
Linux on Z and LinuxONE

Pervasive Encryption for Data Volumes
September 2020

IBM

SC34-2782-04

Note

Before using this document, be sure to read the information in “Notices” on page 91.

This edition applies to the software components listed in “Software prerequisites” on page 9 and to all subsequent
versions and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2018, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..v
Distribution hints.. v
Summary of changes.. v

Chapter 1. Protected and secure volume encryption... 1

Chapter 2. Infrastructure concepts.. 3
Terminology... 6

Chapter 3. Setting up the infrastructure... 9
Prerequisites.. 9
Planning..11
Loading required modules and components.. 13

Chapter 4. Sample system for data volume encryption..15

Chapter 5. Working with encrypted volumes.. 17
Creating a volume for pervasive encryption..17
Opening an encrypted volume...22
Encrypting an unencrypted volume with a secure key... 25
Re-encrypting a volume from clear key to secure key... 31

Chapter 6. Managing keys.. 35
Managing a secure key repository...35
Managing secure LUKS2 volume keys...43
Validating a secure key.. 46
Changing master keys and re-enciphering secure keys... 48
Sharing master keys across cryptographic coprocessors.. 52
Replacing a cryptographic coprocessor ... 52

Chapter 7. Problem resolution and recovery... 55
Verifying your configuration...55
Valid physical block size combinations of LVM physical volumes..56
Troubleshooting problems in your environment.. 57

Chapter 8. Recovering secure key encrypted volumes...59
Recovering encrypted volumes from an invalid secure key... 59
Recovering encrypted volumes with a secure key from the repository... 60

Chapter 9. Encrypting volumes without LUKS... 63
Volume encryption with cryptsetup plain mode .. 63
Encrypting an unencrypted volume using plain mode..65
Changing a master key using plain mode..65
Opening an encrypted volume in plain mode... 66

Chapter 10. Encrypting swap disks with protected keys..69
Setting up an encrypted swap disk... 69

 iii

Appendix A. zkey - Managing secure keys...71

Appendix B. zkey-cryptsetup - Managing LUKS2 volume keys.............................. 85

Accessibility..89

Notices..91
Trademarks.. 91

Index.. 93

iv

About this document

This document describes an infrastructure for encrypting volumes using protected and secure keys for
encrypting and decrypting data. This infrastructure for protected volume encryption provides end-to-end
protection for data at-rest for Linux on IBM Z® and IBM LinuxONE.This publication informs about the
required setup and describes various scenarios that deal with the data management on the encrypted
volumes, with key management, and with tasks of backup, recovery, and migration.

You can find the latest version of this publication in the Linux® on Z library on the developerWorks®

website at:
www.ibm.com/developerworks/linux/linux390/documentation_dev.html
and on the IBM® Knowledge Center at:
https:https://www.ibm.com/support/knowledgecenter/linuxonibm/
com.ibm.linux.z.lxdc/lxdc_linuxonz.html

• For a video with information on the features and advantages of the infrastructure for protected volume
encryption, click or enter the following URL:

https://youtu.be/jDK3ZwEdX4I

• For an illustration of the ease of setting up data volumes for pervasive encryption, watch this video:

https://youtu.be/t2Ph_h0LcsQ

Distribution hints
This publication provides information that is based on the minimum level of required upstream features.
Support in a particular Linux distribution might differ.

If your distribution does not include the features that are required for using the infrastructure for
protected volume encryption to its full extent, you might have to install them manually.

Summary of changes
Track the changes of this document for each new edition.

Edition SC34-2782-01
This update of the original document SC34-2782-00 describes how to avoid problems that may occur
when migrating LVM volumes.

Edition SC34-2782-02
This edition documents valid physical block size combinations of LVM physical volumes.

Edition SC34-2782-03
A new feature of the infrastructure for protected volume encryption enhances the paes_s390 and the
pkey kernel modules to allow using randomly generated protected keys without requiring a
cryptographic coprocessor. This is mainly useful for encrypted swap disks, or any other cases where
the keys may be ephemeral, that means, their lifetime does not extend over different boot cycles or
machine migrations.

Edition SC34-2782-04

• The zkey and zkey-cryptsetup tools are enhanced with new functions:

– During creation of a secure key, or modification of APQNs associated with a certain secure key,
the tools perform a cross check whether all associated APQNs have the same master key.

© Copyright IBM Corp. 2018, 2020 v

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
https:https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxdc/lxdc_linuxonz.html
https:https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxdc/lxdc_linuxonz.html
https://youtu.be/jDK3ZwEdX4I
https://youtu.be/t2Ph_h0LcsQ

– The display of the master key register during a zkey validate command for a secure key is
enhanced with the output of the master key verification pattern in this register. The master key
verification pattern is displayed even when the secure key is no longer valid.

– PBKDF2 is now automatically used as password based key derivation function for key slots when
using secure keys. This avoids out-of-memory errors when using the LUKS2 default Argon2i.

– A batch-mode option is added to the zkey cryptsetup subcommand and to the zkey-
cryptsetup reeincipher subcommand. This option suppresses any user confirmation and
thus enables a better automation.

– Also, to enable a better automation of commands generated by the zkey cryptsetup function,
you can specify values for --keyfile-size or --keyfile-offset to control which part of the
key file is used as passphrase. These options and values are passed to the generated commands.

– You can specify the same common passphrase options when generating crypttab entries using
the zkey crypttab function.

• Both the zkey and the zkey-cryptsetup commands are enhanced to support generation and
management of CCA AES CIPHER keys. Up to now, only CCA AES DATA keys have been supported.
This was transparent for the user. Now you can specify the key type at key generation time.

• Also, starting with IBM 4769 Crypto Express7 feature (CEX7S) on IBM z15, both the zkey and the
zkey-cryptsetup commands are enhanced to support generation and management of EP11 AES
secure keys for use in CPACF protected key operations.

vi Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Chapter 1. Protected and secure volume encryption
One of the most valuable assets of a modern enterprise is data that is typically stored on storage systems.
This data is often referred to as data at-rest. The method of choice to protect such data in storage
systems is end-to-end data encryption. Data is encrypted by the Linux instance applying controlled
protected and secure keys. Therefore, the data is protected whenever it leaves the system.

Figure 1. End-to-end encryption

Figure 1 on page 1 shows that end-to-end encryption protects the data during the complete journey from
the operating system on the IBM Z mainframe through the cryptographic hardware, the SAN cable and the
SAN adapters into the storage server cache, and finally on the storage devices.

In Linux, the most popular method for end-to-end data at-rest encryption is full volume encryption using
the dm-crypt kernel component. dm-crypt reads encrypted sectors from a block device (disk, partition, or
logical volume), decrypts the data in the sector, and writes it to the reading component (for example, into
the page cache).

In the opposite direction, dm-crypt reads data from a buffer of the writing component (for example from
the page cache), encrypts the data, and writes it into a sector of the block device. The decryption and
encryption happens transparently as long as the application uses file I/O to a file system mounted on a
dm-crypt device.

The challenge is to manage the cryptographic keys needed to open an encrypted volume:

• How can these keys be stored securely?
• How can these keys be protected from being discovered while they are in use?
• How can these keys be protected from being stolen by an intruder?
• How can these keys be protected from discovery by a service engineer that analyzes a system dump?

To manage the challenge of storing cryptographic keys and associating these keys with the volume they
encrypt, the Linux cryptsetup utility applies the Linux Unified Key Setup (LUKS) volume format. This
format provides protection by passphrases and stores passphrase-protected volume keys in the header
of the volume. The cryptsetup utility uses LUKS to store information (for example about the used cipher
and the volume key) for setting up and configuring dm-crypt. On opening a LUKS formatted volume, a

© Copyright IBM Corp. 2018, 2020 1

passphrase is required. This might be a valid procedure for personnel computers and laptops, but is not a
viable solution to manage a server farm with hundreds of volumes.

The purpose of protected volume encryption is to provide end-to-end encryption of data at-rest in a way
that the keys needed to decrypt or encrypt your data are inherently secure. That means that the keys
must be represented by objects that cannot be used as keys outside of your system. These objects are
secure keys and protected keys. How these types of keys cooperate in the infrastructure for protected
volume encryption is described in Chapter 2, “Infrastructure concepts,” on page 3.

2 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Chapter 2. Infrastructure concepts
You can exploit the infrastructure for protected volume encryption for transparently encrypting and
decrypting Linux block devices using secure and protected keys. For Linux on Z, block devices can be, for
example, partitions of ECKD disks (also referred to as DASDs), SCSI disks or partitions, logical volumes,
NVMe volumes, loopback devices, or network block devices.

Figure 2. Hardware components of the infrastructure for protected volume encryption

The infrastructure for protected volume encryption makes use of both secure keys and protected keys:

• Secure keys are processed in a Crypto Express cryptographic coprocessor configured in CCA mode
(shortly referred to as CCA coprocessor) or configured in EP11 mode (EP11 coprocessor). Secure keys
are persistent key objects that can be safely stored on unprotected media, because they are protected
by a FIPS 140-2 Level 4 certified hardware security module. Using these keys requires access to a
domain of a CCA or EP11 coprocessor where a specific AES master key is activated.

• Protected keys are volatile keys encrypted by the IBM firmware master key of an LPAR or a virtual
machine. They are created by a specific instance of an LPAR or a z/VM® guest and can only be used by
the instance of the operating system that created the protected key. Also, they are only valid as long as
the LPAR or the virtual machine that generated the key is running. The operating system has no access
to the plain values of protected keys, and protected keys are useless on any other system.

Protected keys support high performance AES cryptography using the acceleration of cryptographic
operations provided by the IBM Z Central Processor Assist for Cryptographic Functions (CPACF), which
is implemented in the IBM Z CPUs.

In the infrastructure for protected volume encryption, a protected key can securely be derived from a
secure key using a CCA or EP11 coprocessor. The coprocessor and the IBM Z mainframe then
cooperate to perform the required re-wrapping operation.

Therefore neither secure nor protected keys are of any use outside their system. Even if stolen, they
cannot be used to decipher data stored in the storage system or in transit through the SAN from a system
owned by adversary persons.

The secure key, which is stored on the volume (for example, in the LUKS2 header) is actually the effective
key wrapped by the tamper-proof master key of the domain. When the volume contents need to be
accessed, the secure key is unwrapped from the master key by the cryptographic coprocessor to obtain

© Copyright IBM Corp. 2018, 2020 3

the effective key. The effective key is passed through a secure channel to the CPACF where it is re-
wrapped by a temporary firmware master key specific to the LPAR or virtual guest. This re-wrapped key is
called the protected key. The effective key inside the protected key cannot be discovered by the
operating system. The effective key is unwrapped from the protected key inside the CPACF and used in
cryptographic functions performed by the CPACF whenever the Linux kernel (dm-crypt) reads and writes
data to the disk volumes.

The infrastructure for protected volume encryption consists of the following components:

• The IBM Z cryptographic hardware:

– Crypto Express cryptographic coprocessors configured as CCA coprocessors or as EP11
coprocessors.

– CPACF
• The Linux kernel with:

– The paes_s390 module supporting protected key AES cryptography (also called the PAES cipher)
– The pkey module for generating secure keys and deriving protected keys from secure keys
– dm-crypt, preferably supporting LUKS2

• The Linux cryptsetup utility managing the LUKS on-disk format for volumes, preferably supporting
LUKS2, to store cryptographic information to set up and configure dm-crypt. Such volumes are referred
to as dm-crypt volumes in this documentation.

• The zkey and the zkey-cryptsetup utilities from the s390-tools package to generate and manage
secure keys.

Figure 3 on page 4 illustrates the setup of the infrastructure for protected volume encryption. It
presents a view on the installed Linux components and shows how they cooperate to implement the
functionality of the infrastructure for protected volume encryption with an end-to-end encryption of
volumes. An end user can transparently encrypt or decrypt the data of an application without any further
interaction.

Figure 3. Volume encryption - system administrator view

This document mainly explains how to set up and manage dm-crypt volumes encrypted with the PAES
cipher using the LUKS2 format. Alternatively, it is possible to use the plain format together with the PAES
cipher. This is described in Chapter 9, “Encrypting volumes without LUKS,” on page 63.

4 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Note: You cannot set up a dm-crypt volume using the PAES cipher with cryptsetup and LUKS version 1.
Use cryptsetup version 2.0.3 or newer in combination with PAES and the LUKS2 format.

The IBM Z cryptographic hardware

The concepts and features of the infrastructure for protected volume encryption solely work within the
IBM Z cryptographic hardware environment. This environment is a combination of hardware components
and processing infrastructures that provide a rich array of cryptographic capabilities and functions.
Among these, especially the functions for encrypting or decrypting data and for managing keys are
exploited by the infrastructure for protected volume encryption.

The core hardware component of the IBM Z cryptographic hardware environment are devices that are
called cryptographic coprocessors. Sometimes you can read the synonymous terms cryptographic adapter
or cryptographic card.

An IBM Z cryptographic hardware environment can consist of several cryptographic coprocessors. For the
infrastructure for protected volume encryption, use at least two of them to provide the reliability that is
expected from an IBM Z mainframe. Crypto Express cryptographic coprocessors are partitioned into
multiple domains, where each of the domains maintains a domain-specific master key.

To access and securely manage multiple cryptographic coprocessors with their domains and master keys,
you require a Trusted Key Entry workstation (TKE) providing the following features:

• Loading and maintaining master keys and operational keys into the cryptographic coprocessor.
• Providing a cryptographic hardware migration feature. The TKE allows you to collect data from one

cryptographic coprocessor and apply the data to another coprocessor.

A TKE comprises the following components:

• The hardware: a workstation with a cryptographic coprocessor
• Smart card readers and smart cards.

The TKE version is closely associated with the host platforms that it supports.

The PAES cipher

The PAES cipher is used by the infrastructure for protected volume encryption to enable the utilization of
a protected key for the AES algorithm. The PAES cipher converts a secure key into a protected key for
enhanced performance using the pkey module.

For more information, see “Cipher mode considerations” on page 13.

cryptsetup

The Linux cryptsetup open source utility allows you to manage dm-crypt volumes. In particular it
supports formatting volumes with LUKS1 or LUKS2 and also supports managing formatted dm-crypt
volumes.

LUKS (LUKS1 and LUKS2)

LUKS stands for Linux Unified Key Setup. By providing a standard on-disk-format, it does not only
facilitate compatibility among distributions, but also provides secure management of multiple user
passphrases. LUKS stores all necessary setup information in the volume header, enabling users to
transport or migrate their data seamlessly. The LUKS volume encryption key (LVEK), which is the key with
which the volume is encrypted, is also stored as part of the header. Of course, the LVEK is not stored in
clear, but is encrypted by a key derived from a user's passphrase.

A LUKS header contains multiple key slots. Each key slot can contain the LVEK encrypted by a user
passphrase. The user must enter the correct passphrase to open the key slot. Alternatively, a key file that

Chapter 2. Infrastructure concepts 5

contains the passphrase can be used for an unattended opening of a key slot (for example, at Linux
startup).

The cryptsetup utility manages the LUKS header and requests the passphrase to decrypt the LVEK and
to create a logical device using the dm-crypt device mapper target.

LUKS2 is a new header format introduced with cryptsetup version 2.0. It covers all possibilities of the
previous LUKS version (LUKS1) and additionally provides various extensions.

To format a device with a LUKS2 header, use cryptsetup together with the luksFormat subcommand
and the LUKS2–type option as shown in “Creating a volume for pervasive encryption” on page 17. When
opening an encrypted volume, the LUKS format is automatically recognized.

For more information about LUKS, read the following documentation:

LUKS1 On-Disk Format Specification

LUKS2 On-Disk Format Specification

Terminology
Often, multiple different terms are used to denote the same technical construct. This publication defines
a certain terminology and uses it consistently throughout all topics.

cryptographic coprocessor
A Crypto Express cryptographic coprocessor is often also referred to as cryptographic card or
cryptographic adapter or just adapter. If a cryptographic coprocessor is tamper-proof and performs
cryptographic operations on cryptographic keys protected by the coprocessor, then such a
coprocessor is called a hardware security module (HSM).

A cryptographic coprocessor is divided into multiple domains, also called AP queues. Each AP queue
acts as an independent cryptographic device (HSM) with its own state, including its own master key.

If this publication mentions a cryptographic coprocessor, this term is used as a synonym for a
coprocessor configured in CCA mode (CCA coprocessor) or configured in EP11 mode (EP11
coprocessor).

APQN
AP queues are identified by their adjunct processor queue number (APQN). An APQN designates the
combination of a cryptographic coprocessor (adapter) and a domain. In the infrastructure for
protected volume encryption, for example, the APQN 03.0039 specifies the domain 0039 on the
cryptographic coprocessor with ID 03.

clear key
A clear key is a key in plain text. That is, the bit pattern of a clear key is the one that is used in the
mathematical description of a cipher. Therefore, whoever knows the clear key can perform
cryptographic operations (like encrypt or decrypt) using that clear key.

Important: Use IBM-provided utilities and hardware to generate a clear key. You should never
explicitly generate a clear key unless this operation is performed in a clean room environment.
Otherwise you risk being observed during the clear key generation, or some software components still
contain some remains of the generated clear key.

master key
A master key is a wrapping key or a key-encrypting-key (KEK) used to encrypt a key. In the IBM Z
cryptographic hardware, a master key is protected from any access from outside this hardware.

There are two types of master keys in the IBM Z cryptographic hardware environment:

HSM master key
Each domain of a Crypto Express cryptographic coprocessor can contain active master keys which
are used to generate secure keys. The IBM Crypto Express CCA coprocessor actually can maintain
four master keys per domain: one to wrap DES/Triple DES keys, one to wrap AES (and HMAC)

6 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

https://github.com/mbroz/cryptsetup/blob/master/docs/on-disk-format.pdf
https://github.com/mbroz/cryptsetup/blob/master/docs/on-disk-format-luks2.pdf

keys, one to wrap RSA keys, and one to wrap ECC keys. In the context to this document, only AES
master keys are of importance.

Starting with IBM z15, the infrastructure for protected volume encryption also supports the use of
the latest generation of Crypto Express cards (CEX7S) as HSMs in EP11 mode (CEX7P). An EP11
cryptographic coprocessor (CEX7P) uses an AES master key for encryption of the secure key. In
the EP11 documentation, this master key is often referred to as wrapping key.

firmware master key
For each virtual server (LPAR or guest), the firmware maintains master keys in storage, which are
used to generate protected keys. These master keys are protected against operating system
access. In the context of this document, only the AES master keys of the firmware are of
importance.

effective key
An effective key is a plain text key. This term is used in connection with wrapped keys. For example,
for a secure key consisting of a key wrapped by a master key, that key is the effective key of the
secure key. If a protected key is derived from a secure key, then both the protected key and the
secure key have the same effective key. The effective key of a multiply wrapped key is the innermost
plain text key.

protected key
A protected key is a key encrypted by a firmware master key. The effective key of the protected key
cannot be discovered by the operating system. Protected keys can be used in cryptographic functions
performed by the CPACF component of the IFL (CPU) and therefore are performed at CPU speed.

A protected key is only valid inside the virtual server instance that generated the protected key. A
protected key of a virtual server can be derived from a secure key of an HSM attached to that virtual
server. In that case, the effective keys of the protected key and the effective key of that secure key
are the same.

secure key
A secure key is a key encrypted by an HSM master key. Secure keys can be used in cryptographic
functions performed by the HSM. Thus, each cryptographic function on a secure key requires I/O
operations to the HSM. A secure key is only valid in the HSM it was generated in.

A secure AES key generated in a domain of an IBM Crypto Express coprocessor (configured in CCA or
EP11 mode) can be transformed into a protected AES key for the virtual server attached to that
domain of the CCA or EP11 coprocessor. Then the effective key of the generating secure key and the
effective key of the derived protected key are the same.

In the infrastructure for protected volume encryption, you can decide between various types of secure
keys: a CCA AES DATA key, a CCA AES CIPHER key, and an EP11 AES secure key. For information
about the differences between these types, read the “Secure key considerations” on page 12.

hardware security module (HSM)
A hardware security module is a tamper protected cryptographic device that protects secrets
(typically master keys) from being inspected. IBM Crypto Express CCA coprocessors and EP11
coprocessors are certified as HSMs. Each domain of an IBM Crypto Express coprocessor constitutes a
(virtual) HSM and maintains a domain-specific master key or a set of master keys.

volume
A volume refers to a Linux block device (for example, a DASD partition or a SCSI disk, or a logical
volume). This publication also uses the term disk or disk partition when referring to an example of a
volume.

LUKS1 or LUKS2 volume key
A key used to encrypt and decrypt the user data on a volume formatted in LUKS1 or LUKS2 format. A
key slot in the LUKS1 or LUKS2 header stores a wrapped copy of this volume key, where the wrapping
key is derived from the user's passphrase. In the infrastructure for protected volume encryption, the
LUKS2 volume key is a secure key. Hence, the effective volume key is twofold protected: it is
encrypted by an AES master key from a CCA or EP11 coprocessor and by a wrapping key or KEK
derived from a passphrase. Therefore, to unlock a LUKS2 volume, a passphrase - provided
interactively or from a key file - is required to decrypt the outer wrapping.

Chapter 2. Infrastructure concepts 7

The security provided by the passphrase is typically much lower than that provided by the wrapping
AES master key. Therefore the password may be exposed without any loss of security. When a secure
key for the PAES cipher is provided to dm-crypt in order to open a volume, it automatically transforms
this secure key into a protected key that can be interpreted by the CPACF. The actual effective key of
the LUKS2 volume key is never exposed to the operating system.

8 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Chapter 3. Setting up the infrastructure
It is important to be aware of some general considerations about the infrastructure for protected volume
encryption, about the hardware and software prerequisites and how to set up and configure all required
components.

Prerequisites
Here is a list of hardware and software components that are required for configuring the infrastructure for
protected volume encryption.

Hardware prerequisites

• An IBM z14®, z13®, z13s®, or any IBM LinuxONE machine with the CPACF feature installed. CPACF
requires specific microcode to be loaded which you can order as no-charge feature code (LIC #3863).

• For redundancy, two or more IBM Crypto Express5S or Crypto Express6S cryptographic coprocessors
configured in CCA coprocessor mode or two or more Crypto Express7S coprocessors configured in EP11
mode.

• A Trusted Key Entry (TKE) workstation. For CCA coprocessors you need to install the CSUTKEcat TKE
daemon from the CCA library to handle administrative commands between the TKE and the
cryptographic coprocessors. For non-production CCA environments you can use the utilities from the
CCA package instead of the TKE to perform operations on cryptographic coprocessors.

• For EP11 coprocessors, you need to install the EP11 TKE daemon (ep11TKEd) from the EP11 host
library version 3.0.0 or later, which is listening on port 50004 for administrative TKE commands.

Download the required libraries from:

http://www.ibm.com/security/cryptocards

• Volumes to be encrypted (for example, SCSI or DASD volumes). For DASD volumes, you can only
encrypt partitions, not the complete DASD.

Generally speaking, any block device can be encrypted using the infrastructure for protected volume
encryption.

Software prerequisites

• Any Linux distribution that includes the pkey and paes_s390 kernel modules and a dm-crypt version
that supports LUKS2. Linux kernel upstream version 4.12 or later includes the required support for
secure keys of type CCA-AESDATA. There might be distributions that have older kernel versions where
the required modules have been back-ported.

Support of secure keys of type CCA-AESCIPHER requires Linux kernel upstream version 5.4 (or older
versions where the required modules have been back-ported).

Support of secure keys of type EP11-AES requires Linux kernel upstream version 5.6 (or older versions
where the required modules have been back-ported).

The pkey kernel module requires permission for the AES key import functions. To grant this permission,
go to the security settings of the applicable LPAR on the Hardware Management Console (HMC). In the
CPACF Key Management Operations section, select the Permit AES Key import functions
option. For z/VM guests, the LPAR in which the hypervisor runs requires this option.

Note: This action is only required for distributions that contain Linux kernels prior to upstream version
4.20. Also, the appropriate updates have been back-ported to several distributions, so that you do no
longer need to manually apply the described permission for these distributions.

• The cryptsetup utility version 2.0.3 or later is required to configure an encrypted volume.

© Copyright IBM Corp. 2018, 2020 9

http://www.ibm.com/security/cryptocards

• The zkey utility from the s390-tools package (upstream version 2.6.0 or later). Use this utility to
generate and manage secure keys.

Support of secure keys of type CCA-AESCIPHER requires s390-tools package upstream version 2.12.

Support of secure keys of type EP11-AES requires s390-tools package upstream version 2.13.

Note: s390-tools versions might differ among various distributions, because the zkey utility might
have been back-ported to earlier versions.

• The zkey-cryptsetup utility from the s390-tools package (upstream version 2.6.0 or later, also
see previous note). Use this utility to support an AES master key change in order to avoid loss of data on
volumes encrypted using the PAES cipher.

• The CCA 6.0 package or later from the software-package selection page is required to support secure
keys of type CCA-AESCIPHER and CCA-AESDATA. It is also required to connect the TKE workstation to
cryptographic coprocessors configured in CCA mode.

For the support of secure keys of type EP11-AES, an IBM 4769 Crypto Express7 adapter configured in
EP11 mode is required (CEX7P) and the EP11 host library version 3.0.0 or later must be installed. This
library is also required for using the TKE to manage cryptographic coprocessors configured in EP11
mode.

Assumptions

In this documentation, it is assumed that the following setup has been installed:

• A Linux instance is installed as a z/VM or KVM guest virtual machine or in LPAR mode. Linux as a KVM
guest can access cryptographic coprocessors starting with the following distributions:

– Red Hat Enterprise Linux 8.0
– SUSE Linux Enterprise Server 15 SP1
– Ubuntu 18.04 LTS

• Two cryptographic coprocessor domains are configured to the LPAR or as dedicated adapters to the
z/VM or KVM guest virtual machine.

– The two domains have the same domain ID and are located on two distinct cryptographic
coprocessors.

– The same AES master key is set on the domains of both cryptographic coprocessors. For information
on how to set a CCA master key, refer to How to set an AES master key. For setting an EP11 master
key, refer to Exploiting Enterprise PKCS #11 using openCryptoki.

For comprehensive information about the TKE refer to:

TKE 9.1 PDF
or
TKE 9.1 Resource link

• The volumes to be encrypted are configured to be persistently available to the Linux instance.

10 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

https://github.com/ibm-s390-tools/s390-tools/releases/
https://github.com/ibm-s390-tools/s390-tools/releases/
https://github.com/ibm-s390-tools/s390-tools/releases/
https://github.com/ibm-s390-tools/s390-tools/releases/
http://www-03.ibm.com/security/cryptocards/pciecc3/lonzsoftware.shtml
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxct/lxct_linuxonz.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/servers/resourcelink/lib03010.nsf/0/186A789F8AE1E5E685258337007A55EE/$file/csfb600_tke_9_1.pdf
https://www.ibm.com/servers/resourcelink/lib03010.nsf/pages/tkeV91WorkstationUsersGuide?OpenDocument

Figure 4. System configuration for protected volume encryption

Planning
Before you start to configure and set up your infrastructure for protected volume encryption, you need to
decide a series of aspects such as the type of the used devices, the number of required cryptographic
coprocessors, or the way you want to manage the applied secure keys.

