optional: Print information for the live-system dump. Use the -i option to print information for live-system dumps that are generated by `zgetdump`:

```
# zgetdump -i dump.elf
General dump info:
  Dump format........: elf
  Version...............: 1
  Dump method.........: live
  UTS node name.......: mylnxsys
  UTS kernel release.: 3.12.25-2-default
  UTS kernel version.: #1 SMP Mon Jul 28 12:18:48 UTC 2014 (1b84426)
  System arch.........: s390x (64 bit)
  Dump memory range.: 896 MB

Memory map:
  0000000000000000 - 0000000037ffffff (896 MB)
```

The value "live" in the **Dump method** field indicates that this is a dump from a live system.

Example

```
# nice -n -20 zgetdump /dev/crash -f elf > dump.elf
Format Info:
  Source: devmem
  Target: elf
Copying dump:
  00000000 / 00000000 MB
  00000149 / 00000000 MB
  ...
  00000747 / 00000000 MB
  00000896 / 00000000 MB
Success: Dump has been copied
```

What to do next

After you create a dump from a live system, you can work with crash, see "Opening a live-system dump with the crash tool."

After the live dump has been copied to a file system, you can compress it with `makedumpfile`. Note that the dump level must not be greater than 1 because of the dump inconsistencies.

For example:

```
# makedumpfile dump.elf -c -d 1 dump.kdump
```

Opening a live-system dump with the crash tool

Inconsistencies in a kernel dump from a live system can cause some crash commands to fail.
Before you begin

You might need to install debuginfo to see information about a dump when you use the `crash` command. Use the `zypper` command to install debuginfo, for example:

```
# zypper in kernel-default-debuginfo
```

Procedure

- Use the `crash` command to find information about whether a dump is from a live system. This information is displayed in the startup messages, or when you use the `sys` command:

```
# crash dump.elf /boot/vmlinux-4.4.<xx>-<yy>-default.gz
... KERNEL: /boot/vmlinux-4.4.<xx>-<yy>-default.gz
DEBUGINFO: /usr/lib/debug/boot/vmlinux-4.4.<xx>-<yy>-default.debug
DUMPFILE: dump.elf [LIVE DUMP]
   CPUS: 6
... crash> sys | grep DUMPFILE
... DUMPFILE: dump.elf [LIVE DUMP]
...```

The tag [LIVE DUMP] informs you that the dump contains inconsistencies.

- Detect whether a dump is from a live system by using the `help -p` command:

```
crash> help -p | grep flags2
flags2: 40 (LIVE_DUMP)
```

- Use the `--minimal` option if the crash tool fails to start because of inconsistent data structures in the kernel dump. With this option, crash tolerates a degree of inconsistency. However, only a subset of crash commands is then available:

```
crash --minimal dump.elf /boot/vmlinux-4.4.<xx>-<yy>-default.gz
...
NOTE: minimal mode commands: log, dis, rd, sym, eval, set, extend and exit
```
You can copy and transfer the dump file to another system, reduce the dump size, and send the reduced dump to IBM Support.

Procedure

- To copy and transfer an LPAR dump on DASD, tape, or SCSI dump to another system, use the `zgetdump` command, see "zgetdump - Copy and convert kernel dumps" on page 55. With kdump, you can transmit the dump through a network. Use existing mechanisms to prevent conflicts when concurrently writing multiple dumps to a shared persistent storage space.
- To analyze the dump, you can use crash, see "crash - Analyze kernel dumps" on page 63.
- To receive a VMDUMP file, use the `vmur` command, see "vmur - Receive dumps from the z/VM reader" on page 64.

Reducing dump size

Methods exist for handling memory dumps that are especially large (greater than 10 GB in size).

Before you begin

The preferred method for handling dumps of large production systems is using kdump. With kdump, you do not need to set up a dedicated dump device with a dump tool for each individual system. Instead, you set aside storage space to receive any dumps from across your installation. When using kdump, the information in this section applies if you want to set up a backup dump method for a critical system with a large memory.

About this task

Large dumps present a challenge as they:
- Take up a large amount of disk space
- Take a long time dumping
- Use considerable network bandwidth when being sent to a support organization.

Note: Sometimes you can re-create the problem on a test system with less memory, which makes the dump handling much easier. Consider this option before creating a large dump.

Procedure

Complete these steps to prepare and process a large dump.

1. Choose a dump device. If you want to dump a system with a large memory footprint, you have to prepare a dump device that is large enough. You can use the following dump devices for large dumps:

   Single-volume DASD
   - 3390 model 9 (up to 45 GB)
   - 3390 model A (up to 1 TB)
Multivolume DASD
Up to 32 DASDs are possible.
- 32 x 3390 model 9 (up to 1.4 TB)
- 32 x 3390 model A (up to 32 TB)

z/VM emulated FBA device that represents a real SCSI device
FBA disks can be defined with the CP command SET EDEVICE. These disks can be used as single-volume DASD dump disks. The SCSI disk size depends on your storage server setup.

SCSI dump
The SCSI disk size depends on your storage server setup. For SCSI dump partitions greater than 2 TB, you must use the GPT disk layout.

Dump on 3592 channel-attached tape drive
Cartridges with up to 10 TB capacity.

Do not use VMDUMP for large systems, because this dump method is very slow.

2. Estimate the dump time. The dump speed depends on your environment, for example your SAN setup and your storage server. With a dump speed of approximately 100 MB per second on DASDs or SCSI disks, and a system with 50 GB memory, the dump takes approximately 8 minutes. Do a test dump on your system to determine the dump speed for it. Then you will have an indication of how long a dump will take in case of emergency.

3. Reduce the dump size. For transferring dumps in a short amount of time to a support organization, it is often useful to reduce the dump size or split the dump into several parts for easier and faster transmission. To reduce the dump, choose one of these methods:
- “Compressing a dump using makedumpfile”
- “Compressing a dump using gzip and split” on page 47

4. Send the dump.

Compressing a dump using makedumpfile
Use the makedumpfile tool to compress s390 dumps and exclude memory pages that are not needed for analysis. Alternatively, you can use the gzip and split commands.

About this task
Compressing the dump substantially reduces the size of dump files and the amount of time needed to transmit them from one location to another. In SUSE Linux Enterprise Server 12 SP3, the makedumpfile tool is part of the makedumpfile RPM that you can install, for example, with the command:

```
zypper in makedumpfile
```

Because makedumpfile expects as input dump files in ELF format, you first have to transform your s390 format dump to ELF format. This is best done by mounting the dump using the zgetdump command. If you have read access to the dump file, you do not need root authority to mount the dump with zgetdump.
Procedure

1. Mount the dump in ELF format by performing one of these steps:
   - To mount a DASD dump from the partition /dev/dasdb1 to /mnt, issue:
     
     ```
 # zgetdump -m -f elf /dev/dasdb1 /mnt
     ```
   - To mount a SCSI dump from the partition /dev/mapper/36005076303ffde4010000000000020c0-part1 to /mnt, issue:
     
     ```
 # zgetdump -m -f elf /dev/mapper/36005076303ffde4010000000000020c0-part1 /mnt
     ```

   After mounting the dump in ELF format with `zgetdump`, the dump is available in the file named `/mnt/dump.elf`.

2. Use the -d (dump level) option of `makedumpfile` to specify which pages to exclude from the dump. See the man page for `makedumpfile` for a description of the dump level and other options of `makedumpfile`.

   This example compresses the dump file named `/mnt/dump.elf` (-c option) and excludes pages that are typically not needed to analyze a kernel problem.

   Excluded pages are: pages containing only zeroes, pages used to cache file contents (cache, cache private), pages belonging to user spaces processes, and free pages (maximum dump level 31):

   ```
 # makedumpfile -c -d 31 /mnt/dump.elf dump.kdump
   ```

   The newly created file, named `dump.kdump` should be much smaller than the original file, named `dump.elf`. Keep the original dump file until your kernel problem is resolved. This will enable you to reduce the dump level if it turns out that the pages that had been excluded are still needed for problem determination.

3. For initial problem analysis, you can also extract the kernel log with `makedumpfile`, and send it to your support organization:

   ```
 # makedumpfile --dump-dmesg /mnt/dump.elf kernel.log
   ```

What to do next

After you have used `makedumpfile`, you can unmount the dump:

```
zgetdump -u /mnt
```

Compressing a dump using `gzip` and `split`

Use the `gzip` and `split` commands to compress the dump and split it into parts. Alternatively, you can use the `makedumpfile` command.

Procedure

1. Compress the dump and split it into parts of 1 GB by using the `gzip` and `split` commands.
   - For a DASD dump:
     
     ```
 # zgetdump /dev/dasdd1 | gzip | split -b 1G
     ```
   - For a tape dump:
# mt -f /dev/ntibm0 rewind
# mt -f /dev/ntibm0 fsf
# zgetdump /dev/ntibm0 | gzip | split -b 1G

- For a SCSI dump:

  # cat /dumps/mydumps/dump.0 | gzip | split -b 1G

The split creates several compressed files in your current directory:

  # ls
  # xaa xab xac xad xae

2. Create md5 sums of parts:

   # md5sum * > dump.md5

3. Upload the parts together with the MD5 information to the support organization.

4. The receiver (the service organization) must do the following:

   a. Verify md5 sums:

      # cd dumpdir
      # md5sum -c dump.md5
      xaa:  OK
      xab:  OK
      ...

   b. Merge parts and extract the dump:

      # cat x* | gunzip -c > dump

---

**Preparing for analyzing a dump**

To analyze your dump with **crash**, additional files are required.

If you need to send your dump for analysis, it might be good to include these additional files with the dump file. Your distribution typically provides the additional files in RPMs.

To begin analyzing the dump using **crash**, these two files (as a minimum) are required:

- vmlinux (text): Contains addresses of kernel symbols
- vmlinux (debug): Contains datatype debug information

If you need to send your dump for analysis, please include the RPMs shown in **Table 4 on page 49**

**SLES debug files**

The SLES debug files are:

**Table 3. SUSE Linux Enterprise Server debug file names**

<table>
<thead>
<tr>
<th>Debug file</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>System.map</td>
<td>/boot/System.map-4.4.&lt;xx&gt;-&lt;y&gt;-default</td>
</tr>
</tbody>
</table>
Table 3. SUSE Linux Enterprise Server debug file names (continued)

<table>
<thead>
<tr>
<th>Debug file</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmlinux (text)</td>
<td>/boot/vmlinux-4.4.&lt;xx&gt;-&lt;yy&gt;-default.gz</td>
</tr>
<tr>
<td>vmlinux (debug)</td>
<td>/usr/lib/debug/boot/vmlinux-4.4.&lt;xx&gt;-&lt;yy&gt;-default.debug</td>
</tr>
<tr>
<td>modules (text)</td>
<td>/lib/modules/4.4.xx-yy-default/kernel/</td>
</tr>
<tr>
<td>modules (debug)</td>
<td>/usr/lib/debug/lib/modules/4.4.xx-yy-default/kernel/</td>
</tr>
<tr>
<td>debug source</td>
<td>/usr/src/debug/kernel-default-4.4.x.xx/linux-4.4/</td>
</tr>
</tbody>
</table>

Files that contain the addresses of kernel symbols are named (text).
Files that contain the corresponding datatype debug information are named (debug).

The RPMs that contain the debuginfo files are:

Table 4. SUSE Linux Enterprise Server debuginfo RPM names

<table>
<thead>
<tr>
<th>SLES version</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLES 12</td>
<td>• kernel-default-4.4.&lt;xx&gt;-&lt;yy&gt;.s390x.rpm</td>
</tr>
<tr>
<td></td>
<td>• kernel-default-debuginfo-4.4.&lt;xx&gt;-&lt;yy&gt;.s390x.rpm</td>
</tr>
<tr>
<td></td>
<td>• kernel-default-debugsource-4.4.&lt;xx&gt;-&lt;yy&gt;.s390x.rpm</td>
</tr>
</tbody>
</table>

For debugging problems that are related to kernel modules, additional RPMs might be required.

Sending a dump to IBM Support

After compressing the dump, you can transfer it using FTP or an HTTPS upload server.

Before you begin

You need to have opened a problem management record (PMR) before you send the data. You need the PMR number to correctly name the uploaded files.

Procedure

Appendix A. Obtaining a dump with limited size

The `mem` kernel parameter can make Linux use less memory than is available to it. A dump of such a Linux system does not need to include the unused memory. You can use the `zipl` command with the `size` option to limit the amount of memory that is dumped.

About this task

The `size` option is available for all `zipl` based dumps except SCSI: DASD and tape in command-line mode or in configuration-file mode. The `size` option is appended to the dump device specification with a comma as separator.

The value is a decimal number that can optionally be suffixed with K for kilobytes, M for megabytes, or G for gigabytes. Values that are specified in byte or kilobyte are rounded to the next megabyte boundary.

Be sure not to make the dump size smaller than the amount of memory that is actually used by the system to be dumped. Limiting the dump size to less than the amount of used memory results in an incomplete dump.

Example

The following command, entered in a Linux shell, prepares a DASD dump device for a dump that is limited to 100 MB:

```
zipl -d /dev/dasdc1,100M
Setting dump size limit to 100MB
Dump target: partition '/dev/dasdc1' with a size of 7043 MB.
Warning: All information on partition '/dev/dasdc1' will be lost!
Do you want to continue creating a dump partition (y/n)? y
```

After IPL of the dump device, you can see output from the dump tool on the z/VM console as the dump is created:

```
00: CP I 63AD
01: HCPGSP2630I The virtual machine is placed in CP mode due to a SIGP stop
 and store status from CPU 00.
02: HCPGSP2630I The virtual machine is placed in CP mode due to a SIGP stop
 and store status from CPU 00.
00: zipl v1.15.0-0.132.4 dump tool (64 bit)
00: Dumping 64 bit OS
00:
00: 00000012 / 00000100 MB
00: 00000025 / 00000100 MB
00: 00000037 / 00000100 MB
00: 00000050 / 00000100 MB
00: 00000062 / 00000100 MB
00: 00000075 / 00000100 MB
00: 00000087 / 00000100 MB
00: 00000100 / 00000100 MB
00: Dump successful
00: HCPGIR450W CP entered; disabled wait PSW 00020000 80000000 00000000 00000000
```
Appendix B. Command summary

The descriptions of the commands contain only the options and parameters that are relevant to dumping on SUSE Linux Enterprise Server. For a full description see the man pages.

- "zipl - Prepare devices for stand-alone dump"
- "zgetdump - Copy and convert kernel dumps" on page 55
- "dumpconf - Configure panic or PSW restart action" on page 61
- "crash - Analyze kernel dumps" on page 63
- "vmconvert - Convert z/VM VMDUMPS for Linux” on page 63
- "vmur - Receive dumps from the z/VM reader” on page 64

zipl - Prepare devices for stand-alone dump

Use zipl to prepare a dump device with a stand-alone dump tool.

Command options that do not apply to SUSE Linux Enterprise Server 12 SP3 have been omitted. For details, see the man page.

zipl supports the following dump devices:
- Enhanced Count Key Data (ECKD) DASDs with fixed block Linux disk layout (ldl)
- ECKD DASDs with z/OS-compliant compatible disk layout (cdl)
- Fixed Block Access (FBA) DASDs
- Magnetic tape subsystems compatible with IBM3480, IBM3490, IBM3590, or IBM3592
- SCSI with PC-BIOS or GPT disk layout

For multivolume dumps, only ECKD DASDs with compatible disk layout are supported.

zipl syntax

Note: You can specify zipl parameters in a configuration file, but the preferred way of using zipl is the command line. For details about the configuration file, see the man page.