Device considerations
For Linux on Z and LinuxONE, you can apply the infrastructure for protected volume encryption on block
devices (for example, on DASD devices or on SCSI-over-FCP attached devices).

For DASDs, use partitions for disk encryption only. For volumes attached through SCSI-over-FCP, you can
either use partitions or the full block device.

For more information on SCSI devices, read How to use FC-attached SCSI devices with Linux on System z.

Cryptographic coprocessor considerations
Encrypting volumes with a secure key requires that the Linux instances have access to domains of a
cryptographic coprocessor configured in CCA or EP11 coprocessor mode, depending on which key types
you want to use. These domains contain the AES master key.

Whenever the master key or the coprocessor is changed, then appropriate actions must be taken to retain
access to the data. Once the master key is lost, the data on the volumes cannot be recovered anymore.

Use standard procedures to set your AES master keys through the Trusted Key Entry workstation. Your
master key should be stored in multiple parts on a set of smart cards. Preserve these smart cards in safe
places. In case of a broken cryptographic coprocessor or other disaster, you can use these smart cards to
configure a domain on another coprocessor with that master key.

Also, to safeguard against the loss of a master key during the operation of an operating system, consider
keeping the same master key on the domains of two or more separate cryptographic coprocessors
accessible by that system.

Chapter 3. Setting up the infrastructure 11

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ts.html

In addition, there might be circumstances where you need to access volumes on different Linux instances
attached to different cryptographic coprocessors, being encrypted with the same secure key. In such
cases, use the Trusted Key Entry workstation to set the same master key on the same domains on two or
more separate cryptographic coprocessors.

Important: If the master key used to create the secure key is lost, you can recover encrypted data only if
the clear key, which you used to initially create the secure key, is still available. This is often not the case,
especially when you generated your secure key from a random key on the cryptographic coprocessor.
Therefore, generate the master key parts on the Trusted Key Entry workstation and store them safely on
separate smart cards. Without a master key, you could decrypt your data only if the clear key would still
be available.

Secure key considerations
Creating and managing secure keys depends on your security policies. You can use the zkey command to
generate a secure key and store it in a secure key repository or in a specified binary secure key file.

As a prerequisite, the pkey kernel module must be loaded, and an AES master key must exist on a domain
of the cryptographic coprocessor. Refer to How to set an AES master key for information about setting a
CCA master key. For setting an EP11 master key, refer to Exploiting Enterprise PKCS #11 using
openCryptoki.

For comprehensive information about the TKE refer to:

TKE 9.1 PDF
or
TKE 9.1 Resource link

The zkey command issues a request to a domain of a cryptographic coprocessor to generate a secure key
by wrapping a randomly generated plain text key with an existing master key. Or, you can pass a binary
input file containing a clear key to the zkey command for secure key generation.

Using the --key-type parameter of the zkey command, you can decide between various types of
secure keys: a CCA AES DATA key, a CCA AES CIPHER key, or an EP11 AES key for use with pervasive
volume encryption. An AES DATA secure key is generated as the default, if you omit this parameter.

With an AES CIPHER secure key, certain attributes are cryptographically bound to the key. These
attributes may limit the usage of the key, for example, restrict the export or the usability scope. So this
key type is assumed to be even more secure than the default AES DATA key. To generate an AES CIPHER
secure key, a CEX6C or later coprocessor is required. If more than one domain or cryptographic
coprocessors are used, the master key setup needs to be identical for each APQN.

If your installation uses cryptographic coprocessors configured in EP11 mode, you can work with EP11
AES secure keys starting with CEX7P adapters (see the following note).

Note: The support for CCA AES CIPHER keys and for EP11 AES secure keys depends on the version of
your distribution. The support of EP11 secure key starts with IBM 4769 Crypto Express7 features on IBM
z15 configured in EP11 mode (CEX7P). Furthermore EP11 firmware and CEC millicode support which is
available with IBM z15, and bundle S14 is required.

The different secure key types have different sizes (in bytes):

• CCA AES DATA: 64, 128 for XTS
• CCA AES CIPHER: 136, 272 for XTS
• EP11 AES: 320, 640 for XTS

In various commands and command outputs, the key size is indicated in bits.

• Support for AES CIPHER keys starts with:

– Red Hat Enterprise Linux 8.2
– SUSE Linux Enterprise Server 15 SP2
– Ubuntu 20.04

12 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxct/lxct_linuxonz.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/servers/resourcelink/lib03010.nsf/0/186A789F8AE1E5E685258337007A55EE/$file/csfb600_tke_9_1.pdf
https://www.ibm.com/servers/resourcelink/lib03010.nsf/pages/tkeV91WorkstationUsersGuide?OpenDocument

• At the time of writing, support for EP11 AES secure keys starts with:

– Ubuntu 20.04

Do not explicitly generate a clear key into a binary file to subsequently transform it into a secure key,
unless you can perform this operation in a safe clean room environment. Otherwise you risk being
observed during the clear key generation, or some software components still contain some remains of the
generated clear key.

When providing the clear key in an input file, this file should be kept at a secure place (clean room), or it
should be securely erased after creation of the secure key, for example, with the shred command. The
secure key itself does not need to be kept securely, because it can only be processed within a
cryptographic coprocessor that contains the adequate AES master key.

The clear keys themselves are never stored persistently on the cryptographic coprocessor, but can only
be reconstructed by decrypting the secure key with the pertaining master key within the cryptographic
coprocessor.

For safety and security reasons, protect the secure key file as described in “Managing a secure key
repository” on page 35.

If you format a volume with LUKS2 and a secure key, the secure key is encrypted and stored in a key slot
of the LUKS2 header. During secure key generation, you can decide to additionally store the secure key in
a secure key repository for archive purposes. For more information, see “Managing a secure key
repository” on page 35.

For more information about the zkey command, read Appendix A, “zkey - Managing secure keys,” on
page 71 and also see the zkey man page.

Cipher mode considerations
The cryptographic algorithm used by the infrastructure for protected volume encryption is called PAES
cipher and is implemented by the paes_s390 kernel module. When you format a volume using LUKS2, you
need to specify this PAES cipher together with a block cipher mode of your choice.

The PAES cipher supports the following block cipher modes:

xts
XTS: XEX-based tweaked-codebook mode with ciphertext stealing.

cbc
CBC: Cipher Block Chaining

ctr
CTR: Counter mode

ecb
ECB: Electronic Codebook

Important: In the infrastructure for protected volume encryption, only use the XTS cipher mode. This
XEX-based tweaked-codebook mode with ciphertext stealing (XTS) is the block cipher mode
recommended by the NIST to encrypt data at-rest. In this mode, the plaintext blocks are XOR-ed with the
previous ciphertext block before being encrypted by the block cipher. And in contrast to CBC, it is not
vulnerable against code injection attacks.

Restriction: The ESSIV (encrypted sector salt initial vector) mode to generate initialization vectors cannot
be used with cryptsetup and the PAES cipher.

Loading required modules and components
The Linux kernel must include support for the protected AES cipher (paes_s390) which automatically
includes the pkey module.

Normally, the paes_s390 module is automatically loaded, if required. In this case, the pkey module is also
automatically loaded.

Chapter 3. Setting up the infrastructure 13

If errors occur nevertheless, first check whether the required module is already loaded:

grep <module_name> /proc/modules

If required, you can load the paes_s390 module or the pkey module with the modprobe command. There
are no module parameters.

modprobe <module_name>

14 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Chapter 4. Sample system for data volume
encryption

A sample system configuration is used to illustrate most of the tasks documented in this publication.

Hardware components

• Two CEX6C cryptographic coprocessors
• Up to 10 physical SCSI volumes with a capacity of 20 GB each

Alias names disk1, disk2, disk3, ... are assigned to these volumes
• A Trusted Key Entry workstation (TKE) to maintain the cryptographic coprocessors
• A Central Processor Assist for Cryptographic Functions (CPACF) is configured and enabled
• A CPC containing CPs (general purpose processores) or IFLs

Software components

The sample system is running with the following software:

• A Linux kernel with:

– all required modules loaded: paes_s390 and pkey
– Logical Volume Manager
– device mapper
– dm-crypt
– cryptographic device driver (zcrypt)

• s390-tools: zkey and zkey-cryptsetup
• cryptsetup version 2.0.3

Configuration

The used volumes are configured as SCSI volumes in a multipath setup, using two FCP adapters. For more
information about SCSI devices, read How to use FC-attached SCSI devices with Linux on z Systems.

It is assumed that the multipath SCSI volume configuration is transparent to users of the infrastructure
for protected volume encryption.

SCSI multipath volumes appear under /dev/mapper/. For ease of use, readable alias names like
disk1, disk2, and so on are applied.

The sample system configuration exploits the Logical Volume Manager (LVM). Alternatively, you can set
up the infrastructure for protected volume encryption without LVM. In this case, you need to adapt the
described procedures accordingly.

An identical AES master key (AES MK) is set on the first and second cryptographic coprocessor (CEX6C I
and CEX6C II in Figure 5 on page 16) in the same domain on both.

Figure 5 on page 16 shows the configuration of the sample system after you finished the tasks described
in “Creating a volume for pervasive encryption” on page 17.

© Copyright IBM Corp. 2018, 2020 15

http://public.dhe.ibm.com/software/dw/linux390/docu/l4n0sg08.pdf

Figure 5. Sample system configuration

In the logical volume group MY_VOLGROUP, intentionally only 35 GB are allocated instead of the
maximum of 40 GB to logical volume LV3. The LUKS2 headers occupy some space that is not available as
volume capacity. Also, you can keep some reserve space for defining a small new logical volume LV4 for
future use, or to enlarge an existing logical volume (for example, LV1).

16 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Chapter 5. Working with encrypted volumes
Learn how to configure an encrypted volume (or a disk or partition). Content that you write to such an
adequately configured volume is transparently encrypted or decrypted depending on the I/O request.

Note: If you use an LVM configuration, apply the encryption on the physical volume level. That is,
encrypt /dev/mapper/disk<n> and then add the encrypted volume to the LVM volume group.

Remember: In the context of this document, the term volume also stands for an entire disk, or a partition
on a disk, or for any other block device in Linux on Z and LinuxONE.

The documented tasks and scenarios in this publication focus on volumes formatted with LUKS2. A
procedure how to work with volumes in plain mode is presented in Chapter 9, “Encrypting volumes
without LUKS,” on page 63.

The following topics provide further details:

• “Creating a volume for pervasive encryption” on page 17
• “Opening an encrypted volume” on page 22
• “Encrypting an unencrypted volume with a secure key” on page 25
• “Re-encrypting a volume from clear key to secure key” on page 31

Creating a volume for pervasive encryption
With cryptsetup, you can conveniently set up volume encryption. It formats the volume and performs
the necessary device mapper setup tasks.

Before you begin

As a prerequisite, you require free disk devices or partitions on disk devices that are configured to be
persistently available to your Linux instance.

About this task
To create a volume that will receive encrypted content, you need to know the encryption method for this
volume, the wanted key size, and the name and location of the volume. This information is passed to
cryptsetup as input parameters.

Also, you must define a passphrase for each volume that you want to encrypt. This passphrase encrypts
the LUKS volume encryption key (LVEK) and you can use it for all interactive setup actions on the
encrypted volume. In the infrastructure for protected volume encryption, the LVEK is a secure key.
Because secure keys are already encrypted by a master key, these passphrases are of limited relevance
to security.

For automated opening of the encrypted volume during system startup, you can use a key file containing
some random data that fulfills the same purpose as a passphrase.

Procedure

1. Generate a secure key in the secure key repository using the zkey utility.
You can generate secure keys (AES DATA keys, AES CIPHER keys as shown in the example, or EP11
AES secure keys) with a length of 128, 192, or 256 bits. When generating secure keys for the XTS
cipher mode, only 128 or 256 bit keys are supported. For XTS cipher mode keys, two secure key
parts are generated and concatenated to each other.

For the scenario, issue the following command for the XTS cipher mode with a key name of
secure_xtskey1 and a key length of 256 bits. Create four different keys with names
secure_xtskey1 up to secure_xtskey4.

© Copyright IBM Corp. 2018, 2020 17

zkey generate --name secure_xtskey1 --key-type CCA-AESCIPHER --keybits 256 --xts \
--volumes /dev/mapper/disk1:enc-disk1 --volume-type LUKS2 \
--apqns 03.0039,04.0039 --sector-size 4096
...
zkey generate --name secure_xtskey4 --key-type CCA-AESCIPHER --keybits 256 --xts \
--volumes /dev/mapper/disk4:enc-disk4 --volume-type LUKS2 \
--apqns 03.0039,04.0039 --sector-size 4096

The keys to be encrypted by the AES master key are generated by random inside a domain of the
cryptographic coprocessor and are thus never exposed in clear outside the coprocessor. After the
successful generation of the secure key, the randomly generated key is destroyed by the
coprocessor. This is possible because during cryptographic operations within the coprocessor,
effective keys are always reconstructed by decrypting the secure key with the master key.

In the shown example, you specify the volumes that are to be encrypted with the new secure key,
and you also associate the APQNs where the related master key is located.

Use a different key for each encrypted volume. Only for certain reasons, if you want to use a
particular secure key for selected volumes, generate only one key and associate it to all these
selected volumes.

Note: With the optional parameter --sector-size, you can set the size of the blocks to be
encrypted or decrypted. It must be a power of two and in the range 512 - 4096 bytes. cryptsetup
chooses a default sector size of 512 bytes. Using 4096-byte sectors provides the best performance
on Linux on Z and LinuxONE.

You can list information about the generated secure keys:

zkey list
Key : secure_xtskey1

 Description :
 Secure key size : 272 bytes
 Clear key size : 512 bits
 XTS type key : Yes
 Key type : CCA-AESCIPHER
 Volumes : /dev/mapper/disk1:enc-disk1
 APQNs : 03.0039
 04.0039
 Key file name : /etc/zkey/repository/secure_xtskey1.skey
 Sector size : 4096 bytes
 Volume type : LUKS2
 Verification pattern : 303344b12b8258840fa11852a4ecc6d5
 84c7a867f893a5dcc0d499557c45bee6
 Created : 2020-08-20 15:27:20
 Changed : (never)
 Re-enciphered : (never)
...

2. Generate the commands to format the volume to be encrypted using cryptsetup. The formatting
process writes the LUKS2 header onto the volume. During formatting, the LUKS2 volume encryption
key, which is the previously generated secure key, is encrypted with a KEK that is derived from the
passphrase or from a provided key file.

When you format a volume, you need to specify values for the following parameters, which are
retrieved or calculated during command generation:

type
The LUKS2 type of formatting.

cipher
The PAES cipher, its operation mode (XTS), and the algorithm to generate the initialization vector
(plain64).

master-key-file
The location and name of the secure key file generated in step “1” on page 17.

18 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

key-size
The size of the secure key file in bits. In our example, an AES CIPHER key used with the XTS
cipher mode is generated with a size of 272 bytes = 2176 bits. (An AES DATA key has 64 bytes =
512 bits. An EP11 AES key used with XTS of size 640 bytes has a file size of 5120 bits).

In addition, you specify the name of the volume. In our case, this is /dev/mapper/disk1
through /dev/mapper/disk4.

For the sample system, invoke the zkey cryptsetup command for the first volume as follows:

zkey cryptsetup --volumes /dev/mapper/disk1

cryptsetup luksFormat --type luks2 --pbkdf pbkdf2
--master-key-file '/etc/zkey/repository/secure_xtskey1.skey'
--key-size 2176 --cipher paes-xts-plain64 --sector-size 4096 /dev/mapper/disk1

zkey-cryptsetup setvp /dev/mapper/disk1

Two commands are generated and displayed as shown:

• the cryptsetup luksFormat command to format the volume
• the zkey-cryptsetup setvp command to set the verification pattern into the LUKS2 header.

The verification pattern is used to identify the valid effective key during recovery actions.
3. Run the generated commands.

Copy and paste the generated commands into the command line.

Note: If the you use an older distribution, the --pbkdf pbkdf2 option may be missing in the
generated command. In such a case, edit the command by adding option --pbkdf pbkdf2. This is
to avoid an out-of-memory error for a LUKS2 volume during automated opening via /etc/crypttab
at system startup. For more information, see “Out-of-memory errors when opening a LUKS2 volume”
on page 58.

For each volume, define a passphrase like disk1pw up to disk4pw.

cryptsetup luksFormat --type luks2 --pbkdf pbkdf2 \
--master-key-file '/etc/zkey/repository/secure_xtskey1.skey' \
--key-size 2176 --cipher paes-xts-plain64 --sector-size 4096 /dev/mapper/disk1

WARNING!
========
This will overwrite data on /dev/mapper/disk1 irrevocably.

Are you sure? (Type uppercase yes): YES
Enter passphrase for /dev/mapper/disk1: disk1pw
Verify passphrase: disk1pw

zkey-cryptsetup setvp /dev/mapper/disk1
Enter passphrase for '/dev/mapper/disk1': disk1pw

When you type the passphrase, it is not displayed.

Tip: In newer distributions where the --pbkdf pbkdf2 option is automatically generated, you can
use the --run option to let the generated commands run directly after creation, without the need to
copy and paste:

zkey cryptsetup --volumes /dev/mapper/disk1 --run

4. Open the volume using a generated command:

zkey cryptsetup --volumes /dev/mapper/disk1 --open --run

The following command is generated and immediately run:

Chapter 5. Working with encrypted volumes 19

cryptsetup luksOpen /dev/mapper/disk1 enc-disk1

When prompted, enter the passphrase from step “3” on page 19.

This creates a device-mapper device named /dev/mapper/enc-disk1 (see step “5” on page 20).

Note: Repeat steps 1 through “4” on page 19 with the appropriate file names and volume names for
each volume that you want to encrypt.

5. Optional: Check the result of step “4” on page 19 with the command ls /dev/mapper/:

ls /dev/mapper
control disk2 disk4 disk6 disk8 enc-disk2 enc-disk4
disk1 disk3 disk5 disk7 enc-disk1 enc-disk3

As of now, any I/O operation to or from /dev/mapper/enc-disk1 is transparently encrypted or
decrypted onto the /dev/mapper/disk1 device. Do not write to this device directly. The same is
valid for disks disk2 through disk4.

6. Create a key file and specify it in an entry in /etc/crypttab to persistently configure the opening at
system startup.

a. Create the key file named disk1.key in directory /etc/luks_keys/ with random content with
a size of 4096 bytes (specified by bs=1024 count=4). If the directory does not yet exist, you
must create it first.

dd if=/dev/urandom of=/etc/luks_keys/disk1.key bs=1024 count=4
chmod 0400 /etc/luks_keys/disk1.key

The second command makes the key file readable by the root user only. Repeat these commands
for each volume adequately.

b. Add a key slot with the previously generated key file:

cryptsetup luksAddKey --pbkdf pbkdf2 /dev/mapper/disk1 /etc/luks_keys/disk1.key

You must also specify option --pbkdf pbkdf2 with the luksAddKey command to avoid an out-
of-memory error for a LUKS2 volume during automated opening via /etc/crypttab at system
startup. For more information, see “Out-of-memory errors when opening a LUKS2 volume” on
page 58.

Repeat this for each disk. When prompted, enter the passphrase from step “3” on page 19.
c. Edit /etc/crypttab and add one entry for each encrypted volume:

/etc/crypttab
#
See crypttab(5) for more information.
#
<target name> <source device> <key file> <options>
 enc-disk1 /dev/mapper/disk1 /etc/luks_keys/disk1.key luks
 enc-disk2 /dev/mapper/disk2 /etc/luks_keys/disk2.key luks
 enc-disk3 /dev/mapper/disk3 /etc/luks_keys/disk3.key luks
 enc-disk4 /dev/mapper/disk4 /etc/luks_keys/disk4.key luks

The format of the /etc/crypttab file depends on your Linux distribution. See the crypttab
man page for more details.

Alternatively you can have a skeleton for a crypttab entry automatically generated by the zkey
crypttab command:

zkey crypttab --volumes /dev/mapper/disk<n>

You only need to add the <key file> column manually.

20 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

You can, however, specify the key file with the command, then you do not need to add the<key
file> column manually:

zkey crypttab --volumes /dev/mapper/disk<n> --key-file /etc/luks_keys/disk<n>.key

7. Prepare your volumes for being managed by LVM. For this purpose, you need to perform the following
sub-steps:

a. Define and initialize the physical volumes that you plan to use in order to make them available to
LVM. Use the pvcreate command. Each such command creates what is called an LVM physical
volume.

b. Define an LVM volume group where you combine the LVM physical volumes that you want to
manage within such a group. Use the vgcreate command.

c. Add logical volumes to the volume group using the lvcreate command. With the -n option, you
specify a meaningful name for the logical volume. With the -L option, you specify a size, which
can be independent from the sizes of any existing hardware disks, except for the overall capacity.

Example:

pvcreate /dev/mapper/enc-disk1
pvcreate /dev/mapper/enc-disk2
pvcreate /dev/mapper/enc-disk3
pvcreate /dev/mapper/enc-disk4

vgcreate MY_VOLGROUP /dev/mapper/enc-disk*

lvcreate -L 10GB MY_VOLGROUP -n LV1
lvcreate -L 30GB MY_VOLGROUP -n LV2
lvcreate -L 35GB MY_VOLGROUP -n LV3

ls /dev/mapper
control disk3 disk6 enc-disk1 enc-disk4 MY_VOLGROUP-LV3
disk1 disk4 disk7 enc-disk2 MY_VOLGROUP-LV1
disk2 disk5 disk8 enc-disk3 MY_VOLGROUP-LV2

Note: For logical volume LV3, only 35 GB are defined, though 40 GB physical space are available.
Thus you can enlarge the volume for further purposes.

8. Create a file system - in the example, an ext4 file system - on the encrypted LVM logical volume
created in step “7” on page 21 or the encrypted volume created in step “4” on page 19 (if you did not
use LVM).

mkfs.ext4 /dev/mapper/MY_VOLGROUP-LV1
mkfs.ext4 /dev/mapper/MY_VOLGROUP-LV2
mkfs.ext4 /dev/mapper/MY_VOLGROUP-LV3

The kernel transparently encrypts or decrypts I/O requests to or from the encrypted volume. Thus,
the end-to-end encryption for the data at-rest is implemented.

9. Create mount points and update /etc/fstab to later mount the file systems on the encrypted
volumes.

a. Create the mount points:

mkdir /crypted_lv1
mkdir /crypted_lv2
mkdir /crypted_lv3

b. Edit file /etc/fstab and add similar entries like follows:

/dev/mapper/MY_VOLGROUP-LV1 /crypted_lv1 ext4 defaults 0 0
/dev/mapper/MY_VOLGROUP-LV2 /crypted_lv2 ext4 defaults 0 0
/dev/mapper/MY_VOLGROUP-LV3 /crypted_lv3 ext4 defaults 0 0

Chapter 5. Working with encrypted volumes 21

10. Mount the file system through /etc/fstab.

mount /crypted_lv1
mount /crypted_lv2
mount /crypted_lv3

Note: To let users issue the mount command for a particular mount point, add the user option to the
entry for this mount point in /etc/fstab.

Results
You created four encrypted volumes as LVM physical volumes grouped into three LVM logical volumes.
Each of these LVM logical volumes contains an empty file system ready to accept files. All content you
save onto these LVM logical volumes is automatically encrypted.

The result of this task is illustrated in Figure 5 on page 16.

What to do next

• Create permissions for users to access data on the mounted file system.
• Now a user can start to read and write data on the mounted file system, which is transparently

encrypted or decrypted.

For example, issue:

$ echo ’what is secret’ > /crypted_lv1/mysecret
$ ls /crypted_lv1
$ cat /crypted_lv1/mysecret

Note: You might encounter an out-of-memory error when opening a LUKS2 volume either during manual
opening or during automated opening via /etc/crypttab at system startup. In such a case, read “Out-
of-memory errors when opening a LUKS2 volume” on page 58 for problem resolution information.

Opening an encrypted volume
The need to open an encrypted volume can occur during normal runtime, or during Linux startup. Special
processing is necessary for opening an encrypted volume at early startup time (for example, if it is part of
an LVM volume group on which the root file system resides).

To open an encrypted volume during runtime, it is sufficient to perform step “4” on page 19 of “Creating a
volume for pervasive encryption” on page 17.

This topic presents two use cases:

1. “Automatically opening encrypted volumes at Linux startup” on page 22
2. “Opening and mounting an encrypted volume at user login” on page 23

Automatically opening encrypted volumes at Linux startup
Automatically opening one or more volumes at Linux startup allows you to perform automated reboots.
For an automatic unattended startup, a key file is required. For an automatic attended startup, you can
also use passphrases.

Before you begin

Determine the encrypted volumes that are required during the Linux startup.

Procedure

1. For each encrypted volume that is required during the Linux startup, you need to edit /etc/
crypttab. Add an entry for each required volume.

22 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

For examples of valid /etc/crypttab entries, read step “6” on page 20 in “Creating a volume for
pervasive encryption” on page 17.

2. If one or more of the encrypted volumes are required to mount the root file system, ensure that
the /etc/crypttab and the referenced secure key files are included in the initial RAM disk. See your
Linux distribution documentation for including additional files into the RAM disk and re-creating the
RAM disk.

Opening and mounting an encrypted volume at user login
Automatically opening one or more volumes at user login has the advantage that only a certain user can
access the data.

Before you begin

Important: At the time of writing, LUKS2 support for pam_mount is provided by the following
distributions:

• Ubuntu 19.04
• SUSE Linux Enterprise Server 12 SP5
• SUSE Linux Enterprise Server 15 SP1

Without LUKS2 support, the functionality described in this topic does not work.

You must install the pam_mount package. See the web site at http://pam-mount.sourceforge.net/. Some
Linux distributions provide the pam_mount package.

Ensure that the pam_mount package is configured and the pam_mount.so PAM module is used in the
auth and session sections of the PAM configuration files. Your Linux distribution might already perform
this for you. See also the pam_mount man page for more information.

About this task
In the scenario you create a user called alice. The home directory for this user is stored on an encrypted
volume. The encrypted volume is opened when the user logs in and respectively closed at logout. The
encrypted volume in this example is /dev/mapper/disk10.

Procedure

1. Create a user and set an initial password.
For example, issue:

useradd -G users -m -s /bin/bash alice
passwd alice
Enter new UNIX password: alice
Retype new UNIX password: alice
passwd: password updated successfully

2. Create a secure key in the secure key repository for user alice with the zkey command.

zkey generate --name user-alice-xts --key-type CCA-AESCIPHER --keybits 256 --xts \
--volumes /dev/mapper/disk10:enc-disk10 --volume-type LUKS2 \
--apqns 03.0039,04.0039 --sector-size 4096

3. Format and open the encrypted volume /dev/mapper/disk10 and create a file system that is later
mounted as home directory for user alice.
For example:

Chapter 5. Working with encrypted volumes 23

http://pam-mount.sourceforge.net/

zkey cryptsetup --volumes /dev/mapper/disk10 --run
Executing: cryptsetup luksFormat --type luks2 --pbkdf pbkdf2
--master-key-file ’/etc/zkey/repository/user-alice-xts.skey’
--key-size 2176 --cipher paes-xts-plain64 --sector-size 4096 /dev/mapper/disk10

WARNING!
========
This will overwrite data on /dev/mapper/disk10 irrevocably.

Are you sure? (Type uppercase yes): YES
Enter passphrase for /dev/mapper/disk10: disk10pw
Verify passphrase: disk10pw

Executing: zkey-cryptsetup setvp /dev/mapper/disk10
Enter passphrase for '/dev/mapper/disk10': disk10pw

cryptsetup luksOpen /dev/mapper/disk10 user-enc-alice

mkfs.ext4 -L USER_ALICE /dev/mapper/user-enc-alice

cryptsetup luksClose user-enc-alice

If you plan to open the volume automatically during system startup, ensure that the --pbkdf
pbkdf2 option is generated for the cryptsetup luksFormat command. Otherwise, insert this
option manually before running the command. Also use the --pbkdf pbkdf2 option with the
cryptsetup luksAddKey command in the alternatives described in steps “4” on page 24 and “5”
on page 24. This is to avoid an out-of-memory error for a LUKS2 volume during automated opening
via /etc/crypttab at system startup. For more information, read “Out-of-memory errors when
opening a LUKS2 volume” on page 58.

You can optionally mount the file system temporarily to copy or migrate existing files for the user.
4. Perform Alternative 1:

Disk passphrase and user password can be different. Therefore, you must provide the disk passphrase
in a key file. The pam_mount module retrieves it from there. The advantage is that the user can change
his passphrase anytime without influencing the disk passphrase. However, the disk passphrase is
available in clear text (in our example, in file /etc/pam_mount_keys/alice.key). You might have
to create this /etc/pam_mount_keys/ directory in advance. Ensure to establish the correct access
rights.
a) Create a file containing the disk passphrase.

This file should contain a disk passphrase or a random character sequence. Example: /etc/
pam_mount_keys/alice.key

b) Add the disk passphrase to a new LUKS2 key slot on your volume (see also step “6” on page 20 in
“Creating a volume for pervasive encryption” on page 17).

cryptsetup luksAddKey --pbkdf pbkdf2 /dev/mapper/disk10 /etc/pam_mount_keys/alice.key

c) Edit the pam_mount configuration file /etc/security/pam_mount.conf.xml. Add a volume
definition for alice.

<volume user="alice" path="/dev/mapper/disk10" mountpoint="~"
 fstype="crypt" fskeycipher="none"
 fskeypath="/etc/pam_mount_keys/alice.key" />

See also the pam_mount.conf man page for details.
5. Perform Alternative 2:

Disk passphrase is the same as the user password. In this case, you add an additional key-slot to the
LUKS header on your volume. The advantage is the enhanced security: the disk passphrase is nowhere
available in clear text.

Note: When the user password changes, the passphrase for the encrypted volume must also be
changed.

24 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

a) Add the disk passphrase to a new LUKS2 key slot on your volume.
You are prompted for the phassphrase that you have specified when formatting the volume in step
“3” on page 23. In this scenario, it is disk10pw.

cryptsetup luksAddKey --pbkdf pbkdf2 /dev/mapper/disk10
Enter any existing passphrase: disk10pw
Enter new passphrase for key slot: alice
Verify passphrase: alice

b) Edit the pam_mount configuration file /etc/security/pam_mount.conf.xml.

<volume user="alice" path="/dev/mapper/disk10" mountpoint="~"
 fstype="crypt" />

Results
Now alice can log in to the Linux instance. The pam_mount PAM module opens the encrypted volume
and creates a device in the /dev/mapper/ directory, for example, /dev/mapper/_dev_dm_21 which is
then mounted as /home/alice.

ssh alice@localhost
alice@localhost's password: alice
Welcome to your favourite Linux distribution

Last login: Mon Aug 06 16:28:45 2018 from 127.0.0.1

alice@localhost:~$ df | grep alice
/dev/mapper/_dev_dm_21 20507216 45080 19397384 1% /home/alice

alice@localhost:~$

Encrypting an unencrypted volume with a secure key
If you want to integrate unencrypted data residing on a volume into the infrastructure for protected
volume encryption, you need to perform the task to transform an unencrypted volume into an encrypted
one.

This topic presents two methods with which you can achieve this task:

1. For LVM physical volumes, you can use the pvmove command (see “Migrating to an encrypted LVM
physical volume” on page 25).

2. You can copy existing content to a new encrypted volume and delete the original volume (see
“Migrating data to a new encrypted volume” on page 31).

After you have migrated the data from the unencrypted volumes to the encrypted ones, be sure to
securely delete any unencrypted data according to your security policies. For example, you can use
badblocks or shred to overwrite unencrypted data with random data multiple times.

Migrating to an encrypted LVM physical volume
Read about a method for integrating unencrypted data into the infrastructure for protected volume
encryption for an environment which uses LVM for volume management.

Before you begin
Prerequisite is an existing LVM volume group called MIGR_VOLGROUP as shown in Figure 6 on page 27.
This volume group at first comprises disk5 and disk6 with a capacity of 20 GB each, which are the
unencrypted LVM physical volumes. The total available capacity of MIGR_VOLGROUP therefore comprises
40 GB. The space available on the new encrypted disks enc_disk7 and enc_disk8 is somewhat less
than 40 GB, because the LUKS2 header occupies some physical space on them, which is not accessible
from LV1 and LV2. Therefore, the total space of the LVM logical volumes LV1 and LV2 must be less than

Chapter 5. Working with encrypted volumes 25

40 GB. In our example, only 35 GB are allocated for LV1 and LV2, which leaves 5 GB free space. This is of
course, much more than the LUKS2 headers will occupy.

Note: Check the physical block sizes of your source physical volumes. If the block sizes are smaller than
the block sizes of your target physical volumes, the file systems on the logical volumes that reside on the
source physical volumes might get corrupted during migration and your data might be lost. This is,
because the file systems of the logical volumes are aligned to the block size of the source physical
volumes. When moved to a target physical volume with a larger block size, the alignment is now incorrect
and the data might become corrupt.

New LVM versions perform this check and reject actions that may corrupt the data.

The --sector-size parameter of a dm-crypt volume influences the physical block size. A dm-crypt
volume encrypted with a sector size larger than the default 512 bytes results in a device with a physical
block size of either the used sector size or the block size of the underlying device, whatever is higher.
Therefore, take care to format your target volume with a sector size equal to the block size of your source
volume.

To query the physical block size of a device, use the following command:

blockdev --getpbsz <device>

For information about valid block size combinations between volumes involved in the infrastructure for
protected volume encryption refer to “Valid physical block size combinations of LVM physical volumes”
on page 56.

Use the pvs, lvs, and cat commands as shown to verify the existing sample set up:

pvs
 PV VG Fmt Attr PSize PFree
 /dev/mapper/disk5 MIGR_VOLGROUP lvm2 a-- <20.00g 0
 /dev/mapper/disk6 MIGR_VOLGROUP lvm2 a-- <20.00g 4.99g

lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
 LV1 MIGR_VOLGROUP -wi-a----- 20.00g
 LV2 MIGR_VOLGROUP -wi-a----- 15.00g

cat /etc/fstab
/dev/mapper/MIGR_VOLGROUP-LV1 /migr_lv1 ext4 defaults 0 0
/dev/mapper/MIGR_VOLGROUP-LV2 /migr_lv2 ext4 defaults 0 0

About this task
In step “7” on page 29 of this scenario you create two new encrypted LVM physical volumes enc_disk7
and enc_disk8 as a target for the encrypted data and integrate them into the MIGR_VOLGROUP LVM
volume group. Then you migrate the unencrypted volumes disk5 and disk6 to the encrypted ones.
Finally, you remove the unencrypted volumes from the volume group.

26 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Figure 6. Migration scenario

Procedure

1. Create a new secure key in the secure key repository for encrypting volumes for use as LVM physical
volumes in the volume group MIGR_VOLGROUP.
To do so, issue the following commands:

zkey generate --name secure_xtskey7 --key-type CCA-AESCIPHER --keybits 256 --xts \
--volumes /dev/mapper/disk7:enc-disk7 --volume-type LUKS2 \
--apqns 03.0039,04.0039

zkey generate --name secure_xtskey8 --key-type CCA-AESCIPHER --keybits 256 --xts \
--volumes /dev/mapper/disk8:enc-disk8 --volume-type LUKS2 \
--apqns 03.0039,04.0039

Note: In this procedure, it is assumed that the unencrypted source volumes have a physical block size
of 512 bytes. Therefore, you should format the encrypted target volumes enc-disk7 and enc-disk8
with sector size 512, too, to ensure a successful migration. Only if you are sure that the unencrypted
source volumes already have a physical block size of 4096 bytes (or more), you can add parameter

--sector-size 4096

to both shown zkey generate commands.
2. Generate the commands to format the volumes to be encrypted using cryptsetup. The formatting

process writes the LUKS2 header onto the volumes.
Invoke the zkey cryptsetup command for the first volume as follows:

zkey cryptsetup --volumes /dev/mapper/disk7

cryptsetup luksFormat --type luks2 --pbkdf pbkdf2
--master-key-file '/etc/zkey/repository/secure_xtskey7.skey'
--key-size 2176 --cipher paes-xts-plain64 /dev/mapper/disk7

zkey-cryptsetup setvp /dev/mapper/disk7

Two commands are generated:

• the cryptsetup luksFormat command to format the volume
• the zkey-cryptsetup setvp command to set the verification pattern into the LUKS2 header. The
verification pattern is used to identify the valid effective key during recovery actions.

Chapter 5. Working with encrypted volumes 27

3. Run the generated commands.
Copy and paste the generated commands into the command line. Alternatively, you can skip this step
if you run the zkey cryptsetup command from step “2” on page 27 using the --run.

Note: If the you use an older distribution, the --pbkdf pbkdf2 option may be missing in the
generated command. In such a case, edit the command by adding option --pbkdf pbkdf2. This is to
avoid an out-of-memory error for a LUKS2 volume during automated opening via /etc/crypttab at
system startup. For more information, see “Out-of-memory errors when opening a LUKS2 volume” on
page 58.

cryptsetup luksFormat --type luks2 --pbkdf pbkdf2 \
--master-key-file '/etc/zkey/repository/secure_xtskey7.skey' \
--key-size 2176 --cipher paes-xts-plain64 /dev/mapper/disk7

WARNING!
========
This will overwrite data on /dev/mapper/disk7 irrevocably.

Are you sure? (Type uppercase yes): YES
Enter passphrase for /dev/mapper/disk7: disk7pw
Verify passphrase: disk7pw

zkey-cryptsetup setvp /dev/mapper/disk7
Enter passphrase for '/dev/mapper/disk7': disk7pw

When you type the passphrases, these are not displayed.

Repeat this for disk8 accordingly.
4. Open the volumes:

cryptsetup luksOpen /dev/mapper/disk7 enc-disk7
cryptsetup luksOpen /dev/mapper/disk8 enc-disk8

Alternatively, you can use the zkey cryptsetup command with option --open (and with option --
run) to generate (and run) the luksOpen commands:

zkey cryptsetup --volumes /dev/mapper/disk7 --open [--run]
zkey cryptsetup --volumes /dev/mapper/disk8 --open [--run]

5. Create a key file and specify it in an entry in /etc/crypttab to persistently configure the opening at
system startup.

a. Create the key file named disk7.key in directory /etc/luks_keys/ with random content with a
size of 4096 bytes, specified by bs=1024 count=4. If the directory does not yet exist, you must
create it first.

dd if=/dev/urandom of=/etc/luks_keys/disk7.key bs=1024 count=4
chmod 0400 /etc/luks_keys/disk7.key

The second command makes the key file readable by the root user only. Repeat these commands
for each volume appropriately.

b. Add a key slot with the previously generated key file.

cryptsetup luksAddKey --pbkdf pbkdf2 /dev/mapper/disk7 /etc/luks_keys/disk7.key

You must also specify option --pbkdf pbkdf2 with the luksAddKey command to avoid an out-
of-memory error for a LUKS2 volume during automated opening via /etc/crypttab at system
startup. For more information, see “Out-of-memory errors when opening a LUKS2 volume” on page
58.

c. Edit /etc/crypttab and add one entry for each encrypted volume:

28 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

/etc/crypttab
#
See crypttab(5) for more information.
#
<target name> <source device> <key file> <options>
 enc-disk7 /dev/mapper/disk7 /etc/luks_keys/disk7.key luks
 enc-disk8 /dev/mapper/disk8 /etc/luks_keys/disk8.key luks

The format of the /etc/crypttab file depends on your Linux distribution. See the crypttab man
page for more details.

Alternatively you can have a skeleton for a crypttab entry automatically generated by the zkey
crypttab command:

zkey crypttab --volumes /dev/mapper/disk<n>

You only need to add the <key file> column manually. You can, however, specify the key file with
the command, then you do not need to add the<key file> column manually:

zkey crypttab --volumes /dev/mapper/disk<n> --key-file /etc/luks_keys/disk<n>.key

6. Create the target LVM physical volumes to which you want to migrate the encrypted data.

pvcreate /dev/mapper/enc-disk7
pvcreate /dev/mapper/enc-disk8

7. Extend the volume group MIGR_VOLGROUP by adding the two encrypted physical volumes. Display the
result using the pvs command.

vgextend MIGR_VOLGROUP /dev/mapper/enc-disk7 /dev/mapper/enc-disk8

pvs
 PV VG Fmt Attr PSize PFree
 /dev/mapper/disk5 MIGR_VOLGROUP lvm2 a-- <20.00g 0
 /dev/mapper/disk6 MIGR_VOLGROUP lvm2 a-- <20.00g 4.99g
 /dev/mapper/enc-disk7 MIGR_VOLGROUP lvm2 a-- 19.99g 19.99g
 /dev/mapper/enc-disk8 MIGR_VOLGROUP lvm2 a-- 19.99g 19.99g

The physical size (PSize) of 19.99 GB for enc-disk7 and enc-disk8 (instead of 20.00 GB) is due to
the LUKS2 header information stored on these volumes.

8. Move the content from the unencrypted physical volumes disk5 and disk6 to the encrypted physical
volumes enc-disk7 and enc-disk8 using the pvmove command.
This step requires several sub-steps. This is due to the fact that the encrypted physical volumes
enc_disk7 and enc_disk8 are somewhat smaller than disk5 and disk6, because the LUKS2
header occupies a small amount of space that is not available to the encrypted physical volume. Thus,
trying to move disk5 onto enc_disk7 would fail. Instead, use the approach described in the
following sub-steps that allows LVM to move the data to any available space on the physical volumes
belonging to the MIGR_VOLGROUP volume group.

Note: The described scenario only works if the total space occupied on the unencrypted physical
volumes (disk5 and disk6) is less or equal to the space available on the encrypted physical volumes
enc_disk7 and enc_disk8; that is, if the MIGR_VOLGROUP volume group uses less than two times
19.99 GB (= 39.98 GB). In this scenario, only 35 GB are used. If the volume group would occupy the
full 40 GB, then another encrypted physical volume (for example, /dev/mapper/enc-disk9) would
be required or disk7 and disk8 must be larger 20 GB.

a) Move the physical content from disk5 onto some other physical volume somewhere within the
same LVM volume group.

Chapter 5. Working with encrypted volumes 29

Type the following pvmove command without specifying a target. If you verify the result with the
pvs command, and compare it with the pvs output from step “7” on page 29, you see that in our
scenario, the biggest portion of disk5 was moved to enc_disk7, which no longer has physical
free space (PFree = 0). The rest of disk5 was moved to disk6, whose free space decreased from
PFree = 4.99g to PFree <4.99g.

pvmove /dev/mapper/disk5

/dev/mapper/disk5: Moved: 0.04%
/dev/mapper/disk5: Moved: 9.53%
...
/dev/mapper/disk5: Moved: 100.00%

pvs
 PV VG Fmt Attr PSize PFree
 /dev/mapper/disk5 MIGR_VOLGROUP lvm2 a-- <20.00g <20.00g
 /dev/mapper/disk6 MIGR_VOLGROUP lvm2 a-- <20.00g <4.99g
 /dev/mapper/enc-disk7 MIGR_VOLGROUP lvm2 a-- 19.99g 0
 /dev/mapper/enc-disk8 MIGR_VOLGROUP lvm2 a-- 19.99g 19.99g

b) Remove disk5 from the MIGR_VOLGROUP volume group.

vgreduce MIGR_VOLGROUP /dev/mapper/disk5
 Removed "/dev/mapper/disk5" from volume group "MIGR_VOLGROUP"

c) Now move disk6 onto some other physical volume within MIGR_VOLGROUP and verify the result as
shown in step “8.a” on page 29:

pvmove /dev/mapper/disk6
/dev/mapper/disk6: Moved: 0.03%
/dev/mapper/disk6: Moved: 0.05%
...
/dev/mapper/disk6: Moved: 100.00%

d) Remove disk6 from the MIGR_VOLGROUP volume group:

vgreduce MIGR_VOLGROUP /dev/mapper/disk6
 Removed "/dev/mapper/disk6" from volume group "MIGR_VOLGROUP"

Verify the result with the pvs command to see that disk5 and disk6 are free and the encrypted
volumes enc_disk7 and enc_disk8 are used (PFree = 0 / PFree = 4.98g

pvs
 PV VG Fmt Attr PSize PFree
 /dev/mapper/disk5 lvm2 --- 20.00g 20.00g
 /dev/mapper/disk6 lvm2 --- 20.00g 20.00g
 /dev/mapper/enc-disk7 MIGR_VOLGROUP lvm2 a-- 19.99g 0
 /dev/mapper/enc-disk8 MIGR_VOLGROUP lvm2 a-- 19.99g 4.98g

Results
After migrating all unencrypted physical volumes to encrypted ones, you achieve a transparent encryption
of all data in the MIGR_VOLGROUP LVM volume group. The pvs command from step “8.d” on page 30
shows that the source LVM physical volumes disk5 and disk6 are now completely free (20.00g in both
PFree and PSize), and the corresponding encrypted target LVM physical volumes enc-disk7 and enc-
disk8 are respectively written with data.

What to do next
For security reasons you should next remove the unencrypted source volumes disk5 and disk6 from
LVM:

pvremove /dev/mapper/disk5
pvremove /dev/mapper/disk6

30 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Finally, you should securely delete all data from these unencrypted volumes.

Migrating data to a new encrypted volume
The method to integrate unencrypted data into the infrastructure for protected volume encryption
described in this topic works in an environment without using LVM.

Before you begin
You require a free volume that has sufficient space. Ensure that this volume is persistently configured to
your Linux instance.

Procedure

1. Create a new encrypted volume using the free volume.
Ensure that the newly encrypted volume is formatted with a file system. For this purpose, complete
steps “1” on page 17 through “8” on page 21 from “Creating a volume for pervasive encryption” on
page 17. If you do not want to use LVM, adapt the steps accordingly.

2. Mount the file system on the newly encrypted volume on a temporary mount point.
For example:

mount /dev/mapper/new-enc-disk /mnt

3. Copy the contents (meaning files and directories) from the unencrypted volume to the newly created
file system.
For example, to copy all data from /path/to-be-encrypted/data/ to the file system on the
encrypted volume that is mounted on /mnt/, issue:

rsync -av /path/to-be-encrypted/data/ /mnt/

4. Replace the /etc/fstab entry of the existing unencrypted volume with the device-mapper device of
the encrypted volume.
If the encrypted volume is required at startup time, ensure that an appropriate entry in /etc/
crypttab exists. You have already created this entry in step 3 in “Creating a volume for pervasive
encryption” on page 17.

Results
The data is now on an encrypted volume in the infrastructure for protected volume encryption.

What to do next
You should now securely delete the unencrypted data according to your security policies from /
path/to-be-encrypted/data/.

Re-encrypting a volume from clear key to secure key
You can re-encrypt a volume that had previously been encrypted with a clear key, with a new secure key.

This topic presents two use cases where a re-encryption with a secure key is desired for volumes that
have been encrypted with a clear key only:

• You might have a volume that is encrypted with a clear key in LUKS1 or in plain mode, which you now
want to encrypt with a secure key (see “Re-encrypting from clear key to secure key onto a new volume”
on page 32). In this scenario, you need a new separate volume. The LUKS2 format is applied to the
new volume.

• Your volume might be encrypted with a clear key using the LUKS1 format, and you now want to apply
encryption with a secure key. Use the methods of the infrastructure for protected volume encryption to
automatically convert to the LUKS2 format using secure key encryption (see “Re-encrypting a LUKS
volume from clear key to secure key on the same volume” on page 32).

Chapter 5. Working with encrypted volumes 31

In both use cases it is your goal to provide enhanced security that is applied by secure keys in contrast to
the previously used clear keys.

Re-encrypting from clear key to secure key onto a new volume
In this use case, you learn how to decrypt a volume that had been encrypted with a clear key in LUKS1 or
in plain mode, and how to re-encrypt it with a secure key according to the infrastructure for protected
volume encryption. The re-encrypted data is written to a new volume in this scenario.

Before you begin
You need a free volume, or a free partition on a volume that has sufficient space. Ensure that this volume
is persistently configured to your Linux instance.

About this task

You can either have the clear-key encrypted volume as a stand-alone volume or it can be a physical
volume as part of an LVM volume group.

In this procedure, you use the known clear key used for the volume encryption to decrypt the data and
then use the tools of the infrastructure for protected volume encryption to re-encrypt the volume using a
generated secure key.

Procedure

1. Open the encrypted volume.
2. Perform the data migration.

a) With LVM: Perform the procedure as described in “Migrating to an encrypted LVM physical volume”
on page 25.
If you have enough free space in your LVM volume group, you can migrate one physical volume
after the other, because you do not need temporary disk space to hold the migration data.

b) Non LVM: Perform the procedure as described in “Migrating data to a new encrypted volume” on
page 31.

3. Update your system configuration to use the new encrypted volume. You might require changes in
several configuration files, for example, /etc/crypttab and /etc/fstab, depending on the usage
of the encrypted volume.

Re-encrypting a LUKS volume from clear key to secure key on the same volume
This use case demonstrates how to convert a LUKS1 or LUKS2 volume that is encrypted with a clear key
only, into a secure-key encrypted LUKS2 volume.

Before you begin
The described procedure is only possible with cryptsetup version 2.0.4 or later.

Note: At the time of writing, the LUKS2 online reencryption feature, that was added to cryptsetup with
version 2.2.0, did not work with PAES cipher.

Important: Ensure that you have a backup copy of the volume that you want to re-encrypt. If the system
crashes or a media error occurs during re-encryption, your original data might be destroyed.

About this task

You can either have the encrypted volume as a stand-alone volume or as a physical volume as part of an
LVM volume group. In this use case, it is assumed that the volume is already protected by a clear key
managed by LUKS1 or LUKS2.

Procedure

1. If your volume uses the LUKS1 format, you must convert it to LUKS2.

32 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Use the cryptsetup convert command for this purpose. This requires that the volume is not
mounted and not opened. Close it first using cryptsetup luksClose.

Important: Always create a header backup before performing this operation. Refer to the
cryptsetup man page for more information.

cryptsetup convert --type luks2 /dev/mapper/disk9

WARNING!
========
This operation will convert /dev/mapper/disk9 to LUKS2 format.

Are you sure? (Type uppercase yes): YES

cryptsetup luksDump /dev/mapper/disk9
LUKS header information
Version: 2
Epoch: 2
Metadata area: 12288 bytes
UUID: 5d6495ba-b6f9-43c5-883f-dff56f10c72a
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)
...

2. Generate a secure key for /dev/mapper/disk9 in the secure key repository. See step “1” on page 17
from “Creating a volume for pervasive encryption” on page 17.

zkey generate --name secure_xtskey9 --key-type CCA-AESCIPHER --keybits 256 --xts \
--volumes /dev/mapper/disk9:enc-disk9 --volume-type LUKS2 \
--apqns 03.0039,04.0039

This creates the secure key file secure_xtskey9.skey as an AES CIPHER key in the directory of the
secure key repository: /etc/zkey/repository/.

3. Re-encrypt the volume with the generated secure key and the PAES cipher.

cryptsetup-reencrypt /dev/mapper/disk9 --cipher paes-xts-plain64 \
 --master-key-file /etc/zkey/repository/secure_xtskey9.skey --key-size 2176
Enter passphrase for key slot 0: disk9pw
...
Progress: 63.7%, ETA 03:43, 13004 MiB written, speed 34.2 MiB/s
...
Finished, time 11:22.750, 20478 MiB written, speed 30.0 MiB/s

4. Set the verification pattern into the LUKS2 header using the zkey-cryptsetup command.

zkey-cryptsetup setvp /dev/mapper/disk9

Results
You now have the original volume re-encrypted with a secure key using the LUKS2 format.

Chapter 5. Working with encrypted volumes 33

34 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Chapter 6. Managing keys
Besides the generation of master keys and secure keys, these keys require reliable and secure
procedures for their management during their life times.

“Secure key considerations” on page 12 describes how to obtain a secure key. Once created, there are
various scenarios that require updating, exchanging, or storing secure keys.

The following subtopics provide specific information:

• “Managing a secure key repository” on page 35
• “Managing secure LUKS2 volume keys” on page 43
• “Validating a secure key” on page 46
• “Changing master keys and re-enciphering secure keys” on page 48
• “Sharing master keys across cryptographic coprocessors” on page 52
• “Replacing a cryptographic coprocessor ” on page 52

You can use the zkey utility to obtain validation information about an existing secure key. See “Validating
a secure key” on page 46 for more information.

Managing a secure key repository
You should keep the generated secure keys in a repository because each time the master key changes on
the cryptographic coprocessor, you must re-encipher the secure keys with the new master key. The zkey
command supports all tasks in the context of secure key management. These tasks are introduced and
presented with an example.

For detailed information refer to the zkey man page or to Appendix A, “zkey - Managing secure keys,” on
page 71.

When storing the secure key in a key repository, additional information, such as a description of the key,
can be associated with a secure key. You can associate a secure key with one or multiple cryptographic
coprocessors (APQNs) that are set up with the same CCA AES or EP11 AES master key. You can also
associate a secure key with one or multiple volumes (block devices), which are encrypted using dm-crypt
with the secure key. The volume association also contains the device-mapper name, separated by a
colon, used with dm-crypt. A specific volume can only be associated with one secure key.

Keep a copy of the secure keys used for disk encryption in a secure key repository. That way, you can
easily re-encipher the secure keys in case of a master key change even for archived disks. LUKS2 disks
contain the secure key in the LUKS2 header. You would normally re-encipher these volume keys when the
master key changes. When the disk is already in the archive, this might be cumbersome. If you have a
valid secure key in the repository, that has been re-enciphered with every master key change, you can still
recover such an archived volume, even after multiple master key changes. For details, refer to Chapter 8,
“Recovering secure key encrypted volumes,” on page 59.

Deciding about the location of the secure key repository
The default repository location of the secure key repository is /etc/zkey/repository. Set
environment variable ZKEY_REPOSITORY to point to a different location for the secure key repository.

Keys stored in a secure key repository inherit the permissions from the repository directory (except write
access for other users, which is always denied). The default repository location is created with group
zkeyadm as owner and mode 770. Thus all secure keys created in that repository are owned by group
zkeyadm. Anyone that is supposed to access secure keys in the secure key repository must be part of
group zkeyadm.

If you select a location using the environment variable, you can decide about the access permissions of
that directory.

© Copyright IBM Corp. 2018, 2020 35

Keep a backup copy of the secure key repository.

Generating AES secure keys
You can generate a secure key in the secure key repository using the zkey generate command with the
--name option.

You can specify additional information, such as a textual description of the key. You can associate a
secure key with one or multiple cryptographic coprocessors (APQNs) that are set up with the same CCA
AES or EP11 AES master key. You can also associate a secure key with one or multiple volumes (block
devices), which are encrypted using dm-crypt with the secure key. The volume association also contains
the device-mapper name, separated by a colon, used with dm-crypt. A specific volume can only be
associated with one secure key.

Example:

zkey generate --name secure_xtskey1 --keybits 256 --xts \
--description "This is our secure key in a repository" \
--volumes /dev/mapper/disk1:enc-disk1 --volume-type LUKS2 \
--apqns 03.0039,04.0039 --sector-size 4096

With parameter -K or --keytype, you can also specify a key type for the generated secure key. Valid
values are CCA-AESDATA to generate AES DATA keys, or CCA-AESCIPHER to generate an AES CIPHER
key. To generate an EP11 AES secure key for use on CEX7S or later cryptographic coprocessors
configured in EP11 mode (CEX7P), specify key type EP11-AES.

Note: Linux allows hot-plugging of cryptographic coprocessors (APQNs). You might need to update the
APQN associations with the zkey change command when an APQN had been added to or removed from
the Linux instance.

The zkey tool checks, whether the master key is the same for all of the APQNs that are to be associated
with a secure key during creation, or for all APQNs that are involved in a modification of a secure key. In
cases, where no APQNs are associated with the generation or validation of a secure key (either outside or
within the secure key repository), all APQNs available on the system are checked.

Warnings are issued if the APQNs do not fulfill the requirements to ensure that all APQNs have the same
master key. In case of inconsistencies, a table of all associated APQNs with its master key verification
patterns is displayed, together with warning or information messages, for example:

zkey gen -N sec-aescipher -K CCA-AESCIPHER --apqns 02.001a,05.001a,06.001a
WARNING: APQN 02.001a: The card level is less than CEX6n.
WARNING: APQN 02.001a: No master key is set.
WARNING: Not all APQNs have the same master key or fulfill the requirements.

CARD.DOMAIN NEW MK CURRENT MK OLD MK TYPE

02.001a - - - CEX5C
05.001a - 26d69731a66f4255 - CEX6C
06.001a - c8af2f4873a65bd5 78410337dcb0061a CEX6C
zkey: Your master key setup is improper

Warning messages normally prevent the generation or validation of master keys, while information
messages allow the desired action.

Starting with CEX7P cryptographic coprocessors, you can generate an EP11 secure key, for example:

zkey gen -N sec-ep11-key -K EP11-AES -a 0a.0036,0b.0036 --xts

Validating secure AES keys
Using the zkey utility, you can obtain validation information about an existing secure key stored in the
secure key repository.

This task is described in detail in “Validating a secure key from the secure key repository” on page 46.

36 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Re-enciphering AES secure keys
Use the zkey reencipher command to re-encipher an existing secure key with a new master key. An
AES secure key must be re-enciphered when the AES master key of the CCA or EP11 cryptographic
coprocessor changes.

The CCA cryptographic coprocessor has three different registers to store master keys:

• The CURRENT register contains the current master key.
• The OLD register contains the previously used master key. Secure keys enciphered with the master key

contained in the OLD register can still be used until the master key is changed again.
• The NEW register contains the new master key to be set. The master key in the NEW register cannot be

used until it is made the current master key. You can pro-actively re-encipher a secure key with the
NEW master key before this key is made the CURRENT key. Use the --to-new option to do this.

Note: An EP11 cryptographic coprocessor has only two registers to store master keys, CURRENT and
NEW. Therefore, old master keys are no longer available as soon as a new master key is set CURRENT.

Use the --from-old option to re-encipher a secure key that is currently enciphered with the master key
in the OLD register with the master key in the CURRENT register. If both the --from-old and --to-new
options are specified, a secure key that is currently enciphered with the master key in the OLD register is
re-enciphered with the master key in the NEW register. If both options are omitted, zkey automatically
detects whether the secure key is currently enciphered with the master key in the OLD register or with the
master key in the CURRENT register. If currently enciphered with the master key in the OLD register, it is
re-enciphered with the master key in the CURRENT register. If it is currently enciphered with the master
key in the CURRENT register, it is re-enciphered with the master key in the NEW register. If for this case
the NEW register does not contain a valid master key, then the re-encipher operation fails.

To re-encipher secure keys contained in the secure key repository, specify the name of the key or a
pattern containing wildcards using the --name option. When wildcards are used you must quote the
value. You can also specify the --apqns option to re-encipher those secure keys that are associated with
the specified cryptographic coprocessors (APQNs). You can use wildcards for the APQN specification.
When wildcards are used you must quote the value. If both options --name and --apqns are specified
then all secure keys contained in the key repository that match both patterns are re-enciphered. If both
options are omitted, then all secure keys contained in the key repository are re-enciphered.

Re-enciphering a secure key contained in the secure key repository can be performed in-place, or in
staged mode:
In-place

immediately replaces the secure key in the repository with the re-enciphered secure key. Re-
enciphering from OLD to CURRENT is performed in-place per default. You can use option --in-
place to force an in-place re-enciphering for the CURRENT to NEW case. Be aware that a secure key
that was re-enciphered in-place from CURRENT to NEW is no longer valid, until the new CCA or EP11
master key has been made the current one.

Staged mode
means that the re-enciphered secure key is stored in a separate file in the secure key repository. Thus
the current secure key is still valid at this point. Once the new CCA or EP11 master key has been set
and made active, you must rerun the re-encipher command with option --complete to complete the
staged re-enciphering. Re-enciphering from CURRENT to NEW is performed in staged mode per
default. For CCA master keys, you can use option --staged to force a staged re-enciphering for the
OLD to CURRENT case.

Note: The reencipher command requires the CCA host library (libcsulcca.so) to be installed for the
support of CCA secure keys. It requires the Linux on Z Enterprise PKCS #11 (EP11) Support Program
(EP11 host library) to be installed for support of secure keys of type EP11-AES.

Examples: Assuming there is only one secure key (secure_xtskey1) matching the filters in the --name
and --apqns options, the following three examples deliver the same result:

Chapter 6. Managing keys 37

zkey reencipher --name secure_xtskey1
zkey reencipher --apqns 03.0039 --staged
zkey reencipher --name "sec*" --apqns "*.0039" --staged

Re-enciphering key 'secure_xtskey1'
The secure key is currently enciphered with the CURRENT master key and is
being re-enciphered with the NEW master key

Staged re-enciphering is initiated for key 'secure_xtskey1'. After the NEW
master key has been set to become the CURRENT master key run 'zkey reencipher'
with option '--complete' to complete the re-enciphering process

1 keys re-enciphered, 0 keys skipped, 0 keys failed to re-encipher

Importing AES secure keys into the secure key repository
Use the zkey import command to import an existing secure key contained in a file into the secure key
repository.

When importing a secure key in a key repository, additional information can be associated with a secure
key using the --description , --volumes, --apqns , or the --sector-size options.

Example:

zkey import seckey.bin --name imported_seckey
zkey import seckey.bin --name imported_seckey \
--description "This is an imported secure key" \
--volumes /dev/mapper/disk1:enc-disk1 --volume-type LUKS2 \
--apqns 03.0039,04.0039

To import a secure LUKS2 volume key from a volume encrypted with that secure key, you need to first
export the volume key into a binary file and then import it into the secure key repository and associate the
volume with it.

Example:

cryptsetup luksDump /dev/mapper/disk<n> --dump-master-key \
 --master-key-file seckey.bin

WARNING!
========
Header dump with volume key is sensitive information
which allows access to encrypted partition without passphrase.
This dump should be always stored encrypted on safe place.

Are you sure? (Type uppercase yes): YES
Enter passphrase for /dev/mapper/disk<n>: disk<n>pw

zkey import seckey.bin --name imported_key_of_disk<n> \
--volumes /dev/mapper/disk<n>:enc-disk<n>

Notes:

• A # touch seckey.bin command may be required prior to the cryptsetup luksDump command.
The command creates an empty target file for the secure key to be retrieved. Hereafter, the secure key
is contained in this file. This is due to a bug in cryptsetup versions 2.0.3 and 2.0.4. In cryptsetup
2.0.5, this bug is fixed. The command cryptsetup luksDump creates the file itself, and will fail when
the file is already available.

• The zkey import command can also import AES CIPHER keys and EP11 secure keys. When importing
an AES CIPHER key, additional checks are performed on this key, such as a check of the history section
of the secure key. If a potentially insecure setting is detected, you are prompted to confirm the import.
Imported AES CIPHER keys are restricted for export in any way, regardless of the export setting of the
imported keys. The only export that is kept allowed is the export to CPACF protected keys, so that these
keys can be used with the PAES cipher.

38 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

• The zkey import command requires the CCA host library (libcsulcca.so) to be installed when secure
keys of type CCA-AESCIPHER are imported. For the supported environments and downloads, see:

http://www.ibm.com/security/cryptocards

Exporting AES secure keys from the secure key repository
Use the zkey export command to export a secure key contained in the secure key repository to a file in
the file system.

Specify the name of the key that is to be exported using the --name option. You cannot use wildcards.
The exported secure key also remains in the secure key repository.

Example:

zkey export seckey.bin --name secure_xtskey

Listing AES secure keys contained in the secure key repository
Use the zkey list command to display a list of secure keys contained in the secure key repository.

You can filter the displayed list by key name, key type, associated volumes, associated cryptographic
coprocessors (APQNs), and volume type. You can use wildcards for the key name, associated APQNs, and
associated volumes. The device-mapper name of an associated volume can be omitted. If it is specified,
then only those keys are listed that are associated with the specified volume and device-mapper name.
The list command displays the attributes of the secure keys, such as key sizes, whether it is a secure
key that can be used for the XTS cipher mode, the textual description, associated cryptographic
coprocessors (APQNs) and volumes, the sector size, the key verification pattern, and time stamps for key
creation, last modification and last re-encipherment.

Examples: Assuming there is only one secure key (secure_xtskey1) matching the specified filters, the
following examples deliver the same result:

zkey list
zkey list --name "secure*"
zkey list --apqns "*.0039"
zkey list --volumes "/dev/mapper/disk*"
zkey list --volumes "*:enc-disk*"
zkey list --name "secure*" --volumes "*:enc-disk*" --apqns "*.0039"

Key : secure_xtskey1

 Description : This is our secure key in a repository
 Secure key size : 272 bytes
 Clear key size : 512 bits
 XTS type key : Yes
 Key type : CCA-AESCIPHER
 Volumes : /dev/mapper/disk1:enc-disk1
 APQNs : 03.0039
 04.0039
 Key file name : /etc/zkey/repository/secure_xtskey1.skey
 Sector size : (system default)
 Volume type : LUKS2
 Verification pattern : ac08c5d154374a247d6bbbae047ab9f8
 541575915e764f6e35817b56bcf7c999
 Created : 2020-08-20 16:57:32
 Changed : (never)
 Re-enciphered : (never)

Removing AES secure keys
Use the zkey remove command to remove an existing secure key from the secure key repository.

Specify the name of the key that is to be removed using the --name option. You cannot use wildcards.
The remove command prompts for a confirmation, unless you specify the --force option.

Chapter 6. Managing keys 39

http://www.ibm.com/security/cryptocards

Note: When removing a secure key that is associated with one or multiple volumes, and the key's volume
type is PLAIN, a message informs you about the associated volumes. When the secure key is removed,
these volumes can no longer be used, unless you have a backup of the secure key.

For keys with volume type LUKS2 no such message is issued, because the secure key is contained in the
LUKS2 header.

Examples:

volume type LUKS2

#zkey remove --name secure_xtskey1
zkey: Remove key 'secure_xtskey1'? y

volume type PLAIN

#zkey remove --name secure_xtskey1
When you remove key 'secure_xtskey1' the following volumes will no longer be
usable:
 /dev/mapper/disk1:enc-disk1
zkey: Remove key 'secure_xtskey1'? y

Changing AES secure keys
Use the zkey change command to change the description, the associated volumes, the associated
cryptographic coprocessors (APQNs), the sector size, and the volume type of a secure key contained in
the secure key repository.

Specify the name of the key that is to be changed using the --name option. You cannot use wildcards.

You can set, replace, add, or remove volume and cryptographic coprocessor (APQN) associations. To set
or replace an association, specify the association with the --volumes or the --apqns options. To add an
association, specify the new association prefixed with a + sign with the --volumes or the --apqns
option. To remove an association, specify the association to remove prefixed with a − sign with the --
volumes or the --apqns option. You cannot mix + and − in one specification. You can either add or
remove or set the associations with one command.

Note: The secure key itself cannot be changed, only information about the secure key is changed. To
rename a secure key, use the rename command. To re-encipher a secure key with a new CCA or EP11
master key, use the reencipher command.

Example:

zkey change --name secure_xtskey1 --volumes +/dev/mapper/disk2:enc-disk2
zkey change --name secure_xtskey1 --apqns -04.0039
zkey change --name secure_xtskey1 --volume-type plain
zkey change --name secure_xtskey1 --sector-size 4096

Note: Linux allows hot-plugging of cryptographic coprocessors (APQNs). You might need to update the
APQN associations when an APQN had been added to or removed from the Linux instance.

Renaming AES secure keys
Use the zkey rename command to rename a secure key in the secure key repository.

Specify the name of the key that is to be renamed using the --name option and the new name using the
--new-name option. You cannot use wildcards.

Note: When renaming a secure key that is associated with one or multiple volumes, and the key's volume
type is PLAIN, a message informs you about the associated volumes. When the secure key is renamed,
these volumes can no longer be used, unless you change the name of the secure key in the cryptsetup
plainOpen commands and in the /etc/crypttab entries.

For keys with volume type LUKS2 no such message is issued, because the secure key is contained in the
LUKS2 header.

40 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Examples:

volume type LUKS2

zkey rename --name secure_xtskey1 --new-name secure_xtskey2

volume type PLAIN

zkey rename --name secure_xtskey1 --new-name secure_xtskey2
The following volumes are associated with the renamed key 'secure_xtskey2'. You
should adjust the corresponding crypttab entries and 'cryptsetup plainOpen'
commands to use the new name.
 /dev/mapper/disk1:enc-disk1

Copying AES secure keys in the secure key repository
Use the zkey copy command to copy (duplicate) an existing secure key in the secure key repository
under a new name.

Specify the name of the key that is to be copied using the --name option and the name of the copied key
using the --new-name option. You cannot use wildcards.

Note: When copying a secure key, the volume associations are not copied because a specific volume can
only be associated with a single secure key. Specify the --volumes option to associate different volumes
with the copied secure key, or use the change command to associate volumes afterwards.

Examples:

zkey copy --name secure_xtskey1 --new-name secure_xtskey2
zkey copy --name secure_xtskey1 --new-name secure_xtskey2 \
 --volumes /dev/mapper/disk2:enc-disk2

Generating crypttab entries for encrypted volumes
Use the zkey crypttab command to generate crypttab entries using the plain or LUKS2 dm-crypt
mode for volumes that are associated with secure keys contained in the secure key repository.

Specify the --volumes option to limit the list of volumes where crypttab entries are generated for. You
can use wildcards. If wildcards are used you must quote the value. The device-mapper name of an
associated volume can be omitted. If it is specified, then only those volumes with a matching volume
name and device-mapper name are selected. Specify the --volume-type option to generate crypttab
entries for the specified volume type only.

The options that you specify with the zkey crypttab command are used to generate the crypttab
entries with the options at the desired places. For LUKS2 volumes, a passphrase is required. You are
prompted for the passphrase during system startup when crypttab is evaluated, unless option --key-
file is specified. Option --tries specifies how often a passphrase can be re-entered. When option --
key-file is specified, the passphrase is read from the specified file. You can specify options --
keyfile-offset and --keyfile-size to control which part of the key file is used as passphrase.
These options are passed to the generated crypttab entries and are only available if zkey has been
compiled with LUKS2 support enabled.

Examples:

- for volume type LUKS2

zkey crypttab
zkey crypttab --volumes /dev/mapper/disk1
zkey crypttab --volume-type luks2

enc-disk1 /dev/mapper/disk1

Chapter 6. Managing keys 41

Note: To use automated opening of the encrypted volume with a key file during system startup, you must
adapt the generated crypttab entry. Follow the instructions from step “6” on page 20 in “Creating a
volume for pervasive encryption” on page 17.

- for volume type PLAIN

zkey crypttab --volume-type plain

enc-disk2 /dev/mapper/disk2 /etc/zkey/repository/secure_xtskey2.skey \
 plain,cipher=paes-xts-plain64,size=2176,hash=plain

- for LUKS2 disk1 with options:

zkey crypttab --volumes /dev/mapper/disk1 --key-file /etc/luks-keys/all_disks.key

enc-disk1 /dev/mapper/disk1 /etc/luks-keys/all_disks.key luks

zkey crypttab --volumes /dev/mapper/disk1 --key-file /etc/luks-keys/all_disks.key \
--keyfile-offset 27 --keyfile-size 8 --tries 3

enc-disk1 /dev/mapper/disk1 /etc/luks-keys/all_disks.key luks,\
 keyfile-offset=27,keyfile-size=8,tries=3

Generating cryptsetup commands for encrypted volumes
Use the zkey cryptsetup command to generate cryptsetup plainOpen, cryptsetup luksOpen, or
cryptsetup luksFormat commands for volumes that are associated with secure keys contained in the
secure key repository.

• For LUKS2 volumes, the zkey cryptsetup command generates cryptsetup luksFormat
commands.

• With option --open, the command generates cryptsetup luksOpen commands for LUKS2 volumes
or cryptsetup plainOpen for plain mode volumes (same as without --open option).

• For plain mode volumes, this command only generates cryptsetup plainOpen commands.
• With the --format option, you can limit the generated commands to only generate cryptsetup
luksFormat commands for LUKS2 volumes, and skip plain mode volumes. Without the --format and
--volume-type options, zkey cryptsetup generates the commands dependent from the detected
volume type:

– For PLAIN volumes, a cryptsetup plainOpen command is generated.
– For LUKS2 volumes, a cryptsetup luksFormat command is generated.

Specify the --volumes option to limit the list of volumes where cryptsetup commands are generated
for. You can use wildcards. When wildcards are used you must quote the value. The device-mapper name
of an associated volume can be omitted. If it is specified, then only those volumes with the specified
volume and device-mapper name are selected. Specify the --volume-type option to generate
cryptsetup commands for the specified volume type only. Specify the --run option to run the
generated cryptsetup commands.

For LUKS2 volumes, a passphrase is required. You are prompted for the passphrase when running the
generated commands, unless option --key-file is specified. Option --tries specifies how often a
passphrase can be reentered. When option --key-file is specified, the passphrase is read from the
specified file. You can specify options --keyfile-offset and --keyfile-size to control which part
of the key file is used as passphrase. These options are only available if zkey has been compiled with
LUKS2 support enabled.

To avoid cryptsetup confirmation questions, you can specify the --batch-mode option.

All these options are passed to the generated cryptsetup command(s) and behave in the same way as
with using cryptsetup originally.

42 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Examples:

- for volume type LUKS2

zkey cryptsetup
zkey cryptsetup --volumes /dev/mapper/disk1
zkey cryptsetup --volume-type luks2

cryptsetup luksFormat --type luks2 --pbkdf pbkdf2 \
 --master-key-file '/etc/zkey/repository/secure_xtskey1.skey' \
 --key-size 2176 --cipher paes-xts-plain64 \
 --sector-size 4096 /dev/mapper/disk1
zkey-cryptsetup setvp /dev/mapper/disk1

- for volume type PLAIN

zkey cryptsetup --volume-type plain

cryptsetup plainOpen --key-file '/etc/zkey/repository/secure_xtskey2.skey' \
 --key-size 2176 \
 --cipher paes-xts-plain64 /dev/mapper/disk2 enc-disk2

- for volume type LUKS2, reading the passphrase from a key file, and let the generated commands run in
batch mode. The supposed content of the /etc/luks2-keys/passphrases.txt key file is:

abcdefgh ijklmnop qrstuvw xyzabcde fghijklm nopqrstu

The targeted passphrase xyzabcde starts at offset 27.

zkey cryptsetup --volumes /dev/mapper/disk1 --key-file /etc/luks2-keys/passphrases.txt \
 --keyfile-offset 27 --keyfile-size 8 --batch-mode

cryptsetup luksFormat -q --type luks2 \
 --master-key-file '/etc/zkey/repository/secure_xtskey1.skey' \
 --key-size 2176 --cipher paes-xts-plain64 --pbkdf pbkdf2 \
 --key-file '/etc/luks-keys/passphrases.txt' --keyfile-offset 27 \
 --keyfile-size 8 --sector-size 4096 /dev/mapper/disk1

zkey-cryptsetup setvp /dev/mapper/disk1 /etc/luks-keys/passphrases.txt --keyfile-offset 27 \
 --keyfile-size 8

Managing secure LUKS2 volume keys
Use zkey-cryptsetup to validate and re-encipher secure LUKS2 volume keys of volumes encrypted
with LUKS2 and the PAES cipher. These secure LUKS2 volume keys of type AES are produced in two
steps: First, a random plain text key is wrapped with an AES master key of a cryptographic coprocessor.
Then this secure AES key is again wrapped by LUKS2 with a key derived from a user passphrase or key
file. The result is a secure LUKS2 volume key of type AES (sometimes shortly referred to as AES volume
key in this documentation).

When you open a key slot contained in the LUKS2 header of the volume using zkey-cryptsetup, a
passphrase is required. You are prompted for the passphrase, unless option --key-file is specified.
Option --tries specifies how often a passphrase can be re-entered. When option --key-file is
specified, the passphrase is read from the specified file. You can specify options --keyfile-offset
and --keyfile-size to control which part of the key file is used as passphrase. These options behave
in the same way as with cryptsetup.

For detailed information refer to the zkey-cryptsetup man page or to Appendix B, “ zkey-cryptsetup -
Managing LUKS2 volume keys,” on page 85.

Chapter 6. Managing keys 43

To encrypt a volume using LUKS2 and the PAES cipher, generate a secure AES key in a specified file using
the zkey command. Then format the device with cryptsetup luksFormat using the generated secure
AES key (see “Creating a volume for pervasive encryption” on page 17).

Validate a secure LUKS2 volume key
Using the zkey-cryptsetup validate command, you can obtain validation information about a secure
key in the LUKS2 header of an encrypted volume.

You can find more detailed information about the validation of LUKS2 volume keys in “Validating a secure
key used with a LUKS2 volume” on page 47.

Re-encipher a secure LUKS2 volume key
Use the zkey-cryptsetup reencipher command to re-encipher a secure LUKS2 volume key of a
volume encrypted with LUKS2 and the PAES cipher.

A secure AES volume key must be re-enciphered when the AES master key of the cryptographic
coprocessor in CCA or EP11 coprocessor mode changes. Such a coprocessor has three different registers
to store master keys: the CURRENT, the OLD, and the NEW register, as described in “Re-enciphering AES
secure keys” on page 37. Note that EP11 coprocessors do not contain an OLD register.

zkey-cryptsetup automatically detects whether the secure volume key is currently enciphered with
the master key in the OLD register (not valid for EP11 secure keys, no OLD register on EP11 coprocessors)
or with the master key in the CURRENT register. If currently enciphered with the master key in the OLD
register, it is re-enciphered with the master key in the CURRENT register (not valid for EP11 secure keys).
If it is currently enciphered with the master key in the CURRENT register, it is re-enciphered with the
master key in the NEW register. If for this case the NEW register does not contain a valid master key, then
the re-encipher operation fails.

Re-enciphering a secure volume key of a volume encrypted with LUKS2 and the PAES cipher can be
performed in-place, or in staged mode:

In-place
immediately replaces the secure volume key in the LUKS2 header of the encrypted volume with the
re-enciphered secure volume key. Re- enciphering from OLD to CURRENT is performed in-place per
default. You can use option --in-place to force an in-place re-enciphering for the CURRENT to NEW
case. Be aware that an encrypted volume with a secure volume key that was re-enciphered in-place
from CURRENT to NEW is no longer usable, until the new CCA or EP11 master key has been made the
current one.

Staged mode
means that the re-enciphered secure volume key is stored in a separate (unbound) key slot in the
LUKS2 header of the encrypted volume. Thus all key slots containing the current secure volume key
are still valid at this point. Once the new CCA or EP11 master key has been set (made active), you
must rerun the re-encipher command with option --complete to complete the staged re-
enciphering. When completing the staged re-enciphering, the (unbound) key slot containing the re-
enciphered secure volume key becomes the active key slot and, optionally, all key slots containing the
old secure volume key are removed. Re-enciphering from CURRENT to NEW is performed in staged
mode per default. You can use option --staged to force a staged re-enciphering for the OLD to
CURRENT case.

The NEW register of a cryptographic coprocessor may contain a new master key to be set. This master
key in the NEW register cannot be used until it is made the current master key. Use the --to-new option
of the zkey-cryptsetup reencipher command to pro-actively re-encipher a secure key with the NEW
master key before this key is made the CURRENT key.

Use the --from-old option to re-encipher a secure volume key that is currently enciphered with the
master key in the OLD register with the master key in the CURRENT register.

When re-enciphering or setting LUKS2 volume keys using the zkey-cryptsetup reencipher
command, you can specify the --batch-mode option to suppress confirmation questions. All

44 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

confirmations when running the underlying cryptsetup commands are assumed to be answered with
YES. This allows better automation of zkey-cryptsetup commands.

Note: For information about zkey-cryptsetup, and how to avoid the need to enter a passphrase when
opening a key slot contained in the LUKS2 header of a volume, read Appendix B, “ zkey-cryptsetup -
Managing LUKS2 volume keys,” on page 85.

Examples:

To re-encipher the secure key of the encrypted volume /dev/mapper/disk1 in staged mode and
complete it later:

zkey-cryptsetup reencipher /dev/mapper/disk1 --staged

Enter passphrase for '/dev/mapper/disk1': disk1pw
The secure volume key of device '/dev/mapper/disk1' is enciphered with the
CURRENT master key and is being re-enciphered with the NEW master key.
Staged re-enciphering is initiated for device '/dev/mapper/disk1'. After the NEW
master key has been set to become the CURRENT master key, run 'zkey-cryptsetup
reencipher' with option '--complete' to complete the re-enciphering process.

zkey-cryptsetup reencipher /dev/mapper/disk1 --complete

To re-encipher the secure key of the encrypted volume /dev/mapper/disk1 in in-place mode and in
batch mode:

zkey-cryptsetup reencipher /dev/mapper/disk1 --in-place --batch-mode

Set a verification pattern of the secure LUKS2 volume key
Use the setvp command to set a verification pattern of the secure LUKS2 volume key of a volume
encrypted with LUKS2 and the PAES cipher.

The verification pattern identifies the effective key used to encrypt the volume's data. The verification
pattern is stored in a token named paes-verification-pattern in the LUKS2 header.

Note: Set the verification pattern right after formatting the volume using cryptsetup luksFormat.

For information about zkey-cryptsetup, and how to avoid the need to enter a passphrase when
opening a key slot contained in the LUKS2 header of a volume, read Appendix B, “ zkey-cryptsetup -
Managing LUKS2 volume keys,” on page 85.

Example: To set the verification pattern of the secure key of the encrypted volume /dev/mapper/
disk1:

zkey-cryptsetup setvp /dev/mapper/disk1

Set a new secure LUKS2 volume key
Use the zkey-cryptsetup setkey command to set a new secure LUKS2 volume key for a volume
encrypted with LUKS2 and the PAES cipher.

Use this command to recover from an invalid secure AES volume key contained in the LUKS2 header.
Such a key can become invalid when the CCA or EP11 master key changed without re-enciphering the
secure volume key.

You can recover the secure volume key only if you have a copy of the secure key in a file, and this copy
was re-enciphered when the CCA or EP11 master key has been changed. Thus, the copy of the secure key
must be currently enciphered with the master key in the CURRENT or OLD master key register. Specify
the secure key file with option --master-key-file to set this secure key as the new volume key.
Remember that OLD master key registers are not available on EP11 coprocessors.

In case the LUKS2 header of the volume contains a verification pattern token, it is used to ensure that the
new volume key contains the same effective key. If no verification pattern token is available, then you are
prompted to confirm that the specified secure key is the correct one.

Chapter 6. Managing keys 45

Attention: If you set a wrong secure key you will lose all the data on the encrypted volume.

Example: To set the secure key contained in file seckey.key as the new key for the encrypted
volume /dev/mapper/disk1:

zkey-cryptsetup setkey /dev/mapper/disk1 --master-key-file seckey.key

Note: For information about zkey-cryptsetup, and how to avoid the need to enter a passphrase when
opening a key slot contained in the LUKS2 header of a volume, read Appendix B, “ zkey-cryptsetup -
Managing LUKS2 volume keys,” on page 85.

Validating a secure key
You can obtain validation information about a secure key. This is helpful in a scenario where you need to
re-encipher a secure key due to a master key change.

The following subtopics provide specific information:

• “Validating a secure key from the secure key repository” on page 46
• “Validating a secure key used with a LUKS2 volume” on page 47
• “Validating a secure key from a file” on page 47

Validating a secure key from the secure key repository
Using the zkey validate command, you can obtain validation information about a secure key stored in
the secure key repository.

Specifying the zkey validate command checks if the specified secure key is valid. It also displays
further attributes of this secure key, such as the key size, key type, whether it is a secure key that can be
used for the XTS cipher mode, and the register (CURRENT or OLD) where the master key resides with
which the secure key is enciphered, together with the master key verification pattern (MKVP). EP11
MKVPs are 16 bytes long, CCA MKVPs are 8 bytes long.

Example command with output for a valid secure key:

zkey validate --name secure_xtskey1
Key : secure_xtskey1
--
 Status : Valid
 Description :
 Secure key size : 272 bytes
 Clear key size : 512 bits
 XTS type key : Yes
 Key type : CCA-AESCIPHER
 Enciphered with : CURRENT master key (MKVP: 26d69731a66f4255)
 Volumes : /dev/mapper/disk1:enc-disk1
 APQNs : 03.0039
 04.0039
 Key file name : /etc/zkey/repository/secure_xtskey1.skey
 Sector size : (system default)
 Volume type : LUKS2
 Verification pattern : 303344b12b8258840fa11852a4ecc6d5
 84c7a867f893a5dcc0d499557c45bee6
 Created : 2020-07-23 15:27:20
 Changed : (never)
 Re-enciphered : (never)

1 keys are valid, 0 keys are invalid, 0 warnings

The displayed verification pattern can be used to identify the effective key contained in this secure key.
Any secure key with the same verification pattern contains the same effective key.

46 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

If the secure key is not valid because the master key with which it was wrapped is no longer available, the
zkey utility shows a similar output as for a valid secure key, however, with Status: Invalid, and
some other properties are indicated as (unknown).

The zkey tool checks, whether the master key is the same for all of the APQNs associated with a secure
key during validation of a secure key. In cases, where no APQNs are associated with the validation of a
secure key, then all APQNs available on the system are checked.

For more information, also refer to “Generating AES secure keys” on page 36 and to the zkey man page.

Validating a secure key used with a LUKS2 volume
Using the zkey-cryptsetup validate command, you can obtain validation information about a secure
key in the LUKS2 header of an encrypted volume.

Specifying the zkey-cryptsetup validate command checks if the specified LUKS2 volume contains a
valid secure key. It also displays further attributes of its secure key, such as the key size, whether it is a
secure key that can be used for the XTS cipher mode, and the master key register (CURRENT or OLD) with
which the secure key is enciphered. It also displays the verification pattern of the secure key, if available,
that is, if it had been set using the setvp command.

For further information about master key registers, see “Re-enciphering AES secure keys” on page 37.

Example: To validate the secure key of the encrypted volume /dev/mapper/disk<n> and display its
attributes, enter:

zkey-cryptsetup validate /dev/mapper/disk<n>
Enter passphrase for '/dev/mapper/disk<n>': disk<n>pw
Validation of secure volume key of device '/dev/mapper/disk<n>':
 Status: Valid
 Secure key size: 272 bytes
 XTS type key: Yes
 Key type: CCA-AESCIPHER
 Clear key size: 512 bits
 Enciphered with: CURRENT master key (MKVP: 26d69731a66f4255)
 Verification pattern: 477a8608f06743569e2c62fc5fe00085
 08b18a80d7616094eceaa746be4a2edd

If the secure key is not valid because the master key with which it was wrapped is no longer available, the
zkey utility shows a similar output as for a valid secure key, but with Status: Invalid, and some
other properties are indicated as (unknown).

Note: For information about zkey-cryptsetup and how to avoid the need to enter a passphrase, read
Appendix B, “ zkey-cryptsetup - Managing LUKS2 volume keys,” on page 85.

Validating a secure key from a file
Using the zkey validate command, you can obtain validation information about an existing secure key
stored in a binary file.

Specifying the zkey validate command checks if the specified file contains a valid secure key. It also
displays further attributes of this secure key, such as the key size, whether it is a secure key that can be
used for the XTS cipher mode, and the master key register (CURRENT or OLD) with which the secure key
is enciphered.

Example command with output for a valid secure key:

zkey validate secure_xtskey1.bin
Validation of secure key in file 'secure_xtskey1.bin':
 Status: Valid
 Secure key size: 272 bytes
 Key type: CCA-AESCIPHER
 Clear key size: 512 bits
 XTS type key: Yes
 Enciphered with: CURRENT master key (MKVP: 26d69731a66f4255)
 Verification pattern: 0aa2b29a40c946de9b6ae4c7410ffaa2
 96ad1b20d242c8e5847c821aacbb80bf

Chapter 6. Managing keys 47

The displayed verification pattern can be used to identify the effective key contained in this secure key.
Any secure key with the same verification pattern contains the same effective key.

If the secure key is not valid because the master key with which it was wrapped is no longer available, the
zkey utility shows an error message:

zkey: Failed to validate a secure key: No such device
zkey: The secure key in file 'seckey.bin' is not valid

The No such device message indicates that there is no cryptographic coprocessor available with the
master key that was used to wrap this secure key.

For more information, also refer to the zkey man page.

Changing master keys and re-enciphering secure keys
Your security policies might require that a new master key must be generated on the cryptographic
coprocessors in certain time intervals. Hereafter, you need to re-encipher all the secure keys that have
been generated with the current master key. If a new master key must be used to re-encipher the secure
key, the re-enciphering of the applicable secure keys depends on where these are stored: either in a
secure key repository, or as a volume key in a LUKS2 header, or just in a file in the file system.

The information presented in this topic is valid for both CCA and EP11 master keys. How to set an EP11
master key is outlined in the EP11 documentation: Exploiting Enterprise PKCS #11 using openCryptoki.
How to change a CCA master key is documented in How to set an AES master key.

For security and ease of use, always store your secure keys in a secure key repository. To manage a
required change of the master key, you can then use the zkey utility to perform the required re-
encryption. Read “Re-enciphering secure keys from a repository” on page 48 for more information.

If the secure keys are stored as volume keys in the LUKS2 header of your volume, you can use the zkey-
cryptsetup utility to perform the re-encryption. In this case, read “Re-enciphering LUKS2 volume keys”
on page 49.

Also, you might have saved your secure key in a file. In this case, too, you can use the zkey utility to
perform the re-encryption. Read “Re-enciphering secure keys from a file” on page 51 for more
information.

Re-enciphering secure keys from a repository
Read how to use the zkey reencipher command to re-encipher a secure key that is stored in a secure
key repository.

Before you begin
This task requires that a new CCA or EP11 AES master key has been set on the attached cryptographic
coprocessors with the TKE. Using the zkey utility for re-enciphering a CCA AES secure key requires the
IBM CCA host library (libcsulcca.so). For re-enciphering an EP11 AES secure key, zkey requires the
Linux on Z Enterprise PKCS #11 (EP11) Support Program (EP11 host library) to be installed.

To obtain information about your current secure key, perform the procedure described in “Validating a
secure key from the secure key repository” on page 46.

Procedure

1. Load the key parts for a new CCA or EP11 AES master key using the TKE.
If you use multiple APQNs with the same master key, load the same new master key on these APQNs.
Do not yet set the new master key active at this time.

2. Re-encipher all secure keys contained in the secure key repository that are associated with the APQN
for which you change the master key.
For example, you can use a command similar to the following:

48 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxct/lxct_linuxonz.html

zkey reencipher --apqns <apqn1,apqn2,...>

Note:

You can re-encipher a secure key that is currently enciphered under the master key in the CURRENT
register of the CCA or EP11 coprocessor to the master key in the NEW register, as long as the new
master key has not been activated (set). For this purpose, use option --to-new with the zkey utility.

You can also re-encipher a secure AES DATA or AES CIPHER key that is currently enciphered under the
master key in the OLD register of the cryptographic adapter to the master key in the CURRENT register.
For this purpose, use option --from-old with the zkey utility. This option is not available for EP11
AES keys, as cryptographic coprocessors in EP11 mode do not have an OLD register.

If both options --from-old and --to-new are specified, a secure key that is currently enciphered
with the master key in the OLD register is re-enciphered with the master key in the NEW register.

Finally, you can use the auto-detection function of zkey. The utility detects whether the secure key is
enciphered with a master key from the OLD or from the CURRENT register and re-enciphers the secure
key with the appropriate new master key as described.

Re-enciphering a secure key contained in the secure key repository can be performed in-place, or in
staged mode. Staged mode means that the re-enciphered secure key is stored in a separate file in the
secure key repository. Thus the current secure key is still valid at this point. Once the new CCA or EP11
master key has been set (made active), you need to rerun the reencipher command with option --
complete to complete the staged re-enciphering. Re-enciphering from CURRENT to NEW is
performed in staged mode by default. You can use option --staged to force a staged re-enciphering
for the OLD to CURRENT case.

Examples:

zkey reencipher --apqns <apqn1,apqn2,...> --from-old --staged

zkey reencipher --apqns <apqn1,apqn2,...> --to-new --staged

zkey re-encipher --apqns <apqn1,apqn2,...> --staged

3. Now set the new master key active. Use the functions provided by the TKE for this purpose.
4. Complete the re-enciphering:

zkey reencipher --apqns <apqn1,apqn2,...> --complete

Note: To re-encipher a single secure key stored in the key repository, run:

zkey reencipher --name secure_key1

This re-enciphers the secure key with the name secure_key1.

For more information, see “Managing a secure key repository” on page 35.

Re-enciphering LUKS2 volume keys
If a new master key must be used to re-encipher a secure key used as a LUKS2 volume key, you can use
the zkey-cryptsetup reencipher command to perform this task.

Before you begin
This task requires that a new CCA or EP11 master key has been set on the attached cryptographic
coprocessors with the TKE. Using the zkey-cryptsetup utility for re-enciphering a LUKS2 volume key
encrypted with a CCA master key requires the IBM CCA host library (libcsulcca.so) to be installed. For re-
enciphering a LUKS2 volume key encrypted with an EP11 AES secure key, zkey-cryptsetup requires
the Linux on Z Enterprise PKCS #11 (EP11) Support Program (EP11 host library) to be installed.

Chapter 6. Managing keys 49

To obtain information about your current secure key (which is the same as the LUKS2 volume key),
perform the procedure described in “Validating a secure key used with a LUKS2 volume” on page 47.

Note: You need to perform this procedure for all volumes encrypted with a secure LUKS2 volume key.

If the disks are encrypted with secure keys stored in the secure key repository, then you can use the
following command to get a list of keys and their associated volumes that require re-encipherment when
changing the master key of a specific APQN:

zkey list --apqns <apqn1,apqn2,...>

Procedure

1. Load the CCA key parts for a new AES master key or EP11 master key using the TKE.
Do not yet set the new master key active at this time.

2. Re-encipher the LUKS2 volume key.

The zkey-cryptsetup command automatically detects whether the secure volume key is
enciphered with a master key from the OLD or from the CURRENT register and re-enciphers the secure
volume key with the appropriate new master key in the NEW register. You can explicitly specify this
processing using the options --from-old or --to-new. Detecting a master key from the OLD register
is not possible for EP11 master keys.

In addition, re-enciphering a secure volume key can be performed in-place, or in staged mode.

Example:

zkey-cryptsetup reencipher /dev/mapper/disk1 --staged
Enter passphrase for '/dev/mapper/disk1': disk1pw
The secure volume key of device '/dev/mapper/disk1' is enciphered with the
CURRENT master key and is being re-enciphered with the NEW master key.
Staged re-enciphering is initiated for device '/dev/mapper/disk1'. After the NEW
master key has been set to become the CURRENT master key, run 'zkey-cryptsetup
reencipher' with option '--complete' to complete the re-enciphering process.

3. Now set the new CCA or EP11 AES master key active.
4. Complete the re-enciphering:

zkey-cryptsetup reencipher /dev/mapper/disk1 --complete

Note: If you used several key slots on your LUKS2 volume before, only the one for which you entered
the passphrase is kept. All other key slots are removed during re-enciphering. You need to add them
again using cryptsetup luksAddKey.

This applies for example, if you use additional key slots for automatic opening volumes at system
startup.

For more information on staged re-enciphering of keys and the zkey-cryptsetup command, read
both, “Re-encipher a secure LUKS2 volume key” on page 44 and Appendix B, “ zkey-cryptsetup -
Managing LUKS2 volume keys,” on page 85. In addition, you can also refer to the zkey-cryptsetup
man page.

5. Reset the pbkdf option to use PBKDF2.
This step is not required when using the zkey-cryptsetup tool from an s390-tools package
upstream version 2.9.0 or later.

The re-enciphering process of the zkey-cryptsetup tool from an s390-tools package older than
version 2.9.0 sets the value of option pbkdf of the key slot with the interactive passphrase to the
default Argon2i password-based key derivation function (PBKDF), no matter which value you had set
before.

As described in “Out-of-memory errors when opening a LUKS2 volume” on page 58, the use of the
Argon2i key derivation function may cause an out-of-memory error when opening a LUKS2 volume. To

50 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

https://github.com/ibm-s390-tools/s390-tools/releases/
https://github.com/ibm-s390-tools/s390-tools/releases/

avoid such an error during automatic unlocking of the encrypted volume at system startup, change the
value of option pbkdf to use the PBKDF2 key derivation function:

cryptsetup luksConvertKey --pbkdf pbkdf2 /dev/mapper/disk1
Enter passphrase for keyslot to be converted:
disk1pw

Re-enciphering secure keys from a file
If a new master key must be used to re-encipher a secure key stored in a binary file, you can use the zkey
reencipher command to perform this task.

Before you begin
This task requires that a new CCA or EP11 master key has been set on the attached cryptographic
coprocessors with the TKE.. Using the zkey utility for re-enciphering a CCA AES secure key requires the
IBM CCA host library (libcsulcca.so). For re-enciphering an EP11 AES secure key, zkey requires the
Linux on Z Enterprise PKCS #11 (EP11) Support Program (EP11 host library) to be installed.

To obtain information about your current secure key, perform the procedure described in “Validating a
secure key from a file” on page 47.

Procedure

1. Load the CCA key parts for a new AES master key or EP11 master key using the TKE.
Do not yet set the new master key active at this time.

2. Re-encipher the secure key.
For example, you can use a command similar to the following:

zkey reencipher <oldSK_binary_file> [--output <newSK_binary_file>]

Note:

You can re-encipher a secure key that is currently enciphered under the master key in the CURRENT
register of the CCA or EP11 coprocessor to the master key in the NEW register, as long as the new
master key has not been activated (set). For this purpose, use option --to-new with the zkey utility.

For CCA secure keys only, you can also re-encipher a secure key which is currently enciphered under
the master key in the OLD register of the cryptographic adapter to the master key in the CURRENT
register. For this purpose, use option --from-old with the zkey utility. A cryptographic coprocessor
configured in EP11 mode does not have an OLD register. So the --from-old option is not available.

If both options --from-old and --to-new are specified, a secure key that is currently enciphered
with the master key in the OLD register is re-enciphered with the master key in the NEW register.

Finally, you can use the auto-detection function of zkey. The utility detects whether the secure key is
enciphered with a master key from the OLD or from the CURRENT register and re-enciphers the secure
key with the appropriate new master key as described.

For more information, also refer to the zkey man page.

Examples:

zkey reencipher securekey.bin --from-old [--output securekey2.bin]

zkey reencipher securekey.bin --to-new [--output securekey2.bin]

zkey re-encipher securekey.bin [--output securekey2.bin]

3. Now set the new CCA or EP11 master key active. Use the functions provided by the TKE for this
purpose.

Chapter 6. Managing keys 51

If you stored the re-enciphered secure key in a separate file ([--output <newSK_binary_file>]),
from now on you should use the new secure key file. You can still use the original secure key file until
you change the master key again, because the previous master key is still available in the OLD register
(not valid for EP11 coprocessors).

Sharing master keys across cryptographic coprocessors
If you share master keys on different redundant cryptographic coprocessors, you can provide for high
availability of your encrypted data.

In case of a required CCA or EP11 master key change, you must set the same master key on all used
cryptographic coprocessors. In this case, generate the master key or the master key parts on one or more
smart cards and use these smart cards as the source for loading the key on all cryptographic
coprocessors.

For information on how to set a master key, refer to How to set an AES master key in the IBM Knowledge
Center.

Replacing a cryptographic coprocessor
The reasons why you might want to exchange a cryptographic coprocessor which is in use for volume
encryption is that you either want to upgrade to a new model, or you want to switch from a CCA
coprocessor to a EP11 coprocessor, or that you need to replace the old coprocessor due to a defect. The
described scenarios include the case where you want to continue to use the old master key on the new
coprocessor, as well as the cases where you want to use a different master key with or without the clear
key being available.

The following subtopics provide specific information:

• “Replacing with the same master key” on page 52
• “Replacing with a different master key” on page 53

The scenario of replacing a CCA coprocessor by a EP11 coprocessor is equivalent with changing an
encrypted volume from being encrypted with a CCA secure key (AES CIPHER or CCA-AESDATA) to being
encrypted with an EP11 AES secure key (EP11-AES). Therefore, the required steps are similar as for
“Replacing with a different master key” on page 53 with the appropriate differences.

A scenario where you first set the new master key on the old and on the new cryptographic coprocessor,
then re-encipher the volume using the old coprocessor with the new master key, and then replace the old
cryptographic coprocessor with the new one is not described here explicitly, because this is very similar
to the use cases described in “Changing master keys and re-enciphering secure keys” on page 48.

Replacing with the same master key
You might have to replace a cryptographic coprocessor without the need to also change the current
master key (for example, when you want to upgrade to a new coprocessor model long before your
security policies require a master key change).

About this task
With a few differences only, this is the same scenario as documented in “Sharing master keys across
cryptographic coprocessors” on page 52. The new cryptographic coprocessor is in a way the same as one
of the coprocessors sharing the same master key.

Important: Save the master key parts on one or more smart cards, because this facilitates the key
management in many scenarios. If the master key is lost, there is no way to decrypt the data.

Procedure

1. Set the current master key from the old cryptographic coprocessor on the new coprocessor so that
both coprocessors have the same master key.

52 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxct/lxct_linuxonz.html

2. Start to use the new cryptographic coprocessor when working with your associated volumes.
In case you are using a secure key stored in the secure key repository, and the secure key is
associated with one or multiple APQNs, you should update the association using zkey change
command with option --apqns. For details see “Changing AES secure keys” on page 40.

Replacing with a different master key
In this scenario, the old cryptographic coprocessor still exists. All the secure keys generated on this
coprocessor were generated from random keys.

Before you begin
As an alternative to the procedure described here, you can create a new encrypted volume and migrate
the data there (see “Migrating to an encrypted LVM physical volume” on page 25 or “Migrating data to a
new encrypted volume” on page 31.

Important: If you use the approach described in this task, be sure to have a backup of the data on your
volume in case the system crashes or a media error occurs during the re-encryption. In contrast to the
mentioned alternatives, this re-encryption works on the volume in-place.

Procedure

1. Generate a new secure key on the new cryptographic coprocessor using zkey generate.
Store the new secure key in the secure key repository.

To generate a secure key on a specific APQN, use option --apqns with the zkey generate command
and specify the desired APQN. This is only possible when generating secure keys in the secure key
repository. For example, enter:

zkey generate --name new_secure_xtskey --keybits 256 --xts \
--apqns <card.domain>

Because the new secure key now also contains a new effective key, a next step for re-encrypting is
required.

2. Use the cryptsetup-reencrypt command to re-encipher all LUKS2 volumes that use the old
secure key, with the new secure key from the secure key repository.
The new LUKS2 volume key is stored in the LUKS2 header of the volumes at the end of the re-
encryption.

For example, enter:

cryptsetup-reencrypt /dev/mapper/disk<n> --cipher paes-xts-plain64 \
 --master-key-file /etc/zkey/repository/new_secure_xtskey.skey --key-size 1024

You can retrieve information about the just-created secure key file using the zkey list command. To
limit the returned list to the desired secure key, use option --name to specify the secure key name.
You find the secure key file name indicated by: Key file name (see “Listing AES secure keys contained
in the secure key repository” on page 39).

Important: Ensure that you have a backup copy of the volume that you want to re-encrypt. In case the
system crashes or a media error occurs during re-encryption, your original data might be destroyed.

3. Set the verification pattern into the LUKS2 header using the zkey-cryptsetup command.
Issue a command similar to the following:

zkey-cryptsetup setvp /dev/mapper/disk<n>

4. Remove the old cryptographic coprocessor and start using the new one.
If you previously stored the old secure key in the secure key repository, remove it now and associate
the new secure key with the re-encrypted volume. For example, enter:

Chapter 6. Managing keys 53

zkey remove --name old_secure_xtskey
zkey change --name new_secure_xtskey --volumes /dev/mapper/disk<n>:enc-disk<n> \
 --volume-type LUKS2 --sector-size 4096

Note: Ensure that the sector size for encryption or decryption of the volume is the same for the old and
the new secure key. The example assumes that a sector size of 4096 bytes was used for encrypting or
decrypting the volume with both the old and the new secure key.

For details see “Removing AES secure keys” on page 39 and “Changing AES secure keys” on page 40.

54 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Chapter 7. Problem resolution and recovery
The infrastructure for protected volume encryption offers several resources to assist you in cases when
problems occur. You can query and verify information about your secure keys and you can utilize debug
tools.

The following topics provide further details:

• “Verifying your configuration” on page 55
• “Troubleshooting problems in your environment” on page 57
• Chapter 8, “Recovering secure key encrypted volumes,” on page 59

Verifying your configuration
You can use several commands for verifying certain aspects of your pervasive encryption configuration.

Checking required kernel modules

Secure key volume encryption requires the pkey and paes_s390 kernel modules (see also “Prerequisites”
on page 9).

To check if these kernel modules are loaded, use the lsmod command:

lsmod | grep pkey
pkey 24576 1 paes_s390
zcrypt 69632 4 pkey,zcrypt_cex4

lsmod | grep paes
paes_s390 16384 0
pkey 24576 1 paes_s390

If the modules are not loaded, use the modprobe to load them:

modprobe pkey
modprobe paes_s390

As the paes_s390 module requires the pkey module, pkey is also loaded together with the paes_s390
module by the shown command.

Checking available cryptographic coprocessors

Secure key volume encryption requires IBM Crypto Express5S or Crypto Express6S adapters in CCA
coprocessor mode (CEX5C or CEX6C) or Crypto Express7S adapters in EP11 mode (CEX7P).

Use the lszcrypt command to list the available cryptographic coprocessors:

lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT

02 CEX5A Accelerator online 0
02.004c CEX5A Accelerator online 0
03 CEX5C CCA-Coproc online 13000
03.004c CEX5C CCA-Coproc online 13000
05 CEX5P EP11-Coproc online 81213
05.004c CEX5P EP11-Coproc online 81213

For more details, refer to chapter Generic cryptographic device driver in Device Drivers, Features, and
Commands, SC33-8411 available on the IBM Knowledge Center at

© Copyright IBM Corp. 2018, 2020 55

www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html.

Valid physical block size combinations of LVM physical volumes
Before migrating data from an unencrypted volume to an encrypted LVM logical volume, check the
physical block sizes of the involved volumes to ensure that you use only allowed block size combinations
to avoid file system corruption and data loss. New LVM versions perform this check and reject actions that
may corrupt the data.

If in your migration scenario the physical block size of a target physical volume (PV) is larger than the
physical block size of the source PV, the file systems residing on logical volumes backed by the source PV
may become corrupted. This is because the file system is aligned to the physical block size of the source
PV and cannot be mapped to a larger block size. Therefore, never use a target volume with a larger block
size than your source volumes.

The --sector-size parameter of a dm-crypt volume influences the physical block size. A dm-crypt
volume encrypted with a sector size larger than the default 512 bytes results in a device with a physical
block size of either the used sector size or the block size of the underlying device, whatever is higher.

This is the case for LUKS2 as well as for a plain mode dm-crypt volume. LUKS1 only supports the default
block size of 512 bytes.

Migrating data from an unencrypted PV onto a dm-crypt encrypted PV might thus corrupt the file systems
on the logical volumes backed by the source PV if the target dm-crypt volume uses a sector size of 4096
bytes, and the unencrypted source PV uses a physical block size of 512 bytes.

To query the physical block size of a device, use the following command:

blockdev --getpbsz <device>

If the file systems on the affected LVs were created with a 4096 block size, then the problem does not
occur. The file system may choose different block sizes based on various parameters. Thus, on larger
volumes, it is very likely that the file system block size is 4096 by default.

Table 1 on page 56 shows combinations of source and target physical volumes where migration can be
performed. Table 2 on page 57 shows combinations of source and target physical volumes where
migration might corrupt the data on the source volumes.

Note: The tables offer a selection of possible combinations. There might be numerous other
combinations available in your environment. The general rule is that you should never extend an existing
LVM volume group with a device that has a larger physical block size than the existing physical volumes of
the volume group.

Table 1. Allowed combinations

Source physical volume Target physical volume

Comparison of block sizes

physical block size = n (for example, n = 4096) physical block size = n (for example, n = 4096)

physical block size = n physical block size < n

Comparison of block sizes on source PV and sector sizes on target dm-crypt volume

physical block size = 512 dm-crypt volume with sector-size = 512 (default)

physical block size = 4096 dm-crypt volume with sector-size = 512 (default)

physical block size = 4096 dm-crypt volume with sector-size = 4096

Comparison of block sizes of specific device types (selection)

56 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

Table 1. Allowed combinations (continued)

Source physical volume Target physical volume

SCSI-disk, SCSI-partition, SCSI-multipath-device
with block size = 512

dm-crypt volume with sector-size = 512 (default)

DASD-partition (4096) dm-crypt volume with sector-size = 512 (default)

DASD-partition (4096) dm-crypt volume with sector-size = 4096

Loopback-device (512) dm-crypt volume with sector-size = 512 (default)

Other device mapper device (512) dm-crypt volume with sector-size = 512 (default)

Other device mapper device with physical block
size > 512

dm-crypt volume with sector-size = 512 (default)

Table 2. Combinations of physical block sizes that might lead to data corruption

Source physical volume Target physical volume

physical block size = n (for example, n = 512) physical block size > n (for example, 4096)

physical block size = 512 dm-crypt volume with sector-size = 4096

SCSI-disk, SCSI-partition, SCSI-multipath-device
with block size = 512

dm-crypt volume with sector-size = 4096

Loopback-device (512) dm-crypt volume with sector-size = 4096

Other device mapper device with physical block
size 512 < n < 4096

dm-crypt volume with sector-size = 4096

Troubleshooting problems in your environment
For an efficient troubleshooting, you can access various resources for debugging problems with the
components of the infrastructure for protected volume encryption.

Debugging zkey problems

If the zkey utility encounters an error, you can use the --verbose option of the utility to show additional
messages.

Especially for the reencipher command of zkey, the --verbose option displays the CCA return and
reason codes of the CSNBKTC (Key Token Change) verb used by zkey. CCA return and reason codes are
documented in Secure Key Solution with the Common Cryptographic Architecture Application
Programmer's Guide, SC33-8294.

For problems when working with EP11 AES secure keys, refer to Exploiting Enterprise PKCS #11 using
openCryptoki.

Debugging zkey-cryptsetup problems

If the zkey-cryptsetup utility encounters an error, you can use the --verbose option or the --debug
option of the utility to show additional messages. The --debug option also causes debug messages from
libcryptsetup to be issued. The zkey-cryptsetup command uses the functions provided by
cryptsetup.

Especially for the reencipher command of zkey-cryptsetup, the --verbose option displays the
CCA return and reason codes of the CSNBKTC (Key Token Change) verb used by zkey-cryptsetup. CCA

Chapter 7. Problem resolution and recovery 57

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

return and reason codes are documented in Secure Key Solution with the Common Cryptographic
Architecture Application Programmer's Guide, SC33-8294.

For problems when working with EP11 AES secure keys, refer to Exploiting Enterprise PKCS #11 using
openCryptoki.

Debugging cryptsetup problems

In case cryptsetup encounters an error, check the syslog for additional messages from the device
mapper and dm-crypt.

In addition, use option --debug to see additional debugging messages. These messages show you where
the error occurred and help you to find the reason of the failure.

The same debugging procedure is valid for problems with the cryptsetup-reencrypt command.

Debugging the pkey kernel module

The pkey driver uses the s390 debug feature. Usually the debugfs file system is mounted at /sys/
kernel/debug and the cryptsetup driver appears as own directory at /sys/kernel/debug/
s390dbf/pkey. By default the dbf level is set to 3 and all error messages within the driver are valued to
3 also. Thus any error message can be extracted as ASCII text by reading from the sprintf pseudo file:

cat /sys/kernel/debug/s390dbf/pkey/sprintf

In order to get debug messages, too, you can set the dbf level to 6:

echo 6 >/sys/kernel/debug/s390dbf/pkey/level

Out-of-memory errors when opening a LUKS2 volume

You might encounter an out-of-memory error when opening a LUKS2 volume either during manual
opening or during automated opening via /etc/crypttab at system startup. This is most probably
caused by the fact that the LUKS2 format by default uses the Argon2i key derivation function, which is a
so-called memory-hard function. It requires a certain amount of physical memory to make dictionary
attacks more costly. To reduce the required amount of memory, the following steps can be helpful:

• Use LUKS2 with PBKDF2 instead of Argon2i as the key derivation function. Add the --pbkdf pbkdf2
option when using the luksFormat or luksAddKey commands.

• Decrease the amount of memory for Argon2i functions. For example, to use up to 256 KB, add the --
pbkdf-memory 256 option to the luksFormat or luksAddKey commands.

Since the infrastructure for protected volume encryption uses secure keys as volume keys, the security of
the key derivation function used to derive the key to encrypt the volume key in the LUKS key slots is of
less relevance.

In order to check which key derivation function is used by an encrypted disk, use cryptsetup
luksDump. It displays the key derivation function for each key slot. To change the key derivation function
for an existing key slot, use cryptsetup luksConvertKey. Refer to the cryptsetup man page for more
details.

58 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

Chapter 8. Recovering secure key encrypted volumes
There is no way to recover data encrypted with a secure key, if the corresponding master key is lost.
Therefore, keep the master key at a very safe and secure place outside the HSM. If the used secure key is
lost, you can recover your data only if certain prerequisites are fulfilled.

The following scenarios are discussed:

• “Recovering encrypted volumes from an invalid secure key” on page 59
• “Recovering encrypted volumes with a secure key from the repository” on page 60

Recovering encrypted volumes from an invalid secure key
This recovery scenario is only possible if the clear key that was used to generate the secure key is still
available in a binary file. This can be the case in environments where you intentionally want to save the
clear key due to your security policy. Use this approach only if you kept your clear key absolutely safe in a
clean room environment, where it is protected against being exposed to non-authorized persons. A
secure key that contains an encrypted insecure clear key is of no added value compared to the insecure
clear key.

Procedure

1. Generate a new secure key from a binary clear key input file on the new cryptographic coprocessor.
Use the zkey generate command with option --clearkey.
Store the new secure key in the secure key repository.

To generate a secure key on a specific APQN, use option --apqns with the zkey generate command
and specify the desired APQN. This is only possible when generating secure keys in the secure key
repository. Also, you can already associate the affected volumes with the new secure key. For
example, enter:

zkey generate --name new_secure_xtskey --clearkey old_clearkey.bin --key-type CCA-AESCIPHER \
--xts --apqns <card.domain> --volumes /dev/mapper/disk<n>:enc-disk<n> \
--volume-type LUKS2 --sector-size 4096

Because the new secure key contains the same old clear key, the volume needs not be re-encrypted,
but the new created secure key must be set as the LUKS volume key.

2. Use the zkey-cryptsetup setkey command to set the new LUKS2 volume key.
For example, enter:

zkey-cryptsetup setkey /dev/mapper/disk<n> \
--master-key-file /etc/zkey/repository/new_secure_xtskey.skey
Enter passphrase for '/dev/mapper/disk<n>': disk<n>pw

You can retrieve information about the secure key file using the zkey list command. To limit the
returned list to the desired secure key, use option --name to specify the secure key name. You find
the secure key file name indicated by: Key file name (see “Listing AES secure keys contained in the
secure key repository” on page 39).

If you had set a verification pattern into the LUKS2 header of the volume using the zkey-cryptsetup
setvp command, this pattern is used to ensure that the new volume key contains the same clear key.
If no verification pattern is available, then you are prompted to confirm that the specified secure key is
the correct one.

Important: If you set an incorrect secure key you will lose all the data on the encrypted volume.

For details see Appendix B, “ zkey-cryptsetup - Managing LUKS2 volume keys,” on page 85.

© Copyright IBM Corp. 2018, 2020 59

3. Reset the pbkdf option to use PBKDF2
This step is not required when using the zkey-cryptsetup tool from an s390-tools package
upstream version 2.9.0 or later.

Setting a new LUKS2 volume key with zkey-cryptsetup sets the value of option pbkdf of the key
slot with the interactive passphrase to the default Argon2i password-based key derivation function
(PBKDF), no matter which value you had set before.

As described in “Out-of-memory errors when opening a LUKS2 volume” on page 58, the use of the
Argon2i key derivation function may cause an out-of-memory error when opening a LUKS2 volume. To
avoid such an error during automatic unlocking of the encrypted volume at system startup, change the
value of option pbkdf to use the PBKDF2 key derivation function:

cryptsetup luksConvertKey --pbkdf pbkdf2 /dev/mapper/disk<n>
Enter passphrase for keyslot to be converted:
disk<n>pw

4. Remove the old cryptographic coprocessor and start using the new one.
If you had stored the old secure key in the secure key repository, remove it now. For example, enter:

zkey remove --name old_secure_xtskey

For details see “Removing AES secure keys” on page 39 and “Changing AES secure keys” on page 40.

Results
Your affected volumes are ready for use, exploiting the new cryptographic coprocessor.

Recovering encrypted volumes with a secure key from the repository
Read about the procedure how to recover encrypted data from a volume whose volume key is no longer
valid (for example, if the volume has been archived a long time ago).

About this task
Recovering a secure key encrypted partition whose volume key is no longer valid is only possible if a valid
copy of this key is available in the secure key repository. This copy of the secure key must have been re-
enciphered in the repository each time the master key changed on the cryptographic coprocessor.

Procedure

1. Optional: Ensure that the secure key in the repository matches the volume key in the LUKS2 header.
This action is only possible if a verification pattern was previously set into the LUKS2 header. To check,
enter the following commands and compare the verification patterns. The zkey-cryptsetup
validate command checks the validity of the volume key on the volume and displays its verification
pattern. The zkey validate command checks the validity of the specified secure key in the
repository and also displays its verification pattern.

60 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

https://github.com/ibm-s390-tools/s390-tools/releases/

zkey-cryptsetup validate /dev/mapper/disk<n>
Enter passphrase for '/dev/mapper/disk<n>': disk<n>pw
Validation of secure volume key of device '/dev/mapper/disk<n>':
 Status: Invalid
 Secure key size: 272 bytes
 XTS type key: Yes
 Key type: CCA-AESCIPHER
 Clear key size: (unknown)
 Enciphered with: (unknown) (MKVP: 880f72e3759217e7)
 Verification pattern: 477a8608f06743569e2c62fc5fe00085
 08b18a80d7616094eceaa746be4a2edd

ATTENTION: The secure volume key is not valid.

zkey validate --name <name_of_key>
Key : <name_of_key>

 Status : Valid
 Description :
 Secure key size : 272 bytes
 Clear key size : 512 bits
 XTS type key : Yes
 Key type: CCA-AESCIPHER
 Enciphered with : CURRENT master key (MKVP: 26d69731a66f4255)
 Volumes : /dev/mapper/disk<n>:enc-disk<n>
 APQNs : 03.0039
 04.0039
 Key file name : /etc/zkey/repository/<name_of_key>.skey
 Sector size : (system default)
 Volume type : LUKS2
 Verification pattern : 477a8608f06743569e2c62fc5fe00085
 08b18a80d7616094eceaa746be4a2edd
 Created : 2018-08-21 17:19:53
 Changed : (never)
 Re-enciphered : (never)

If you omit this step, and the keys mismatch, the zkey-cryptsetup setkey from step “2” on page
61 will reject to set the key, provided that the verification pattern is available in the LUKS2 header.

2. Set the secure key from the secure key repository as the new volume key.
Enter the following command:

zkey-cryptsetup setkey /dev/mapper/disk<n> \
--master-key-file /etc/zkey/repository/<name_of_key>.skey
Enter passphrase for '/dev/mapper/disk<n>': disk<n>pw

The verification pattern is used to ensure that the new volume key contains the same effective key as
the old volume key. If no verification pattern is available, then you are prompted to confirm that the
specified secure key is the correct one.

Important: If you set an incorrect secure key you will lose all the data on the encrypted volume.
3. Reset the pbkdf option to use PBKDF2

This step is not required when using the zkey-cryptsetup tool from an s390-tools package
upstream version 2.9.0 or later.

Setting a new LUKS2 volume key with zkey-cryptsetup sets the value of option pbkdf of the key
slot with the interactive passphrase to the default Argon2i password-based key derivation function
(PBKDF), no matter which value you had set before.

As described in “Out-of-memory errors when opening a LUKS2 volume” on page 58, the use of the
Argon2i key derivation function may cause an out-of-memory error when opening a LUKS2 volume. To
avoid such an error during automatic unlocking of the encrypted volume at system startup, change the
value of option pbkdf to use the PBKDF2 key derivation function:

cryptsetup luksConvertKey --pbkdf pbkdf2 /dev/mapper/disk<n>
Enter passphrase for keyslot to be converted:
disk<n>pw

Chapter 8. Recovering secure key encrypted volumes 61

https://github.com/ibm-s390-tools/s390-tools/releases/

62 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Chapter 9. Encrypting volumes without LUKS
In an environment where you do not want or cannot use encrypted volumes formatted with LUKS2, you
can use encrypted volumes in plain mode as an alternative. This way, you can exploit the features of the
infrastructure for protected volume encryption in the cryptsetup plain mode as described in the
contained subtopics.

In plain mode, the keys used to open the volume are not protected by a passphrase in contrast to LUKS.
In the infrastructure for protected volume encryption, these keys are secure keys and therefore do not
need an additonal encryption using a passphrase. Secure keys are usable only on systems that have
access to a cryptographic coprocessor with the correct master key.

In plain mode, you can also use the zkey utility to manage a secure key repository that helps you to work
with encrypted volumes in plain mode. It allows to associate secure keys with volumes and knows the
volume type. Therefore, it can generate the required commands to open a plain-mode volume for you.

The following topics are discussed:

• “Volume encryption with cryptsetup plain mode ” on page 63
• “Encrypting an unencrypted volume using plain mode” on page 65
• “Changing a master key using plain mode” on page 65
• “Opening an encrypted volume in plain mode” on page 66

Volume encryption with cryptsetup plain mode
Setting up volume encryption using cryptsetup plain mode entails generating secure keys and creating
logical volumes.

Before you begin

Make sure that the software prerequisites are met as described in “Software prerequisites” on page 9.
Note that the plain mode also works with cryptsetup versions prior to 2.0.3.

Based on the sample system environment as shown in Figure 5 on page 16, the procedure documented
here uses the first partition on a multipath SCSI disk /dev/mapper/disk1.

About this task

It is of advantage to store the secure keys in the secure key repository as shown in this procedure. This
enables you to also open archived volumes (for example, provided you have re-enciphered these keys
with each master key change). For more information, refer to “Managing a secure key repository” on page
35.

Procedure

1. Use the zkey utility to generate a secure AES DATA key in a secure key repository.
Issue the following command using the XTS cipher mode:

zkey generate --name secure_xtskey1 --key-type CCA-AESDATA --keybits 256 --xts \
--volumes /dev/mapper/disk1:enc-disk1 --volume-type PLAIN \
--apqns 03.0039,04.0039

In the example, the generated secure key is of type AES DATA (--key-type CCA-AESDATA) and is
stored in the secure key repository. Secure keys of types AES CIPHER and EP11 AES are also
supported in plain mode.

© Copyright IBM Corp. 2018, 2020 63

The key to be wrapped is generated by random inside the cryptographic coprocessor and is thus never
exposed in clear.

The --key-type

You can have a secure key per volume or share a secure key among volumes. In the previous example,
the secure key named secure_xtskey1 is associated with volume /dev/mapper/disk1 in plain
mode and uses the device mapper name enc-disk1.

Do not encrypt multiple volumes with the same key. If, for certain reasons, you want to do this
nevertheless, then you can specify the --volumes parameter as shown in this example:

--volumes /dev/mapper/disk1:enc-disk1,/dev/mapper/disk2:enc-disk2,...

This associates all listed volumes with the same secure key.

Note: You can also specify the --sector-size parameter with the plainOpen command. However,
automatic opening of plain mode volumes during system startup might not work, depending on the
used systemd version. Ensure that systemd supports the sector size option in /etc/crypttab
before you create plain-mode encrypted volumes with a sector size different than the default (512
bytes).

2. Use zkey cryptsetup to generate the command for creating an encrypted logical volume in plain
format.

zkey cryptsetup --volumes /dev/mapper/disk1
cryptsetup plainOpen --key-file '/etc/zkey/repository/secure_xtskey1.skey'
--key-size 1024 --cipher paes-xts-plain64 /dev/mapper/disk1 enc-disk1

In the generated cryptsetup command, plainOpen is used to open the volume and to assign a
logical volume name to the opened volume. The new logical volume is created in /dev/mapper.

The generated plainOpen command specifies:

• The location and name of the secure key file.
• The key size (in bits). For cipher mode XTS, the size of an AES DATA key is 128*8=1024.
• The PAES cipher and its operation mode (in the example, XTS).
• The name of the volume.
• A name of your choice for the logical volume.

3. Run the generated command.
Either copy and paste the generated command into the command line or you use the --run option to
execute it:

zkey cryptsetup --volumes /dev/mapper/disk1 --run
Executing: cryptsetup plainOpen --key-file '/etc/zkey/repository/secure_xtskey1.skey'
--key-size 1024 --cipher paes-xts-plain64 /dev/mapper/disk1 enc-disk1

You can check the result of this step with the command ls /dev/mapper/. Any I/O operation to or
from /dev/mapper/enc-disk1 is then transparently encrypted or decrypted onto the /dev/
mapper/disk1 volume. As of now, do not write to this volume directly.

4. Open the volume during the system startup.
Use the zkey crypttab command to generate an entry in /etc/crypttab to persistently configure
an opening during system startup.

zkey crypttab --volumes /dev/mapper/disk1
enc-disk1 /dev/mapper/disk1 /etc/zkey/repository/secure_xtskey1.skey
 plain,cipher=paes-xts-plain64,size=1024,hash=plain

Copy the generated crypttab entry into file /etc/crypttab to configure unlocking during system
startup. The generated output must be in one line. Each line describes an encrypted volume and
assigns the secure key to be used for encryption and decryption of the volume:

64 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

/etc/crypttab
#
See crypttab(5) for more information.
#
#
Target Source device Key file Options
enc-disk1 /dev/mapper/disk1 /etc/zkey/repository/secure_xtskey1.skey plain,cipher=paes-xts-plain64,
 size=1024,hash=plain

The format of the /etc/crypttab file depends on your Linux distribution. See the crypttab man
page for more details.

Note: The /etc/crypttab file might not be located on an encrypted volume.

What to do next
Once you have opened an encrypted logical volume either with the cryptsetup command (step “2” on
page 64), or implicitly during system startup (step “4” on page 64), you can use the opened
volume /dev/mapper/enc-disk1 like any other block device. Typical next steps are:

• If you want to manage your encrypted volumes using LVM, create LVM physical volumes and add them
to an LVM volume group.

• Create a file system on the encrypted logical volume.
• Create a mount point and update /etc/fstab to later mount the file system on the encrypted logical

volume or LVM logical volume.

Encrypting an unencrypted volume using plain mode
If you want to integrate unencrypted data residing on a volume into the infrastructure for protected
volume encryption using plain mode, you need to perform the task to transform an unencrypted partition
into an encrypted one.

This topic presents two methods with which you can achieve this task:

1. For LVM physical volumes, you can use the pvmove LVM command. Refer to the procedure described
in “Migrating to an encrypted LVM physical volume” on page 25 and perform the steps according to
plain mode.

2. You can copy existing content to a new encrypted volume in plain mode and delete the original data.
Refer to the procedure described in “Migrating data to a new encrypted volume” on page 31 and
perform the steps according to plain mode.

Note: An encrypted volume in plain mode does not contain a LUKS header, thus the full size of the volume
is available for use.

After you have migrated the data from the unencrypted volume to the encrypted one, be sure to securely
delete any unencrypted data according to your security policies. For example, you can use badblocks or
shred to overwrite unencrypted data with random data multiple times.

Changing a master key using plain mode
In plain mode, you must specify the secure key when opening the volume. For a master key change, you
must re-encipher these secure keys with the new master key.

If the secure keys are stored in a file or in a secure key repository, you can use the zkey utility to perform
the re-enciphering. Read “Re-enciphering secure keys from a file” on page 51 or “Re-enciphering secure
keys from a repository” on page 48 for more information.

Chapter 9. Encrypting volumes without LUKS 65

Opening an encrypted volume in plain mode
The need to open an encrypted volume can occur during normal runtime or during Linux startup. Special
processing is required if the volume is required early in the system startup process (for example, if it is
part of an LVM volume group on which the root file system resides).

Automatically opening encrypted volumes in plain mode at Linux system startup
Automatically opening one or more volumes at Linux startup allows you to perform automated reboots.

For each encrypted volume that is required during the Linux startup, yon need to edit /etc/crypttab.
Add an entry for each required volume. For examples of valid /etc/crypttab entries, read the
information from step “4” on page 64 in “Volume encryption with cryptsetup plain mode ” on page 63.

Opening and mounting an encrypted volume at user login in plain mode
Automatically opening one or more partitions at user login has the advantage that only a certain user can
access the data.

Before you begin

You must install the pam_mount package. See the web site at http://pam-mount.sourceforge.net/. Some
Linux distributions provide a pam_mount package.

Ensure that the pam_mount package is configured and the pam_mount.so PAM module is used in the
auth and session sections of the PAM configuration files. Your Linux distribution might already perform
this for you. See also the pam_mount man page for more information.

About this task
In this scenario you create a user called alice. The home directory for this user is stored on an
encrypted volume. The encrypted volume is opened when the user logs in and is respectively closed at
logout. The encrypted volume in this example is /dev/mapper/disk10.

Procedure

1. Create a user and set an initial password.
For example, issue:

useradd -G users -m -s /bin/bash alice
passwd alice
Enter new UNIX password: alice
Retype new UNIX password: alice
passwd: password updated successfully

2. Create a secure key in the secure key repository for user alice with the zkey command.

zkey generate --name user-alice-xts --keybits 256 --xts \
--volumes /dev/mapper/disk10:user-enc-alice --volume-type PLAIN \
--apqns 03.0039,04.0039

Note: Do not use the --sector-size parameter here, because pam_mount does not support sector
sizes other than the default (512 bytes).

3. Format and open the encrypted volume, /dev/mapper/disk10, and create a file system that is later
mounted as home directory for user alice.
For example:

66 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

http://pam-mount.sourceforge.net/

zkey cryptsetup --volumes /dev/mapper/disk10 --run
Executing: cryptsetup plainOpen --key-file '/etc/zkey/repository/user-alice-xts.skey'
--key-size 1024 --cipher paes-xts-plain64 /dev/mapper/disk10 user-enc-alice

mkfs.ext4 -L USER_ALICE /dev/mapper/user-enc-alice

cryptsetup close user-enc-alice

You can optionally mount the file system temporarily to copy or migrate existing files for the user.
4. Edit the pam_mount configuration file /etc/security/pam_mount.conf.xml. Add a volume

definition for alice.

<volume user="alice" path="/dev/mapper/disk10" mountpoint="~"
 fstype="crypt" fskeycipher="none"
 fskeypath="/etc/zkey/repository/user-alice-xts.skey"
 cipher="paes-xts-plain64" fskeyhash="plain"/>

See also the pam_mount.conf man page for details.

Results
Now alice can log in to the Linux instance. The pam_mount PAM module opens the encrypted volume
and creates a device under /dev/mapper/ (for example, /dev/mapper/_dev_dm_21) which is then
mounted as /home/alice.

ssh alice@localhost
alice@localhost's password: alice
Welcome to your favourite Linux distribution

Last login: Mon Aug 06 16:28:45 2018 from 127.0.0.1

alice@localhost:~$ df | grep alice
/dev/mapper/_dev_dm_21 20507216 45080 19397384 1% /home/alice

alice@localhost:~$

Chapter 9. Encrypting volumes without LUKS 67

68 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Chapter 10. Encrypting swap disks with protected
keys

Within the infrastructure for protected volume encryption, you can generate random protected AES keys
without requiring a cryptographic coprocessor. Use these keys for encrypting swap disks, or for other use
cases, where keys may be ephemeral.

You can generate volatile protected keys from random data without requiring a cryptographic
coprocessor in two ways:

• A program or tool can read from one of the binary read-only sysfs attributes which are located in
the /sys/devices/virtual/misc/pkey/protkey directory. Each time such an attribute is read, a
new random AES protected-key token of the corresponding format is returned. Refer to the applicable
Device Drivers, Features, and Commands for information about available key token formats.

• You can issue ioctl calls on the misc character device /dev/pkey to generate and handle protected
keys, for example, PKEY_GENPROTKEY. Refer to the applicable Device Drivers, Features, and
Commands for more information about available ioctl calls.

During the generation process, the underlying effective key is never exposed in clear in memory. The
paes_s390 kernel module can use these protected keys in the same way as a protected key derived from
a secure key.

This feature is mainly useful for encrypting swap disks, or for any other use cases where the keys may be
ephemeral, that means, that their life time does not extend over different boot cycles or machine
migrations.

Important: The protected key is volatile and cannot be recreated if lost, for example during a reboot. Do
not use protected keys that are generated from random data to encrypt persistent data. Use such a
protected key only to protect transient data. Especially, KVM guest migration, z/VM live guest relocation
in a single system image (SSI), or suspend or resume actions are not supported with such randomly
generated protected keys.

If you set up your environment as described in “Setting up an encrypted swap disk” on page 69, a
volatile random protected key is automatically generated to be used for swap disks.

Setting up an encrypted swap disk
You can use a volatile protected key generated by the pkey device driver to encrypt a swap disk.

About this task

Because swap disks are discarded on reboot, volatile encryption keys are an option. You can generate
volatile protected keys or secure keys from random data.

Important: Use a protected key based on random data only for cases where the key is not needed after a
reboot. In particular, do not use such a key with:

• KVM guest migration
• z/VM live guest relocation in a single system image (SSI)
• Suspend and resume

Procedure

1. Add an entry to /etc/crypttab.
To encrypt the swap device using a protected key, the entry must point to one of the sysfs attributes
within the /sys/devices/virtual/misc/pkey/protkey/ directory. Use the attribute for the
required key type (see Chapter 10, “Encrypting swap disks with protected keys,” on page 69).

© Copyright IBM Corp. 2018, 2020 69

For example:

<name> <device> <password> <options>
swap_disk /dev/mapper/disk99 /sys/devices/virtual/misc/pkey/protkey/protkey_aes_256_xts swap,\
 cipher=paes-xts-plain64,\
 size=1280

The entry must be all in one line without continuation characters.

The swap option causes an mkswap command to be performed after the dm-crypt volume is set up.

Tip: Consider adding the sector-size=4096 option to increase the performance of dm-crypt
encrypted disks with large block sizes.

2. Add an entry to /etc/fstab to use the device-mapper device named swap_disk as swap device:
For example:

<filesystem> <dir> <type> <options> <dump> <pass>
/dev/mapper/swap_disk none swap defaults 0 0

3. Ensure that the pkey kernel module is loaded during system startup before /etc/crypttab is
evaluated.
Ensure that a configuration file such as pkey.conf or modules.conf is in the .../modules-
load.d/ directory. The configuration file must contain:

pkey

The .conf file(s) in .../modules-load.d/ contain the modules to be loaded early during startup,
before the swap disk is initiated.

Results
During system startup, /etc/crypttab is evaluated, and a dm-crypt device is set up in plain mode as a
swap device, using an AES protected key in XTS cipher mode. The random protected AES key is read
from /sys/devices/virtual/misc/pkey/protkey/protkey_aes_256_xts. Its size is 2x80 bytes,
which is 1280 bits.

The swap option causes that an mkswap is performed after the dm-crypt volume has been set up. The
entry in /etc/fstab then causes the device-mapper device named swap_disk to be used as swap
device.

Linux now runs with a swap device that is encrypted with a protected key.

What to do next

For reasons of security, you might consider to use a secure key instead of a protected key for encrypting
swap disks. In such a case, you can generate a new random secure key from a cryptographic coprocessor
using another set of sysfs attributes. You do not need to store and manage the secure key within the
secure key repository, because you want to generate a new secure key at boot time, that is, each time you
use a new swap disk.

A new random secure key is generated by a cryptographic coprocessor when reading from the
ccadata_aes_256_xts attribute in the /sys/devices/virtual/misc/pkey/ccdata/ directory.

Add an entry to /etc/crypttab, similar to the one for protected keys, but now using a sysfs attribute
from the .../ccadata/ directory.

<name> <device> <password> <options>
swap_disk /dev/mapper/disk99 /sys/devices/virtual/misc/pkey/ccadata/ccadata_aes_256_xts swap,\
 cipher=paes-xts-plain64,\
 size=1024

The required entry to /etc/fstab is the same as for protected keys.

70 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Appendix A. zkey - Managing secure keys
Use the zkey command to generate, validate, and re-encipher secure AES keys for Crypto Express CCA
and EP11 coprocessors.

The zkey command is used in the context of a cryptographic domain of a Crypto Express adapter in CCA
coprocessor mode or in EP11 mode. At least one domain must have an AES master key configured. Such
a domain of a cryptographic coprocessor maintains three registers for master keys: The OLD, the NEW,
and the CURRENT. In the following description, OLD, NEW, and CURRENT refer to the master key
registers of the applicable domain.

Note: A cryptographic coprocessor configured in EP11 mode does not contain an OLD master key
register.

You can either manage your keys as key files in the file system or use a secure key repository. You can set
up the secure key repository with the environment variable ZKEY_REPOSITORY. The default repository
is /etc/zkey/repository.

Note: If multiple domains on potentially multiple CCA or EP11 coprocessors coprocessors are available,
the zkey command may use any of those domains, and therefore, coprocessors.

Attention: Handle your cryptographic keys with care. The loss of a key can result in data loss.

Prerequisites

• The zkey command requires access to a cryptographic domain that holds an AES master key.
• The zkey command requires the pkey kernel module. For more information, see chapter Protected key

device driver in Device Drivers, Features, and Commands, SC33-8411 available on the IBM Knowledge
Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html.

• The reencipher subcommand requires the CCA host library (libcsulcca.so) to be installed for secure
keys of type CCA-AESDATA or CCA-AESCIPHER. This library is part of the CCA software package.

The reencipher subcommand requires the Linux on Z Enterprise PKCS #11 (EP11) Support Program
(EP11 host library) for secure keys of type EP11-AES to be installed.

To download the required packages, go to www.ibm.com/security/cryptocards and proceed to the
software download page for your IBM cryptographic coprocessor version.

zkey syntax - base syntax
zkey subcommand

-V

where
subcommand

is described in the following sections:

• “Generating a secure key” on page 72
• “Validating secure keys” on page 74
• “Re-encipher secure keys” on page 75
• “Import a secure key into the the secure key repository” on page 76
• “Export a secure key from the secure key repository” on page 77
• “List secure keys in the secure key repository” on page 78
• “Delete secure keys from the secure key repository” on page 79

© Copyright IBM Corp. 2018, 2020 71

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html
http://www.ibm.com/security/cryptocards

• “Change the properties of secure keys in the secure key repository” on page 79
• “Rename a secure key in the secure key repository” on page 80
• “Copy a secure key in the secure key repository” on page 81
• “Generate a crypttab entry for a volume” on page 81
• “Generate a cryptsetup command for a volume” on page 82
• “Convert an AES DATA key into an AES CIPHER key” on page 84

-V or --verbose
displays additional information during processing.

-h or --help
displays help information for the command. Specify zkey subcommand -h to get help for a
subcommand.

-v or --version
displays the version number of zkey.

Generating a secure key

zkey syntax - generating a secure key
zkey

 gen -N  <name>

 -d  <text> -t  <volume-type> -l  <volumes> -a  <AP queues> --no-apqn-check

 -S 512

 -S  <bytes>

 gen  <secure-key- file>

 -K CCA-AESDATA

 -K  <key-type>

 -k 256

 -k  <size> -x -c  <clear-key-file>

where

gen or generate
generates a new secure AES key either randomly within the cryptographic coprocessor, or from a
clear AES key specified as input. You can store the key in a file or in the secure key repository.

-N <name> or --name <name>
specifies the name of the secure key. The key is generated into the secure key repository. The name
can contain any of the following characters:
0-9 A-Z a-z ! @ # $ & ^ ~ () = +

-t <volume-type> or --volume-type <volume-type>
Optional. Specifies the volume type of the associated volumes used with dm-crypt. Possible values
are PLAIN or LUKS2 (not case-sensitive). If omitted, LUKS2 is used. This option is only available if
zkey has been compiled with LUKS2 support enabled. If LUKS2 support is not enabled, the default
volume type is plain.

-d <text> or --description <text>
Optional. Describes the secure key.

-l <volumes> or --volumes <volumes>
Optional. You can associate volumes with a key. Each volume association specifies the name of the
block device (for example /dev/mapper/disk1) and the device mapper name separated by a colon.
Separate multiple volume associations with a comma, for example:

-l /dev/mapper/disk1:enc-disk1,/dev/mapper/disk2:enc-disk2

-a <AP queues> or --apqns <AP queues>
Optional. You can associate AP queue numbers with a key. Each AP queue association specifies a
device number and domain separated by a period. Separate multiple AP queue associations with a
comma, for example:

72 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

-a 00.0005,00.001f,00.004d

When at least one APQN is specified, then the first one is used to generate the key. If no APQNs are
specified, then an APQN is selected automatically.

All specified APQNs must be online, unless the --no-apqn-check option is specified.

--no-apqn-check
Optional. Disable checking whether the specified APQNs are available and have the same master key.
With this option, a currently non-existing APQN can be associated with a secure key. This is useful to
associate APQNs that exist only on other systems, such as disaster recovery systems, but not on the
current system. When generating keys, at least one of the specified APQNs must be available to
generate the key.

-S <bytes> or --sector-size <bytes>
Optional. Specifies the sector size in bytes used with dm-crypt. It must be a power of two in the range
512 - 4096 bytes. The default sector size is 512 bytes.

<secure-key-file>
specifies the name of the file that holds the secure key if you are not using a repository.

-K <key-type> or --key-type <key-type>
Optional. Specifies the type of the secure key. To generate an AES DATA key, specify CCA-AESDATA,
to generate an AES CIPHER key, specify CCA-AESCIPHER. To generate an EP11 AES secure key for
use on cryptographic coprocessors configured in EP11 mode, specify EP11-AES. If this parameter is
omitted, then an AES DATA key (CCA-AESDATA) is generated as default.

This applies to both, keys stored in the secure key repository, as well as keys stored in a file outside of
the secure key repository.

-k or --keybits <size>
specifies the size of the AES key to be generated in bits. Valid sizes are 128, 192, and 256 bits. Secure
keys for use with the XTS cipher mode can only use keys of 128 or 256 bits. The default is 256 bits.

-x or --xts
generates a secure AES key for the XTS cipher mode. A secure AES key for the XTS cipher mode
consist of two concatenated secure keys.

-c or --clearkey <clear-key-file>
specifies a file path that contains the clear AES key in binary form. If the --keybits option is
omitted, the size of the specified file determines the size of the AES key. If the --keybits option is
specified, the size of the specified file must match the specified key size. Valid file sizes are 16, 24, or
32 bytes, and for the XTS cipher mode 32 or 64 bytes.

Examples

• To generate a 256-bit secure AES DATA key and store it in file seckey.bin:

zkey generate seckey.bin

• To generate a 128-bit secure AES CIPHER key for the XTS cipher mode and store it in file seckey.bin:

zkey generate seckey.bin --keybits 128 --xts -K CCA-AESCIPHER

• To generate a secure AES DATA key from the clear key in file clearkey.bin and store it in file
seckey.bin:

zkey generate seckey.bin --clearkey clearkey.bin

• To generate a random 256-bit secure AES DATA key and store it in the secure key repository under the
name seckey:

zkey generate --name seckey

Appendix A. zkey - Managing secure keys 73

• To generate a random 256-bit secure AES DATA key, store it in thesecure key repository under the
name seckey, and associate it with block device /dev/mapper/disk1 and device-mapper name
enc-disk1, and associate it with AP queue 03.004c:

zkey generate --name seckey --volumes /dev/mapper/disk1:enc-disk1 --apqns 03.004c

Validating secure keys

zkey syntax - validating a secure key or keys
zkey

 val

 -N  <key name> -a  <AP queue numbers> --no-apqn-check

 val  <secure-key-file>

where

val or validate
checks whether the specified file contains a valid secure key. It also displays the attributes of the
secure key, such as key size, whether it is a secure key that can be used for XTS cipher mode, and the
master key register with which the secure key is enciphered.

<secure-key-file>
specifies the name of the file that holds the secure key if you are not using the secure key repository.

-N <name> or --name <key name>
specifies the key name. You can validate a specific key by specifying its name, or you can use
wildcards to match keys to be validated. If no key name is specified, all keys in the secure key
repository are validated.

-a <AP queues> or --apqns <AP queues>
Optional. Validate those secure keys which are associated with the specified cryptographic adapters
(APQNs). You can use wildcards for the APQN specification. When wildcards are used you must quote
the value. If both option --name and option --apqns are specified then all secure keys contained in
the secure key repository that match both patterns are validated.

--no-apqn-check
Optional. Disable checking whether the specified APQNs are available.

Examples

• To validate the secure key in seckey.bin and display its attributes:

zkey validate seckey.bin

• To validate the secure key seckey in the secure key repository and display its attributes.

zkey validate --name seckey

74 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Re-encipher secure keys

zkey syntax - reencipher a secure key or keys

zkey re-N <name>

-a <AP queues>

-i

-c

-s

re <secure_key_file>
current location

-f <output_file>

--to-new

--from-old

where

re or reencipher
re-enciphers an existing secure key with a new master key. A secure key must be re-enciphered when
the master key of the CCA or EP11 coprocessor changes.

<secure_key_file>
specifies the name of the file that holds the secure key when you are not using the secure key
repository.

-N <name> or --name <name>
specifies the key name. You can re-encipher a specific key by specifying its name, or you can use
wildcards to match keys to be re-enciphered.

-a <AP queues> or --apqns <AP queues>
Optional. Specifies one or more AP queues for keys in the secure key repository. All keys that are
associated with the specified AP queues are re-enciphered. You can use wildcards. Separate multiple
AP queues with a comma. If neither key name nor AP queue is specified, then all keys are re-
enciphered. If both key name and AP queues are specified then only those keys that match both
specifications are re-enciphered.

-i or --in-place
forces an in-place re-enciphering. This is the default for OLD to CURRENT.

-s or --staged
stores the key in a third file (<key-name>.renc) in the secure key repository. The key in <key-
name>.skey is still valid. Once a new master key has been set, you must rerun the reencipher
command with option --complete. This copies the file <key-name>.renc to <key-name>.skey and
thus completes the staged re-enciphering. Re-enciphering from CURRENT to NEW is by default done
in staged mode.

-p or --complete
completes a staged re-enciphering.

-n or --to-new
re-enciphers a secure key that is currently enciphered with the master key in the CURRENT register
with the master key in the NEW register.

-o or --from-old
re-enciphers a secure key that is currently enciphered with the master key in the OLD register with the
master key in the CURRENT register.

If both options are specified, a secure key that is currently enciphered with the master key in the OLD
register is re-enciphered with the master key in the NEW register.

If both options are omitted, zkey automatically detects whether the secure key is currently
enciphered with the master key in the OLD register or with the master key in the CURRENT register.

Appendix A. zkey - Managing secure keys 75

If currently enciphered with the master key in the OLD register, it is re-enciphered with the master
key in the CURRENT register. If it is currently enciphered with the master key in the CURRENT
register, it is re-enciphered with the master key in the NEW register.

Note: This option is not available for secure keys of type EP11-AES, because an EP11 cryptographic
coprocessor has only two registers to store master keys, CURRENT and NEW.

-f or --output <output_file>
specifies the name of the output file to which the re-enciphered secure key is written if you are not
using the secure key repository. If this option is omitted, the re-enciphered secure key is replaced in
the file that currently contains the secure key.

Examples

• To re-encipher the secure key in seckey.bin, which is currently enciphered with the master key in the
OLD register with the master key in the CURRENT register, and replace the secure key in seckey.bin
with the re-enciphered key:

zkey reencipher seckey.bin --from-old

• To re-encipher the secure key in seckey.bin, which is currently enciphered with the master key in the
CURRENT register, with the master key in the NEW register, and save the re-enciphered secure key to
seckey2.bin:

zkey reencipher seckey.bin --to-new --output seckey2.bin

• To re-encipher the secure key seckey in the the secure key repository.

zkey reencipher --name seckey

• Re-enciphers all secure keys contained in thethe secure key repository that are associated with AP
queue 03.004c.

zkey reencipher --apqns 03.004c

Import a secure key into the the secure key repository

zkey syntax - import a secure key into the repository
zkey im <secure_key_file> -N  <key_ name>

 -t  <volume_ type>

 -d  <description> -l  <volumes> -a  <AP queues>

 --no-apqn-check

 -S  512

 -S  <bytes>

where:

im or import
imports a secure key into the secure key repository.

<secure_key_file>
specifies the name of the file that holds the secure key that you want to import.

-N <key_name> or --name <key_name>
specifies the name of the secure key.

76 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

-t <volume_type> or --volume-type <volume_type>
Optional. Specifies the volume type of the associated volumes used with dm-crypt. Possible values
are PLAIN orLUKS2 (not case-sensitive). If omitted, LUKS2 is used. This option is only available if
zkey has been compiled with LUKS2 support enabled. If LUKS2 support is not enabled, the default
volume type is plain.

-d <description> or --description <description>
Optional. Describes the secure key.

-l <volumes> or --volumes <volumes>
Optional. You can associate volumes with a key. Each volume association specifies the name of the
block device (for example /dev/mapper/disk1) and the device mapper name separated by a colon.
Separate multiple volume associations with a comma; for example:

-l /dev/mapper/disk1:enc-disk1,/dev/mapper/disk2:enc-disk2

-a <AP queues> or --apqns <AP queues>
Optional. You can associate AP queue numbers with a key in the . Each AP queue association specifies
an device number and domain separated by a period. Separate multiple AP queue associations with a
comma; for example:

-a 00.0005,00.001f,00.004d

All specified APQNs must be online, unless option --no-apqn-check is specified.

--no-apqn-check
Optional. Do not check whether the specified APQNs are available. Use this option to associate APQNs
with a secure AES key that are currently not available.

-S <bytes> or --sector-size <bytes>
Optional. Specifies the sector size in bytes used with dm-crypt. The value must be a power of two in
the range 512 - 4096 bytes. The default sector size is 512 bytes.

Note: The zkey import command can also import CCA AES CIPHER secure keys and EP11 AES secure
keys. When importing an AES CIPHER key, additional checks are performed on this key, such as a check
of the history section of the secure key. If a potentially insecure setting is detected, you are prompted to
confirm the import. Imported AES CIPHER keys are restricted for export in any way, regardless of the
export setting of the imported keys. The only export that is kept allowed is the export to CPACF protected
keys, so that these keys can be used with the PAES cipher.

Export a secure key from the secure key repository

zkey syntax - export a secure key from the repository
zkey ex <secure_key_file> -N  <name>

where

ex or export
exports a key specified by name.

<secure_key_file>
specifies the name of the file that holds the secure key after you have exported it.

-N <name> or --name <name>
specifies the name of the secure key that you want to export.

Appendix A. zkey - Managing secure keys 77

List secure keys in the secure key repository

zkey syntax - list secure keys in the key repository
zkey li

 -N  <key_name> -t  <volume_type> -l  <volumes> -a  <AP queues>

 -K  <key_type>

where

li or list
lists a key specified by name. You can use wildcards to match keys to be listed. If no name, volume, or
AP queue is specified, all keys are listed.

-N <key_name> or --name <key_name>
Optional. Specifies the name of the secure key.

-t <volume_type> or --volume-type <volume_type>
Optional. Specifies the volume type of the associated volumes used with dm-crypt. Possible values
are PLAIN orLUKS2 (not case-sensitive). Only keys with the specified volume type are listed. This
option is only available if zkey has been compiled with LUKS2 support enabled.

-l <volumes> or --volumes <volumes>
Optional. Specifies one or more volumes and device mapper names associated with a key. Separate
multiple volumes with a comma. All keys that are associated with the specified volumes are listed.

You can use wildcards for the volumes specification. If a device mapper name is specified as part of
the volume association, then it is used as part of the filter. If no device mapper name is specified as
part of a volume association, only the volume itself is used as filter.

-a <AP queues> or --apqns <AP queues>
Optional. Specifies one or more AP queues of crypto adapters. Separate multiple AP queues with a
comma. All keys that are associated with the specified AP queues are listed. You can use wildcards
for the AP queue specification.

-K <key type> or --key-type <key type>
Optional. Specifies the type of the secure keys to be listed. Valid values are CCA-AESDATA, CCA-
AESCIPHER, or EP11-AES.

Examples

• To list all secure keys in the secure key repository and display their attributes:

zkey list

• To list all secure keys in the secure key repository with names ending with "key", and of type AES
CIPHER keys:

zkey list --name "*key" -K CCA-AESCIPHER

• To filter your secure keys in the secure key repository for EP11 AES secure keys:

zkey list -K EP11-AES

78 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Delete secure keys from the secure key repository

zkey syntax - delete secure keys from a key repository
zkey rem -N  <key_name>

 -F

where:

rem or remove
deletes a key specified by name.

-N <key_name> or --name <key_name>
Specifies the name of the secure key.

-F or --force
Optional. Does not prompt for confirmation of key removal.

Change the properties of secure keys in the secure key repository

zkey syntax - change the properties of secure keys in a key repository
zkey ch -N  <key_name>

 -t  <volume_type> -d  <description>

 -l  <volumes> -a  <AP queues> --no-apqn-check

 -S  512

 -S  <bytes>

where

ch or change
changes the description, volume association or AP queue association of a key specified by name.

-N <key_name> or --name <key_name>
Specifies the name of the secure key.

-t <volume_type> or --volume-type <volume_type>
Optional. Specifies the volume type of the associated volumes used with dm-crypt. Possible values
are PLAIN orLUKS2 (not case-sensitive). If omitted, LUKS2 is used. This option is only available if
zkey has been compiled with LUKS2 support enabled. If LUKS2 support is not enabled, the default
volume type is plain.

-d <description> or --description <description>
Optional. Specifies a description of the secure key. If a description exists, it is overwritten.

-l <volumes> or --volumes <volumes>
Optional. Specifies one or more volumes and device mapper names associated with a key. Separate
multiple volumes with a comma. All keys that are associated with the specified volumes are listed.

You can use add, delete, or overwrite volume specifications:

• To add volumes to the current associations, prefix the list of volumes that are to be added with a
plus sign (+).

• To remove volumes from the current associations, prefix the list of volumes that are to be removed
with a minus sign (-).

• If neither minus nor plus is used, then the volume associations are set, overwriting any existing
associations.

Appendix A. zkey - Managing secure keys 79

In one command, you can either add, delete, or set volume associations.

-a <AP queues> or --apqns <AP queues>
Optional. Specifies one or more AP queues of crypto adapters. Separate multiple AP queues with a
comma.

You can use add, delete, or overwrite AP queue specifications:

• To add AP queues to the current associations, prefix the list of volumes that are to be added with a
plus sign (+).

• To remove AP queues from the current associations, prefix the list of volumes that are to be
removed with a minus sign (-).

• To set AP queues, do not use neither minus nor plus sign. Then the AP queues associations are set,
overwriting any existing associations.

In one command, you can either add, delete, or set AP queue associations.

All APQNs being added or set (replaced) must be online, unless option --no-apqn-check is
specified.

--no-apqn-check
Optional. Do not check whether the specified APQNs are available. Use this option to associate APQNs
with a secure AES key that are currently not available.

-S <bytes> or --sector-size <bytes>
Optional. Specifies the sector size in bytes used with dm-crypt. The value must be a power of two in
the range 512 - 4096 bytes. The default sector size is 512 bytes. If you specify 0, the default is used.

Examples

• To change the secure key seckey in the secure key repository and add volume /dev/mapper/disk2
with device-mapper name enc-disk2 to the list of associated volumes of this secure key:

zkey change --name seckey --volumes +/dev/mapper/disk2:enc-disk2

• To change the secure key seckey in the secure key repository and remove AP queue 03.004c from the
list of associated AP queues:

zkey change --name seckey --apqns -03.004c

Rename a secure key in the secure key repository

zkey syntax - rename a secure key in a key repository
zkey ren -N  <old_key_name> -w  <new_key_name>

where

ren or rename
renames a key specified by name.

-N <old_key_name> or --name <old_key_name>
specifies the name of the secure key.

-w <new_key_name> or --newname <new_key_name>
specifies the name to which the secure key is renamed.

80 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Copy a secure key in the secure key repository

zkey syntax - copy a secure key in the key repository
zkey co -N  <key_name> -w  <new_key_name>

 -l  <volumes>

where:

co or copy
copies a key specified by name. Volume associations are not copied.

-N <key_name> or --name <key_name>
specifies the name of the secure key.

-w <new_key_name> or --newname <new_key_name>
specifies the name to which the secure key is copied.

-l <volumes> or --volumes <volumes>
Optional. You can associate volumes with the copied key. Each volume association specifies the name
of the block device (for example /dev/mapper/disk1) and the device mapper name separated by a
colon. Separate multiple volume associations with a comma; for example:

-l /dev/mapper/disk1:enc-disk1,/dev/mapper/disk2:enc-disk2

Generate a crypttab entry for a volume

zkey syntax - generate a crypttab entry for a volume

zkey cryptt

 -t  <volume_type>

 All volumes

 -l  <volumes>

 --key-file  <file_name> --keyfile-offset  <bytes>

 --keyfile-size  <bytes> --tries  <number>

where

cryptt or crypttab
generates crypttab entries for one or more volumes and any device mapper names. crypttab
auto-mounts encrypted volumes during system start-up. If no volumes are specified, crypttab
entries are generated for all volumes associated with a key.

-t <volume_type> or --volume-type <volume_type>
Optional. Specifies the volume type of the associated volumes used with dm-crypt. Possible values
are PLAIN orLUKS2 (not case-sensitive). Only keys with the specified volume type are selected to
generate crypttab entries for. This option is only available if zkey has been compiled with LUKS2
support enabled.

-l <volumes> or --volumes <volumes>
Optional. Specifies one or more volumes and device mapper names associated with a key. Separate
multiple volumes with a comma. All keys that are associated with the specified volumes are listed.

You can use wildcards for the volumes association. If a device mapper name is specified as part of the
volume association, then it is used as part of the filter. If no device mapper name is specified as part
of a volume association, then only the volume itself is used as filter.

Appendix A. zkey - Managing secure keys 81

--key-file <file_name>
Reads the passphrase from the specified file. If this option is omitted, then you are prompted to enter
the passphrase interactively during system startup. The crypttab entries are generated for LUKS2
volumes based on this option, which is only available if zkey has been compiled with LUKS2 support
enabled.

--keyfile-offset <bytes>
Specifies the number of bytes to skip before starting to read in the file specified with option --key-
file. If omitted, the file is read from the beginning. When option --key-file is not specified, this
option is ignored. The crypttab entries are generated for LUKS2 volumes based on this option, which
is only available if zkey has been compiled with LUKS2 support enabled. Not all distributions support
the keyfile-offset option in crypttab entries.

--keyfile-size <bytes>
Specifies the number of bytes to be read from the beginning of the file specified with option --key-
file. If omitted, the file is read until the end. When --keyfile-offset is also specified, reading
starts at the offset. When option --key-file is not specified, this option is ignored. The crypttab
entries are generated for LUKS2 volumes based on this option, which is only available if zkey has
been compiled with LUKS2 support enabled. Not all distributions support the keyfile-size option
in crypttab entries.

--tries <number>
Specifies how often the interactive input of the passphrase can be re-entered during system startup.
The default is 3 times. When option --key-file is specified, this option is ignored, and the
passphrase is read only once from the file. This option is passed to the generated crypttab entries for
LUKS2 volumes, and is only available if zkey has been compiled with LUKS2 support enabled.

Example

To generate crypttab entries for all volumes that match the pattern /dev/mapper/disk*:

zkey crypttab --volumes "/dev/mapper/disk*"

Generate a cryptsetup command for a volume

zkey syntax - generate a cryptsetup command for a volume
zkey crypts

 -t  <volume_type> -l  <volumes>

 -open  <volumes> -format  <volumes>

 --key-file  <file_name> --keyfile-offset  <bytes>

 --keyfile-size  <bytes> --tries  <number> -r

where

crypts or cryptsetup
generates cryptsetup commands for one or more volumes and device mapper names. cryptsetup
commands mount the encrypted volumes. If no volumes are specified, cryptsetup commands are
generated for all volumes associated with a key in the secure key repository.

-t <volume_type> or --volume-type <volume_type>
Optional. Specifies the volume type of the associated volumes used with dm-crypt. Possible values
are PLAIN or LUKS2 (not case-sensitive). Only keys with the specified volume type are selected to

82 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

generate cryptsetup commands for. This option is only available if zkey has been compiled with
LUKS2 support enabled.

-l <volumes> or --volumes <volumes>
Optional. Specifies one or more volumes and device mapper names associated with a key. Separate
multiple volumes with a comma. All keys that are associated with the specified volumes are listed.

You can use wildcards for the volumes association. If a device mapper name is specified as part of the
volume association, it is used as part of the filter. If no device mapper name is specified as part of a
volume association, only the volume itself is used as filter.

--open
Optional. Generates cryptsetup luksOpen or cryptsetup plainOpen commands. For a plain
volume type, this is the default. This option can not be specified together with the --format option,
and is only available if zkey has been compiled with LUKS2 support enabled.

--format
Optional. Limits the generated commands to only generate cryptsetup luksFormat commands
for LUKS2 volumes (without generating cryptsetup luksOpen commands), and skip plain mode
volumes. For a LUKS2 volume type, this is the default. If specified for a plain volume type, then no
command is generated. This option can not be specified together with the --open option, and is only
available if zkey has been compiled with LUKS2 support enabled.

--key-file <file_name>
Reads the passphrase from the specified file. If this option is omitted, or if the file-name is - (a dash),
then you are prompted to enter the passphrase interactively. This option is passed to the generated
command(s) for LUKS2 volumes, and is only available if zkey has been compiled with LUKS2 support
enabled.

--keyfile-offset <bytes>
Specifies the number of bytes to skip before starting to read in the file specified with option --key-
file. If omitted, the file is read from the beginning. When option --key-file is not specified, this
option is ignored. This option is passed to the generated command(s) for LUKS2 volumes, and is only
available if zkey has been compiled with LUKS2 support enabled.

--keyfile-size <bytes>
Specifies the number of bytes to be read from the beginning of the file specified with option --key-
file. If omitted, the file is read until the end. When --keyfile-offset is also specified, reading
starts at the offset. When option --key-file is not specified, this option is ignored. This option is
passed to the generated command(s) for LUKS2 volumes, and is only available if zkey has been
compiled with LUKS2 support enabled.

--tries <number>
Specifies how often the interactive input of the passphrase can be re-entered. The default is 3 times.
When option --key-file is specified, this option is ignored, and the passphrase is read only once
from the file. This option is passed to the generated command(s) for LUKS2 volumes, and is only
available if zkey has been compiled with LUKS2 support enabled.

-q or --batch-mode
Optional. If specified, this option suppresses confirmation questions in the generated cryptsetup
command(s) by assuming an implicit confirmation.

-r or --run
Optional. Executes the cryptsetup commands. If one command fails, execution stops.

Example

To generate cryptsetup commands for the volumes that use the device-mapper name enc-disk1:

zkey cryptsetup --volumes "*:enc-disk1"

Note: For LUKS2 volumes, the generated cryptsetup luksFormat contains option --pbkdf pbkdf2
to set PBKDF2 as password based key derivation function. LUKS2 volumes typically default to Argon2i as
password based key derivation function, but this may cause out-of-memory errors when multiple
encrypted volumes are unlocked automatically at boot through /etc/crypttab. Because PAES uses

Appendix A. zkey - Managing secure keys 83

secure AES keys as volume keys, the security of the key derivation function used to encrypt the volume
key in the LUKS key slots is of less relevance.

Convert an AES DATA key into an AES CIPHER key

zkey convert - convert an AES DATA key into an AES CIPHER key
zkey convert -N  <key name> -K  <key type>

 --no-apqn-check

 -F

where

con or convert
converts an existing secure AES DATA key that is either contained in a secure key file or is stored in
the secure key repository into an AES CIPHER key. The reverse direction is not possible.

-N <name> or --name <name>
specifies the name of the secure key in the secure key repository that is to be converted.

-K <key_type> or --key-type <key_type>
specifies the type of the key to which the secure key is to be converted. You can only convert AES
DATA keys into AES CIPHER keys. So the only possible value is CCA-AESCIPHER.

--no-apqn-check
Optional. Specifies that no check should be performed whether the associated APQNs are available.

-F or --force
Optional. Specifies to not prompt for a confirmation when converting a key.

Example

Convert an AES DATA key to an AES CIPHER key:

zkey convert --name sec_data_key -K CCA-AESCIPHER

Additional examples for zkey generate

• Generate a secure key of length 256 bit from a random clear key and store it in file securekey.bin:

zkey generate securekey.bin --keybits 256

• Generate a secure AES CIPHER key from a binary clear key input file and store it in file
securekey.bin:

zkey generate securekey.bin --clearkey clearkey.bin -K CCA-AESCIPHER

If you want to securely erase the clear key, you can issue the command:

shred -u clearkey.bin

• Generate a secure key of length 256 bit for XTS cipher mode and store it in file securextskey.bin

zkey generate securextskey.bin --keybits 256 --xts

84 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Appendix B. zkey-cryptsetup - Managing LUKS2
volume keys

Use the zkey-cryptsetup command to validate and re-encipher secure AES keys of volumes encrypted
with LUKS2 and the PAES cipher.

These secure AES keys are enciphered with a master key of an IBM cryptographic coprocessor in CCA
coprocessor mode or EP11 coprocessor mode.

Prerequisites

• The zkey-cryptsetup reencipher command requires the CCA host library (libcsulcca.so) and tools
package to be installed for secure volume keys of type CCA-AESDATA or CCA-AESCIPHER. It requires
the Linux on Z Enterprise PKCS #11 (EP11) Support Program (EP11 host library) for secure volume keys
of type EP11-AES to be installed.

To download the required packages, go to www.ibm.com/security/cryptocards and proceed to the
software download page for your IBM cryptographic coprocessor version.

• The zkey-cryptsetup command requires the libcryptsetup library that comes as part of the
cryptsetup package. You require cryptsetup version 2.0.3 or newer available from https://gitlab.com/
cryptsetup/cryptsetup/.

• The zkey-cryptsetup command also requires the pkey kernel module. For more information, see
chapter Protected key device driver in Device Drivers, Features, and Commands, SC33-8411 available on
the IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html.

• You must have at least one IBM Crypto Express adapter configured as a CCA coprocessor or configured
as an EP11 coprocessor with an AES master key properly set up.

When you open a key slot contained in the LUKS2 header of the volume using zkey-cryptsetup, a
passphrase is required. You are prompted for the passphrase, unless option --key-file is specified.
Option --tries specifies how often a passphrase can be re-entered. When option --key-file is
specified, the passphrase is read from the specified file. You can specify options --keyfile-offset
and --keyfile-size to control which part of the key file is used as passphrase. These options behave
in the same way as with cryptsetup.

zkey-cryptsetup syntax

zkey-cryptsetup syntax
zkey-cryptsetup val  <volume>

re <volume>

-N -O

 -i

-s

-c

setv  <volume>

setk <volume> -m

-d <key_ file_name> -o <bytes> -l <bytes>

-T 3

-T <number> -D -V -q

© Copyright IBM Corp. 2018, 2020 85

http://www.ibm.com/security/cryptocards
https://gitlab.com/cryptsetup/cryptsetup/
https://gitlab.com/cryptsetup/cryptsetup/
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

where:

val or validate
validates a secure AES key of a volume encrypted with LUKS2 and the PAES cipher. It checks if the
LUKS2 header of the volume contains a valid secure key. It also displays the attributes of the secure
key, such as key sizes, whether it is a secure key that can be used for the XTS cipher mode, and the
master key register (CURRENT or OLD) with which the secure key is enciphered.

re or reencipher
re-enciphers an existing secure key with a new master key. A secure key must be re-enciphered when
the master key of the CCA CCA coprocessor changes.

setv or setvp
sets a verification pattern of the secure AES key of a volume encrypted with LUKS2 and the PAES
cipher. The verification pattern identifies the effective key used to encrypt the data on the volume.
The verification pattern is stored in a token in the LUKS2 header.

setk or setkey
sets a new secure AES key for a volume encrypted with LUKS2 and the PAES cipher. Use this
command to recover from an invalid secure AES key contained in the LUKS2 header. A secure AES key
contained in the LUKS2 header can become invalid when the CCA master key is changed without re-
enciphering the secure volume key.

<volume>
specifies the name of the volume that you want to work with.

-N or --to-new
The NEW register of a cryptographic coprocessor contains a new master key to be set. The master key
in the NEW register cannot be used until it is made the current master key. Use the --to-new option
to pro-actively re-encipher a secure key with the NEW master key before this key is made the
CURRENT key.

-O or --from-old
Use the --from-old option to re-encipher a secure volume key that is currently enciphered with the
master key in the OLD register with the master key in the CURRENT register. This option is only
available for secure keys of type CCA-AESDATA or CCA-AESCIPHER.

If both options --from-old and --to-new are specified, a secure volume key that is currently
enciphered with the master key in the OLD register is re-enciphered with the master key in the NEW
register.

If both options are omitted, zkey-cryptsetup automatically detects whether the secure volume
key is currently enciphered with the master key in the OLD register or with the master key in the
CURRENT register. If currently enciphered with the master key in the OLD register, it is re-enciphered
with the master key in the CURRENT register. If it is currently enciphered with the master key in the
CURRENT register, it is re-enciphered with the master key in the NEW register. If for this case the
NEW register does not contain a valid master key, then the re- encipher operation fails.

-i or --in-place
forces an in-place re-enciphering. This is the default for OLD to CURRENT.

-s or --staged
stores the key in a file <key-name>.renc in the repository. The key in <key-name>.skey is still valid.
Once a new CCA master key has been set, you need to rerun the reencipher command with option
--complete. This copies the file <key-name>.renc to <key-name>.skey and thus completes the
staged re-enciphering. Re-enciphering from CURRENT to NEW is by default done in staged mode.

-c or --complete
completes a staged re-enciphering.

-q or --batch-mode
Optional. This option is passed to the generated commands. It suppresses all confirmation questions.
These are assumed to be answered with YES. This enables a better automation of zkey-cryptsetup
commands.

86 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

-m <secure_key_file> or --master-key-file <secure_key_file>
Specifies the name of a file containing the secure AES key that is set as the new volume key.

-d <key_ file_name> or --key-file <key_ file_name>
Optional. Reads the passphrase from the specified file. If this option is not specified, or if the file-
name is "-" you are prompted for the passphrase.

-o <bytes> or --keyfile-offset <bytes>
Optional. Specifies the number of bytes to skip in the file specified with the --key-file option.
When not specified, the file is read from the beginning. If the --key-file option is not specified, this
option is ignored.

-l <bytes> or --keyfile-size <bytes>
Optional. Specifies the number of bytes to read from the file specified with option --key-file. When
not specified, the file is read until the end. When option --key-file is not specified, this option is
ignored.

-T <number> or --tries <number>
Optional. Specifies how often the interactive input of the passphrase can be retried. The default is 3
times. When option --key-file is specified, this option is ignored, and the passphrase is read only
once from the file.

-D or --debug
Displays additional debugging messages during processing. This option implies --verbose.

-V or --verbose
Displays additional information during processing.

Examples

• To re-encipher the secure key of the encrypted volume /dev/mapper/disk1 :

zkey-cryptsetup reencipher /dev/mapper/disk1

• To re-encipher the secure key of the encrypted volume /dev/mapper/disk1 in staged mode:

zkey-cryptsetup reencipher /dev/mapper/disk1 --staged

• To complete re-enciphering the secure key of the encrypted volume /dev/mapper/disk1:

zkey-cryptsetup reencipher /dev/mapper/disk1 --complete

• To re-encipher the secure key of the encrypted volume /dev/mapper/disk1 in in-place mode:

zkey-cryptsetup reencipher /dev/mapper/disk1 --in-place

• To re-encipher the secure key of the encrypted volume /dev/mapper/disk1 that is currently
enciphered with the master key in the OLD register with the master key in the NEW register:

zkey-cryptsetup reencipher /dev/mapper/disk1 --from-old --to-new

• To validate the secure key of the encrypted volume /dev/mapper/disk1 and display its attributes:

zkey-cryptsetup validate /dev/mapper/disk1

• To set the verification pattern of the secure key of the encrypted volume /dev/mapper/disk1:

zkey-cryptsetup setvp /dev/mapper/disk1

• To set the secure key contained in file seckey.key as the new key for the encrypted volume /dev/
mapper/disk1:

zkey-cryptsetup setkey /dev/mapper/disk1 --master-key-file seckey.key

Appendix B. zkey-cryptsetup - Managing LUKS2 volume keys 87

88 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Accessibility

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Documentation accessibility

The Linux on Z and LinuxONE publications are in Adobe Portable Document Format (PDF) and should be
compliant with accessibility standards. If you experience difficulties when you use the PDF file and want
to request a Web-based format for this publication send an email to eservdoc@de.ibm.com or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM
has to accessibility at

www.ibm.com/able

© Copyright IBM Corp. 2018, 2020 89

http://www.ibm.com/able

90 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

© Copyright IBM Corp. 2018, 2020 91

http://www.ibm.com/legal/copytrade.shtml

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

92 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

Index

A
accessibility 89
adjunct processor queue number

APQN 6
AES CIPHER 12
AES DATA 12
AES keys

managing with zkey 71
AES secure key

change in the secure key repository 40
copy/duplicate in the secure key repository 41
import into secure key repository 38
list from secure key repository 39
re-encipher 37
rename from secure key repository 40
validate 36, 46

AP queue 6
APQN

adjunct processor queue number 6
assumptions 9
auto-detection function

zkey 48, 51
automatically opening volumes 22
automatically unlocking partition

at Linux startup 66
in plain mode 66

automatically unlocking volumes 22

B
block cipher modes, See cipher modes
block devices in Linux on Z 3
block size combinations 56

C
CBC 13
CCA AES CIPHER 12
CCA AES DATA 12
CCA coprocessor 3, 11
CCA coprocessor mode 11
CCA cryptographic coprocessor 11
CCA master key

changing 48
re-enciphering secure keys 48

CCAcoprocessor mode 11
change

zkey command 40
change an AES secure key

in the secure key repository 40
changing CCA master key 48
changing master key

in plain mode 65
checking

cryptographic coprocessors 55
kernel modules 55

cipher modes
CBC 13
CTR 13
ECB 13
XTS 13

clean room environment 59
clear key available 59
clear key encrypted volume

re-encrypting onto new secure key encrypted volume 32
transform into secure key encrypted volume 32

clear key to secure key on new volume 32
clear key to secure key on same disk 32
clear key, definition 6
configuration of the infrastructure for protected volume
encryption 9
configuration verification 55
considerations

cipher mode 13
cryptographic coprocessor 11
device 11
secure key 12

convert
clear key to secure key encrypted 32
LUKS1 to LUKS2 32

coprocessor mode 11
copy

zkey command 41
copy an AES secure key

in the secure key repository 41
copying data to new encrypted volume 31
create a file system 66
creating encrypted volumes 17
Crypto Express cryptographic coprocessor 3
cryptographic adapter 3
cryptographic algorithm

paes 13
selecting 13

cryptographic card 3
cryptographic coprocessor

considerations 11
definition 6
replacing 52
replacing with different master key 53
replacing with same master key 52

cryptographic coprocessors
sharing master keys 52

cryptsetup
debugging 58
encryption in plain mode 63
zkey command 42

cryptsetup commands
generate 42

cryptsetup luksFormat 17
cryptsetup plain mode 63
cryptsetup plainOpen 63
crypttab

zkey command 41

Index 93

crypttab entry
generate from secure key repository 41

CTR 13

D
data

copying to new encrypted volume 31
migrating to new encrypted volume 31

debugging
cryptsetup 57
pkey 57
zkey-cryptsetup 57

debugging pkey 58
device considerations 11
disk password 66
distribution information v
dm-crypt volume 3
duplicate an AES secure key

in the secure key repository 41

E
ECB 13
effective key, definition 6
encrypted volume

creating
accessing 17

mounting at user login 23
opening at user login 23
transform into secure key encryption 31

encrypted volumes
managing 17

encrypting an unencrypted volume
in plain mode 65

environment variable
ZKEY_REPOSITORY 71

environment variable ZKEY_REPOSITORY 35
EP11 AES secure key 12
error handling

out-of-memory 58
etc/crypttab

editing 25
etc/fstab 17
examples

zkey 71
zkey-cryptsetup 85

export
zkey command 39

export an AES secure key
from secure key repository 39

F
file system

create 66
firmware master key, definition 6

G
generate

cryptsetup commands 42
zkey command 36

generate a secure key
in the secure key repository 36

generate secure key
in a file 63
in plain mode 63

generating a secure key 12

H
hardware prerequisites 9
hardware security module

HSM 6
HSM

hardware security module 6
HSM master key, definition 6

I
IBM Z cryptographic hardware 3
import

zkey command 38
import a secure key

into secure key repository 38
In-place option 44
infrastructure for protected volume encryption

components 3
concepts 1, 3
configuration 9
planning 11
prerequisites 9
required modules and components 13
sample system 15
secure key considerations 12
setting up 9
setup 3

K
key management 35

L
libcryptsetup 85
Linux

distribution v
Linux startup

automatically opening encrypted volumes 22
automatically unlocking encrypted volumes 22
unlocking partition automatically 66

list
zkey command 39

list an AES secure key
from secure key repository 39

loading modules 13
logical volume group 15
loss of master key 59
loss of secure key

recovering encrypted volumes with key from secure key
repository 60

LUKS
LUKS1 and LUKS2 3

LUKS volume encryption key
LVEK 3

94 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

LUKS1 3, 5
LUKS1 clear key

convert to LUKS2 secure key 32
LUKS2 5
LUKS2 header

paes-verification-pattern 45
LUKS2 secure key

convert from LUKS1 clear key 32
validate 47

LUKS2 volume key
re-encipher 44, 49
set verification pattern 45
setting a new 59
validate 44

LUKS2 volume key, definition 6
LUKS2 volume keys

managing with zkey-cryptsetup 43, 85
luksFormat 17
luksFormat command

generate 42
lvcreate 17
LVEK

LUKS volume encryption key 3
LVM physical volume

transforming unencrypted to encrypted 25
unencrypted to encrypted 25

LVM volume group 25

M
managing

encrypted disks or partitions 17
encrypted volumes 17
LUKS2 volume keys 43
secure key repository 35

managing keys 35
master key

changing 48
re-encipher LUKS2 volume key with zkey-cryptsetup 49
re-encipher secure key with zkey 48, 51
re-enciphering secure keys 48

master key change
in plain mode 65

master key loss 59
master key saving 59
master key, definition 6
master keys

sharing 52
MIGR_VOLGROUP 25
migrate data

from unencrypted volume into encrypted 65
in plain mode 65

migrating data to new encrypted volume 31
migrating unencrypted to encrypted LVM physical volume 25
modes of operation, See cipher modes
modprobe 13
mounting at user login

encrypted volume 23

N
new encrypted volume

migrating data 31

new secure LUKS2 volume key
setting 45

O
opening at user login

encrypted volume 23
opening encrypted volume 22
opening encrypted volumes

at Linux startup 22
out-of-memory

error handling 58

P
PAES 13
PAES cipher 3
paes-verification-pattern 45
PAM

module 66
pam_mount 66
pam_mount configuration 23
pam_mountconfiguration file 66
persistent unlocking during system startup 63
pervasive encryption 17
physical block size combinations 56
pkey

debugging 58
protected AES key 69

plain mode
automatically unlocking partition 66
changing master key 65
cryptsetup 63
encrypting an unencrypted volume 65
encryption with cryptsetup 63
generate secure key in a file 63
transform unencrypted partition into encrypted 65
unlocking encrypted volume 66
unlocking partition at user login 66

plainOpen
cryptsetup 63

plainOpen command
generate 42

planning 11
prerequisites

assumptions 9
hardware prerequisites 9
software prerequisites 9

problem resolution 55
protected key

swap disk 69
protected key, definition 6
protected keys

encrypting swap disks 69
pvcreate 17
pvextend 25
pvmove 25
pvremove 25

R
re-encipher

secure LUKS2 volume key 44

Index 95

re-encipher an AES secure key 37
re-encipher LUKS1 clear key to LUKS2 secure key 32
re-encipher secure key from a file 51
re-encipher secure key from the secure key repository 48
re-enciphering secure keys 48
re-encryption

from clear key to secure key 31
recovering

from invalid secure key 59
recovering encrypted volumes

with a secure key from the secure key repository 60
recovery 55
reencipher

zkey command 37
reencipher command (zkey-cryptsetup) 44
remove

zkey command 39
remove an AES secure key

from secure key repository 39
rename

zkey command 40
rename an AES secure key

from secure key repository 40
replacing a cryptographic coprocessor 52
replacing cryptographic coprocessor

with different master key 53
replacing with same master keycryptographic coprocessor
52
required modules 13
revision history v

S
same volume

convert LUKS1clear key to LUKS2 secure key 32
sample system

configuration 15
hardware components 15
software components 15

saving the master key 59
sector size combinations 56
secure AES key

export from secure key repository 39
remove from secure key repository 39

secure AES keys
managing with zkey 71

secure key
generate 36
generate in a file 63
import into secure key repository 38
in plain mode 63
re-encipher 37
re-encipher from a file 51
re-encipher from the secure key repository 48
re-encipher LUKS2 volume key 49
recovering from invalid 59
validate 36
validate from file 47

secure key (SK) 12
secure key considerations 12
secure key file 12
secure key from the repository

recovering encrypted volumes 60
secure key generation 12

secure key loss
recovering encrypted volumes with key from secure key
repository 60

secure key repository
change a secure key 40
copy a secure key 41
default location 35
export a secure key 39
generate a secure key 36
generate cryptsetup commands for volumes 42
generate crypttab entries for volumes 41
generate secure key 17
import a secure key 38
list secure keys 39
re-encipher a secure key 37
re-encipher secure key 48
recovering encrypted volumes 60
remove a secure key 39
rename a secure key 40
setting location 35
validate a secure key 36, 46

secure key, definition 6
secure keys

managing 71
validating 46

secure LUKS2 volume key
re-encipher 44
set verification pattern 45
validate 44

selecting a cryptographic algorithm 13
service information 57
set verification pattern

of secure LUKS2 volume key 45
setting new secure LUKS2 volume key 45
setup of sample system 15
setup of the infrastructure for protected volume encryption 9
setvp

set the verification pattern 25
setvp command (zkey-cryptsetup) 45
sharing master keys

on different cryptographic coprocessors 52
shred 12
shred command 31, 32
SK

secure key 12
software prerequisites 9
Staged mode option 44
Summary of changes v
swap disk

pkey-generated protected key 69
swap disks

encrypting with protected keys 69
syntax

zkey 71
zkey-cryptsetup 85

system startup time
persistent unlocking 63

T
TKE (Trusted Key Entry workstation) 5
transform clear key encrypted volume

into new secure key encrypted volume 32
transform encrypted volume

96 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

transform encrypted volume (continued)
into secure key encrypted volume 31

transform unencrypted volume into encrypted
in plain mode 65

transforming
unencrypted into encrypted volume 25

transforming unencrypted to encrypted LVM physical volume
25
troubleshooting 57
Trusted Key Entry workstation (TKE) 5

U
unattended reboots 66
unencrypted into encrypted volume 25
unlocking encrypted volume

in plain mode 66
unlocking encrypted volumes

at Linux startup 22
unlocking partition

at user login 66
automatically at Linux startup 66
in plain mode 66

user login
unlocking partition in plain mode 66

user password 66
useradd 66

V
validate

secure LUKS2 volume key 44
zkey command 46, 47
zkey-cryptsetup command 47

validate a LUKS2 secure key 47
validate a secure key from a file 47
validate an AES secure key 36, 46
validate command (zkey-cryptsetup) 44
validating secure keys 46
verification pattern

set for secure LUKS2 volume key 45
setting 25

verifying the configuration 55
vgcreate 17
vgextend 25
vgreduce 25
volume

opening encrypted 22
transforming unencrypted into encrypted 25
unlocking encrypted 22

volume, definition 6
volumes

generate cryptsetup commands
luksFormat 42
plainOpen 42

W
working

with encrypted volumes 17
wrapping key, definition 6

X
XTS 13

Z
zkey

auto-detection function 48, 51
changing master key 48, 51
command reference 71
debugging 57
examples 71
managing secure AES keys 71
re-encipher secure key 48
re-encipher secure key from file 51
subcommands 71
syntax 71

zkey commands
change 40
copy 41
cryptsetup 42
crypttab 41
export 39
generate secure key 36
import 38
list 39
reencipher 37
remove 39
rename 40
validate 46, 47

zkey utility 12
ZKEY_REPOSITORY 35, 71
zkey-cryptsetup

command reference 85
debugging 57
examples 85
In-place 44
managing LUKS2 volume keys 43, 85
re-enciphering LUKS2 volume key 49
reencipher 44
setting new secure LUKS2 volume key 45
setvp 45
Staged mode 44
syntax 85
validate 44

zkey-cryptsetup commands
validate 47

zkey-cryptsetup convert 32
zkey-cryptsetup setvp 25
zkey-cryptsetupvalidate 47
zkeychange 40
zkeycopy 41
zkeycryptsetup 42
zkeycrypttab 41
zkeyexport 39
zkeygenerate 36
zkeyimport 38
zkeylist 39
zkeyreencipher 37
zkeyremove 39
zkeyrename 40
zkeyvalidate 46, 47

Index 97

98 Linux on Z and LinuxONE: Pervasive Encryption for Data VolumesSeptember 2020

IBM®

SC34-2782-04

	Contents
	About this document
	Distribution hints
	Summary of changes

	Chapter 1. Protected and secure volume encryption
	Chapter 2. Infrastructure concepts
	Terminology

	Chapter 3. Setting up the infrastructure
	Prerequisites
	Planning
	Device considerations
	Cryptographic coprocessor considerations
	Secure key considerations
	Cipher mode considerations

	Loading required modules and components

	Chapter 4. Sample system for data volume encryption
	Chapter 5. Working with encrypted volumes
	Creating a volume for pervasive encryption
	Opening an encrypted volume
	Automatically opening encrypted volumes at Linux startup
	Opening and mounting an encrypted volume at user login

	Encrypting an unencrypted volume with a secure key
	Migrating to an encrypted LVM physical volume
	Migrating data to a new encrypted volume

	Re-encrypting a volume from clear key to secure key
	Re-encrypting from clear key to secure key onto a new volume
	Re-encrypting a LUKS volume from clear key to secure key on the same volume

	Chapter 6. Managing keys
	Managing a secure key repository
	Deciding about the location of the secure key repository
	Generating AES secure keys
	Validating secure AES keys
	Re-enciphering AES secure keys
	Importing AES secure keys into the secure key repository
	Exporting AES secure keys from the secure key repository
	Listing AES secure keys contained in the secure key repository
	Removing AES secure keys
	Changing AES secure keys
	Renaming AES secure keys
	Copying AES secure keys in the secure key repository
	Generating crypttab entries for encrypted volumes
	Generating cryptsetup commands for encrypted volumes

	Managing secure LUKS2 volume keys
	Validate a secure LUKS2 volume key
	Re-encipher a secure LUKS2 volume key
	Set a verification pattern of the secure LUKS2 volume key
	Set a new secure LUKS2 volume key

	Validating a secure key
	Validating a secure key from the secure key repository
	Validating a secure key used with a LUKS2 volume
	Validating a secure key from a file

	Changing master keys and re-enciphering secure keys
	Re-enciphering secure keys from a repository
	Re-enciphering LUKS2 volume keys
	Re-enciphering secure keys from a file

	Sharing master keys across cryptographic coprocessors
	Replacing a cryptographic coprocessor
	Replacing with the same master key
	Replacing with a different master key

	Chapter 7. Problem resolution and recovery
	Verifying your configuration
	Valid physical block size combinations of LVM physical volumes
	Troubleshooting problems in your environment

	Chapter 8. Recovering secure key encrypted volumes
	Recovering encrypted volumes from an invalid secure key
	Recovering encrypted volumes with a secure key from the repository

	Chapter 9. Encrypting volumes without LUKS
	Volume encryption with cryptsetup plain mode
	Encrypting an unencrypted volume using plain mode
	Changing a master key using plain mode
	Opening an encrypted volume in plain mode
	Automatically opening encrypted volumes in plain mode at Linux system startup
	Opening and mounting an encrypted volume at user login in plain mode

	Chapter 10. Encrypting swap disks with protected keys
	Setting up an encrypted swap disk

	Appendix A. zkey - Managing secure keys
	Appendix B. zkey-cryptsetup - Managing LUKS2 volume keys
	Accessibility
	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