```
zipl -d <dump_device> [--dry-run] [-n] [-f , <size>] [-M <dump_device_list> , <size>]
```

Parameters

-`-d <dump_device> or --dumpto=<dump_device>`
  is the device node of the DASD or SCSI partition, or tape device to be prepared as a dump device. zipl deletes all data on the partition or tape and installs the boot loader code there.
Note:
- If the dump device is an ECKD disk with fixed-block layout (ldl), a dump overwrites the dump utility. You must reinstall the dump utility before you can use the device for another dump.
- If the dump device is a tape, SCSI disk, FBA disk, or ECKD disk with the compatible disk layout (cdl), you do not need to reinstall the dump utility after every dump.

-M <dump_device_list>
contains the device nodes of the dump partitions, separated by one or more line feed characters. zipl writes a dump signature to each involved partition and installs the stand-alone multi-volume dump tool on each involved volume. Duplicate partitions are not allowed. A maximum of 32 partitions can be listed. The volumes must be formatted with cdl and use block size 4096.

<size>
(Optional) The amount of memory to be dumped. The value is a decimal number that can optionally be suffixed with K for kilobytes, M for megabytes, or G for gigabytes. The value is rounded to the next megabyte boundary.

If you limit the dump size below the amount of memory that is used by the system to be dumped, the resulting dump is incomplete. If no limit is provided, all of the available physical memory is dumped.

Note: For SCSI dump devices, the "size" option is not available.

-f or --force
ensures that no signature checking takes place when dumping. Any data on all involved partitions is overwritten without warning.

-n or --noninteractive
suppresses confirmation prompts that require operator responses to allow unattended processing (for example, for processing DASD or tape dump configuration sections). This option is available on the command line only.

-V or --verbose
provides more detailed command output.

--dry-run
simulates a zipl command. Use this option to test a configuration without overwriting data on your device.

During simulation, zipl performs all command processing and issues error messages where appropriate. Data is temporarily written to the target directory and is cleared up when the command simulation is completed.

-v or --version
displays version information.

-h or --help
displays help information.

Preparing a DASD dump device

The following command prepares a DASD partition /dev/dasdc1 as a dump device and suppresses confirmation prompts that require an operator response:

```bash
zipl -d /dev/dasdc1 -n
```
Preparing a SCSI dump device

The following command prepares a SCSI partition /dev/mapper/
36005076303ffd4010000000000020c0-part1 as a dump device:

```
zipl -d /dev/mapper/36005076303ffd4010000000000020c0-part1
```

Preparing a multi-volume dump on ECKD DASD

The following command prepares two DASD partitions /dev/dasdc1, /dev/dasdd1
for a multi-volume dump and suppresses confirmation prompts that require an
operator response:

```
zipl -M mvdump.conf -n
```

where the mvdump.conf file contains the two partitions, separated by line breaks:
```
/dev/dasdc1
/dev/dasdd1
```

zgetdump - Copy and convert kernel dumps

The `zgetdump` tool copies a source dump into a target dump with a configurable
dump format. The source dump can be located either on a dump device or on a
file system. The source dump content is written to standard output, unless you
redirect it to a specific file. You can also mount the dump content, print dump
information, check whether a DASD device contains a valid dump tool, or create a
non-disruptive kernel dump on a live system.

Before you begin: Mounting is implemented with fuse (file system in user space).
Therefore, the fuse kernel module must be loaded before you can use the `-m`
option. Load the module, for example, with `modprobe fuse`. You do not need root
authority to work with a dump using `zgetdump`.

zgetdump syntax
Parameters

<dump>
is the file, DASD device or partition, multipath partition of a SCSI
disk, channel-attached tape device, or live system device node where the source
dump is located:
- Regular dump file (for example /testdir/dump.0)
- DASD partition device node (for example /dev/dasdc1)
- DASD device node for multivolume dump (for example /dev/dasdc)
- Device mapper multipath partition device node of a SCSI disk (for example
  /dev/mapper/36005076303ffd401000000020c0-part1)
- Tape device node (for example /dev/ntibm0)
- Device node for live system (/dev/mem)

Note: For a DASD multivolume dump, it is sufficient to specify only one of
the multivolume DASDs as <dump>.

<dump_file>
is the file to which the output is redirected. The default is standard output.

<dumpdevice>
specifies the dump device for the -d option. The device node of the DASD
device, for example /dev/dasdb, or a multipath device node of a SCSI disk, for
example /dev/mapper/36005076303ffd4010000000000020c0..

-s <system> or --select <system>
for dumps that capture two systems, selects the system of interest. This option
is mandatory when you access the dump of a crashed kdump instance, but
returns an error if applied to a regular dump.

A dump can contain data for a crashed production system and for a crashed
kdump system. A dump like this is created if a stand-alone dump tool is used
to create a dump for a kdump instance that crashed while creating a dump for
a previously crashed production system. <system> can be:

  prod
to select the data for the crashed production system.

  kdump
to select the data for the kdump instance that crashed while creating a
dump for the previously crashed production system.

-m <dump> <dir> or --mount <dump> <dir>
mounts the source dump <dump> to mount point <dir> and generates a virtual
target dump file instead of writing the content to standard output. The virtual
dump file is named <dump>.<FMT>, where <FMT> is the name of the specified
dump format (see the --fmt option).

-u <dir> or --umount <dir>
unmounts the dump that is mounted at mount point <dir>. You can specify
the dump itself instead of the directory, for example /dev/dasdd1. This option
is a wrapper for fusermount -u.

-i <dump> or --info <dump>
displays the dump header information from the dump and performs a validity
check.

-d <dumpdevice> or --device <dumpdevice>
checks whether the specified ECKD, FBA, or SCSI disk device contains a valid
dump tool and prints information about it.
-f <format> or --fmt <format>
uses the specified target dump format <format> when writing or mounting the
dump. The following target dump formats are supported:

  elf    Executable and Linking Format core dump (default)
  s390   S/390® dump

-h or --help
  displays the help information for the command.

-v or --version
  displays the version information for the command.

Using zgetdump to copy a dump

Assuming that the dump is on DASD partition /dev/dasdb1 and that you want to
copy it to a file named dump.elf:

```bash
zgetdump /dev/dasdb1 > dump.elf
```

Using zgetdump to transfer a dump with ssh

Assuming that the dump is on DASD partition /dev/dasdd1 and that you want to
transfer it to a file on another system with ssh:

```bash
zgetdump /dev/dasdd1 | ssh user@host "cat > dump.elf"
```

Using zgetdump to transfer a dump with FTP

Assuming that you want to use FTP to transfer a dump to a file, dump.elf, on
another system:
1. Establish an FTP session with the target host and log in.
2. To transfer a file in binary mode, enter the FTP binary command:
   ```bash
 ftp> binary
   ```
3. To send the dump file to the FTP host issue:
   ```bash
 ftp> put "zgetdump /dev/dasdb1" dump.elf
   ```

Using zgetdump to copy a multi-volume dump

Assuming that the dump is on DASD devices /dev/dasdc and /dev/dasdd spread
along partitions /dev/dasdc1 and /dev/dasdd1, and that you want to copy it to a
file named dump.elf:

```bash
zgetdump /dev/dasdc > dump.elf
```

For an example of the output from this command, see Chapter 4, “Using DASD
Using zgetdump to copy a tape dump

Assuming that the tape device is /dev/ntibm0:

```bash
zgetdump /dev/ntibm0 > dump.elf
Format Info:
Source: s390tape
Target: elf
Copying dump:
00000000 / 00001024 MB
00000171 / 00001024 MB
00000341 / 00001024 MB
00000512 / 00001024 MB
00000683 / 00001024 MB
00000853 / 00001024 MB
00001024 / 00001024 MB
Success: Dump has been copied
```

Using zgetdump to create a dump from a live system

To store an ELF-format dump from a live system in a file called `dump.elf` issue:

```bash
nice -n -20 zgetdump /dev/crash > dump.elf
```

For an example of the output from this command, see “Creating a kernel dump on a live system” on page 41.

Checking whether a tape dump is valid, and printing the dump header

Assuming that the tape device is /dev/ntibm0:

```bash
zgetdump -i /dev/ntibm0
Checking tape, this can take a while...
General dump info:
Dump format.........: s390tape
Version............: 5
Dump created........: Mon, 28 Jul 2014 17:26:46 +0200
Dump ended..........: Mon, 28 Jul 2014 17:27:58 +0200
Dump CPU ID.........: ff00012320948000
Build arch.........: s390x (64 bit)
UTS node name.......: mylnxsys
UTS kernel release.: 3.12.25-2-default
UTS kernel version.: #1 SMP Mon Jul 28 12:18:48 UTC 2014
System arch.........: s390x (64 bit)
CPU count (online)..: 2
CPU count (real)...: 2
Dump memory range...: 1024 MB
Real memory range...: 1024 MB
Memory map:
0000000000000000 - 000000003fffffff (1024 MB)
```
Checking whether a DASD dump is valid and printing the dump header

Assuming that the dump is on a partition, `part1`, of a DASD device `/dev/dasdb1`:

```
zgetdump -i /dev/dasdb1

General dump info:
Dump format..........: s390
Version.............: 5
Dump created.........: Wed, 13 Aug 2014 11:14:33 +0100
Dump ended...........: Wed, 13 Aug 2014 11:14:46 +0100
Dump CPU ID..........: ff00012320978000
UTS node name.......: mylnxsys
UTS kernel release.: 3.12.25-2-default
UTS kernel version.: #1 SMP Mon Jul 28 12:18:48 UTC 2014
Build arch..........: s390x (64 bit)
System arch........: s390x (64 bit)
CPU count (online)..: 3
CPU count (real)...: 3
Dump memory range..: 1024 MB
Real memory range..: 1024 MB

Memory map:
0000000000000000 - 000000003fffffff (1024 MB)
```

Checking whether a SCSI dump is valid and printing the dump header

Assuming that the dump is on the first partition of a SCSI disk, for example `/dev/mapper/36005076303ffd40100000000000020c0-part1`:

```
zgetdump -i /dev/mapper/36005076303ffd40100000000000020c0-part1

General dump info:
Dump format..........: elf
Version.............: 1
UTS node name.......: r3545010
UTS kernel release.: 3.12.25-2-default
UTS kernel version.: #1 SMP Mon Jul 28 12:18:48 UTC 2014
System arch..........: s390x (64 bit)
CPU count (online)..: 3
CPU count (real)...: 3
Dump memory range..: 1024 MB
Real memory range..: 1024 MB

Memory map:
0000000000000000 - 000000003fffffff (1024 MB)
```

Checking whether a DASD device contains a valid dump record

Checking DASD device `/dev/dasda`, which is a valid dump device:

```
zgetdump -d /dev/dasdb

Dump device info:
Dump tool............: Single-volume DASD dump tool
Version.............: 2
Architecture........: s390x (64 bit)
DASD type...........: ECKD
Dump size limit....: none
```

Checking DASD device `/dev/dasdc`, which is not a valid dump device:

```
zgetdump -d /dev/dasdc
zgetdump: No dump tool found on "/dev/dasdc"
```
Checking whether a SCSI disk contains a valid dump record

Checking SCSI multipath device /dev/mapper/36005076303ffd401000000000000020c0, which is a valid dump device:

```
zgetdump -d /dev/mapper/36005076303ffd401000000000000020c0
Dump device info:
Dump tool...........: Single-volume SCSI dump tool
Version............: 1
Architecture.......: s390x (64 bit)

Partition info:
Partition number..: 1
Maximum dump size.: 20473 MB
```

Checking SCSI multipath device /dev/mapper/36005076307ffc5e300000000000084cf, which is not a valid dump device:

```
zgetdump -d /dev/mapper/36005076307ffc5e300000000000084cf
zgetdump: No dump tool found on "/dev/mapper/36005076307ffc5e300000000000084cf"
```

Using the mount option

Mounting is useful for multivolume DASD dumps. After a multivolume dump has been mounted, it is shown as a single dump file that can be accessed directly with dump processing tools such as `crash`.

The following example mounts a multivolume source DASD dump as an ELF dump, processes it with `crash`, and unmounts it with `zgetdump`:

```
zgetdump -m /dev/dasdx/dumps
crash /dumps/dump.elf /boot/vmlinux-4.4.<xx>-<y>-default.gz
zgetdump -u /dumps
```

Mounting can also be useful when you want to process the dump with a tool that cannot read the original dump format. Use the `--fmt` option to mount the dump with a format other then the default format.

Selecting data from a dump that includes a crashed kdump

The following example mounts dump data for a crashed production system from a DASD backup dump for a failed kdump (see “Failure recovery and backup tools” on page 9 for details).

```
zgetdump -s prod -m /dev/dasdb1 /mnt
```

Checking whether a dump has captured two systems

A dump can contain data from two systems. To check for this use `zgetdump -i`, for example, assuming that the previous dump example contains both a dump from the production system and a kdump kernel dump:

```
zgetdump -i /dev/mapper/36005076303ffd401000000000000020c0-part1
zgetdump: The dump contains "kdump" and "production system"
Access "production system" with "--s prod"
Access "kdump" with "--s kdump"
Send both dumps to your service organization
```
dumpconf - Configure panic or PSW restart action

The dumpconf service configures the action to be taken if a kernel panic or PSW restart occurs.

The service is installed as a script under /etc/init.d/dumpconf and reads the configuration file /etc/sysconfig/dumpconf.

Note: kdump does not depend on dumpconf and cannot be enabled or disabled with dumpconf. If kdump was set up for your production system, dump tools as configured with dumpconf are used only if the integrity check for kdump fails. With kdump set up, you can use dumpconf to enable or disable backup dump tools. See also “Failure recovery and backup tools” on page 9.

To enable the dumpconf service, issue:

```
chkconfig --add dumpconf
```

dumpconf service syntax

```
--dumpconf start
 stop
 status
```

Parameters

start

enables the configuration that is defined in /etc/sysconfig/dumpconf.

stop

disables the dumpconf service.

status

shows current configuration status of the dumpconf service.

-h or --help

displays a short usage text on console. To view the man page, enter man dumpconf.

-v or --version

displays the version number on console, and exits.

Keywords for the configuration file

ON_PANIC

Shutdown action to be taken if a kernel panic or PSW restart occurs. Possible values are:

dump  dumps Linux and stops the system.
reipl  reboots Linux.
dump_reipl  dumps Linux and reboots the system.
vmcmd  executes the specified CP commands and stops the system.
stop  stops Linux (default).

**DELAY_MINUTES**
specifies the number of minutes that the activation of the dumpconf service is to be delayed. The default is zero.

Using reipl or dump_reipl actions with ON_PANIC can lead to the system looping with alternating IPLs and crashes. Use DELAY_MINUTES to prevent such a loop. DELAY_MINUTES delays activating the specified panic action for a newly started system. After the specified time elapses, the dumpconf service activates the specified panic action. This action is taken should the system subsequently crash. If the system crashes before the time elapses, the previously defined action is taken. If no previous action was defined, the default action (STOP) is performed.

**VCMCMD_<X>**
specifies a CP command, <X> is a number from one to eight. You can specify up to eight CP commands that are executed in case of a kernel panic or PSW restart. z/VM commands, device addresses, and names of z/VM guest virtual machines must be uppercase.

**DUMP_TYPE**
specifies the type of dump device. Possible values are ccw and fcp.

**DEVICE**
specifies the device bus-ID of the dump device.

**WWPN**
specifies the WWPN for SCSI disk.

**LUN**
specifies the LUN for SCSI disk.

**BOOTPROG**
specifies the boot program selector.

**BR_LBA**
specifies the boot record logical block address.

**Example configuration files for the dumpconf service**

- Example configuration for a CCW dump device (DASD) using reipl after dump and DELAY_MINUTES:

```plaintext
ON_PANIC=dump_reipl
DUMP_TYPE=ccw
DEVICE=0.0.4714
DELAY_MINUTES=5
```

- Example configuration for FCP dump device (SCSI disk):

```plaintext
ON_PANIC=dump
DUMP_TYPE=fcp
DEVICE=0.0.4711
WWPN=0x5005076303004712
LUN=0x4713000000000000
BOOTPROG=0
BR_LBA=0
```

- Example configuration for re-IPL if a kernel panic or PSW restart occurs:

```plaintext
ON_PANIC=reipl
```
• Example of sending a message to the z/VM guest virtual machine "MASTER", executing a \texttt{CP VMDUMP} command, and rebooting from device 4711 if a kernel panic or PSW restart occurs:

\begin{verbatim}
ON_PANIC=vmcmd
VMCMD_1="MSG MASTER Starting VMDUMP"
VMCMD_2="VMDUMP"
VMCMD_3="IPL 4711"
\end{verbatim}

z/VM commands, device addresses, and names of z/VM guest virtual machines must be uppercase.

**Examples for using the dumpconf service**

Use the \texttt{dumpconf} service to enable and disable the configuration.

• To enable the configuration:

\begin{verbatim}
# service dumpconf start
ccw dump device configured. "dump" on panic configured.
\end{verbatim}

• To display the status:

\begin{verbatim}
# service dumpconf status
type....: ccw
device...: 0.0.4714
on_panic: dump
\end{verbatim}

• To disable dump on panic:

\begin{verbatim}
# service dumpconf stop
Dump on panic is disabled now
\end{verbatim}

• To display the status again and check that the status is now stopped.

\begin{verbatim}
# service dumpconf status
on_panic: stop
\end{verbatim}

**crash - Analyze kernel dumps**

The \texttt{crash} tool is a GPL-licensed tool that is maintained by Red Hat. For more information, see the tool online help.

**vmconvert - Convert z/VM VMDUMPS for Linux**

The \texttt{vmconvert} tool converts a dump that was created with VMDUMP into a file that can be analyzed with \texttt{crash}.
vmconvert syntax

```
vmconvert
[f<vmdump_file>]
-o<output_file>
-o<output_file>
dump.lkcd

-f<vmdump_file>
-v
-h

Parameters

<vmdump_file> or -f<vmdump_file> or --file<vmdump_file>
specifies the VMDUMP created dump file to be converted.

<output_file> or -o<output_file> or --output<output_file>
specifies the name of the dump file to be created. The default is dump.lkcd.

-v or --version
 displays the tool version.

-h or --help
 displays the help information for the command.

Example

To convert a VMDUMP-created dump file vmdump1 into a dump file dump1.lkcd
that can be processed with crash issue:

```
# vmconvert -f vmdump1 -o dump1.lkcd
```

You can also use positional parameters:

```
# vmconvert vm.dump lkcd.dump
vmdump information:
architecture: 32 bit
date.........: Fri Feb 18 11:06:45 2005
storage......: 16 MB
cpus.........: 6
16 of 16 |##########################################################################| 100%
'lkcd.dump' has been written successfully.
```

vmur - Receive dumps from the z/VM reader

The vmur command can receive a VMDUMP file from the z/VM reader and
convert it into a file that can be analyzed with crash.

Issue a command of the following form:

```
# vmur receive -c <spool ID> <dump file name>
```
Parameters

<spool ID>

specifies the VMDUMP file spool ID.

<dump file name>

specifies the name of the output file to receive the reader spool file's data.

For more details, see the `vmur` man page and *Device Drivers, Features, and Commands on SUSE Linux Enterprise Server 12 SP3, SC34-2745*

Example

Note:

The `vmur` commands access the reader device, which has to be online. To set it online, it might need to be freed from `cio_ignore`. Example:

```bash
# cio_ignore -r c
# chccwdev -e c
Setting device 0.0.000c online
Done
```

To receive and convert a VMDUMP spool file with spool ID 463 to a file named `dump.lkcd` on the Linux file system in the current working directory:

```bash
# vmur rec -c 463 dump.lkcd
```
Appendix C. Installing the DASD or SCSI dump tool with YaST

You can prepare ECKD DASD and SCSI dump devices with the YaST tool.

Procedure
1. Start YaST:

   ```
   # yast
   ```

2. Ensure that the dump DASDs or SCSI devices (LUNs) are activated.
 a. Enter menu: **Hardware > DASD** or **Hardware > Zfcp**
 b. Activate the correct DASDs or SCSI disks, if not already activated.

3. Prepare the DASDs or SCSI device for dump use:
 a. Enter menu: **Hardware > Dump Devices.**
 b. Select the dump DASDs or SCSI device.
 c. Click **Create** to prepare the DASDs or SCSI disk.

4. A message is displayed when your dump device has been prepared.

What to do next

After a dump device has been prepared it is possible to configure the **dumpconf** service for automatic dump on panic:

1. Enter menu: **Hardware > On Panic.**
2. Configure the **dumpconf** settings, see "dumpconf - Configure panic or PSW restart action" on page 61.

Note: The dump-related YaST dialogues can also be entered directly with these commands:
 - **yast dasd**
 - **yast zfcp**
 - **yast zfcp**
 - **yast kdump**
 - **yast dump**
 - **yast onpanic**
Accessibility

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use information technology products successfully.

Documentation accessibility

The Linux on z Systems publications are in Adobe Portable Document Format (PDF) and should be compliant with accessibility standards. If you experience difficulties when you use the PDF file and want to request a Web-based format for this publication, use the Readers’ Comments form in the back of this publication, send an email to eservdoc@de.ibm.com, or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM has to accessibility at www.ibm.com/able
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.
This information is for planning purposes only. The information herein is subject to change before the products described become available.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Index

Special characters
/etc/kdump.conf
 configuration file for kdump 9

A
 accessibility 69
 analyzing dump
 preparing for 48
 audience vii
 authority vii
 automatic dump
 dump-on-panic 5
 automatic dump-on-panic 5

C
 commands
 crash 63
 dumpconf service 61
 summary 53
 vmconvert 64
 vmur 64
 zgetdump 55
 commands, Linux
 zipl 53
 compress memory dump 47
 compressing a memory dump 46
 configuration file
 kdump 9
 crash
 live dump, opening 43
 preparing for analyzing a dump
 with 48
 crash tool 63
 crashkernel=
 kernel parameter 7
 creating dumps 1

D
 DASD
 using as dump device 13
 DASD device 14
 DASD devices
 using for multi-volume dump 21
 DASD dump
 initiating 14
 DASD dump tool
 installing 13
 installing with YaST 67
 DASD multi-volume dump
 starting 23
 device nodes viii
 dump
 copy from DASD with zgetdump command 18
 copy from SCSI with zgetdump command 36
 dump (continued)
 copy multi-volume dump from DASD
 with zgetdump command 24
 copy tape from 29
 copy with zgetdump command 29
 initiating DASD 14
 initiating SCSI 32
 limited size 51
 live-system 3
 multi-volume 21
 preparing for analyzing 48
 sharing space for 2
 starting a multi-volume DASD 23
 tape, checking if valid 30
 tape, initializing 25
 dump device
 DASD 13
 definition 2
 tape 25
 dump devices
 preparing 53
 SCSI 31
 sharing between different Linux
 versions 6
 dump header
 SCSI dump, printing the 37
 dump methods
 comparison 4
 dump tool
 DASD, installing 13
 installing SCSI 31
 dump tool, installing 25
 dump tools
 crash 63
 dumpconf service 61
 installing with YaST 67
 multi-volume, DASD 22
 stand-alone 2
 stand-alone tape 25
 summary 53
 vmconvert 64
 VMDUMP 3, 39
 vmur 64
 zgetdump 55
 dump tools overview 1
 dumpconf service 61
 dumping 29

E
 ECuRep 49
 example of starting dump
 using a DASD device 14
 using SCSI 32
 using tape 26
 using VMDUMP 40

F
 firstboot utility
 kdump setup 9

G
 gzip command 47

H
 handling large dumps 45
 initiate DASD dumps
 HMC or SE 15
 initiate dump, example using 32
 initiate dumps 10, 11
 example using a DASD device 14
 example using SCSI 32
 example using tape 26
 example using VMDUMP 40
 HMC or SE 11, 18, 36
 initiate dumps, example using 14, 40
 initiate SCSI dumps
 HMC or SE 33
 initiate tape dumps
 HMC or SE 27
 initiating
 DASD dump 14
 SCSI dump 32
 initiating a dump 39
 installing
 SCSI dump tool 31

K
 kdump
 advantages and disadvantages 7
 comparison with other dump
 methods 4
 initiate 10
 initiating 11
 introduction 2
 setup 9
 testing automatic dump-on-panic 5
 kdump kernel 7
 kernel dump
 creating from live system 41
 Kernel Dump Configuration utility
 kdump setup 9

L
 large dump
 handling 45
 multi-volume 21
 limit amount of memory dumped 51
Linux versions
 sharing dump devices between live dump
 open with crash 43
live system
 creating dump 41
live-system dump 3

M
makedumpfile 46
memory
 reserved for kdump kernel 7
memory dump
 compressing 46
multi-volume dump
 starting 23
multi-volume dumps 21
 DASD tool 22

N
non-disruptive dump
 using zgetdump 41

O
opening live-system dump
 using crash 43

P
PMR 49
preparing a tape
 use for dumping 29
preparing a tape for
 printing the dump header
 SCSI dump 37

R
remotely triggering a dump 17
remotely triggering a dump to SCSI 35
 root authority vii

S
SCSI 32
SCSI dump
 initiating 32
 printing the dump header 37
 single partition 31
SCSI dump device 31
SCSI dump tool
 installing 31
 installing with YaST 67
sending a dump to IBM 49
 single partition
 used for SCSI dump 31
snpl command
 trigger dump using 17
split command 47
standard device nodes viii

summary
 commands for dumps 53
system restart
 z/VM CP command 11

T
tape
 copy dump from 29
 initiate dumps, example using 26
 use for dumping, preparing 29
 using as dump device 25
tape dump
 checking if valid 30
 initializing 25
tape dump tool
 installing 25
testing 5
tools for creating dumps 1
tools overview 1
transfer time
 reducing with kdump 2
 trigger a dump remotely 17
 trigger a dump to SCSI remotely 35

U
using kdump 10, 11

V
vmconvert tool 64
VMDUMP 39, 40
 comparison with other dump methods 4
 copying dump 40
 initiate dump process 39
 introduction 3
vmur command, use to copy dump 40
vmur command
 use to copy VMDUMP dump 40
vmur tool 64

Z
z/VM CP command
 system restart 11
zgetdump
 comparison with other dump methods 4
 create a dump from a live system 41
zgetdump tool 18, 24, 29, 36, 55
zipl
 Linux command 53
 size option 51
Readers’ Comments — We’d Like to Hear from You

Linux on z Systems and LinuxONE
Using the Dump Tools
on SUSE Linux Enterprise Server 12 SP3

Publication No. SC34-2746-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. The comments you send should pertain to only the information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.
Submit your comments using one of these channels:
• Send your comments to the address on the reverse side of this form.
• Send your comments via email to: eservdoc@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No.

Email address
Readers' Comments — We'd Like to Hear from You

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany