
Linux on Z and LinuxONE

Exploiting Enterprise PKCS #11 using
openCryptoki 3.15

IBM

SC34-2713-02

Note

Before using this document, be sure to read the information in “Notices” on page 81.

Edition notice

This edition applies to the EP11 host library version 3.0 which covers the latest features of openCryptoki version 3.15,
and to all subsequent versions and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2014, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. v

Tables... vii

Summary of changes...ix
Updates for the EP11 token for openCryptoki versions 3.11 up to 3.15 ..ix
Updates for the openCryptoki version 3.10 EP11 token type.. x

About this document...xiii
How this document is organized... xiii
Terminology... xiii
Who should read this document... xiv
Distribution independence.. xiv
Other publications for Linux on Z and LinuxONE.. xiv

Chapter 1. Introduction... 1
What is PKCS #11?.. 1
What is openCryptoki?... 1
What is a Crypto Express EP11 coprocessor ?..2

Chapter 2. The EP11 crypto stack...3
openCryptoki overview.. 5

Chapter 3. Building the EP11 crypto stack.. 9
Preparing the Crypto Express EP11 coprocessor... 9
Installing and loading the cryptographic device driver.. 16
Installing the host part of the EP11 library...17
Setting a master key on the Crypto Express EP11 coprocessor.. 19
Installing openCryptoki .. 34

Chapter 4. Configuring openCryptoki for EP11 support... 37
Adjusting the openCryptoki configuration file.. 37
Defining an EP11 token-specific configuration file...41
Setting environment variables...44
Initializing EP11 tokens...45
How to recognize an EP11 token.. 45

Chapter 5. Using an EP11 token... 47
Supported mechanisms for EP11 tokens..47
Importing keys...52
Quantum safe cryptography with the EP11 token..53
Supported curves with elliptic curve cryptography in the EP11 token.. 53
Re-encrypting data with a mechanism... 55
Supporting the BSICC2017 compliance mode...56
Controlling access to cryptographic objects...56
Restrictions with using the EP11 library functions...58
Restriction to extended evaluations... 59

 iii

Chapter 6. Troubleshooting EP11... 61
Checking the device driver status... 61
Checking the EP11 token status... 61
Enabling the logging support while running the EP11 token ...62

Chapter 7. Tools and utilities... 63
Obtaining information about an EP11 environment with the ep11info tool... 63
Migrating master keys with the pkcsep11_migrate tool..63
Managing EP11 sessions with the pkcsep11_session tool... 65
Migrating to FIPS compliance using the pkcstok_migrate tool.. 66

Chapter 8. Programming examples for openCryptoki.. 69
Base procedures.. 70
Session and log-in procedures.. 71
Object handling procedures.. 73
Cryptographic operations.. 74

Accessibility..79

Notices..81
Trademarks.. 81

Glossary..83

Index.. 85

iv

Figures

1. Stack and process flow with a configured EP11 token.. 4

2. Cryptographic configuration for LPAR A2A...11

3. System Management in the Support Element..13

4. System Management - installed crypto adapters.. 13

5. System Management - configure LPARs off... 13

6. System Management - Cryptographic Configuration... 14

7. System Management - Cryptographic Configuration... 14

8. TKE Console - initial window...20

9. Crypto Adapter Logon... 21

10. Initialize and enroll EP11 smart card... 21

11. Insert CA smart card...22

12. Insert smart card to be initialized as an EP11 smart card...22

13. EP11 smart card successfully created... 22

14. Entering a PIN for the EP11 smart card... 23

15. EP11 smart card successfully personalized.. 23

16. TKE Console - initial window.. 23

17. Trusted Key Entry - main window...24

18. TKE - Create new Host.. 24

19. Trusted Key Entry - main window with new created host... 25

20. Log on to new host.. 26

21. Authenticate crypto module... 26

22. Crypto Modules list... 27

23. Crypto Module Administration - with context menu..28

 v

24. Select Source.. 28

25. Crypto Module Administration - Subject Key Identifier...28

26. Crypto Module Administration - Setting permissions and attribute controls... 29

27. Crypto Module Administration - Generate key part... 30

28. Crypto Module Administration - Input for total number of key parts to be generated...........................30

29. Crypto Module Administration - Load new master key..31

30. Select key part from smart card... 32

31. Crypto Module Administration - Commit new master key...32

32. Crypto Module Administration - Set, immediate..33

33. Warning before setting the master key.. 33

34. Crypto Module Administration - valid current master key...34

35. Default opencryptoki.conf.. 38

36. Multiple EP11 token instances... 40

37. Slot entry for an EP11 token with FIPS compliant data format in the opencryptoki.conf file................40

38. Cryptographic configuration for an LPAR... 42

39. Sample of an EP11 token configuration file... 44

40. Sample of an EP11 token configuration file... 59

vi

Tables

1. openCryptoki libraries...37

2. PKCS #11 mechanisms supported by the EP11 token..48

3. PKCS #11 mechanisms supported by the EP11 token..54

4. Private key (CKO_PRIVATE_KEY) default attributes of the EP11 token... 59

5. Secret key (CKO_SECRET_KEY) default attributes of the EP11 token..59

6. EP11 log levels.. 62

 vii

viii

Summary of changes

This edition reflects changes to the Development stream for tokens of type EP11 to be plugged-in into
openCryptoki.

You can find the software package of the EP11 enablement at:

https://www.ibm.com/security/cryptocards/pciecc4/lonzsoftware

Updates for the EP11 token for openCryptoki versions 3.11 up to 3.15
The following enhancements are implemented for the EP11 enablement for openCryptoki version 3.15.
For complete exploitation of the listed enhancements, the EP11 host library version 3.0 is required.

• The performance of the EP11 token is improved by the following features:

– For single part sign- and verify-operations, as well as for single part encrypt- or decrypt-operations,
the init call is not passed through the EP11 host library as long as there is no corresponding multi-
part operation. You must explicitly enable this feature with the new option
OPTIMIZE_SINGLE_PART_OPERATIONS in the EP11 token configuration file.

– You can request to increase the performance of hash operations. Setting the new DIGEST_LIBICA
option in the EP11 token configuration file causes the EP11 token to load the default libica library on
initialization. For required hash operations during processing, the EP11 token then uses the libica
SHA-based hash functions. These hash functions perform on the CPACF, thus avoiding hash
processing on a cryptographic coprocessor and therefore avoiding I/O operations to the coprocessor.

• You can set the new USE_PRANDOM option in the EP11 token configuration file to control from where
the EP11 token reads random data. When you specify USE_PRANDOM, then the token does not read
random data from the random number generator of the EP11 cryptographic coprocessor. Instead,
random data is read from /dev/prandom, or /dev/urandom if /dev/prandom is not available, .

• With GA2 of the IBM z14®, the EP11 token provides the following enhancements:

– Support of the bit coin curve secp256k1 is added to the EP11 token.
– Support of the RSA OAEP mechanism CKM_RSA_PKCS_OAEP for encrypt and decrypt, as well as for

wrap and unwrap operations.
– Support of a new domain control point (access control point) related to a new BSICC2017

compliance mode. When enabled, this compliance mode disables the RSAPKCS #11 v1.5
mechanisms.

• With the availability of the IBM z15 in September 2019, the EP11 token provides the following new
features:

– SHA3 support via a vendor-specific mechanisms.
– Support of CMAC via standard and vendor-specific mechanisms.
– Support of the CKM_ECDH1_DERIVE mechanism according to PKCS #11 v2.4 semantics.

With these enhancements provided as a prerequisite in the EP11 host library version 3.0, you can
additionally exploit the following features of the EP11 token with the availability of the IBM z15 in
November 2019:

– Support of the RSA OAEP mechanism with SHA2 and SHA3 as hashing algorithms and mask
generation function (MGF) algorithm is available.

– New IBM®-specific mechanisms are provided for the support of elliptic curve cryptography (ECC).
With these, you can use Edwards Curves ed25519 and ed448 for EdDSA and Montgomery curves
curve25519 and curve448 for ECDH.

© Copyright IBM Corp. 2014, 2020 ix

https://www.ibm.com/security/cryptocards/pciecc4/lonzsoftware

– New domain (access) control points are implemented to control elliptic curve cryptography, to allow
data key generation and import for protected keys, and to enable the use of the post-quantum
Dilithium signature algorithm.

• Function C_DigestKey now always returns CKR_FUNCTION_NOT_SUPPORTED since the EP11 library
does no longer support it.

• The EP11 token is getting ready for post-quantum cryptography:

– You can use the quantum safe CRYSTALS-Dilithium Digital Signature Algorithm for generating keys
and for signing and verifying digital signatures.

– You can import and transport externally generated Dilithium keys.
• openCryptoki now implements the PKCS #11 version 3.0 Baseline Provider specification. A library

implementing PKCS #11 according to the Baseline Provider Clause as described in PKCS #11
Cryptographic Token Interface Profiles Version 3.0 is called a PKCS #11 version 3.0 Baseline Provider.
Such a library can be exploited by an application conforming to the Baseline Consumer Clause
described in the same document. Such applications are in turn called PKCS #11 version 3.0 Baseline
Consumers.

• A new vendor-specific function called C_IBM_ReencryptSingle is introduced into openCryptoki and
is supported by all tokens. Data that is already encrypted with a specific key and mechanism can be re-
encrypted with this function, using a different key and mechanism. For secure key encryption with an
EP11 token or a CCA token, the data is never visible in the clear anywhere outside the cryptographic
coprocessor.

• You can use the pkcstok_migrate utility to transform an EP11 token, a CCA token, an ICA token, or a
Soft Token created with any version of openCryptoki into a data format that was generated by FIPS
compliant operations. This new data format can be used with openCryptoki version 3.12 or later.
However, also for version 3.12 or later, the old non-compliant format is the default. Being FIPS
compliant, the token data is stored in a format that is better protected against attacks than the
previously used data format without FIPS compliance.

Updates for the openCryptoki version 3.10 EP11 token type
The following enhancements are implemented for the EP11 enablement for openCryptoki version 3.10:

• All mechanisms provided by the EP11 token type that are defined in PKCS #11 v2.40 are now
supported. See Table 2 on page 48 for a complete list of supported mechanisms for the EP11 token.

However, the EP11 token still supports the CKM_ECDH1_DERIVE mechanism according to PKCS #11
v2.20 (without key derivation function (KDF) and shared data).

• You can activate one or two session modes to limit the access to cryptographic objects in order to
improve security. The available session modes are the strict session mode or the virtual HSM (VHSM)
mode.

In strict session mode, for each new session, a unique EP11 session ID is generated. This prevents that
a session key (if copied from a session) will be handled as a valid key by the EP11 crypto adapter even
after the PKCS#11 session that generated the key has ended.

In virtual HSM (VHSM) mode, you can restrict keys to only that token that was used to generate it.

You can configure an EP11 token to use either one of the available modes, or both.
• You can now set an option that makes CK_TRUE the default value for the CKA_SENSITIVE attribute

when generating, unwrapping, or building secret keys with C_CreateObject. This eliminates a
restriction with using EP11 library functions from earlier versions.

• The list of mechanisms returned by the C_GetMechanismList function is now filtered according to the
(domain) control points configured in the cryptographic coprocessor.

• You can now import keys of type CKK_DH, CKK_DSA, and CKK_EC. See “Importing keys” on page 52
for more information.

• The error handling when using EP11 library functions is enhanced:

x Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html

– User-friendly messages are issued into the SYSLOG during token initialization, when no
CK_SESSION_INFO structure is available for providing meaningful reason codes.

– The use of return codes is adapted to better comply to the PKCS #11 standard.
• openCryptoki now supports multiple token instances of the same token type. This edition documents

what to do to exploit this support for multiple tokens of type EP11.
• Starting with EP11 library version 2.0, as the default, the TKE uses the ep11TKEd daemon to

authenticate with a Linux® user who is member of a new ep11tke group, which is created during EP11
package installation.

• New tools are described in Chapter 7, “Tools and utilities,” on page 63:

– ep11info provides information about EP11 cryptographic coprocessors and about configured
domains.

– pkcsep11_session allows to delete an EP11 session from EP11 cryptographic coprocessors left
over by programs that did not terminate normally.

Summary of changes xi

xii Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

About this document

Linux on Z applications that are using a PKCS #11 API can take advantage of the Enterprise PKCS #11
(EP11) coprocessor mode of an IBM cryptographic adapter (Crypto Express), starting with a CEX4P
coprocessor.

EP11 is a stack architecture for using a library of standard cryptographic functions to write applications on
IBM Z® mainframes with cryptographic hardware. In this document, the term CEX*P either stands for
CEX4P, CEX5P, or CEX6P.

This publication describes how to work with the EP11 token type. With the support of multiple token
instances of a certain token type, this publication uses the term EP11 token or EP11 token instance (or
just token or token instance) for tokens of type EP11.

You can find the latest version of this document on the developerWorks® website at:

www.ibm.com/developerworks/linux/linux390/documentation_dev.html

and on the IBM Knowledge Center at:

www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

How this document is organized
The information is divided into topics that describe installing, configuring, and using the EP11 library.

Chapter 1, “Introduction,” on page 1 contains general information about the Linux on Z EP11
enablement.

Chapter 2, “The EP11 crypto stack,” on page 3 describes how the components of the Linux on Z EP11
enablement are positioned within the different layers between applications and hardware.

Chapter 3, “Building the EP11 crypto stack,” on page 9 describes how to prepare or install the EP11
components within the stack.

Chapter 4, “Configuring openCryptoki for EP11 support,” on page 37 describes the configuration and
customization tasks for enabling the exploitation of the EP11 library functions from applications.

Chapter 5, “Using an EP11 token,” on page 47 describes the APIs for invoking the EP11 library
functions.

Chapter 6, “Troubleshooting EP11,” on page 61 provides information how to resolve problems when
using the Linux on Z EP11 enablement.

Chapter 7, “Tools and utilities,” on page 63 documents various tools and utilities which provide general
information about EP11, which support you in migrating EP11 master keys, and which help you to manage
EP11 sessions.

Chapter 8, “Programming examples for openCryptoki,” on page 69 is a set of programming samples that
use the EP11 library.

Terminology
The following terms for cryptographic coprocessors are used in this document:

CEX4P
An IBM 4765 Crypto Express4 feature (CEX4S), configured in EP11 coprocessor mode.

CEX5P
An IBM 4767 Crypto Express5 feature (CEX5S), configured in EP11 coprocessor mode.

CEX6P
An IBM 4768 Crypto Express6 feature (CEX6S), configured in EP11 coprocessor mode.

© Copyright IBM Corp. 2014, 2020 xiii

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

CEX7P
An IBM 4769 Crypto Express7 feature (CEX7S), configured in EP11 coprocessor mode.

CEX*P
Designates either one or more or all of CEX4P, CEX5P, CEX6P, or CEX7P. Also, CEX*S designates one
or more or all of CEX4S, CEX5S, CEX6S, or CEX7S.

Who should read this document
This document is intended for C programmers who want to access IBM Z hardware support for
cryptographic methods. It is also intended for system administrators who need to enable and configure
the required cryptographic hardware.

Furthermore, this publication addresses users who want to enhance their existing openCryptoki
applications with the new features of Enterprise PKCS #11.

Distribution independence
This publication does not provide information that is specific to a particular Linux distribution.

The tools it describes are distribution independent.

Other publications for Linux on Z and LinuxONE
You can find publications for Linux on Z and LinuxONE on IBM Knowledge Center.

These publications are available on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

• Device Drivers, Features, and Commands
• Using the Dump Tools
• KVM Virtual Server Quick Start, SC34-2753
• KVM Virtual Server Management, SC34-2752
• How to use FC-attached SCSI devices with Linux on z Systems®, SC33-8413
• Introducing IBM Secure Execution for Linux, SC34-7721
• libica Programmer's Reference, SC34-2602
• Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
• Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide,

SC33-8294
• Pervasive Encryption for Data Volumes, SC34-2782
• How to set an AES master key, SC34-7712
• Troubleshooting, SC34-2612
• Kernel Messages, SC34-2599
• How to Improve Performance with PAV, SC33-8414
• How to Set up a Terminal Server Environment on z/VM, SC34-2596

xiv Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

Chapter 1. Introduction
The Linux on Z Enterprise PKCS #11 (EP11) enablement allows applications to use a PKCS #11 API to run
secure key cryptographic operations on an IBM Crypto Express adapter that is configured as an Crypto
Express EP11 coprocessor. The CEX4S adapter card is the first Crypto Express adapter which can be
configured as an EP11 coprocessor.

The Linux on Z EP11 enablement comprises several components that need to be installed and configured
within certain locations of the EP11 stack as described in Chapter 2, “The EP11 crypto stack,” on page
3.

An application's request is first submitted to a PKCS #11 API, implemented by the openCryptoki library
and the EP11 token. From this token, the request is propagated to the Crypto Express EP11 coprocessor.
The request is then processed on this coprocessor. The resulting output is finally returned to the
application across the involved interfaces.

The EP11 cryptography architecture offers a secure key infrastructure.

This introduction provides information about the standard software that is used in this implementation
and about the used Crypto Express EP11 coprocessor (shortly referred to as CEX*P, which stands for any
type of a Crypto Express EP11 coprocessor).

What is PKCS #11?
The Public-Key Cryptography Standards (PKCS) comprise a group of cryptographic standards that provide
guidelines and application programming interfaces (APIs) for the usage of cryptographic methods. As the
name PKCS suggests, these standards put an emphasis on the usage of public key (that is, asymmetric)
cryptography.

PKCS #11 is a cryptographic token interface standard, which specifies an API, called Cryptoki. With this
API, applications can address cryptographic devices as tokens and can perform cryptographic functions
as implemented by these tokens. This standard, first developed by the RSA Laboratories in cooperation
with representatives from industry, science, and governments, is now an open standard lead-managed by
the OASIS PKCS 11 Technical Committee.

It follows an object-based approach, addressing the goals of technology independence (any kind of HW
device) and resource sharing. It also presents to applications a common, logical view of the device that is
called a cryptographic token. PKCS #11 assigns a slot ID to each token. An application identifies the
token that it wants to access by specifying the appropriate slot ID.

For more information about PKCS #11, refer to this URL:

PKCS #11 Cryptographic Token Interface Standard

What is openCryptoki?
openCryptoki is an open source implementation of the Cryptoki API defined by the PKCS #11
Cryptographic Token Interface Standard. Thus, openCryptoki provides support for several cryptographic
algorithms according to the industry-wide PKCS #11 standards. The openCryptoki library loads the so
called tokens that provide hardware or software specific support for cryptographic functions.

The EP11 token extends the openCryptoki token library. It uses special hardware cryptographic functions
that are provided by an IBM Crypto Express adapter (starting with CEX4S), which is configured by a
certain firmware (see “Enabling a cryptographic coprocessor for EP11 firmware exploitation” on page
11).

openCryptoki can be used directly through the openCryptoki shared library (C API).

© Copyright IBM Corp. 2014, 2020 1

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

For more information about the openCryptoki services, or about the interfaces between the openCryptoki
main module and its tokens, see

https://github.com/opencryptoki/opencryptoki.

You can also read topic “openCryptoki overview” on page 5 for an introduction of the openCryptoki
main features.

What is a Crypto Express EP11 coprocessor ?
An IBM Crypto Express adapter, which is configured with the Enterprise PKCS #11 (EP11) firmware, is
called a Crypto Express EP11 coprocessor (shortly referred to as CEX*P). The Crypto Express4 adapter is
the first adapter that can be configured as an EP11 coprocessor (CEX4P). You can also use CEX5Ps or
CEX6Ps on the appropriate IBM Z systems.

The CEX*P adapters provide hardware-accelerated support for crypto operations that are based on the
PKCS #11 Cryptographic Token Interface Standard. Access from applications to the functions of a CEX*P
adapter is enabled through the EP11 stack. This EP11 stack consists of certain EP11 user space libraries
and an EP11 extension in the Linux AP device driver. Using several layers of interfaces, the PKCS #11
standard requests are propagated to and returned from the CEX*P adapter by the device driver.

A CEX*P adapter is a hardware security module (HSM) that maintains and protects secrets (for example,
master keys) such that these secrets cannot be revealed from outside the adapter: No operating system
service or application can retrieve these secrets and any trial to physically break into the card destroys its
data due to its tamper proof design.

A CEX*P adapter supports cryptographic operations with secure keys. A secure key is a key that is
encrypted (wrapped) by a master key that is stored in the adapter. So sometimes, a master key is also
referred to with the more general term wrapping key, as for example in document Enterprise PKCS#11
(EP11) Library structure.

Therefore, on the CEX*P adapter, applications can decrypt (unwrap) a secure key and use it for
cryptographic operations inside the adapter. Outside the adapter (for example, inside an operating
system), a secure key is only available as a binary large object (blob) wrapped by the master key, and
cannot be used for cryptographic operations. To use a secure key, an application must call functions on
the CEX*P adapter. It is therefore safe to keep a secure key in memory or to store it in a file system.

Cryptographic keys that are not encrypted are called clear keys. If a clear key is stored in memory or in a
file, unauthorized access to that memory or file must carefully be prevented. Otherwise, the key can be
stolen and used to decrypt protected information. The CEX*P adapters do not support clear key
cryptography.

The maximum number of supported domains depends on the mainframe model and is the same for all
Crypto Express EP11 coprocessors in that mainframe. For example, an IBM z14 (z14) supports up to 85
domains (with hexadecimal domain IDs 0000 to 0054). Each domain acts like an EP11 coprocessor, but
maintains its own master key. That means, that the master key of one domain cannot be accessed by
another domain. Different domains of a crypto adapter may be assigned to different LPARs or z/VM
guests, such that multiple LPARs or guests can share one Crypto Express EP11 coprocessor without
sharing their master keys.

2 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

https://github.com/opencryptoki/opencryptoki
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www-03.ibm.com/security/cryptocards/pciecc2/pdf/ep11-structure.pdf
https://www-03.ibm.com/security/cryptocards/pciecc2/pdf/ep11-structure.pdf

Chapter 2. The EP11 crypto stack
The EP11 crypto stack for Linux on Z consists of various components within the different layers: An
application sends a request down to the hardware (cryptographic adapter), via the device driver and the
firmware. The request is routed all the layers down and back again, and the request result is returned to
the application. The stack thus provides an end-to-end solution for cryptographic operations.

For example, an application sends an encryption request to the crypto adapter. Through various
interfaces, such a request is propagated from the application layer down to the target crypto adapter
hardware. On its way down, the request passes through the involved layers: the standard crypto
interfaces, the IBM Z crypto libraries, and the operating system kernel. The zcrypt device driver finally
sends the request to the Crypto Express EP11 coprocessor. The resulting request output is sent back to
the application just the other way round through the layer interfaces.

Figure 1 on page 4 illustrates the EP11 crypto stack within the Linux on Z environment. The
components that make up the Linux on Z EP11 enablement are highlighted:

• the EP11 token within openCryptoki
• the host part of the EP11 library (located in user space, which is named libep11.so). In version 2.0,
libep11.so is a symbolic link to the versioned library libep11.so.2 and this in turn is a symbolic
link to libep11.so.2.0.0.

• the EP11 extension of the zcrypt device driver. This extension was included with kernel level 3.14 on
https://www.kernel.org/. Note that distributions sometimes back-port features from newer kernel.org
kernels into their current kernel versions. Therefore check with your distribution partner, whether your
distribution release supports the EP11 enablement, if its kernel version is older than 3.14.

• the module part of the EP11 library, that is, the EP11 firmware that is installed on the Crypto Express
EP11 coprocessor adapter hardware.

openCryptoki can be used directly through the openCryptoki shared library (C API).

openCryptoki supports several token types, which can offer different functionality for different hardware
devices or software solutions. Tokens of type EP11 (aka EP11 tokens) interact with the host part of the
EP11 library. EP11 can operate with the Crypto Express adapter (CEX*P) with EP11 firmware load for
processing cryptographic functions.

© Copyright IBM Corp. 2014, 2020 3

https://www.kernel.org/

Figure 1. Stack and process flow with a configured EP11 token

The EP11 token itself does not implement PKCS #11 but provides services for accessing EP11 functions
to openCryptoki. For a description of these services or the interface between the common part of
openCryptoki and its tokens, see the openCryptoki documentation. Once the EP11 token is configured,
cryptographic functions from the EP11 token are available to an application through the PKCS #11 API
provided by the common openCryptoki code. The EP11 token itself accesses the EP11 library. The EP11
library is divided into the host part and the module part, which runs in the Crypto Express EP11
coprocessor. An installed EP11 library is a prerequisite for enabling openCryptoki to use the EP11 token.
The EP11 library passes requests to the CEX*P EP11 coprocessor through the zcrypt device driver of
Linux on Z.

4 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

The host part of the EP11 library creates cryptographic requests from the EP11 token in Abstract Syntax
Notation One (ASN.1). These requests are sent to and understood by the CEX*P adapter. The host part
also converts response buffers that are received from the adapter into data structures that are expected
by the EP11 token. The EP11 token makes these APIs accessible to openCryptoki and thus the
applications, but does not implement any cryptographic mechanism. The mechanisms available and their
parameters depend on the EP11 implementation (EP11 library and CEX*P card) and its configuration. The
PKCS #11 Cryptographic Token Interface Standard defines methods for inquiring available mechanisms.
You can obtain an inquiry of all available mechanisms and their parameters using the PKCS #11 functions
C_GetMechanismList and C_GetMechanismInfo.

Besides the CEX*P adapter that is loaded with the EP11 firmware (EP11 module part), the EP11 token
furthermore requires a zcrypt device driver within the kernel, extended with the Linux on Z EP11
enablement support (see “Installing and loading the cryptographic device driver” on page 16). In
addition, the EP11 token requires the availability of the host part of the EP11 library.

Therefore, check the following dependencies:

• Dependencies on distributors: Distributors build the openCryptoki RPM and DEB packages that
comprise the EP11 support (EP11 token) for delivering them to customers. Generally the distributors
provide two packages, one library package and one development package. See also “Installing
openCryptoki ” on page 34.

• Dependencies on hardware: The EP11 library functions run on the IBM zEnterprise EC12 (zEC12)
processor family (processor types 2827-H20, -H43, -H66, -H89, -HA1) or follow-on processors with an
IBM Crypto Express4S (CEX4S) or follow-on adapter.

Note: In the remainder of this publication, the terms EP11 or Linux on Z EP11 enablement stand for the
entirety of the implementation components that consists of the EP11 token, the EP11 extension of the
zcrypt device driver, and the EP11 library (host part and module part) as shown in Figure 1 on page 4.

openCryptoki overview
openCryptoki consists of an implementation of the PKCS #11 API, a slot manager, an API for slot token
dynamic link libraries (STDLLs), and a set of STDLLs (or tokens). The EP11 token is a new STDLL
introduced with openCryptoki version 3.1.

The openCryptoki base library (libopencryptoki.so) provides the generic API as outlined in the PKCS
#11 specification (version 2.20). This library also loads token-specific modules (STDLLs) that provide the
token specific implementation of the PKCS #11 API and cryptographic functions (for example, session
management, object management, and crypto algorithms). For a description of the PKCS #11 version
2.20 standard, refer to the following URL: PKCS #11 Cryptographic Token Interface Standard

A global configuration file (/etc/opencryptoki/opencryptoki.conf) is provided which describes
the available tokens. This configuration file can be customized for the individual tokens. The openCryptoki
package contains man pages that describe the format of the configuration files. For more information, see
“Adjusting the openCryptoki configuration file” on page 37.

The EP11 token is a plug-in into the openCryptoki token library, providing support for several
cryptographic algorithms.

Slot manager
The slot manager (pkcsslotd) runs as a daemon. Upon startup, it creates a shared memory segment
and reads the openCryptoki configuration file to acquire the available token and slot information. The
openCryptoki API attaches to this memory segment to retrieve token information. Thus, the slot manager
provides the openCryptoki API with the token information when required. An application in turn links to or
loads the openCryptoki API.

Slot token dynamic link libraries (STDLLs)
The EP11 token is an example of an STDLL within openCryptoki. STDLLs are plug-in modules to the
openCryptoki (main) API. They provide token-specific functions that implement the interfaces. Specific

Chapter 2. The EP11 crypto stack 5

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

devices can be supported by building an appropriate STDLL. Figure 1 on page 4 illustrates the stack and
the process flow in an IBM Z environment.

The STDLLs require local disk space to store persistent data, such as token information, personal
identification numbers (PINs) and token objects. This information is stored in a separate directory for
each token (per default in /var/lib/opencryptoki/ep11tok for the EP11 token). Within each of
these directories there is a sub-directory TOK_OBJ that contains the token objects (token key store). Each
private token object is represented by an encrypted file. Most of these directories are created during
installation of openCryptoki.

The pkcsconf command line program
openCryptoki provides a command line program (/usr/lib/pkcs11/methods/pkcsconf) to
configure and administer tokens that are supported within the system. The pkcsconf capabilities include
token initialization, and security officer (SO) PIN and user PIN initialization and maintenance (see also
“Initializing EP11 tokens” on page 45).

pkcsconf operations that address a specific token must specify the slot that contains the token with the
-c option. You can view the list of tokens present within the system by specifying the -t option (without -
c option). For example, the following code shows the options for the pkcsconf command and displays
slot information for the system:

pkcsconf ?
usage: pkcsconf [-itsmlIupPh] [-c slotnumber -U user-PIN -S SO-PIN -n new PIN]

The available options have the following meanings:

-i
display PKCS11 info

-t
display token info

-s
display slot info

-m
display mechanism list

-l
display slot description

-I
initialize token

-u
initialize user PIN

-p
set the user PIN

-P
set the SO PIN

-h | --help | ?
show this help

-c
specify the token slot for the operation

-U
the current user PIN (for use when changing the user pin with -u and -p options); if not specified, user
will be prompted

-S
the current Security Officer (SO) pin (for use when changing the SO pin with -P option); if not
specified, user will be prompted

6 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

-n
the new pin (for use when changing either the user pin or the SO pin with -u, -p or -P options); if not
specified, user will be prompted

For more information about the pkcsconf command, see the pkcsconf man page.

Chapter 2. The EP11 crypto stack 7

8 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Chapter 3. Building the EP11 crypto stack
The components of the Linux on Z EP11 enablement must be embedded into an infrastructure of
hardware and software cryptographic components. In this environment, applications can start the
provided functions by using the PKCS #11 openCryptoki API. This infrastructure is referred to as EP11
stack.

To enable the EP11 hardware cryptographic function support on IBM Z mainframes, you must prepare
some hardware components. You must also install and load specific driver modules and libraries,
configure and start daemons, and set up your system environment.

Building this EP11 stack comprises several subtasks that are described in the following topics:

• “Preparing the Crypto Express EP11 coprocessor” on page 9
• “Installing and loading the cryptographic device driver” on page 16
• “Installing the host part of the EP11 library” on page 17
• “Setting a master key on the Crypto Express EP11 coprocessor” on page 19
• “Installing openCryptoki ” on page 34
• “Adding EP11 tokens to openCryptoki” on page 39

Preparing the Crypto Express EP11 coprocessor
To take advantage of the hardware-accelerated support for crypto operations from a CEX*P adapter, you
must switch the CEX*S adapter into the CEX*P mode. This modification enables the installed and required
EP11 firmware (module part of the EP11 library) to run on this adapter.

The required information is presented in the following subtopics:

• “Purpose of domains” on page 9
• “Assigning adapters and domains to LPARs” on page 11
• “Enabling a cryptographic coprocessor for EP11 firmware exploitation” on page 11
• “Assigning EP11 adapters as dedicated adapters to z/VM guests” on page 15
• “Restriction to extended evaluations” on page 59

Purpose of domains
When you configure your system on the Support Element (SE), you can specify how a logical partition
(LPAR) uses coprocessors and accelerators. In this context, the Crypto Express cards support a concept
of cryptographic domains. Each domain is protected by a master key, thus preventing access across
domains and effectively separating the contained keys.

For information on how to configure domains, refer to zEnterprise System Support Element Operations
Guide, which you can download from the IBM Resource Link.

There are two types of access to a cryptographic domain:

• for usage of cryptographic functions
• for management (control) of the domain, which includes the management of the master keys

A domain, which is assigned to an LPAR for usage access is called a usage domain of that LPAR. A domain,
which is assigned to an LPAR for management (control) access is called a control domain of that LPAR.
Every domain, which is a usage domain of an LPAR must also be a control domain of that LPAR, but not
the other way round.

© Copyright IBM Corp. 2014, 2020 9

https://www.ibm.com/servers/resourcelink/svc03100.nsf/pages/zResourceLinkUrl?OpenDocument&url=http://www.ibm.com/servers/resourcelink/lib03010.nsf/0/00373B9974F6CDB8852577610069E8BF/$File/SC28-6896-02.pdf

Usage domains

A logical partition's usage domains are domains in the coprocessors that can be used for cryptographic
functions.

In Linux, you can use the lszcrypt -b command to find out which usage domain is configured for that
Linux system:

$ lszcrypt -b

ap_domain=0x1a
ap_max_domain_id=0x54
ap_interrupts are enabled
config_time=30 (seconds)
poll_thread is disabled
poll_timeout=250000 (nanoseconds)

Control domains

A logical partition's control domains are those cryptographic domains for which remote secure
administration functions can be established and administered from this logical partition.

This logical partition's control domains must include its usage domains. So for each index that is selected
in the Usage domain index list, you must select the same index in the Control domain index list.

But a logical partition's control domains can also include the control domains of other logical partitions.
Assigning multiple logical partitions' control domains as control domains of a single logical partition
allows using the partition to perform administrative functions from the TKE .

If you are using the Integrated Cryptographic Service Facility (ICSF) from z/OS, select at least one control
domain with its matching usage domain. Refer to the ICSF documentation for information about ICSF
basic operations.

If you are using a Trusted Key Entry (TKE) workstation to manage cryptographic keys, you can define your
TKE host and the control domains for a logical partition. See “Setting a master key on the Crypto Express
EP11 coprocessor” on page 19 for more information.

Control domain exposure

For configuration and management purposes the TKE needs to know which control domains are
configured on the system.

In Linux, use a sysfs attribute called ap_control_domain_mask in /sys/bus/ap/ to display the
configured control domains. This information is set automatically from the device driver.

The attribute ap_control_domain_mask is read-only and contains a 32-byte field in hexadecimal
notation, representing the installed control domain facilities. Each bit position represents a dedicated
control domain. Thus, a maximum number of 256 domains could be addressed.

Example:

cat /sys/bus/ap/ap_control_domain_mask
0x000400

Byte
Meaning

1
domain 0-7

2
domain 8-15

...
...

10 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

In this example, the control domain 13 was configured.

Assigning adapters and domains to LPARs
After you set up the Crypto Express adapter in the Support Element, you must allow access to it from your
LPAR. You achieve this by using the Hardware Management Console (HMC) or the Support Element (SE).

You can define a certain LPAR to use a domain (or multiple domains) as a usage domain and as a control
domain, or as a control domain only. You can retrieve this information from the Support Element. Each
adapter supports 16 domains (see Figure 2 on page 11). The selected domains apply to all selected
adapters. For a more detailed information about planning the cryptographic configuration, see IBM
System z10 Enterprise Class Configuration Setup, SG24-7571.

Figure 2. Cryptographic configuration for LPAR A2A

In Figure 2 on page 11, LPAR A2A is defined to use and control the cryptographic domain number 11. It is
also allowed to access the crypto adapters numbers 0 and 7. They are brought online if they are present
in the system, if the LPAR is activated, and if the zcrypt device driver is loaded.

Linux kernels earlier than version 4.9 can only use one crypto domain at a given time. In that case, if the
LPAR contains multiple domains, the kernel selects the default domain. Also, if for these kernel versions
you want to use a different default domain, you need to specify this domain as a parameter when loading
the ap main module of the zcrypt device driver.

Enabling a cryptographic coprocessor for EP11 firmware exploitation
You must have an IBM 4765 Crypto Express4 feature or higher that is configured as an EP11 coprocessor,
and that is initialized and personalized in your z/VM guest or LPAR. Read this topic to learn how to check

Chapter 3. Building the EP11 crypto stack 11

for the existence of a suitably configured CEX*P adapter (starting with CEX4P, or higher), and how to
configure this adapter if it is missing yet.

About this task
A CEX*S Crypto Express card configured in the Enterprise PKCS #11 coprocessor mode (or shortly EP11
coprocessor mode) is also called a Crypto Express EP11 coprocessor (CEX*P). Such a coprocessor, which
is installed in your z/VM guest or LPAR, is a prerequisite for using the functions of the EP11 library. This
procedure shows you how to configure a CEX*S Crypto Express adapter into a CEX*P adapter by enabling
the installed EP11 firmware from the Support Element.

Procedure

1. Check whether you have already plugged in and enabled your CEX*S Crypto Express card, and
validate your model and type configuration (accelerator or coprocessor).

To check, enter the lszcrypt command and check the output:

lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS
--
00 CEX5A Accelerator online 0
00.001a CEX5A Accelerator online 0
01 CEX5C CCA-Coproc online 50
01.001a CEX5C CCA-Coproc offline 50
02 CEX6C CCA-Coproc online 55
02.001a CEX6C CCA-Coproc offline 55
03 CEX6P EP11-Coproc online 8
03.001a CEX6P EP11-Coproc online 8
05 CEX7P EP11-Coproc online 104
05.001a CEX7P EP11-Coproc online 104

If you see the output as shown, with an output line similar to

xx.xxxx CEX6P EP11-Coproc online

then an CEX6P adapter is available and ready for use with EP11 and the task is completed.
2. If the following error message is displayed, the zcrypt device driver module must be installed.

error - cryptographic device driver zcrypt is not loaded!

For installation information, refer to “Installing and loading the cryptographic device driver” on page
16.

3. If the output from the lszcrypt command in step 1 does not show one of CEX<n>P, (where <n> can
be 4, or higher), then check the reason why this happened. If a CEX*S card is correctly assigned to
the LPAR or z/VM guest, where the Linux is running in, but none of CEX<n>P is shown, then you must
activate the EP11 firmware on the CEX*S adapter.
For this purpose, log on to the Support Element with a user ID granted the appropriate access rights.
You can either go directly to the Support Element, or you can use its web interface.

4. In the System Management window, select the CPC that holds the CEX*S adapter that you want to
configure.
In the sample screen from Figure 3 on page 13, the selected CPC is M35.

12 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Figure 3. System Management in the Support Element
5. Select Cryptos from the navigation area on the left of the dialog to get a list of installed adapters as

shown in Figure 4 on page 13.

Figure 4. System Management - installed crypto adapters
6. Select the crypto card to be changed - in our scenario, a CEX6 coprocessor with PCHID 01DC and ID

11 - and also select Configure On/Off from the Crypto Service Operations to reach the view shown
in Figure 5 on page 13.

Figure 5. System Management - configure LPARs off
7. Select all LPARs, where this adapter is configured online (if any), as shown in Figure 5 on page 13.

Chapter 3. Building the EP11 crypto stack 13

The Crypto Express adapter must be configured offline in all LPARs, before you can change the
configuration type. For this purpose, specify Toggle from the Select Action pull-down to toggle to
the desired state and then press OK to apply the change. In the next dialog, you need to confirm your
intended action, because this could be disruptive for processes from the affected LPARs.

Finally, you return to the view shown in Figure 4 on page 13. You see the selected adapter stopped
now.

8. Navigate back to the System Management window (Figure 3 on page 13). Now scroll down and
select Cryptographic Configuration from the Configuration menu on the right hand side.
This leads you to the figure shown in Figure 6 on page 14.

Figure 6. System Management - Cryptographic Configuration
9. Select the desired adapter again (see step 4).

Now press Crypto Type Configuration from the dialog shown in Figure 6 on page 14. This selection
brings you to the dialog shown in Figure 7 on page 14.

Figure 7. System Management - Cryptographic Configuration
10. Select EP11 Coprocessor and press OK.

This action makes the adapter to become a CEX*P adapter that is upgraded with the EP11 firmware.
Also note, that TKE commands are always permitted for a CEX*P adapter, so that it can communicate
with the TKE daemon ep11TKEd.

11. You must now select those LPARs that you want to allow to access and use the reconfigured adapter.
For these LPARs, you need to configure back online the reconfigured adapter.

14 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Therefore, go to the dialog shown in Figure 5 on page 13, now toggling the status of the adapter for
the LPAR back to online.

12. A restart of z/VM or the LPAR is required to activate the reconfiguration.
For z/VM, check before, that the correct definitions have been applied to the EP11 coprocessor card.
Also for the LPARs, on z/VM and on Linux, you must add the reconfigured adapter to the activation
profile. Now deactivate and activate the LPAR. Then perform an IPL of Linux on that LPAR,
respectively perform an IPL of z/VM and then start the guests using the reconfigured adapter.

13. Optionally, you can use the chzcrypt command to enable (online state) and disable (offline state)
the IBM crypto adapter:

$ chzcrypt -e 0x06 // set card06 online
$ chzcrypt -d 0x06 // set card06 offline

For more information about the IBM crypto adapter, see Device Drivers, Features, and Commands,
SC33-8411 available at

www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Results
Now that the EP11 firmware has been enabled on your cryptographic coprocessor, this card turned into a
so called CEX*P coprocessor which can take advantage of the Linux on Z EP11 enablement. To check the
capability of a configured adapter, you can use the following lszcrypt -c <card-number> command:

$ lszcrypt -c 03
card03 provides capability for:
EP11 Secure Key

Notes:

1. If you work with the available session modes (strict session mode or virtual HSM mode) as described
in “Controlling access to cryptographic objects” on page 56, a unique EP11 session ID is generated
for each session and is stored as a pin-blob (binary large object) on the coprocessor domain. A Crypto
Express EP11 coprocessor offers storage for up to 1024 nonces or pin-blobs (binary large objects),
shared among all defined domains on the coprocessor.

2. If multiple EP11 cryptographic coprocessors in your environment are configured with different levels
of the EP11 firmware (module part of the EP11 library), then the EP11 token only provides those
features that the lowest CEX*P EP11 coprocessor provides.

Assigning EP11 adapters as dedicated adapters to z/VM guests
On a z/VM guest, you can authorize the user to define virtual cryptographic facilities and provide the guest
access to the AP queues on the PCI cryptographic cards. You achieve this with the help of the CRYPTO
directory statement using the DOMAIN and APDEDicated operands.

The DOMAIN operand specifies up to 16 domains the virtual machine may use. The APDEDicated
operand specifies up to 64 APs the virtual machine may use for dedicated access to the Adjunct
Processor (AP) cryptographic facility. You can specify as many CRYPTO statements as you need to assign
domains or APs to the virtual machine.

You can use the z/VM CP command QUERY CRYPto DOMains to request the display of the status of the
cryptographic hardware and of installed AP domains.

Note: The CRYPTO APVIRTual directory statement cannot be used with the EP11 enablement.

For more information, see also z/VM CP Planning and Administration and z/VM CP Commands and Utilities
Reference from the IBM Knowledge Center.

Chapter 3. Building the EP11 crypto stack 15

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Installing and loading the cryptographic device driver
You need an installed Linux kernel that includes the cryptographic device driver. This cryptographic
device driver is normally included in the regular kernel package shipped with your Linux distribution.
Loading the cryptographic device driver is only required for earlier installations as described in this topic.

About this task

In earlier Linux distributions, the cryptographic device driver is shipped as a single module called
z90crypt. In more recent distributions, the cryptographic device driver is shipped as set of modules with
the ap module being the main module that triggers loading all required sub-modules. There is, however,
an alias name z90crypt that links to the ap main module.

There are distributions using kernel levels starting with 4.10, that have basic cryptographic device driver
support as part of the kernel (that is, the ap module is already compiled in the kernel). In this case,
loading the ap main module with the modprobe command is no longer needed. In addition, the domain
and poll_thread parameters are no longer module parameters, but kernel parameters. In this case,
you can change the values directly via sysfs, or change as kernel parameters. Refer to the Device Drivers,
Features, and Commands for kernel 4.12 or later on the developerWorks website for further information.

Procedure

1. For installations with a loadable cryptographic device driver, use the lsmod command to find out if
either the z90crypt or the ap module is already loaded.

2. If required, use the modprobe command to load the z90crypt or ap module. When loading the
z90crypt or ap module, you can use the following optional module parameters:
domain=

Use an integer that identifies the default cryptographic domain for the Linux instance. You define
cryptographic domains in the LPAR activation profile on the HMC or SE. The default value
(domain=autoselect) causes the device driver to choose one of the available domains
automatically.

Important: Be sure to enter an existing domain. The Trusted Key Entry workstation does not find
the cryptographic adapters if a non-existing domain is entered here.

After loading the device driver, use the lszcrypt command with the -b option to confirm that the
correct domain is used. If your distribution does not include this command, see the version of
Device Drivers, Features, and Commands that applies to your distribution about how to use the
sysfs interface to find out the domain.

If the cryptographic device driver is part of the kernel, you cannot unload it. In this case, you can
directly edit domain settings via sysfs.

poll_thread=
enables the polling thread for instances of Linux on z/VM and for Linux instances that run in LPAR
mode on an IBM mainframe earlier than z10.

For Linux instances that run in LPAR mode on a z10 or later mainframe, this setting is ignored and
AP interrupts are used instead.

For more information about these module parameters, the polling thread, and AP interrupts, see the
version of Device Drivers, Features, and Commands that applies to your distribution.

Results
The zcrypt device driver that contains the EP11 extension is loaded and lszcrypt displays the
cryptographic adapters available to the Linux system.

16 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

https://www.ibm.com/developerworks/linux/linux390/development_docu_rollback.html

Installing the host part of the EP11 library
Read the contained information about how to install the host part of the EP11 library as a component of
the EP11 stack.

About this task
As a part of the EP11 stack, you need to install the host part of the EP11 library on your IBM Z, as shown
in Figure 1 on page 4.

Also, to use the EP11 functionality, the TKE daemon (ep11TKEd) must be available and running to
perform certain communication tasks. This communication path is necessary, for example, for the initial
key personalization or for key updates (see also “Setting a master key on the Crypto Express EP11
coprocessor” on page 19).

Procedure

1. Obtain the appropriate EP11 software package for use on IBM Z mainframe servers, that contains the
Linux on Z EP11 enablement from the software package selection page:

https://www.ibm.com/security/cryptocards/pciecc3/lonzsoftware.shtml

RPM is the installation package format for Red Hat Enterprise Linux and SUSE Linux Enterprise Server
distributions. DEB is the package format for the Ubuntu distribution. The names of the packages are as
follows:

• ep11-host-2.0.0-2.s390x.rpm or later is the standard RPM package that provides libraries
(libep11.so) and tools (for example, the ep11info tool) to configure and use a CEX*P EP11
coprocessor.

• libep11_2.0.0-2_s390x.deb or later is the equivalent Ubuntu package.
• ep11-host-devel-2.0.0-2.s390x.rpm or later is the development RPM package which is

required if you want to develop programs that link to the EP11 library.
• libep11-dev_2.0.0-2_s390x.deb or later is the equivalent Ubuntu package.

To see a complete list of files contained in the packages, you can download the associated
RELEASE.txt file from the software-package selection page.

Note: The host part of the EP11 library is developed and maintained by IBM and therefore not part of
any commercial Linux distribution.

2. Install the RPM or DEB by issuing one of the following commands:

rpm -Uvh <rpm_packet> /* for RPM new installation or updates*/
dpkg -i <deb_packet> /* for DEB new installation or updates*/

3. The EP11 TKE daemon (ep11TKEd), which comes along with the standard RPM or DEB packages
obtained in step “1” on page 17 is also installed during the installation. It is required and must be
running for handling administrative commands and for managing communication between the TKE
workstation and the CEX*P EP11 coprocessor.

What to do next

Starting with EP11 library version 2.0, the TKE can use the ep11TKEd daemon to authenticate with a Linux
user who is member of the ep11tke group which is defined in /etc/group of the system. This is the
default, and it is recommended not to change this.

However, you could disable the authentication in the ep11TKEd configuration file as described hereafter.

The ep11TKEd daemon uses the Linux pluggable authentication modules (PAM) subsystem to
authenticate the user. The interaction with PAM can also be configured in a ep11TKEd-specific PAM
configuration file.

Chapter 3. Building the EP11 crypto stack 17

https://www.ibm.com/security/cryptocards/pciecc3/lonzsoftware.shtml
https://www.ibm.com/security/cryptocards/pciecc4/lonzsoftware

Software requirements: As of EP11 software package 2.0.0, the EP11 TKE daemon requires the
OpenSSL library version 1.0.x for secure authentication with the TKE. It also requires the PAM standard
modules for the authentication process. Refer to your Linux distribution documentation for supported
versions of OpenSSL.

The ep11TKEd daemon uses systemd for daemonizing and logging. If you do not use systemd, you need
to do the daemonizing and routing of log messages to files yourself.

Only TKE versions equal or greater than 8.0 are supported with this version of ep11TKEd.

Security notes: The ep11TKEd daemon typically runs as the nobody user. For the authentication process,
ep11TKEd needs privileges to access the shadow file. For those cases, ep11TKEd can be a setGID
program which uses the shadow group, or a setUID to root program to gain access to the file.

The ep11TKEd daemon uses these privileges of the shadow group or the read or search capability only
through a small window of a running authentication process. Privileges are permanently dropped, if
authentication is disabled in the configuration file.

In the host package installation process, Linux is checked for its capabilities. If the shadow group is
found, then the sticky bit for the shadow group is set. If the group is not found, the sticky bit for the root
user is set.

If supported by your Linux distribution, AppArmor rules are installed. If they are not already enforced for
the ep11TKEd daemon, you can enforce them manually.

Configuration:

Note: It is recommended to use the default settings. The configuration features described hereafter may
be used in special environments.

• Configuration files:

– The EP11 TKE daemon can be configured in file /etc/ep11/ep11tked.conf.

The only allowed option is CipherMode. The two allowed values are AES and None. AES is the
default value.

AES
Use the Linux PAM system to authenticate a user.

None
Do not use any authentication.

Note: If possible, AES should always be used!
– The authentication process can be configured in the file /etc/pam.d/ep11tked. See the PAM

module manuals for help on editing this file. Be careful when changing this file as it involves the risk
of rendering the authentication useless.

The default setting is to allow any user that has a password configured and is member of the ep11tke
group to gain access through the ep11TKEd daemon.

• How to control the daemon:

The program can be started manually by executing the file /usr/sbin/ep11TKEd.

This starts ep11TKEd in the running shell and not as a daemon. Log messages are printed to the
console. This is sometimes useful for troubleshooting, but usually ep11TKEd should be started through
systemd:

systemctl start ep11TKEd

To automatically start the daemon during boot use the following command:

systemctl enable ep11TKEd

To disable the automatic start use the following command:

18 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

systemctl disable ep11TKEd

See the systemd documentation for help with the service manager. When using systemd for
controlling the daemon, log messages are written to the systemd journal. See the journald manual
for more information.

Restrictions:

The versions of the ep11TKEd daemon delivered with an EP11 host library starting with version 2.0
cannot be used on an IBM zEnterprise EC12 (zEC12) system. On these zEC12 systems, you must use
version 1.x of the EP11 package together with the contained ep11TKEd daemon.

Setting a master key on the Crypto Express EP11 coprocessor
To generate a secure and secret master key, use the TKE workstation that is connected to the IBM Z
mainframe.

This publication outlines a selection of the basic steps for creating and initializing EP11 smart cards and
for generating a master key. It does not document the complete process of setting up a comprehensive
security concept, nor does it demonstrate all security features available from the TKE workstation. For
information about sophisticated features, for example, for a dual control security policy, for the zone
concept, or for using TKE domain groups, refer to the Trusted Key Entry Workstation User's Guide from the
IBM Resource Link.

Note: The EP11 master key set on a CEX*P adapter is referred to as wrapping key in document Enterprise
PKCS#11 (EP11) Library structure.

Trusted Key Entry (TKE) is a priced optional feature that is used for managing IBM Z cryptographic
coprocessors in a customer environment. Cryptographic coprocessors operate with a master key that is
located inside the coprocessor itself. These coprocessors use keys that are protected by being encrypted
(wrapped) with the master key. These wrapped keys are called secure keys and are only decrypted inside
the coprocessor's secure enclosure.

Information is provided in the following topics:

• “Setting up the TKE environment” on page 19
• “Create and initialize an EP11 smart card” on page 20
• “Creating a master key on the TKE workstation” on page 23

For more information about these tasks, refer to topics Using the Crypto Module Notebook to administer
EP11 crypto modules and Smart Card Utility Program (SCUP) in the z/OS Cryptographic Services ICSF
Trusted Key Entry Workstation.

Setting up the TKE environment

For a Crypto Express EP11 coprocessor, a TKE workstation is required to perform certain key
management functions.

A TKE version 7.3 is required to detect EP11 adapters and set and manage wrapping keys (master keys)
correctly.

Note: For any master key transactions to the card (key generation or import) and for initialization/
personalization purposes, you need at least two smart card readers. Furthermore, the described outline
uses one CA (Certificate Authority) smart card and two smart cards that hold two separate key parts
which make up the master key. The smart cards can be initialized from scratch by using the TKE
interfaces.

To use the EP11 functions of the TKE, the EP11 library (libep11.so) and the TKE daemon (ep11TKEd)
must be installed. The ep11TKEd daemon is used for receiving messages from a Trusted Key Entry
workstation and for routing those messages to the specified Crypto Express EP11 coprocessor (CEX*P
card).

To start the daemon, use the command

Chapter 3. Building the EP11 crypto stack 19

https://www-304.ibm.com/servers/resourcelink/svc03100.nsf?Opendatabase
https://www-03.ibm.com/security/cryptocards/pciecc2/pdf/ep11-structure.pdf
https://www-03.ibm.com/security/cryptocards/pciecc2/pdf/ep11-structure.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc147511/$file/csfb600_tke_9_1.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc147511/$file/csfb600_tke_9_1.pdf

service ep11TKEd start

This command is redirected and performs the same processing as the command

systemctl start ep11TKEd.service

The ep11TKEd TKE daemon uses the EP11 host library to communicate with a CEX*P EP11 coprocessor
and is listening on port 50004 for administrative TKE commands. These commands are translated into
ioctl commands to talk to the zcrypt device driver.

Create and initialize an EP11 smart card

Step 1

As a prerequisite, you need a valid CA (Certificate Authority) smart card to be authorized to create EP11
smart cards (see Step 4).

The Trusted Key Entry console automatically loads on start-up with a set of commonly used tasks. After
the TKE console started, the initial Trusted Key Entry Console window appears.

This initial window provides access to applications and utilities available on the TKE workstation.

Figure 8. TKE Console - initial window

Step 2

Click the Smart Card Utility Program application as shown in Figure 8 on page 20.

When you open a TKE application or utility, you must sign on with a profile that is on the TKE workstation
crypto adapter. Therefore, depending on how you have initialized your environment, the Crypto Adapter
Logon window is displayed with profile IDs that represent a single or group passphrase logon. The
individual or group profile you choose must have enough authority to do the functions that are performed
by the application or utility. The steps described here use the default TKEADM user name.

20 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Figure 9. Crypto Adapter Logon

Step 3

After a successful log-on, the Smart Card Utility Program opens and shows a table for each smart card
reader for all detected plugged-in smart card types. The tables are still empty at this point in time,
because the EP11 smart card is not yet created. The missing information is provided during the process of
initializing and personalizing the smart card as described in the remainder of this topic.

To continue, select Initialize and enroll EP11 smart card from the EP11 Smart Card pulldown choice.

Figure 10. Initialize and enroll EP11 smart card

Step 4

The Smart Card Utility Program prompts you to insert the CA smart card into the smart card reader 1
and then press the OK button. For detailed information, read the TKE documentation.

Chapter 3. Building the EP11 crypto stack 21

Figure 11. Insert CA smart card

Step 5

As next step, the Smart Card Utility Program prompts you to insert a smart card to be initialized as an
EP11 smart card into smart card reader 2 and then press the OK button.

Figure 12. Insert smart card to be initialized as an EP11 smart card

Step 6

The Smart Card Utility Program initializes and builds the EP11 smart card and displays a message when
the creation was successful. This may take some time. When the processing is finished, you see the new
EP11 card information in an updated view from Figure 10 on page 21 (lower part) as shown in Figure 13
on page 22.

Figure 13. EP11 smart card successfully created

Step 7

The Smart Card Utility Program now goes back to the window shown in Figure 10 on page 21, where you
now select item Personalize EP11 smart card from the EP11 Smart Card pull-down choice.

To personalize the EP11 smart card, the Smart Card Utility Program prompts you to enter a PIN to be
used for this smart card on the smart card reader PIN pad. The PIN must be entered twice for
confirmation.

The TKE also prompts you for an optional description for the smart card.

22 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Figure 14. Entering a PIN for the EP11 smart card

The Smart Card Utility Program informs you of a successful personalization of the EP11 smart card. This
smart card now contains a certificate signed by the CA authority, and a PIN to access the smart card.

Figure 15. EP11 smart card successfully personalized

The EP11 smart card is needed whenever you want to set a new master key on the adapter.

Step 8

Repeat Step 3 through Step 7 to create the second EP11 smart card.

Creating a master key on the TKE workstation

Read an outline of the required steps for creating a master key and installing it on the CEX*P adapter. For
detailed information about how to use the TKE workstation, refer to z/OS Cryptographic Services ICSF
Trusted Key Entry Workstation User's Guide.

Step 1

Go to the Trusted Key Entry console as described in Step 1 of “Create and initialize an EP11 smart card”
on page 20.

Figure 16. TKE Console - initial window

Step 2

Click the Trusted Key Entry application as shown in Figure 16 on page 23. Then proceed with the logon
procedure as described in Step 2 of “Create and initialize an EP11 smart card” on page 20.

Chapter 3. Building the EP11 crypto stack 23

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb600/toc.htm

Step 3

Select the default profile ID TKEUSER, click OK, and in the upcoming Passphrae Logon dialog for this
profile, logon with the passphrase associated to TKEUSER.

Step 4

The Trusted Key Entry main window is displayed (Figure 17 on page 24). Open the context menu for
hosts and select action Create Host.

Figure 17. Trusted Key Entry - main window

Step 5

In the Create New Host dialog, enter the required values of the host for which you want to create the
master key. It is assumed that this host is a Linux on Z system running the ep11TKEd TKE daemon. Press
OK to return to the Trusted Key Entry main window.

Figure 18. TKE - Create new Host

24 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Step 6

The new host is visible now within the list of host IDs.

Before you continue to work on the new host, ensure the following:

• The ep11TKEd TKE daemon is started on the host.
• The TKE has connectivity to the host.

Then open the new host's context menu and select action Open Host.

Figure 19. Trusted Key Entry - main window with new created host

Step 7

If you accepted the default settings when installing and configuring the ep11TKEd TKE daemon as
recommended, you are prompted by the TKE workstation to log on to the selected host with the
appropriate Linux user credentials. Do not forget to activate the Enable Mixed Case Passwords check
box (see Figure 20 on page 26). This user must be a member in the ep11tke group defined in /etc/
group of the system.

Chapter 3. Building the EP11 crypto stack 25

Figure 20. Log on to new host

If you specified CipherMode=None in the TKE daemon configuration file /etc/ep11/ep11tked.conf,
the values that you enter as the user ID and password are not relevant, because they are not validated.
You just need to press the OK button.

For details about configuring the ep11TKEd TKE daemon, read “Installing the host part of the EP11
library” on page 17 or refer to file README_TKED.md coming with the EP11 installation package.

Step 8

The TKE now requests a verification of any new crypto adapter. Press the Yes button to continue.

Figure 21. Authenticate crypto module

Step 9

The Crypto Modules list now displays the available adapters. In the sample from Figure 22 on page 27,
there is just one adapter available with host ID p2314002. Select a crypto adapter of your choice and
trigger action Open Crypto Module from its context menu.

26 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Figure 22. Crypto Modules list

Step 10

The Crypto Module Administration window for the selected crypto adapter opens. Now you can start to
configure the domains. Click on the Domains tab at the top. On the right side, the window now shows an
Index tab for each available domain. Choose one of these indexes and select the Domain Administrators
tab at the bottom of the window to add a new administrator role. In this documentation, the configuration
is outlined for the domain with index 13. For detailed information on domain configuration, refer to the
TKE documentation.

Step 11

Now create a user ID with administrator role in the Crypto Module Administration window for the
selected crypto adapter. Open the context menu by right-clicking into the white space of the window.
Select action Add Administrator.

Chapter 3. Building the EP11 crypto stack 27

Figure 23. Crypto Module Administration - with context menu

From the opening Select Source window, TKE requests certain information from the previously CA
prepared smart card that contains the administrator key and certificate.

Figure 24. Select Source

After a successful authentication on the smart card reader, the TKE workstation imports the administrator
key and certificate and creates an administrator profile.

Figure 25. Crypto Module Administration - Subject Key Identifier

Step 12

28 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Now select the Domain Attributes tab at the bottom of the window. This selection opens the window that
is shown in Figure 26 on page 29 where you can specify the required permissions and attribute controls
for the current domain.

Per default, the Signature Threshold and the Revocation Signature Threshold are set to 0. Both values
must be changed at least to 1 to release the card from the IMPRINT mode. For more information, see the
TKE documentation. Press Send updates to apply your settings.

Figure 26. Crypto Module Administration - Setting permissions and attribute controls

Step 13

Now select the Domain Keys tab from the bottom of the Crypto Module Administration window.

The new Crypto Module Administration window with verification patterns for the new and current
master key is displayed. The patterns are all set to 0, because the current and new master keys are empty
yet.

Open the context menu by right-clicking in the white space, and select action Generate key part.

Chapter 3. Building the EP11 crypto stack 29

Figure 27. Crypto Module Administration - Generate key part

Step 14

The TKE workstation now prompts you to enter the total number of key parts to be generated. You must
at least generate two parts. Enter your input and press the OK button.

Figure 28. Crypto Module Administration - Input for total number of key parts to be generated

Step 15

In a similar way as in the previous step, you are now prompted to insert an EP11 smart card and to enter
a name and description for each generated key part. The TKE workstation informs you about a successful
storage of all generated key parts and descriptions. The new master key can now be generated by the TKE
component.

Step 16

During the current process, the new master key now needs to go through three stages:

Load
The key is just stored on the adapter, but not active.

Commit
The key is activated and is now present on the adapter as the new master key. In this state, the
existing objects encrypted under the current master key can be re-encrypted by using this new
master key.

Set
The new master key is now switched to become the current key to be used.

30 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Start with the Load step: Load the new generated master key parts from the cards to the target crypto
adapter. For this purpose, open the context menu from the Crypto Module Administration window and
select action Load new master key. TKE now prompts you for the total number of key parts to be loaded.
Type the number of previously generated key parts. TKE then prompts you to load each key part
separately.

Figure 29. Crypto Module Administration - Load new master key

The TKE workstation opens the window Select key part from smart card as shown in Figure 30 on page
32. From this window, you can commit the single parts of your key. From the list of shown key parts,
select that part that you now want to commit and press OK.

Chapter 3. Building the EP11 crypto stack 31

Figure 30. Select key part from smart card

Step 17

After you loaded all single master key parts, the complete master key is successfully loaded onto the
CEX*P adapter.

The TKE workstation switches back to the Crypto Module Administration window. You can see that the
new master key is full/complete, but yet uncommitted. To commit the new master key, invoke the context
menu and select action Commit new master key. The status switches to Full Committed, as shown in
Figure 32 on page 33.

Figure 31. Crypto Module Administration - Commit new master key

32 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Step 18

You can now immediately set the new master key. From the context menu, start action Set, immediate.

Figure 32. Crypto Module Administration - Set, immediate

Before you actually perform the action, the TKE comes up with a warning. If this is the first time you
generated a master key, or if there are no keys stored on your host that are wrapped by the current
master key, you can ignore the warning by pressing the OK button.

If there are keys wrapped by the current master key on your host, then you should not generate a new
master key, but follow the procedure described in “Migrating master keys with the pkcsep11_migrate
tool” on page 63.

Figure 33. Warning before setting the master key

Chapter 3. Building the EP11 crypto stack 33

See the result in Figure 34 on page 34: The new master key is now switched to the Current Master Key,
and its status is Valid.

Figure 34. Crypto Module Administration - valid current master key

If you need to change the master key, see “Migrating master keys with the pkcsep11_migrate tool” on
page 63.

Installing openCryptoki
The EP11 token is part of the openCryptoki package starting with version 3.1. openCryptoki in turn is
shipped with the Linux on Z distributions.

Check whether you already installed openCryptoki in your current environment, for example:

$ rpm -qa | grep -i opencryptoki /* for RPM */
$ dpkg -l | grep -i opencryptoki /* for DEB */

Note: The command examples are distribution dependent. opencryptoki must in certain distributions
be specified as openCryptoki (case-sensitive).

You should see all installed openCryptoki packages. If required packages are missing, use the installation
tool of your Linux distribution to install the appropriate openCryptoki RPM or DEB.

Note: You must remove any previous package of openCryptoki, before you can install the new package
version 3.10.

Installing from the RPM or DEB package

The openCryptoki version 3.10 or higher packages, that comprise the EP11 support (EP11 token) are
delivered by the distributors. Distributors build these packages as RPM or DEB packages for delivering
them to customers.

Customers can install these openCryptoki packages by using the installation tool of their selected
distribution.

If you received openCryptoki as an RPM package, follow the RPM installation process that is described in
the RPM man page. If you received an openCryptoki DEB package, you can use the dpkg - package
manager for Debian described in the dpkg man page.

The installation from either an RPM or DEB package is the preferred installation method.

34 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Installing from the source package

As an alternative, for example for development purposes, you can get the latest openCryptoki version
(inclusive latest patches) from the GitHub repository and build it yourself. But this version is not serviced.
It is suitable for non-production systems and early feature testing, but you should not use it for
production.

In this case, refer to the INSTALL file in the top level of the source tree. You can start from the
instructions that are provided with the subtopics of this INSTALL file and select from the described
alternatives. If you use this installation method parallel to the installation of a package from your
distributor, then you should keep both installations isolated from each other.

1. Download the latest version of the openCryptoki sources from:

https://github.com/opencryptoki/opencryptoki/releases/tag/v3.10.0

2. Decompress and extract the compressed tape archive (tar.gz - file). There is a new directory named
like opencryptoki-3.10.x.

3. Change to that directory and issue the following scripts and commands:

$./bootstrap
$./configure
$ make
$ make install

The scripts or commands perform the following functions:

bootstrap
Initial setup, basic configurations

configure
Check configurations and build the makefile

make
Compile and link

make install
Install the libraries

Note: When installing openCryptoki from the source package, the location of some installed files will
differ from the location of files installed from an RPM or DEB package.

Chapter 3. Building the EP11 crypto stack 35

https://github.com/opencryptoki/opencryptoki
https://github.com/opencryptoki/opencryptoki/releases/tag/v3.10.0

36 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Chapter 4. Configuring openCryptoki for EP11
support

After a successful installation of openCryptoki, you need to perform certain configuration and
customization tasks to enable the exploitation of the EP11 library functions from applications. Especially,
you need to set up tokens and daemons and then initialize the tokens.

openCryptoki, and in particular the slot manager, can handle several tokens, which can have different
support for different hardware devices or software solutions. As shown in Figure 1 on page 4, the EP11
token interacts with the host part of the EP11 library. EP11 can operate with the Crypto Express adapter
with EP11 firmware load for symmetric and asymmetric cryptographic functions.

For a complete configuration of the Linux on Z EP11 enablement, finish the tasks as described in the
contained subtopics.

• “Adjusting the openCryptoki configuration file” on page 37
• “Defining an EP11 token-specific configuration file” on page 41
• “Setting environment variables” on page 44
• “Initializing EP11 tokens” on page 45

Finally, to control your configuration results, follow the instructions provided in “How to recognize an
EP11 token” on page 45.

Adjusting the openCryptoki configuration file
A preconfigured list of all available tokens that are ready to register to the openCryptoki slot daemon is
required before the slot daemon can start. This list is provided by the global configuration file called
opencryptoki.conf. Read this topic for information on how to adapt this file according to your
installation.

Table 1 on page 37 lists the maximum number of available libraries that may be in place after you
successfully installed openCryptoki. It may vary for different distributions and is dependent from the
installed packages.

Also, Linux on Z does not support the Trusted Platform Module (TPM) token library.

A token is only available, if the token library is installed, and the appropriate software and hardware
support pertaining to the stack of the token is also installed. For example, the EP11 token is only available
if all parts of the EP11 library software are installed and a Crypto Express EP11 coprocessor is detected.

A token needs not be available, even if the corresponding token library is installed. Display the list of
available tokens by using the command:

$ pkcsconf -t

Table 1. openCryptoki libraries

Library Explanation

/usr/lib64/opencryptoki/libopencryptoki.so openCryptoki base library

/usr/lib64/opencryptoki/stdll/
libpkcs11_ica.so

libica token library

/usr/lib64/opencryptoki/stdll/
libpkcs11_sw.so

software token library

/usr/lib64/opencryptoki/stdll/
libpkcs11_tpm.so

TPM token library

© Copyright IBM Corp. 2014, 2020 37

Table 1. openCryptoki libraries (continued)

Library Explanation

/usr/lib64/opencryptoki/stdll/
libpkcs11_cca.so

CCA token library

/usr/lib64/opencryptoki/stdll/
libpkcs11_ep11.so

EP11 token library

/usr/lib64/opencryptoki/stdll/
libpkcs11_icsf.so

ICSF token library

The /etc/opencryptoki/opencryptoki.conf file must exist and it must contain an entry for each
instance of an EP11 token to make these instances available. By default, one such entry is available upon
installation (see the slot 4 entry in the provided sample configuration from Figure 35 on page 38).

version opencryptoki-3.15

The following defaults are defined:
hwversion = "0.0"
firmwareversion = "0.0"
description = Linux
manufacturer = IBM
#
The slot definitions below may be overriden and/or customized.
For example:
slot 0
{
stdll = libpkcs11_cca.so
description = "OCK CCA Token"
manufacturer = "MyCompany Inc."
hwversion = "2.32"
firmwareversion = "1.0"
}
See man(5) opencryptoki.conf for further information.
#
slot 0
{
stdll = libpkcs11_tpm.so
}

slot 1
{
stdll = libpkcs11_ica.so
}

slot 2
{
stdll = libpkcs11_cca.so
}

slot 3
{
stdll = libpkcs11_sw.so
}

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok.conf
}

Figure 35. Default opencryptoki.conf

Note:

• The standard path for slot token dynamic link libraries (STDLLs) is: /usr/lib64/opencryptoki/
stdll/.

38 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

• The standard path for the token-specific EP11 token configuration file (in our example, ep11tok.conf)
is /etc/opencryptoki/. You can change this path by using the OCK_EP11_TOKEN_DIR environment
variable. For more information, read “Defining an EP11 token-specific configuration file” on page 41.

• You can use the default opencryptoki.conf file only for a single EP11 token. If you want to use
multiple EP11 tokens, read the information in “Adding EP11 tokens to openCryptoki” on page 39.

Use one of the following commands to start the slot daemon, which reads out the configuration
information and sets up the tokens:

$ service pkcsslotd start
$ systemctl start pkcsslotd.service /* for Linux distributions providing systemd */

For a permanent solution, specify:

$ chkconfig pkcsslotd on

Adding EP11 tokens to openCryptoki
You need to introduce one or multiple tokens of type EP11 (EP11 tokens) into the openCryptoki library.
For this purpose, you must define a slot entry for each desired token in the global openCryptoki
configuration file called opencryptoki.conf.

If you want to configure multiple EP11 tokens, you can assign dedicated adapters and domains to
different tokens respectively. This ensures data isolation between multiple applications.

If you use multiple EP11 tokens, you must specify a unique token directory in the slot entry for each
token, using the tokname attribute. This token directory receives the token-individual information (like
for example, key objects, user PIN, SO PIN, or hashes). Thus, the information for a certain EP11 token is
separated from other EP11 tokens.

The default EP11 token directory is /var/lib/opencryptoki/ep11tok/. You can use the default only
for a single EP11 token. Resulting examples for multiple EP11 token directories can be:

/var/lib/opencryptoki/ep11token1/
/var/lib/opencryptoki/ep11token2/

Note: A certain token configuration applies to all applications that use this EP11 token.

Adding a slot entry for each applicable EP11 token in opencryptoki.conf

As already mentioned, the default openCryptoki configuration file opencryptoki.conf provides a slot
entry for the EP11 token. It is preconfigured to slot #4. Each slot entry must set the stdll attribute to
libpkcs11_ep11.so. Check this default entry to find out whether you can use it as is.

For each configured EP11 token, you must create a specific EP11 token configuration file. This EP11-
specific configuration file defines the target adapters and target adapter domains to which the EP11
token sends its cryptographic requests.

In turn, each slot entry in the global openCryptoki configuration file must specify this EP11 token
configuration file. For this purpose, use the confname attribute with the unique name of the respective
EP11 token configuration file as value.

The example from Figure 36 on page 40 configures two EP11 tokens in slots 4 and 5. It defines the
names of the specific token configuration files to be ep11tok01.conf and ep11tok02.conf. Per
default, these files are searched in the directory where openCryptoki searches its global configuration file.
Figure 39 on page 44 shows an example of an EP11 token configuration file.

Chapter 4. Configuring openCryptoki for EP11 support 39

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok01.conf
tokname = ep11token01
description = "Ep11 Token"
manufacturer = "IBM"
hwversion = "4.11"
firmwareversion = "2.0"
}

slot 5
{
stdll = libpkcs11_ep11.so
confname = ep11tok02.conf
tokname = ep11token02
}

Figure 36. Multiple EP11 token instances

Setting an option for a FIPS compliant token data format

Starting with openCryptoki version 3.12, you can optionally use only FIPS compliant operations for
openCryptoki's login password hashing and for encrypting the stored token data. This is valid for EP11
tokens, libica tokens, CCA tokens and Soft Tokens. Being FIPS compliant, for a new token directory, the
token data is stored in a format that is better protected against attacks than the previously used data
format.

If you want to use the token data format that was generated with FIPS compliant operations, you must
explicitly specify the tokversion option for the token's slot entry in the openCryptoki configuration file.
You must do this before token initialization with the pkcsconf command, for example:

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok01.conf
tokname = ep11token01
tokversion = 3.12
description = "Ep11 Token"
manufacturer = "IBM"
hwversion = "4.11"
firmwareversion = "2.0"
}

Figure 37. Slot entry for an EP11 token with FIPS compliant data format in the opencryptoki.conf file

You can use the pkcstok_migrate utility to transform an EP11 token, a CCA token, an ICA token, or a
Soft Token created with any version of openCryptoki into a data format that was generated by FIPS
compliant operations.

The pkcstok_migrate tool converts all token data produced with any openCryptoki version, including
PINs, to be encrypted with a FIPS compliant method. Without this tool, switching to the new token format
is only possible with an empty repository. The new FIPS compliant format can be used by specifying the
tokversion keyword in the token’s slot configuration in opencryptoki.conf as shown in Figure 37 on
page 40. For a value of 3.12 or greater, the new format is used. Values lower than 3.12 are invalid. To
ensure compatibility with key objects generated using older versions of openCryptoki, the old format is
still the default. The new format is only used when the user explicitly adds the tokversion keyword to
the opencryptoki.conf file.

For information on how to use this tool, see “Migrating to FIPS compliance using the pkcstok_migrate
tool” on page 66.

40 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Defining an EP11 token-specific configuration file
One default configuration file for the EP11 token called ep11tok.conf is delivered by openCryptoki. You
must adapt it according to your installation's system environment. If you use multiple EP11 tokens, you
must provide an individual token configuration file for each token. Each slot entry in the global
configuration file opencryptoki.conf defines these configuration file names.

In the example from Figure 36 on page 40, these names are defined as ep11tok01.conf and
ep11tok02.conf. If the environment variable OCK_EP11_TOKEN_DIR is set, then the EP11 token looks
for the configuration file or files in the directory specified with this variable. If OCK_EP11_TOKEN_DIR is
not set, then the EP11 token configuration files are searched in the global openCryptoki directory, for
example: /etc/opencryptoki/ep11tok.conf.

Example: If a slot entry in opencryptoki.conf specifies confname = ep11tok02.conf, and you
set the environment variable OCK_EP11_TOKEN_DIR like:

export OCK_EP11_TOKEN_DIR=/home/user/ep11token

then your EP11 token configuration file appears here:

<root>/home/user/ep11token/ep11tok02.conf

You can use the shown example to set your own token directory for test purposes.

Note: The setting of this environment variable is ignored, if a program trying to access the designated
EP11 token is marked with file permission setuid.

The following is a list of available options for an EP11 token configuration file.

APQN_WHITELIST

Because different EP11 hardware security modules (HSM) can use different wrapping keys (referred
to as master keys in the TKE environment), users need to specify which HSM, in practice an adapter/
domain pair, can be used by the EP11 token as a target for cryptographic requests. Therefore, an
EP11 token configuration file contains a list of adapter/domain pairs to be used.

You start this list of adapter/domain pairs starting with a line containing the keyword
APQN_WHITELIST. Next follows the list which can specify up to 512 adapter/domain pairs, denoted
by decimal numbers in the range 0 - 255. Each pair designates an adapter (first number) and a
domain (second number) accessible to the EP11 token. Close the list using the keyword END.

Alternatively, you can use the keyword APQN_ANY to define that all adapter/domain pairs with EP11
firmware, that are available to the system, can be used as target adapters. This is the default.

Notes:

• The term APQN stands for adjunct processor queue number. It designates the combination of a
cryptographic coprocessor (adapter) and a domain, a so-called adapter/domain pair. At least one
adapter/domain pair must be specified.

• If more than one APQN is used by a token, then these APQNs must be configured with the same
master key.

An adapter/domain pair is displayed by the lszcrypt tool or in the sys file system (for example,
in /sys/bus/ap/devices) in the form card .domain, where both numbers are displayed in
hexadecimal format.

There are two ways to specify the cryptographic adapter:

• either as an explicit list of adapter/domain pairs:

 APQN_WHITELIST
 8 13
 10 13
 END

Chapter 4. Configuring openCryptoki for EP11 support 41

The adapter and domain can be given in decimal, octal (with leading 0), or hexadecimal (with
leading 0x) notation:

 APQN_WHITELIST
 8 0x0d
 0x0a 13
 END

Valid adapter and domain values are in the range 0 to 255.
• or as any available cryptographic adapters:

APQN_ANY

In the example from Figure 39 on page 44, adapter 0 with domains 0 and 1, and adapter 2 with
domain 84 are specified as target for requests from the EP11 token. In Figure 38 on page 42, these
adapter/domain pairs are shown in hexadecimal notation as APQNs (00,0000), (00,0001), and
(02,0054).

Figure 38. Cryptographic configuration for an LPAR

FORCE_SENSITIVE
Specify this option to force that the default for CKA_SENSITIVE is CK_TRUE for secret keys. For more
information, see “Restrictions with using the EP11 library functions” on page 58.

STRICT_MODE
In strict-mode, all session-keys strictly belong to the PKCS #11 session that created it. When the
PKCS #11 session ends, all session keys created for this session can no longer be used.

For more information, read “Controlling access to cryptographic objects” on page 56.

42 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

VHSM_MODE
In VHSM-mode (virtual-HSM), all keys generated by the EP11 token strictly belong to the EP11 token
that created it. Every EP11 token running in this mode requires a VHSM card-PIN which must be set
using the pkcsep11_session tool.

For more information, read “Controlling access to cryptographic objects” on page 56 and “Managing
EP11 sessions with the pkcsep11_session tool” on page 65.

CPFILTER
The list of mechanisms returned by C_GetMechanismList is filtered using the domain or access
control point (ACP) settings of the used cryptographic coprocessors. The EP11 access control point
filter configuration file (ACP-filter configuration file) is used to associate certain access (domain)
control points with mechanisms that are dependent on these access control points. The default ACP-
filter configuration file is ep11cpfilter.conf located in the same directory as this EP11 token
configuration file. You can optionally specify the name or location, or both, of the ACP-filter file:

CPFILTER /etc/opencryptoki/ep11cpfilter.conf

For more information, read “Filtering mechanisms” on page 51.

OPTIMIZE_SINGLE_PART_OPERATIONS
Set this option to optimize the performance of single part sign- and verify-operations, as well as of
single part encrypt- or decrypt-operations. Then the init call is not passed through the EP11 library
as long as there is no corresponding multi-part operation.

When this option is enabled, error handling can be slightly different, when errors from the deferred
init call are presented during the first update call or during the calls to C_Sign, C_Verify,
C_Encrypt, or C_Decrypt for a single part operation. That is, the first update call on a multi part
operation or the mentioned calls for a single part operation may return errors, which are usually not
returned by the update call. Such errors may be for example:

CKR_OBJECT_HANDLE_INVALID
CKR_ATTRIBUTE_VALUE_INVALID
CKR_KEY_HANDLE_INVALID
CKR_KEY_SIZE_RANGE
CKR_KEY_TYPE_INCONSISTENT
CKR_MECHANISM_INVALID
CKR_MECHANISM_PARAM_INVALID

DIGEST_LIBICA <libica-path> | DEFAULT | OFF
To improve the performance of required hash functions, the EP11 token on initialization loads the
default libica library. If required, the EP11 token invokes the libica SHA-based hash functions,
because the libica library performs these hash functions on the CPACF, thus avoiding hash processing
on a cryptographic coprocessor which results in I/O operations to the adapter.

libica provides an OpenSSL based software fall-back, in case CPACF or a certain hashing function of
CPACF is not available. In case a libica operation fails, because neither the hardware nor the software
support is available, or if libica is not available at all, then the request is passed to the EP11 library
instead.

With the DIGEST_LIBICA option, you can control which libica library is loaded:

DEFAULT
The default libica library is loaded. If libica could not be found, a message is issued to syslog,
and all hash based functions will use the EP11 library.

The same behavior is applied if the DIGEST_LIBICA option is not specified at all.

<libica-path>
The specified library is loaded. If it can not be found, a message is issued to syslog, and token
initialization fails.

Chapter 4. Configuring openCryptoki for EP11 support 43

OFF
No libica is loaded, and all hash based functions use the EP11 library.

If DIGEST_LIBICA is not specified, then the default libica library is loaded (same behavior as for
DIGEST_LIBICA DEFAULT).

USE_PRANDOM
Set this option to control from where the EP11 token reads random data. With USE_PRANDOM
specified, the EP11 token reads random data from /dev/prandom, or from /dev/urandom if /dev/
prandom is not available. The default is to read the random data using the m_GenerateRandom
function from the Crypto Express EP11 coprocessor.

Sample of an EP11 token configuration file

#
EP11 token configuration
#
APQN_WHITELIST
0 0
0 1
2 84
END
FORCE_SENSITIVE
STRICT_MODE
VHSM_MODE
CPFILTER /etc/opencryptoki/ep11cpfilter.conf
OPTIMIZE_SINGLE_PART_OPERATIONS
DIGEST_LIBICA DEFAULT
USE_PRANDOM

Figure 39. Sample of an EP11 token configuration file

Setting environment variables
To customize your EP11 enablement, you can set environment variables. Setting environment variables
overrides any settings from the configuration file.

The following variables are available:

OCK_EP11_TOKEN_DIR
specifies a directory for all available EP11 token configuration files. If multiple configuration files are
available, they must all be located below this directory.

The default directory for the EP11 token configuration files is /etc/opencryptoki/. This is the
same directory where the openCryptoki configuration file opencryptoki.conf is stored.

Examples:

export OCK_EP11_TOKEN_DIR=/home/user/ep11token
export OCK_EP11_TOKEN_DIR=/var/lib/opencryptoki/

Notes:

• Objects belonging to a certain EP11 token are stored in a different directory specified by the
tokname attribute in opencryptoki.conf.

• The setting of this environment variable is ignored, if a program trying to access the designated
EP11 token is marked with file permission setuid.

OPENCRYPTOKI_TRACE_LEVEL
defines the granularity of logging support. Valid values are between 0 and 5. For information about log
levels, read topic “Enabling the logging support while running the EP11 token ” on page 62.

Example:

44 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

export OPENCRYPTOKI_TRACE_LEVEL=2

Initializing EP11 tokens
Once the openCryptoki configuration file and the configuration files of the EP11 tokens are set up, and the
pkcsslotd daemon is started, the EP11 token instances must be initialized.

Note: PKCS #11 defines two users for each EP11 token instance: a security officer (SO) whose
responsibility is the administration of the token, and a standard user (User) who wants to use the token to
perform cryptographic operations. openCryptoki requires that for both the SO and the User a log-in PIN is
defined as part of the token initialization.

The following command provides some useful slot information:

pkcsconf -s

Slot #0 Info
 Description: EP11 Token
 Manufacturer: IBM
 Flags: 0x1 (TOKEN_PRESENT)
 Hardware Version: 4.0
 Firmware Version: 2.11
Slot #1 Info
 Description: ICA Token
 Manufacturer: IBM
 Flags: 0x1 (TOKEN_PRESENT)
 Hardware Version: 4.0
 Firmware Version: 2.10

Find your preferred token instance in the details list and select the correct slot number. This number is
used in the next initialization steps to identify your token:

$ pkcsconf -I -c <slot> // Initialize the Token and setup a Token Label

$ pkcsconf -P -c <slot> // change the SO PIN (recommended)

$ pkcsconf -u -c <slot> // Initialize the User PIN (SO PIN required)

$ pkcsconf -p -c <slot> // change the User PIN (optional)

pkcsconf -I
During token initialization, you are asked for a token label. Provide a meaningful name, because you
might need this reference for identification purposes.

pkcsconf -P
For security reasons, openCryptoki requires that you change the default SO PIN (87654321) to a
different value. Use the pkcsconf -P option to change the SO PIN.

pkcsconf -u
When you enter the user PIN initialization you are asked for the newly set SO PIN. The length of the
user PIN must be 4 - 8 characters.

pkcsconf -p
You must at least once change the user PIN with pkcsconf -p option. After you completed the PIN
setup, the token is prepared and ready for use.

Note: Define a user PIN that is different from 12345678, because this pattern is checked internally and
marked as default PIN. A log-in attempt with this user PIN is recognized as not initialized.

How to recognize an EP11 token
You can use the pkcsconf -t command to display a table that shows all available tokens. You can
check the slot and token information, and the PIN status at any time.

Chapter 4. Configuring openCryptoki for EP11 support 45

The following information provided by the pkcsconf -t command about the EP11 token is returned in
the Token Info section, where, for example, Token #1 Info displays information about the token
plugged into slot number 1.

$ pkcsconf -t

Token #1 Info:
 Label: ep11
 Manufacturer: IBM Corp.
 Model: IBM EP11Tok
 Serial Number: 123
 Flags: 0x880445
 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|TOKEN_INITIALIZED|USER_PIN_TO_BE_CHANGED
 |SO_PIN_TO_BE_CHANGED)
 Sessions: 0/-2
 R/W Sessions: -1/-2
 PIN Length: 4-8
 Public Memory: 0xFFFFFFFF/0xFFFFFFFF
 Private Memory: 0xFFFFFFFF/0xFFFFFFFF
 Hardware Version: 1.0
 Firmware Version: 1.0
 Time: 15:29:43

The most important information is as follows:

• The token Label you assigned at the initialization phase (ep11, in the example). You can initialize or
change a token label by using the pkcsconf -I command.

• The Model name is unique and designates the token that is in use.
• The Flags provide information about the token initialization status, the PIN status, and features such

as Random Number Generator (RNG). They also provide information about requirements, such as Login
required, which means that there is at least one mechanism that requires a session log-in to use that
cryptographic function. For example, the mask for TOKEN_INITIALIZED is 0x00000400 and it is true, if
the token has been initialized.

The flag USER_PIN_TO_BE_CHANGED indicates that the user PIN must be changed before the token
can be used. The flag SO_PIN_TO_BE_CHANGED indicates that the SO PIN must be changed before the
token can be used.

For more information about the flags provided in this output, see the description of the TOKEN_INFO
structure and the Token Information Flags in the PKCS #11 Cryptographic Token Interface Standard.

• The PIN length range declared for this token.

46 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

Chapter 5. Using an EP11 token
You can take advantage of the EP11 library functions by using the openCryptoki standard interface (PKCS
#11 standard C API).

The PKCS #11 Cryptographic Token Interface Standard describes the exact API.

Applications that are designed to work with openCryptoki are also able to use the Linux on Z EP11
enablement.

An EP11 token plugged into openCryptoki works only on IBM Z hardware, with further prerequisites as
described in this publication. You can configure multiple EP11 tokens within the global openCryptoki
configuration file. Thus you can assign dedicated adapters and domains to different tokens to ensure data
isolation between applications. For more information refer to “Adding EP11 tokens to openCryptoki” on
page 39.

openCryptoki implements the PKCS #11 Baseline Provider specification. A library implementing PKCS
#11 according to the standards of the Baseline Provider Clause is called a PKCS #11 Baseline Provider.
Such a provider has the ability to provide information about its cryptographic services.

A PKCS #11 Baseline Provider library can be exploited by an application conforming to the Baseline
Consumer Clause. Such an application is therefore called a PKCS #11 Baseline Consumer. A Baseline
Consumer calls a Baseline Provider implementation of the PKCS #11 API in order to use the cryptographic
functionality from that provider. Thus, at run-time, a consumer can query information about a provider,
for example, about the offered cryptographic services.

For detailed information about the conformance of a PKCS #11 Baseline Consumer and of a PKCS #11
Baseline Provider read PKCS #11 Cryptographic Token Interface Profiles Version 3.0.

Supported mechanisms for EP11 tokens
View a list of the supported mechanisms for the EP11 token in the openCryptoki implementation.

Use the pkcsconf command with the shown parameters to retrieve a complete list of algorithms (or
mechanisms) that are supported by the token:

$ pkcsconf -m -c <slot>
Mechanism #2
 Mechanism: 0x131 (CKM_DES3_KEY_GEN)
 Key Size: 24-24
 Flags: 0x8001 (CKF_HW|CKF_GENERATE)
…
Mechanism #10
 Mechanism: 0x132 (CKM_DES3_ECB)
 Key Size: 24-24
 Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)
Mechanism #11
 Mechanism: 0x133 (CKM_DES3_CBC)
 Key Size: 24-24
 Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)
...

The list displays all mechanisms that are supported by this token. The mechanism ID and name
corresponds to the PKCS #11 specification. Each mechanism provides its supported key size and some
further properties such as hardware support and mechanism information flags. These flags provide
information about the PKCS #11 functions that may use the mechanism. In some cases, the flags also
provide further attributes that describe the supported variants of the mechanism. Typical functions are
for example, encrypt, decrypt, wrap key, unwrap key, sign, or verify.

On an Crypto Express EP11 coprocessor which is configured to support all applicable PKCS #11
mechanisms from openCryptoki version 3.10, the EP11 token can exploit the mechanisms listed in Table
2 on page 48:

© Copyright IBM Corp. 2014, 2020 47

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html

Table 2. PKCS #11 mechanisms supported by the EP11 token

Mechanism Key sizes (in
bits)

Properties

CKM_AES_CBC 16,24,32 ENCRYPT,DECRYPT,
WRAP,UNWRAP

CKM_AES_CBC_PAD 16,24,32 ENCRYPT,DECRYPT,
WRAP,UNWRAP

CKM_AES_CMAC 16,24,32 SIGN,VERIFY

CKM_AES_CMAC_GENERAL 16,24,32 SIGN,VERIFY

CKM_AES_ECB 16,24,32 ENCRYPT,DECRYPT

CKM_AES_KEY_GEN 16,24,32 GENERATE

CKM_DES2_KEY_GEN 16 GENERATE

CKM_DES3_CBC 16,24 ENCRYPT,DECRYPT,
WRAP,UNWRAP

CKM_DES3_CBC_PAD 16,24 ENCRYPT,DECRYPT,
WRAP,UNWRAP

CKM_DES3_CMAC 16,24 SIGN,VERIFY

CKM_DES3_CMAC_GENERAL 16,24 SIGN,VERIFY

CKM_DES3_ECB 16,24 ENCRYPT,DECRYPT

CKM_DES3_KEY_GEN 24 GENERATE

CKM_DH_PKCS_DERIVE 1024-3072 DERIVE

CKM_DH_PKCS_KEY_PAIR_GEN 1024-3072 GENERATE_KEY_PAIR

CKM_DH_PKCS_PARAMETER_GEN 1024-3072 GENERATE

CKM_DSA 1024-3072 SIGN,VERIFY

CKM_DSA_KEY_PAIR_GEN 1024-3072 GENERATE_KEY_PAIR

CKM_DSA_PARAMETER_GEN 1024-3072 GENERATE

CKM_DSA_SHA1 1024-3072 SIGN,VERIFY

CKM_EC_KEY_PAIR_GEN 192,521 GENERATE_KEY_PAIR, EC_F_P,
EC_NAMEDCURVE,
EC_UNCOMPRESS

CKM_ECDH1_DERIVE [1] 192,521 DERIVE, EC_F_P,
EC_UNCOMPRESS

CKM_ECDSA 192,521 SIGN,VERIFY, EC_F_P,
EC_NAMEDCURVE,
EC_UNCOMPRESS

CKM_ECDSA_KEY_PAIR_GEN 192,521 GENERATE_KEY_PAIR, EC_F_P,
EC_NAMEDCURVE,
EC_UNCOMPRESS

CKM_ECDSA_SHA1 192,521 SIGN,VERIFY, EC_F_P,
EC_NAMEDCURVE,
EC_UNCOMPRESS

48 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Table 2. PKCS #11 mechanisms supported by the EP11 token (continued)

Mechanism Key sizes (in
bits)

Properties

CKM_ECDSA_SHA224 192-521 SIGN,VERIFY, EC_F_P,
EC_NAMEDCURVE,
EC_UNCOMPRESS

CKM_ECDSA_SHA256 192-521 SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE,
EC_UNCOMPRESS

CKM_ECDSA_SHA384 192-521 SIGN,VERIFY, EC_F_P,
EC_NAMEDCURVE,
EC_UNCOMPRESS

CKM_ECDSA_SHA512 192-521 SIGN,VERIFY, EC_F_P,
EC_NAMEDCURVE,
EC_UNCOMPRESS

CKM_IBM_CMAC 16,32 SIGN,VERIFY

CKM_IBM_DILITHIUM [2] 256 SIGN,VERIFY,
GENERATE_KEY_PAIR

CKM_IBM_EC_C25519 256 DERIVE, EC_F_P,
EC_UNCOMPRESS

CKM_IBM_EC_C448 448 DERIVE, EC_F_P,
EC_UNCOMPRESS

CKM_IBM_ED25519_SHA512 256 SIGN,VERIFY, EC_F_P,
EC_UNCOMPRESS

CKM_IBM_ED448_SHA3 448 SIGN,VERIFY, EC_F_P,
EC_UNCOMPRESS

CKM_IBM_EDDSA_SHA512 n/a SIGN,VERIFY

CKM_IBM_SHA3_224 n/a DIGEST

CKM_IBM_SHA3_224_HMAC 112-256 SIGN,VERIFY

CKM_IBM_SHA3_256 n/a DIGEST

CKM_IBM_SHA3_256_HMAC 128-256 SIGN,VERIFY

CKM_IBM_SHA3_384 n/a DIGEST

CKM_IBM_SHA3_384_HMAC 192-256 SIGN,VERIFY

CKM_IBM_SHA3_512 n/a DIGEST

CKM_IBM_SHA3_512_HMAC 256 SIGN,VERIFY

CKM_PBE_SHA1_DES3_EDE_CBC 24 GENERATE

CKM_RSA_PKCS 1024-4096 ENCRYPT,DECRYPT,
SIGN,VERIFY, WRAP,UNWRAP

CKM_RSA_PKCS_KEY_PAIR_GEN 1024-4096 GENERATE_KEY_PAIR

CKM_RSA_PKCS_OAEP [3] 1024-4096 ENCRYPT,DECRYPT,
WRAP,UNWRAP

CKM_RSA_PKCS_PSS 1024-4096 SIGN,VERIFY

Chapter 5. Using an EP11 token 49

Table 2. PKCS #11 mechanisms supported by the EP11 token (continued)

Mechanism Key sizes (in
bits)

Properties

CKM_RSA_X9_31 1024-4096 SIGN, VERIFY

CKM_RSA_X9_31_KEY_PAIR_GEN 1024-4096 GENERATE_KEY_PAIR

CKM_SHA_1 n/a DIGEST

CKM_SHA_1_HMAC 80-256 SIGN,VERIFY

CKM_SHA1_KEY_DERIVATION n/a DERIVE

CKM_SHA1_RSA_PKCS 1024-4096 SIGN,VERIFY

CKM_SHA1_RSA_PKCS_PSS 1024-4096 SIGN,VERIFY

CKM_SHA1_RSA_X9_31 1024-4096 SIGN,VERIFY

CKM_SHA224 n/a DIGEST

CKM_SHA224_HMAC 112-256 SIGN, VERIFY

CKM_SHA224_HMAC_GENERAL 80-2048 SIGN, VERIFY

CKM_SHA224_KEY_DERIVATION n/a DERIVE

CKM_SHA224_RSA_PKCS 1024-4096 SIGN,VERIFY

CKM_SHA224_RSA_PKCS_PSS 1024-4096 SIGN,VERIFY

CKM_SHA256 n/a DIGEST

CKM_SHA256_HMAC 128-256 SIGN,VERIFY

CKM_SHA256_KEY_DERIVATION n/a DERIVE

CKM_SHA256_RSA_PKCS 1024-4096 SIGN,VERIFY

CKM_SHA256_RSA_PKCS_PSS 1024-4096 SIGN,VERIFY

CKM_SHA384 n/a DIGEST

CKM_SHA384_HMAC 192-256 SIGN,VERIFY

CKM_SHA384_KEY_DERIVATION n/a DERIVE

CKM_SHA384_RSA_PKCS 1024-4096 SIGN,VERIFY

CKM_SHA384_RSA_PKCS_PSS 1024-4096 SIGN,VERIFY

CKM_SHA512 n/a DIGEST

CKM_SHA512_224 n/a DIGEST

CKM_SHA512_224_HMAC 112-256 SIGN,VERIFY

CKM_SHA512_224_HMAC_GENERAL 16,256 SIGN,VERIFY

CKM_SHA512_256 n/a Digest

CKM_SHA512_256_HMAC 128-256 SIGN,VERIFY

CKM_SHA512_256_HMAC_GENERAL 16,256 SIGN,VERIFY

CKM_SHA512_HMAC 256 SIGN,VERIFY

CKM_SHA512_KEY_DERIVATION n/a DERIVE

CKM_SHA512_RSA_PKCS 1024-4096 SIGN,VERIFY

50 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Table 2. PKCS #11 mechanisms supported by the EP11 token (continued)

Mechanism Key sizes (in
bits)

Properties

CKM_SHA512_RSA_PKCS_PSS 1024-4096 SIGN,VERIFY

[1]
With EP11 host library version 3, the CKM_ECDH1_DERIVE mechanism expects the
CK_ECDH1_DERIVE_PARAMS structure as mechanism parameter, and thus also supports key
derivation functions (KDFs) and shared data.

[2]
Dilithium 6-5 uses key sizes of 1760 bytes for a public key and 3856 bytes for a private key. Refer to
https://pq-crystals.org/dilithium/index.shtml for details. These key sizes are comparable to 256 bits
of security of classical algorithms.

[3]
Starting with IBM z15, firmware version 7.13 and an EP11 host library of at least 2.1, the
CKM_RSA_PKCS_OAEP mechanism supports SHA2 and SHA3 as hashing algorithms and mask
generation function (MGF) algorithms.

For explanation about the key object properties see the PKCS #11 Cryptographic Token Interface
Standard.

Filtering mechanisms
You can obtain a filtered list of mechanisms, according to the current setting of the access control points
(ACPs), while considering different firmware levels on the configured EP11 cryptographic coprocessors.
That is, if multiple cryptographic coprocessors are assigned in the EP11 token configuration file, only the
mechanisms accessible from the cryptographic coprocessor with the lowest firmware level are
considered. That way only those mechanisms are returned which you can really use.

An EP11 cryptographic coprocessor can be configured by means of ACPs, which restrict the use of certain
mechanisms within a domain of this coprocessor. Restricted mechanisms are not visible in the
mechanism list returned. Some ACPs restrict certain attributes of mechanisms (such as key sizes). Such
restrictions are not reflected in the returned list.

You can use functions C_GetMechanismList, C_GetMechanismInfo, as well as the command
pkcsconf -m -c n to produce a list of accessible mechanisms. Function C_GetMechanismInfo
returns CKR_MECHANISM_INVALID when the examined mechanism is restricted by the current ACP
settings.

Since the EP11 token can use multiple EP11 cryptographic coprocessors and also multiple domains on a
coprocessor, the access control points of all cryptographic coprocessors and domains are queried.
Ideally, all coprocessors and domains should have identical ACP settings. If differences are detected, a
message is issued to the SYSLOG, and the minimum ACP setting of all coprocessors and domains is used.

If multiple cryptographic coprocessors with different firmware levels are used, then only the mechanisms
allowed by the ACP setting from the cryptographic coprocessor with the lowest firmware level are
returned.

When the EP11 token configuration file specifies the APQN_ANY keyword, then the sysfs directories
under /sys/devices/ap/ are scanned to find all available EP11 cryptographic coprocessors. If an
APQN_WHITELIST is specified, then only those coprocessors specified in the white-list are used.

The associations of access control points with certain mechanisms are read from the so-called access
control point filter configuration file. This allows to change the associations easily, when additional
mechanisms or ACPs are added.

A default access control point filter configuration file is provided as part of the EP11 token. If the access
control point filter configuration file is not found or is empty, then no ACP filter is applied.

Chapter 5. Using an EP11 token 51

https://pq-crystals.org/dilithium/index.shtml
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

The access control point filter configuration file that contains the definitions for the ACP filter is called
ep11cpfilter.conf per default, and is located at the same place as the EP11 token configuration files.
To choose a different name or location of the access control point filter configuration file, specify the
CPFILTER keyword followed by the name and path of the access control point filter configuration file in
the EP11 token configuration file, for example:

CPFILTER /etc/opencryptoki/ep11cpfilter.conf

In the access control point filter configuration file, each line specifies the number of an ACP, followed by a
colon and a comma-separated list of mechanisms that are not available when this ACP is not set:

<cp>: <mech1, mech2, ...>

Both, the ACP number and the mechanisms can be specified as name, in decimal, octal (with leading 0),
or hexadecimal (with leading 0x), for example:

XCP_CPB_SIGN_SYMM: CKM_SHA256_HMAC, CKM_SHA256_HMAC_GENERAL
4: 0x00000251, 0x00000252

The shown example filters out the mechanisms CKM_SHA256_HMAC (0x00000251) and
CKM_SHA256_HMAC_GENERAL (0x00000252) when access control point (ACP) XCP_CPB_SIGN_SYMM
(3) or XCP_CPB_SIGVERIFY_SYMM (4) is not set. In the first line, both the ACP and the affected
mechanisms are specified as name, and in the second line, the ACP is specified by a decimal number and
the mechanisms are identified by their hexadecimal values.

A list of ACPs can be found in document Enterprise PKCS#11 (EP11) Library structure (Table 11: Control
points) that is provided as part of the EP11 library.

Note that you must not change the access control point filter configuration file shipped with openCryptoki
unless you are advised to do so by IBM.

The access control point filter configuration file is read once during token initialization (that is, within the
C_Initialize function). It is kept in memory for the whole lifetime of the token. When changes are
made to this configuration file, the token must be terminated and initialized again to have it read the file
and activate the changes.

Note: Do not disable access control point 13 (generate or derive symmetric keys including DSA
parameters), because during token initialization, the EP11 token uses mechanism CKM_AES_KEY_GEN,
which is dependent on this ACP 13.

Importing keys
You can import keys of type CKK_AES, CKK_3DES, CKK_DSA, CKK_RSA, CKK_DH, and CKK_EC from plain
text key values using function C_CreateObject. The resulting key objects are secure (CKA_SENSITIVE
= CK_TRUE and CKA_ALWAYS_SENSITIVE = CK_FALSE).

To import keys of type CKK_AES, CKK_DES2, CKK_3DES, and CKK_GENERIC_SECRET, you must provide
a template that contains the following attributes:

• CKA_VALUE

To import keys of type CKK_DSA, you must provide a template that contains the following attributes:

• CKA_PRIME (also called p)
• CKA_SUBPRIME (also called q)
• CKA_BASE (also called g)
• CKA_VALUE (private key x or public key y)

To import keys of type CKK_RSA, you must provide a template that contains the following attributes:

• CKA_MODULUS
• CKA_PUBLIC_EXPONENT

52 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

http://public.dhe.ibm.com/security/cryptocards/pciecc4/EP11/docs/ep11-structure.pdf

• CKA_PRIVATE_EXPONENT (for private key import only)
• CKA_PRIME_1 (for private key import only)
• CKA_PRIME_2 (for private key import only)
• CKA_EXPONENT_1 (for private key import only)
• CKA_EXPONENT_2 (for private key import only)
• CKA_COEFFICIENT (for private key import only)

To import keys of type CKK_DH, you must provide a template that contains the following attributes:

• CKA_PRIME (also called p)
• CKA_BASE (also called g)
• CKA_VALUE (private key x or public key y)

To import keys of type CKK_EC (synonym CKK_ECDSA), you must provide a template that contains the
following attributes:

• CKA_EC_PARAMS
• CKA_EC_POINT
• CKA_VALUE (for private key import only)

Quantum safe cryptography with the EP11 token
The EP11 token offers features for quantum safe cryptography.

Quantum safe or post-quantum cryptography denotes cryptographic algorithms that resist attacks from
classical as well as from quantum computers. The CRYSTALS-Dilithium Digital Signature Algorithm is a
digital signature scheme and one of the candidate algorithms in the NIST Post-Quantum Cryptography
Standardization Process.

In the EP11 token, the CRYSTALS-Dilithium algorithm provides security category SHA384 / SHA3-384
and performance category Dilithium-1536x1280 (also called Dilithium-6-5). On the TKE workstation, you
must enable Dilithium by setting domain (access) control point 65 on the used cryptographic
coprocessors:

65 XCP_CPB_ALG_PQC_DILITHIUM enable support for Dilithium algorithm

Because Dilithium keys can only sign or verify, the EP11 token only provides one single mechanism for all
three operations: key generation, sign, and verify: CKM_IBM_DILITHIUM (see also Table 2 on page 48).

With the EP11 token, you can also import and export Dilithium keys by wrapping or unwrapping them
using AES or TDES key encrypting keys (KEKs). That is, you can protect Dilithium keys that are sent to
another system, received from another system, or stored with data in a file.

Restrictions for using Dilithium keys

• IBM Dilithium keys cannot actively be used to transport (wrap and unwrap) other keys, but they can be
transported using standard key types (AES, TDES).

• IBM Dilithium keys cannot be derived from given keys. They can only be generated or imported from
given key values.

Supported curves with elliptic curve cryptography in the EP11 token
View a list of curves that are supported by the EP11 token for elliptic curve cryptography (ECC).

For the support of elliptic curve cryptography, the EP11 token provides standard mechanisms and IBM-
specific mechanisms for key derivation and for sign and verify operations. For more information, refer to
“Supported mechanisms for EP11 tokens” on page 47.

Chapter 5. Using an EP11 token 53

Table 3. PKCS #11 mechanisms supported by the EP11 token

Curve Purpose

brainpoolP160r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP160t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP192r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP192t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP224r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP224t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP256r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP256t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP320r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP320t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP1384r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP384t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP512r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

brainpoolP512t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

prime192v1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

prime256v1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

54 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Table 3. PKCS #11 mechanisms supported by the EP11 token (continued)

Curve Purpose

secp224r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

secp256k1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

secp384r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

secp521r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH mit CKM_ECDH1_DERIVE

Montgomery curves, only for ECDH with certain IBM-specific mechanisms

curve448 ECDH with CKM_IBM_EC_C448

curve25519 ECDH with CKM_IBM_EC_C25519

Edwards Curves, only for Sign/Verify (EdDSA) with certain IBM-specific mechanisms

ed448 Sign/Verify with CKM_IBM_ED448_SHA3

ed25519 Sign/Verify with CKM_IBM_ED25519_SHA512

The EP11 host library provides access control point 55 to enable support of curve25519, c448, and
related algorithms, including EdDSA:

55 XCP_CPB_ALG_EC_25519 enable support of curve25519, c448 and related algorithms
 incl. EdDSA

Re-encrypting data with a mechanism
The vendor-specific function C_IBM_ReencryptSingle is available in openCryptoki and is supported by
all tokens. You can use it to re-encrypt data encrypted with a given key and mechanism with another key
and mechanism. This function is useful for secure key encryption with an EP11 token or a CCA token,
because during the process, the data is never visible in the clear anywhere outside the cryptographic
coprocessor.

The C_IBM_ReencryptSingle function has the following signature:

CK_RV C_IBM_ReencryptSingle(CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pDecrMech,
 CK_OBJECT_HANDLE hDecrKey,
 CK_MECHANISM_PTR pEncrMech,
 CK_OBJECT_HANDLE hEncrKey,
 CK_BYTE_PTR pEncryptedData,
 CK_ULONG ulEncryptedDataLen,
 CK_BYTE_PTR pReencryptedData,
 CK_ULONG_PTR pulReencryptedDataLen);

Because the new function is non-standard, it does not appear in the PKCS #11 CK_FUNCTION_LIST
structure returned by C_GetFunctionList(). To invoke this function, you must either locate the
desired function in the main DLL using dlsym(), or link the application program with the main DLL. You
can also use C_GetInterface() to get the interface called Vendor IBM. This interface also provides
the C_IBM_ReencryptSingle function.

Chapter 5. Using an EP11 token 55

Like other PKCS #11 functions, this function returns output in a variable-length buffer, conforming to the
convention defined by PKCS #11.

If pReencryptedData is NULL_PTR, then the function only uses parameter
*pulReencryptedDataLen to return a number of bytes which would suffice to hold the cryptographic
output produced from the input to the function. This number may exceed the precise number of bytes
needed, but not to a very high extent.

If pReencryptedData is not NULL_PTR, then *pulReencryptedDataLen must contain the size in
bytes of the buffer pointed to by pReencryptedData. If that buffer is large enough to hold the
cryptographic output produced by the function, then that cryptographic output is placed there, and
CKR_OK is returned. If the buffer is not large enough, then CKR_BUFFER_TOO_SMALL is returned. In
either case, *pulReencryptedDataLen is set to hold the exact number of bytes needed to hold the
produced cryptographic output.

The function generally allows to specify any combination of decryption and encryption mechanisms.
However, not all combinations work with all data sizes. Mechanisms that do not perform any padding,
require that the data to be encrypted is a multiple of the block size. Also some mechanisms have certain
size limitations (for example, RSA). If the data size after decryption with the decryption mechanism
conflicts with the requirements of the encryption mechanisms, then the re-encrypt operation may fail
with CKR_DATA_LEN_RANGE. Also, not all tokens may support all mechanism combinations.
CKR_MECHANISM_INVALID is returned if one of the mechanisms specified is not supported for the re-
encrypt operation.

Supporting the BSICC2017 compliance mode
The EP11 token provides an access control point (ACP) to enable the BSICC2017 compliance mode.
When enabled, this compliance mode disables the RSA PKCS #1 v1.5 mechanisms.

The EP11 host library supports access control point 61 which is related to the BSICC2017 compliance
mode.

61 XCP_CPB_ALG_NBSI2017 enable the BSICC2017 compliance mode

This ACP can be used to disable the following RSA PKCS #1 v1.5 mechanisms:

• CKM_RSA_PKCS
• CKM_SHA1_RSA_PKCS
• CKM_SHA224_RSA_PKCS
• CKM_SHA256_RSA_PKCS
• CKM_SHA384_RSA_PKCS
• CKM_SHA512_RSA_PKCS

Controlling access to cryptographic objects
You can decide to activate one or two session modes to limit the access to cryptographic objects in order
to improve security. The available session modes are the strict session mode or the virtual HSM (VHSM)
mode. Both of these modes generate an EP11 session. An EP11 session is a state on the EP11
cryptographic coprocessor and must not be confused with a PKCS #11 session.

You must configure the EP11 token to use either one of the available modes, or both.

• Protecting cryptographic objects with the strict session mode:

This mode prohibits that a session key, copied from a PKCS #11 session that generated this key, is still
valid even if the generating session has ended. Also, when this mode is used, session keys generated
with this token can no longer be passed to other sessions of the same token.

To enable the strict session mode, specify keyword STRICT_MODE in the EP11 token configuration file.
• Protecting cryptographic objects with the virtual HSM (VHSM) mode:

56 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

This mode is applicable when the same EP11 cryptographic coprocessors are used by multiple EP11
tokens. In such environments, a key generated by one token might be used by another token which
uses the same domain on multiple EP11 cryptographic coprocessors. This is possible, because all keys
are wrapped by the same master key. This mode prohibits that a key, generated by one token, is used
by any other token (on the same system or on another system or z/VM or KVM guest).

To enable the virtual HSM (VHSM) mode, specify keyword VHSM_MODE in the configuration file. When
this mode is used, session and token keys generated with this token can no longer be passed to other
tokens using domains on the same EP11 cryptographic coprocessors.

The number of simultaneously supported EP11 sessions is limited on an EP11 cryptographic coprocessor.
Programs that use a large number of sessions simultaneously should not use the strict session mode or
the virtual HSM mode, because otherwise the EP11 cryptographic coprocessor may run out of session
resources.

Therefore, it is important to delete any finished EP11 session, that is no longer required, in particular
when the program for which it was logged in, terminated unexpectedly. For the purpose of a required
session cleanup, you can use the pkcsep11_session utility. With this tool you can delete EP11 sessions
from the EP11 cryptographic coprocessors that are left over by programs that did not terminate normally
(see “Managing EP11 sessions with the pkcsep11_session tool” on page 65).

The pkcsep11_session tool also allows to display any currently stored EP11 sessions, and can also log
out of those sessions.

Note: Strict session mode and virtual HSM (VHSM) mode only work for R/W or R/O user sessions. For
public sessions or security officer (SO) sessions, the strict session mode and the virtual HSM (VHSM) mode
are not used.

Strict session mode

To enable a strict implementation of the PKCS #11 session semantics, a strict session mode is available
on a per token instance basis.

In strict session mode, for each new PKCS #11 session, a unique EP11 session ID is generated. Then the
EP11 session is logged in on all adapter/domain pairs (adjunct processor queue numbers, APQNs) that
are configured for the token. For each logged-in session, the returned session pin-blob (derived from the
EP11 session ID) is stored in a special token object in the token directory.

During further processing, all session keys (that is, objects where attribute CKA_TOKEN is CK_FALSE) are
bound to the session pin-blob that was created when the session was logged on.

At session end, the EP11 session with regards to the PKCS #11 session is logged out on all APQNs
belonging to the token. The token object representing this EP11 session ID is deleted from the token
directory.

An APQN that comes online after an EP11 session has started, is also logged in internally if a request to
that APQN is encountered.

If multiple APQNs are available in the system, then all pin-blobs returned by the EP11 session login for
the individual APQNs must be equal. Otherwise an error is returned and logged in the SYSLOG.

Virtual HSM (VHSM) mode

To restrict keys to only that token that was used to generate it, the virtual HSM mode (VHSM mode) is
available on a per-token basis.

Similar to the strict session mode, for each new PKCS #11 session, a unique EP11 session ID is
generated. However, an additional card-PIN is required to log into an EP11 session in VHSM mode.

The card-PIN used with VHSM mode must be set using the command cardpin from the
pkcsep11_session tool (see “Managing EP11 sessions with the pkcsep11_session tool” on page 65).

Chapter 5. Using an EP11 token 57

It takes a slot ID, the user PIN, and the card-PIN as input. The card-PIN is stored in a special token object
in the token directory. The card-PIN must be between 8 and 16 characters in length.

That way, after setting the card-PIN, an EP11 session can log in on all configured APQNs. The returned
pin-blob derived from the card-PIN is stored in a special token object in the token directory (separately
from the token object for the card-PIN), the same way as for strict session mode.

During further processing, all keys (session keys as well as token keys) are bound to the pin-blob that was
derived from the card-PIN when the session was logged in.

At session end, the EP11 session with regards to the PKCS #11 session is logged out from all APQNs and
the token object representing this EP11 session ID is deleted from the token directory. In contrast to the
session pin-blob, the card-PIN remains persistent and thus can be used for future sessions in VHSM
mode.

When the VHSM mode is enabled, but no card-PIN has been set, then the PKCS #11 session login fails,
and an appropriate message is logged to syslog.

Combined strict session mode and virtual HSM mode

The strict session mode can be combined with the VHSM mode. This binds all keys to the card-PIN, and
additionally binds session keys (that is, objects where attribute CKA_TOKEN is FALSE) to the PKCS #11
session.

Strict session
mode

VHSM
mode

Session objects Token objects

off off not bound not bound

on off bound to PKCS #11 session not bound

off on bound to token by card PIN bound to token by card PIN

on on bound to PKCS #11 session and
token by card PIN

bound to token by card PIN

Restrictions with using the EP11 library functions
In this topic, you find information about certain limitations of the EP11 library.

• The EP11 library implements the secure key concept (that is, a key is wrapped (encrypted) by a master
key, which is kept within the EP11 adapter). That means, that EP11 key values are never accessible.
The secure key concept ensures that clear keys never leave the hardware security module (HSM), which
is the EP11 module part that is installed on the cryptographic coprocessor.

Therefore, the EP11 token only knows sensitive secret keys (CKO_SECRET_KEY). However, the PKCS
#11 standard defines the default value of attribute CKA_SENSITIVE to be CK_FALSE. Thus, for
previous versions of the EP11 token, all applications must have the attribute value of CKA_SENSITIVE
explicitly changed to CK_TRUE whenever an EP11 secret key had been generated, unwrapped, or build
with C_CreateObject.

Starting with the EP11 token for openCryptoki version 3.10, an option is implemented to change the
default value of attribute CKA_SENSITIVE to be CK_TRUE for all secret keys created with the EP11
token. This applies to functions C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey, and
C_DeriveKey when creating key with CKA_CLASS = CKO_SECRET_KEY, if the attribute
CKA_SENSITIVE is not explicitly specified in the template.

To enable this option, you must specify keyword FORCE_SENSITIVE in the EP11 token configuration
file, as shown in Figure 40 on page 59. Note that the semantics specified with the FORCE_SENSITIVE
keyword matches the semantics used by z/OS® for EP11.

58 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

#
EP11 token configuration
#
FORCE_SENSITIVE
#
APQN_WHITELIST
5 2
6 2
END

Figure 40. Sample of an EP11 token configuration file
• Keys leaving the hardware security module (HSM) are encrypted by the HSM master key (wrapping key)

and come as binary large object (BLOB). In openCryptoki, objects can have special attributes that
describe the key properties. Besides dedicated attributes defined by the application, there are some
attributes defined as token-specific by openCryptoki.

Table 4 on page 59 and Table 5 on page 59 show the EP11 token-specific attributes and their default
values for private and secure keys.

Table 4. Private key (CKO_PRIVATE_KEY) default attributes of the EP11 token

Private key attributes value

CKA_SENSITIVE CK_TRUE

CKA_EXTRACTABLE CK_TRUE

Table 5. Secret key (CKO_SECRET_KEY) default attributes of the EP11 token

Secret key attributes value

CKA_EXTRACTABLE CK_TRUE

• When you create keys the default values of the attributes CKA_ENCRYPT, CKA DECRYPT, CKA_VERIFY,
CKA_SIGN, CKA_WRAP and CKA_UNWRAP are CK_TRUE. Note, no EP11 mechanism supports the Sign/
Recover or Verify/Recover functions.

Even if settings of CKA_SENSITIVE, CKA_EXTRACTABLE, or CKA_NEVER_EXTRACTABLE would allow
accessing the key value, then openCryptoki returns 00..00 as key value (due to the secure key
concept).

For information about the key attributes, see the PKCS #11 Cryptographic Token Interface Standard.
• All RSA keys must have a public exponent (CKA_PUBLIC_EXPONENT) greater than or equal to 17.
• The Crypto Express EP11 coprocessor restricts RSA keys (primes and moduli) according to ANSI X9.31.

Therefore, in the EP11 token, the lengths of the RSA primes (p or q) must be a multiple of 128 bits. Also,
the length of the modulus (CKA_MODULUS_BITS) must be a multiple of 256.

• The mechanisms CKM_DES3_CBC and CKM_AES_CBC can only wrap keys, which have a length that is a
multiple of the block size of DES3 or AES respectively. See the mechanism list and mechanism
information (pkcsconf -m) for supported mechanisms together with supported functions and key
sizes.

• The EP11 coprocessor adapter can be configured to restrict the cryptographic capabilities in order for
the adapter to comply with specific security requirements and regulations. Such restrictions on the
adapter impact the capability of the EP11 token (see also “Filtering mechanisms” on page 51).

• The PKCS #11 function C_DigestKey() is not supported by the EP11 library.

Restriction to extended evaluations
For openCryptoki versions up to 3.8, the EP11 token only supported those functions and mechanisms that
are available on an adapter that is configured to comply to the extended evaluations. These extended
evaluations meet public sector requirements with regard to both FIPS and Common Criteria certifications.
For more details, see the IBM z14 Technical Guide.

Chapter 5. Using an EP11 token 59

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://www.redbooks.ibm.com/abstracts/sg248451.html?Open

Starting with the current version of the EP11 enablement, you can control the use of certain mechanisms
within a domain of an EP11 cryptographic coprocessor by configuring this coprocessor by means of
access control points (ACPs). So except for one restriction, the use of mechanisms is no longer restricted
to the limitations imposed by the extended evaluations.

Read “Filtering mechanisms” on page 51 for information on how to manage the access to PKCS #11
mechanisms using ACPs. The available mechanisms and their attributes are then reflected by the
openCryptoki functions C_GetMechanismList and C_GetMechanismInfo. However, there is one
restriction on RSA mechanisms that cannot be reflected in the result of C_GetMechanismInfo: The
CKA_PUBLIC_EXPONENT must have a value of at least 17.

60 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Chapter 6. Troubleshooting EP11
Troubleshooting can provide helpful information, if problems occur while you work with the Linux on Z
EP11 enablement.

The contained subtopics introduce different methods, which support troubleshooting:

• “Checking the device driver status” on page 61
• “Checking the EP11 token status” on page 61
• “Enabling the logging support while running the EP11 token ” on page 62

Checking the device driver status
The first step of troubleshooting while working with the EP11 enablement may be to check the device
driver status as described in this topic.

Use the lszcrypt command like shown to retrieve basic status information. Type lszcrypt -V to
achieve an output similar to the following:

lszcrypt -V

CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT ... REQUESTQ_CNT HW_TYPE Q_DEPTH FUNCTIONS
--
02 CEX6A Accelerator online 6895 0 11 08 0x6a000000
02.004c CEX6A Accelerator online 6895 0 11 08 0x6a000000
03 CEX6C CCA-Coproc online 4627 0 11 08 0x92000000
03.004c CEX6C CCA-Coproc online 4627 0 11 08 0x92000000
05 CEX6P EP11-Coproc online 2284 0 11 08 0x06000000
05.004c CEX6P EP11-Coproc online 2284 0 11 08 0x06000000

This call can be used to check whether the EP11 requests are sent to a specific crypto adapter.

For more information about using IBM cryptographic adapters with Linux on Z and LinuxONE, see Device
Drivers, Features, and Commands, SC33-8411 available at

www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Checking the EP11 token status
You can request information about the EP11 token status by using the pkcsconf -t command. The
Flags entry shows the actual status flags for the token and whether the token is ready to be used. In the
shown example, the SO PIN needs to be changed before the token can be used.

$ pkcsconf -t

Token #1 Info:
 ...
 Model: IBM EP11Tok
 ...
 Flags: 0x80044D
 (RNG|LOGIN_REQUIRED|USER_PIN_INITIALIZED|CLOCK_ON_TOKEN|TOKEN_INITIALIZED
 |SO_PIN_TO_BE_CHANGED)
 ...
 ...
 Time: 15:29:43

© Copyright IBM Corp. 2014, 2020 61

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Enabling the logging support while running the EP11 token
Read about the tasks how to run the EP11 token with enabled logging support.

You can enable logging support by setting the environment variable OPENCRYPTOKI_TRACE_LEVEL. If
the environment variable is not set, logging is disabled by default.

Table 6. EP11 log levels

Log level Description

1 Log error messages.

2 Log warning messages.

3 Log informational messages.

4 Log development debug messages. These messages may help debug while developing
PKCS #11 applications.

5 Log debug messages that are useful to openCryptoki developers. This level must be
enabled via option --enable-debug in the configure script.

If a log level > 0 is defined in the environment variable OPENCRYPTOKI_TRACE_LEVEL, then log entries
are written to file /var/log/opencryptoki/trace.<pid>. In this file name specification, <pid>
denotes the ID of the running process that uses the EP11 token.

The log file is created with ownership user, and group pkcs11, and permission 640 (user: read, write;
group: read only; others: nothing). For every application, which is using openCryptoki with the EP11
token, a new log file is created during token initialization. Prerequisite for a working EP11 stack is the
existence of the EP11 coprocessor card and an appropriate device driver with EP11 support.

A log level > 3 is only recommended for developers.

How to avoid common mistakes

• Do not configure or use an EP11 token before the master key is set on the associated adapters.
Otherwise, token initialization fails and an appropriate syslog message is issued.

• Do not let a user invoke openCryptoki who does not belong to the pkcs11 group. Be aware that adding a
user to a new group does not change the group membership of users that were logged in before.

62 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Chapter 7. Tools and utilities
Various tools and utilities are available which provide general information about EP11, which support you
in migrating EP11 master keys, and which help you to manage EP11 sessions.

The available utilities are introduced in :

• ep11info in “Obtaining information about an EP11 environment with the ep11info tool” on page 63
• pkcsep11_migrate in “Migrating master keys with the pkcsep11_migrate tool” on page 63
• pkcsep11_session in “Managing EP11 sessions with the pkcsep11_session tool” on page 65

Obtaining information about an EP11 environment with the ep11info tool
Use the ep11info tool to obtain general information about EP11 cryptographic coprocessors and about
the domains configured on the system. Especially the wrapping key identifier of the configured domains
are shown.

The syntax of the ep11info tool is as shown:

ep11info [-h | --help] | [-m <module_nr> | --module <module_nr>]
 [-d <domain_index> | --domain <domain_index>]

If you do not specify any options, all configured domains on all available EP11 cryptographic
coprocessors are shown.

The ep11info tool is included in the EP11 package (RPM or DEB), starting with EP11 version 2.0.0.-n.
For more information refer to the ep11info man page which is also included in the package and which is
installed as part of the EP11 token.

Migrating master keys with the pkcsep11_migrate tool
There may be situations when the master key on (a domain of) a CEX*P adapter must be changed, for
example, if company policies require periodic changes of all master keys. Simply changing the master
keys using the TKE results in all secure keys stored in the EP11 token to become useless. Therefore all
data encrypted by these keys are lost. To avoid this situation, you must accomplish a master key
migration process, where activities on the TKE and on the Linux system must be interlocked.

Per default, the EP11 token stores all token key objects in the Linux file system in the /var/lib/
opencryptoki/ep11tok/TOK_OBJ directory. For information about using multiple EP11 token
instances, see “Adding EP11 tokens to openCryptoki” on page 39.

All secret and private keys are secure keys, that means they are enciphered (wrapped) with the master
key (MK) of the CEX*P adapter domain. Therefore, the master key is often also referred to as wrapping
key. If master keys are changed in a domain of a CEX*P adapter, all key objects for secure keys in the
EP11 token object repository become invalid. Therefore, all key objects for secure keys must be re-
enciphered with the new MK. In order to re-encipher secure keys that are stored as EP11 key objects in
the EP11 token object repository, openCryptoki provides the master key migration tool
pkcsep11_migrate.

How to access the master key migration tool

The pkcsep11_migrate key migration utility is part of openCryptoki version 3.1, which includes the EP11
support.

Prerequisites for the master key migration process

The master key migration process for the EP11 token requires a TKE version 7.3 environment. How to set
up this environment is described in “Setting up the TKE environment” on page 19.

© Copyright IBM Corp. 2014, 2020 63

To use the pkcsep11_migrate migration tool, the EP11 crypto stack including openCryptoki must be
installed and configured. For information on how to set up this environment, refer to Chapter 3, “Building
the EP11 crypto stack,” on page 9.

The master key migration process

Prerequisite for re-encipherment: The EP11 token may be configured to use more than one adapter/
domain pair to perform its cryptographic operations. This is defined in the EP11 token configuration file. If
the EP11 token is configured to use more than one adapter/domain pair, then all adapter/domain pairs
must be configured to each have the same set of master keys. Therefore, if a master key on one of these
adapter/domain pairs is changed, it must be changed on all those other adapter/domain pairs, too.

To migrate master keys on the set of adapter/domain pairs used by an EP11 token, you must perform the
following steps:

1. On the TKE workstation (TKE), submit and commit the same new master key on all CEX*P adapter/
domain combinations used by the EP11 token.

2. On Linux, stop all processes that are currently using openCryptoki with the EP11 token.
3. On Linux, back up the token object repository of the EP11 token. For example, you can use the

following commands:

cd /var/lib/opencryptoki/ep11
tar -cvzf ~/ep11TOK_OBJ_backup.tgz TOK_OBJ

4. On Linux, migrate the keys of the EP11 token object repository with the pkcsep11_migrate migration
tool (see the invocation information provided at the end of these process steps). The
pkcsep11_migrate tool must only be called once for one of the adapter/domain pairs that the EP11
token uses. If a failure occurs, restore the backed-up token repository and try this step again.

Attention: Do not continue with step “5” on page 64 unless step “4” on page 64 was
successful. Otherwise you will lose your encrypted data.

5. On the TKE, activate the new master keys on all EP11 adapter/domain combinations that the EP11
token uses.

6. On Linux, restart the applications that used openCryptoki with the EP11 token.

In step “1” on page 64 of the master key migration process, the new master key must be submitted and
committed via the TKE interface. That means the new EP11 master key must be in the state Full
Committed. The current MK is in the state Valid. Now both (current and new) EP11 master keys are
available and accessible. The utility can now decrypt all relevant key objects within the token and re-
encrypt all these key objects with the new master key.

Note: All the decrypt and encrypt operations are done inside the EP11 coprocessor card, that means that
at no time clear key values are visible within memory.

Invocation:

pkcsep11_migrate -slot <number> -adapter <number> -domain <number>

The following parameters are mandatory:

-slot
- slot number for the EP11 token

-adapter
- the card ID; can be retrieved form the card ID in the sysfs (to be retrieved from /sys/devices/ap/
cardxx, or with lszcrypt.

-domain
- the decimal card domain number (to be retrieved from /sys/bus/ap/ap_domain or with
lszcrypt -b)

All token objects representing secret or private keys that are found for the EP11 token, are re-encrypted.

64 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Note: The adapter and domain numbers can be specified in decimal, octal (with suffix 0), or hexadecimal
(with suffix 0x) notation. The lszcrypt utility displays these fields in hexadecimal values.

Usage: You are prompted for your user PIN.

Examples:

pkcsep11_migrate -slot 2 -adapter 8 -domain 48
pkcsep11_migrate -slot 0x2 -adapter 010 -domain 0x30

Both invocations migrate the master key for the cryptographic coprocessor 8 (octal 010) and domain 48
(hex 0x30) used by the EP11 token from slot 2.

Note: The program stops if the re-encryption of a token object fails. In this case, restore the back-up.

After this utility re-enciphered all key objects, the new master key must be activated. This activation must
be done by using the TKE interface command Set, immediate. Finally, the new master key becomes
the current master key and the previous master key must be deleted.

Note: This tool is embedded in the users sbin path and therefore callable from everywhere.

To prevent token object generation during re-encryption, openCryptoki with the EP11 token must not be
running during re-encryption. It is recommended to make a back-up of the EP11 token object directory
(/usr/local/var/lib/opencryptoki/ep11tok/TOK_OBJ).

Managing EP11 sessions with the pkcsep11_session tool
An EP11 session is a state on the EP11 cryptographic coprocessor and must not be confused with a PKCS
#11 session. An EP11 session is generated by the strict session mode or the VHSM mode. They are
implicitly stored and deleted by openCryptoki if the according modes are set. So under normal
circumstances, you need not care about the management of these EP11 sessions. But in some cases, for
example, when programs crash or when programs do not close their sessions or do not call C_Finalize
before exiting, some explicit EP11 session management may be required.

The pkcsep11_session tool allows to delete an EP11 session from the EP11 cryptographic coprocessors
left over by programs that did not terminate normally. An EP11 cryptographic coprocessor supports only a
certain number of EP11 sessions at a time. Because of this, it is important to delete any EP11 session, in
particular when the program for which it was logged in, terminated unexpectedly. The pkcsep11_session
tool is also used to set the card-PIN required for the VHSM mode.

pkcsep11_session usage examples

• Show all left over sessions:

pkcsep11_session show

A sample output for two left-over EP11 sessions could look as shown:

pkcsep11_session show -slot 4
Using slot #4...

Enter the USER PIN:
List of EP11 sessions:

30D5457762D8DDC158B558FCCC79FAB6:
 Pid: 48196
 Date: 2018/ 7/12
30D5457762D8DDC158B558FCCC79FAB6:
 Pid: 48196
 Date: 2018/ 7/12

2 EP11-Sessions displayed

Note that only the first 16 bytes of the EP11 sessions ID are stored in the session object and therefore,
the session IDs are displayed only partially. Otherwise, a user would be able to re-login on an EP11

Chapter 7. Tools and utilities 65

adapter and re-use keys generated with this EP11 session, when the full EP11 session ID would be
visible to the outside. Thus there may be identical session IDs when the strict session mode and the
virtual HSM (VHSM) mode are combined for a session, as shown in the example.

• Show all left over EP11 sessions that belong to a specific process id (pid):

pkcsep11_session show -pid 1234

• Show all left over EP11 sessions that have been created before a specific date:

pkcsep11_session show -date 2018/06/29

• Logout all left over EP11 sessions:

pkcsep11_session logout

• Logout all left over EP11 sessions that belong to a specific process id (pid):

pkcsep11_session logout -pid 1234

• Logout all left over EP11 sessions that have been created before a specific date:

pkcsep11_session logout -date 2018/07/27

• Logout all left over EP11 sessions even when the logout does not succeed on all adapters:

pkcsep11_session logout -force

• Set a card-PIN:

pkcsep11_session cardpin

The card-PIN must be between 8 and 16 characters in length.

The pkcsep11_session tool provides its own man page that is installed as part of the EP11 package.

Migrating to FIPS compliance using the pkcstok_migrate tool
Use the pkcstok_migrate tool to transform an EP11 token, a CCA token, an ICA token, or a Soft Token
into a data format that was generated by FIPS compliant operations. You can use this tool to migrate
tokens created with all versions of openCryptoki, because also for version 3.12 or later, the old non-
compliant format is the default. Being FIPS compliant, the token data is stored in a format that is better
protected against attacks than the previously used data format.

For further information, read the pkcstok_migrate man page.

Parameters

pkcstok_migrate -h

Help: pkcstok_migrate -h
-h, --help Show this help

Options:

-s, --slotid SLOTID PKCS slot number (required)
-d, --datastore DATASTORE token datastore location (required)
-c, --confdir CONFDIR location of opencryptoki.conf (required)
-u, --userpin USERPIN token user pin (prompted if not specified)
-p, --sopin SOPIN token SO pin (prompted if not specified)
-v, --verbose LEVEL set verbose level (optional):
none (default), error, warn, info, devel, debug

Functionality

The utility:

66 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

• directly accesses the token objects via file operations;
• assumes that no other action is currently running. It checks if the slot manager pkcsslotd is running

and asks the user to end it if yes.

Before making any changes to the repository, a temporary copy is created. Migration takes place on this
copy. The copied folder is suffixed with _PKCSTOK_MIGRATE_TMP. If the migration fails, the old
repository is still available.

Running a migration again, would remove any remaining backups from previous runs, create a new
backup, and then do the migration.

• After successfully migrating all token objects, the original repository folder is renamed by appending the
suffix _BAK, and the new repository folder gets the name of the original one.

• Also, the opencryptoki.conf file is updated by inserting (or updating) the tokversion parameter in
the token’s slot configuration. The old configuration file is still available with the same suffix _BAK.

This makes the new repository immediately usable after restarting the pkcsslotd daemon, but also
allows the user to switch back manually to the old token format.

Chapter 7. Tools and utilities 67

68 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Chapter 8. Programming examples for openCryptoki
The provided program segments in C illustrate some openCryptoki sample APIs to be used for EP11.

The contained openCryptoki code samples provide an insight into how to deal with the openCryptoki
API's. After describing some basic functions such as initialization, session and log-in handling, the
samples provide an introduction about how to create key objects and process symmetric encryption/
decryption (AES). The last section shows RSA key generation with RSA encrypt and decrypt operations.

To develop an application that uses the openCryptoki library, you need to access the library. You achieve
the loading of shared objects by using dynamic library calls (dlopen) as described in the sample provided
in “Base procedures” on page 70.

At compile time, you need to specify the openCryptoki library:

gcc test_ock.c -g -O0 -o test_ock -lopencryptoki -ldl
-I /usr/include/opencryptoki/

The exact location of the include files depends on your Linux distribution.

The following sample categories are provided:

• Base procedures
• Session and log-in
• Object handling
• Cryptographic operations

© Copyright IBM Corp. 2014, 2020 69

Base procedures
View some openCryptoki code samples for base procedures, such as a main program, an initialization
procedure, and finalize information.

Main program

/* Example program to test opencryptoki
 * build: gcc test_ock.c -g -O0 -o test_ock -lopencryptoki -ldl
 -I /root/opencryptoki/usr/include/pkcs11/
 * execute: ./test_ock -c <slot> -p <PIN> */
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <dlfcn.h>
#include <pkcs11types.h>
#include <string.h>
#include <unistd.h>
#define OCKSHAREDLIB "libopencryptoki.so"

void *lib_ock;
char *pin = NULL;
int count, arg;
CK_SLOT_ID slotID = 0;
CK_ULONG rsaKeyLen = 2048, cipherTextLen = 0, clearTextLen = 0;
CK_BYTE *pCipherText = NULL, *pClearText = NULL;
CK_BYTE *pRSACipher = NULL, *pRSAClear = NULL;
CK_FLAGS rw_sessionFlags = CKF_RW_SESSION | CKF_SERIAL_SESSION;
CK_SESSION_HANDLE hSession;
CK_BYTE keyValue[] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,
 0xCA,0xFE,0xBE,0xEF,0xCA,0xFE,0xBE,0xEF};
CK_BYTE msg[] = "The quick brown fox jumps over the lazy dog";
CK_ULONG msgLen = sizeof(msg);
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;

/*** <insert helper functions (provided below) here> ***/
/*** usage / help ***/
void usage(void)
{
 printf("Usage:\n");
 printf(" -s <slot number> \n");
 printf(" -p <user PIN>\n");
 printf("\n");
 exit (8); }

int main(int argc, char *argv[]) {
 while ((arg = getopt (argc, argv, "s:p:")) != -1) {
 switch (arg) {
 case 's': slotID = atoi(optarg);
 break;
 case 'p': pin = malloc(strlen(optarg));
 strcpy(pin,optarg);
 break;
 default: printf("wrong option %c", arg);
 usage();
 } }

 if ((!pin) || (!slotID)) {
 printf("Incorrect parameter given!\n");
 usage();
 exit (8); }

 init();
 openSession(slotID, rw_sessionFlags, &hSession);
 loginSession(CKU_USER, pin, 8, hSession);
 createKeyObject(hSession, (CK_BYTE_PTR)&keyValue, sizeof(keyValue));
 AESencrypt(hSession, (CK_BYTE_PTR)&msg, msgLen, &pCipherText, &cipherTextLen);
 AESdecrypt(hSession, pCipherText, cipherTextLen, &pClearText, &clearTextLen);
 generateRSAKeyPair(hSession, rsaKeyLen, &hPublicKey, &hPrivateKey);
 RSAencrypt(hSession, hPublicKey, (CK_BYTE_PTR)&msg, msgLen, &pRSACipher, &rsaKeyLen);
 RSAdecrypt(hSession, hPrivateKey, pRSACipher, rsaKeyLen, &pRSAClear, &rsaKeyLen);
 logoutSession(hSession); closeSession(hSession);
 finalize();
 return 0;
}

70 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

C_Initialize

/*
 * initialize
 */
CK_RV init(void){
 CK_RV rc;
 lib_ock = dlopen(OCKSHAREDLIB, RTLD_GLOBAL | RTLD_NOW);
 if (!lib_ock) {
 printf("Error loading shared lib '%s' [%s]", OCKSHAREDLIB, dlerror());
 return 1;
 }
 rc = C_Initialize(NULL);
 if (rc != CKR_OK) {
 printf("Error initializing the opencryptoki library: 0x%X\n", rc);
 }
 return CKR_OK;
}

C_Finalize

/*
 * finalize
 */
CK_RV finalize(void) {
 CK_RV rc;
 rc = C_Finalize(NULL);
 if (rc != CKR_OK) {
 printf("Error during finalize: %x\n", rc);
 }
 if (pCipherText) free(pCipherText);
 if (pClearText) free(pClearText);
 if (pRSACipher) free(pRSACipher);
 if (pRSAClear) free(pRSAClear);
 return rc;
}

Session and log-in procedures
When you use your sample code with a static linked library you can access the APIs directly. View some
openCryptoki code samples for opening and closing sessions and for log-in.

C_OpenSession:

/*
 * opensession
 */

CK_RV openSession(CK_SLOT_ID slotID, CK_FLAGS sFlags,
 CK_SESSION_HANDLE_PTR phSession) {
 CK_RV rc;
 rc = C_OpenSession(slotID, sFlags, NULL, NULL, phSession);
 if (rc != CKR_OK) {
 printf("Error opening session: %x\n", rc);
 return rc;
 }
 printf("Open session successful.\n");
 return CKR_OK;
}

Chapter 8. Programming examples for openCryptoki 71

C_CloseSession:

/*
 * closesession
 */
CK_RV closeSession(CK_SESSION_HANDLE hSession) {
 CK_RV rc;
 rc = C_CloseSession(hSession);
 if (rc != CKR_OK) {
 printf("Error closing session: 0x%X\n", rc);
 return rc;
 }
 printf("Close session successful.\n");
 return CKR_OK;
}

C_Login:

/*
 * login
 */
CK_RV loginSession(CK_USER_TYPE userType, CK_CHAR_PTR pPin,
 CK_ULONG ulPinLen, CK_SESSION_HANDLE hSession) {
 CK_RV rc;
 rc = C_Login(hSession, userType, pPin, ulPinLen);
 if (rc != CKR_OK) {
 printf("Error login session: %x\n", rc);
 return rc;
 }
 printf("Login session successful.\n");
 return CKR_OK;
}

C_Logout:

/*
 * logout
 */
CK_RV logoutSession(CK_SESSION_HANDLE hSession) {
 CK_RV rc;
 rc = C_Logout(hSession);
 if (rc != CKR_OK) {
 printf("Error logout session: %x\n", rc);
 return rc;
 }
 printf("Logout session successful.\n");
 return CKR_OK;
}

72 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Object handling procedures
When you use your sample code with a static linked library you can access the APIs directly. View some
openCryptoki code samples for procedures dealing with object handling.

C_CreateKeyObject:

/*
 * createKeyObject
 */
CK_RV createKeyObject(CK_SESSION_HANDLE hSession, CK_BYTE_PTR key, CK_ULONG keyLength) {
 CK_RV rc;

 CK_OBJECT_HANDLE hKey;
 CK_BBOOL true = TRUE;
 CK_BBOOL false = FALSE;
 CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
 CK_KEY_TYPE keyType = CKK_AES;
 CK_ATTRIBUTE keyTempl[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_VERIFY, &true, sizeof(true)},
 {CKA_TOKEN, &true, sizeof(true)}, /* token object */
 {CKA_PRIVATE, &false, sizeof(false)}, /* public object */
 {CKA_VALUE, keyValue, keyLength}, /* AES key */
 {CKA_LABEL, "My_AES_Key", sizeof("My_AES_Key")}
 };
 rc = C_CreateObject(hSession, keyTempl, sizeof (keyTempl)/sizeof (CK_ATTRIBUTE), &hKey);
 if (rc != CKR_OK) {
 printf("Error creating key object: 0x%X\n", rc); return rc;
 }
 printf("AES Key object creation successful.\n");
 return CKR_OK;
}

C_FindObjects:

/*
 * findObjects
 */
CK_RV getKey(CK_CHAR_PTR label, int labelLen, CK_OBJECT_HANDLE_PTR hObject,
 CK_SESSION_HANDLE hSession) {
 CK_RV rc;
 CK_ULONG ulMaxObjectCount = 1;
 CK_ULONG ulObjectCount;
 CK_ATTRIBUTE objectMask[] = { {CKA_LABEL, label, labelLen} };
 rc = C_FindObjectsInit(hSession, objectMask, 1);
 if (rc != CKR_OK) {
 printf("Error FindObjectsInit: 0x%X\n", rc); return rc;
 }
 rc = C_FindObjects(hSession, hObject, ulMaxObjectCount, &ulObjectCount);
 if (rc != CKR_OK) {
 printf("Error FindObjects: 0x%X\n", rc); return rc;
 }
 rc = C_FindObjectsFinal(hSession);
 if (rc != CKR_OK) {
 printf("Error FindObjectsFinal: 0x%X\n", rc); return rc;
 }
 return CKR_OK;
}

Chapter 8. Programming examples for openCryptoki 73

Cryptographic operations
When you use your sample code with a static linked library you can access the APIs directly. View some
openCryptoki code samples for procedures that perform cryptographic operations.

C_Encrypt (AES):

/*
 * AES encrypt
 */
CK_RV AESencrypt(CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
 CK_BYTE **pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {
 CK_RV rc;
 CK_MECHANISM myMechanism = {CKM_AES_CBC_PAD, "01020304050607081122334455667788", 16};
 CK_MECHANISM_PTR pMechanism = &myMechanism;
 CK_OBJECT_HANDLE hKey;
 getKey("My_AES_Key", sizeof("My_AES_Key"), &hKey, hSession);
 rc = C_EncryptInit(hSession, pMechanism, hKey);
 if (rc != CKR_OK) {
 printf("Error initializing encryption: 0x%X\n", rc);
 return rc;
 }
 rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
 NULL, pulEncryptedDataLen);
 if (rc != CKR_OK) {
 printf("Error during encryption (get length): %x\n", rc);
 return rc;
 }
 *pEncryptedData = (CK_BYTE *)malloc(*pulEncryptedDataLen * sizeof(CK_BYTE));

 rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
 *pEncryptedData, pulEncryptedDataLen);
 if (rc != CKR_OK) {
 printf("Error during encryption: %x\n", rc);
 return rc;
 }
 printf("Encrypted data: ");
 CK_BYTE_PTR tmp = *pEncryptedData;
 for (count = 0; count < *pulEncryptedDataLen; count++, tmp++) {
 printf("%X", *tmp);
 }
 printf("\n");

 return CKR_OK;
}

74 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

C_Decrypt (AES):

/*
 * AES decrypt
 */
CK_RV AESdecrypt(CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
 CK_BYTE **pClearData, CK_ULONG_PTR pulClearDataLen) {
 CK_RV rc;
 CK_MECHANISM myMechanism = {CKM_AES_CBC_PAD, "01020304050607081122334455667788", 16};
 CK_MECHANISM_PTR pMechanism = &myMechanism;
 CK_OBJECT_HANDLE hKey;
 getKey("My_AES_Key", sizeof("My_AES_Key"), &hKey, hSession);
 rc = C_DecryptInit(hSession, pMechanism, hKey);
 if (rc != CKR_OK) {
 printf("Error initializing decryption: 0x%X\n", rc);
 return rc;
 }
 rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen, NULL, pulClearDataLen);
 if (rc != CKR_OK) {
 printf("Error during decryption (get length): %x\n", rc);
 return rc;
 }
 *pClearData = malloc(*pulClearDataLen * sizeof(CK_BYTE));
 rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen, *pClearData,
 pulClearDataLen);
 if (rc != CKR_OK) {
 printf("Error during decryption: %x\n", rc);
 return rc;
 }
 printf("Decrypted data: ");
 CK_BYTE_PTR tmp = *pClearData;
 for (count = 0; count < *pulClearDataLen; count++, tmp++) {
 printf("%c", *tmp);
 }
 printf("\n");
 return CKR_OK;
}

Chapter 8. Programming examples for openCryptoki 75

C_GenerateKeyPair (RSA):

/*
 * RSA key generate
 */
CK_RV generateRSAKeyPair(CK_SESSION_HANDLE hSession, CK_ULONG keySize,
 CK_OBJECT_HANDLE_PTR phPublicKey, CK_OBJECT_HANDLE_PTR phPrivateKey) {
 CK_RV rc;
 CK_BBOOL true = TRUE;
 CK_BBOOL false = FALSE;
 CK_OBJECT_CLASS keyClassPub = CKO_PUBLIC_KEY;
 CK_OBJECT_CLASS keyClassPriv = CKO_PRIVATE_KEY;
 CK_KEY_TYPE keyTypeRSA = CKK_RSA;
 CK_ULONG modulusBits = keySize;
 CK_BYTE_PTR pModulus = malloc(sizeof(CK_BYTE)*modulusBits/8);
 CK_BYTE publicExponent[] = {1, 0, 1};
 CK_MECHANISM rsaKeyGenMech = {CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0};
 CK_ATTRIBUTE pubKeyTempl[] = {
 {CKA_CLASS, &keyClassPub, sizeof(keyClassPub)},
 {CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_PRIVATE, &true, sizeof(true)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VERIFY, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)},
 {CKA_LABEL, "My_Private_Token_RSA1024_PubKey",
 sizeof("My_Private_Token_RSA1024_PubKey")},
 {CKA_MODIFIABLE, &true, sizeof(true)},
 };
 CK_ATTRIBUTE privKeyTempl[] = {
 {CKA_CLASS, &keyClassPriv, sizeof(keyClassPriv)},
 {CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
 {CKA_EXTRACTABLE, &true, sizeof(true)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_PRIVATE, &true, sizeof(true)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_UNWRAP, &true, sizeof(true)},
 {CKA_LABEL, "My_Private_Token_RSA1024_PrivKey",
 sizeof("My_Private_Token_RSA1024_PrivKey")},
 {CKA_MODIFIABLE, &true, sizeof(true)},
 };
 rc = C_GenerateKeyPair(hSession, &rsaKeyGenMech ,
 &pubKeyTempl, sizeof(pubKeyTempl)/sizeof (CK_ATTRIBUTE),
 &privKeyTempl, sizeof(privKeyTempl)/sizeof (CK_ATTRIBUTE),
 phPublicKey, phPrivateKey);
 if (rc != CKR_OK) {
 printf("Error generating RSA keys: %x\n", rc);
 return rc;
 }
 printf("RSA Key generation successful.\n");
 return CKR_OK;
}

76 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

C_Encrypt (RSA):

/*
 * RSA encrypt
 */
CK_RV RSAencrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
 CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
 CK_BYTE **pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {
 CK_RV rc;
 CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};
 rc = C_EncryptInit(hSession, rsaMechanism, hKey);
 if (rc != CKR_OK) {
 printf("Error initializing RSA encryption: %x\n", rc);
 return rc;
 }
 rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
 NULL, pulEncryptedDataLen);
 if (rc != CKR_OK) {
 printf("Error during RSA encryption: %x\n", rc);
 return rc;
 }

 *pEncryptedData = (CK_BYTE *)malloc(rsaKeyLen * sizeof(CK_BYTE));
 rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
 *pEncryptedData, pulEncryptedDataLen);
 if (rc != CKR_OK) {
 printf("Error during RSA encryption: %x\n", rc);
 return rc;
 }

 printf("Encrypted data: ");
 CK_BYTE_PTR tmp = *pEncryptedData;
 for (count = 0; count < *pulEncryptedDataLen; count++, tmp++) {
 printf("%X", *tmp);
 }
 printf("\n");
 return CKR_OK;
}

C_Decrypt (RSA):

/*
 * RSA decrypt
 */
CK_RV RSAdecrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
 CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
 CK_BYTE **pClearData, CK_ULONG_PTR pulClearDataLen) {
 CK_RV rc;
 CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};
 rc = C_DecryptInit(hSession, rsaMechanism, hKey);
 if (rc != CKR_OK) {
 printf("Error initializing RSA decryption: %x\n", rc);
 return rc;
 }
 rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
 NULL, pulClearDataLen);
 if (rc != CKR_OK) {
 printf("Error during RSA decryption: %x\n", rc);
 return rc;
 }

 *pClearData = malloc(rsaKeyLen*sizeof(CK_BYTE));
 rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
 *pClearData, pulClearDataLen);
 if (rc != CKR_OK) {
 printf("Error during RSA decryption: %x\n", rc);
 return rc;
 }
 printf("Decrypted data: ");
 CK_BYTE_PTR tmp = *pClearData;
 for (count = 0; count < *pulClearDataLen; count++, tmp++) {
 printf("%c", *tmp);
 }
 printf("\n");
 return CKR_OK;
}

Chapter 8. Programming examples for openCryptoki 77

78 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Accessibility

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Documentation accessibility

The Linux on Z and LinuxONE publications are in Adobe Portable Document Format (PDF) and should be
compliant with accessibility standards. If you experience difficulties when you use the PDF file and want
to request a Web-based format for this publication send an email to eservdoc@de.ibm.com or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM
has to accessibility at

www.ibm.com/able

© Copyright IBM Corp. 2014, 2020 79

http://www.ibm.com/able

80 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

© Copyright IBM Corp. 2014, 2020 81

http://www.ibm.com/legal/copytrade.shtml

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

82 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Glossary

Advanced Encryption Standard (AES)
A data encryption technique that improved upon and officially replaced the Data Encryption Standard
(DES). AES is sometimes referred to as Rijndael, which is the algorithm on which the standard is
based.

asymmetric cryptography
Synonym for public key cryptography..

Central Processor Assist for Cryptographic Function (CPACF)
Hardware that provides support for symmetric ciphers and secure hash algorithms (SHA) on every
central processor. Hence the potential encryption/decryption throughput scales with the number of
central processors in the system.

Chinese-Remainder Theorem (CRT)
A mathematical problem described by Sun Tsu Suan-Ching using the remainder from a division
operation.

Cipher Block Chaining (CBC)
A method of reducing repetitive patterns in cipher-text by performing an exclusive-OR operation on
each 8-byte block of data with the previously encrypted 8-byte block before it is encrypted.

Cipher block length
The length of a block that can be encrypted or decrypted by a symmetric cipher. Each symmetric
cipher has a specific cipher block length.

clear key
Any type of encryption key not protected by encryption under another key.

CPACF instructions
Instruction set for the CPACF hardware.

Crypto Express card, Crypto Express adapter (CEX*S)
Beginning with CEX4S, the PCIe adapter on a CEX*S feature can be configured in three ways: Either as
cryptographic accelerator (CEX*A), or as CCA coprocessor (CEX*C) for secure key encrypted
transactions, or in EP11 coprocessor mode (CEX*P) for exploiting Enterprise PKCS #11 functionality.

A CEX*P adapter only supports secure key mode.

ECC
See Elliptic curve cryptography.

electronic code book mode (ECB mode)
A method of enciphering and deciphering data in address spaces or data spaces. Each 64-bit block of
plain-text is separately enciphered and each block of the cipher-text is separately deciphered.

Elliptic curve cryptography (ECC)
A public-key process discovered independently in 1985 by Victor Miller (IBM) and Neal Koblitz
(University of Washington). ECC is based on discrete logarithms. Due to the algebraic structure of
elliptic curves over finite fields, ECC provides a similar amount of security to that of RSA algorithms,
but with relatively shorter key sizes.

libica
Library for IBM Cryptographic Architecture.

master key (MK)
In computer security, the top-level key in a hierarchy of key-encrypting keys.

Mode of operation
A schema describing how to apply a symmetric cipher to encrypt or decrypt a message that is longer
than the cipher block length. The goal of most modes of operation is to keep the security level of the
cipher by avoiding the situation where blocks that occur more than once will always be translated to
the same value. Some modes of operations allow handling messages of arbitrary lengths.

© Copyright IBM Corp. 2014, 2020 83

modulus-exponent (Mod-Expo)
A type of exponentiation performed using a modulus.

public key cryptography
In computer security, cryptography in which a public key is used for encryption and a private key is
used for decryption. Synonymous with asymmetric cryptography.

Rivest-Shamir-Adleman (RSA)
An algorithm used in public key cryptography. These are the surnames of the three researchers
responsible for creating this asymmetric or public/private key algorithm.

Secure Hash Algorithm (SHA)
An encryption method in which data is encrypted in a way that is mathematically impossible to
reverse. Different data can possibly produce the same hash value, but there is no way to use the hash
value to determine the original data.

secure key
A key that is encrypted under a master key. When using a secure key, it is passed to a cryptographic
coprocessor where the coprocessor decrypts the key and performs the function. The secure key never
appears in the clear outside of the cryptographic coprocessor.

symmetric cryptogrphy
An encryption method that uses the same key for encryption and decryption. Keys of symmetric
ciphers are private keys.

zcrypt device driver
Kernel device driver to access Crypto Express adapters. Formerly, a monolithic module called
z90crypt. Today, it consists of multiple modules that are implicitly loaded when loading the ap main
module of the device driver.

84 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Index

A
about this document xiii
access control point

ACP 41
BSICC2017 compliance mode 56
domain control point ix

access control points
filtering mechanisms 51

accessibility 79
ACP

access control point 41
BSICC2017 compliance mode 56

ACPs
filtering mechanisms 51

adapter
assigning domains 39

adapter/domain pair
APQN 39

adapters
dedicated EP11 adapters 15

adapters and domains
assigning to LPARs 11

alias name for z90crypt 16
ap module 16
APDEDicated operand 15
APQN

adapter/domain pair 39
APQN_ANY 39
APQN_WHITELIST 39, 41
assigning adapters and domains

to LPARs 11
asymmetric cryptography 1
available libraries in openCryptoki 37

B
bit coin curve

secp256k1 53
BSICC2017 compliance mode

access control point 56

C
C API 1, 47
C_Decrypt (AES) 74
C_Decrypt (RSA) 74
C_Encrypt (AES) 74
C_Encrypt (RSA) 74
C_GenerateKeyPair (RSA) 74
C_GetMechanismInfo 59
C_GetMechanismList 59
C_IBM_ReencryptSingle 55
card-PIN 57
CEX*P adapter

setting the master key 19
CEX4P

CEX4P (continued)
configuring 11
preparing 9

CEX4P adapter 2
CEX4S 1
CEX5P xiii
CEX6P xiii
CEX7P xiii
checking EP11 token status 61
checking the device driver status 61
chzcrypt command 11
CKK_3DES 52
CKK_AES 52
CKK_DH 52
CKK_EC 52
CKK_RSA 52
clear key 2
code sample

base procedures 70
cryptographic operations 74
dynamic library calls 70
object handling 73
static linked library 71

command line program
pkcsconf 6

command pkcsconf 37
configuration file

ep11tok01.conf 39
sample for opencryptoki.conf 37

configuring
EP11 token 39
extended evaluations 59
multiple EP11 tokens 39

configuring CEX4P 11
configuring extended evaluations 59
configuring openCryptoki 37
confname 39
control domain exposure 9
control domains 9
control point

BSICC2017 compliance mode 56
coprocessor mode xiii
CPFILTER 41
creating an EP11 smart card 20
CRYPTO APVIRTual

APDEDicated operand 15
Domain operand 15

Crypto Express (CEX*S) adapter 2
Crypto Express EP11 coprocessor

configuring 11
preparing 9

Crypto Express4 feature xiii
Crypto Express5 feature xiii
Crypto Express6 feature xiii
Crypto Express7 feature xiii
crypto stack

building 9

Index 85

cryptographic domains 9
cryptographic operations 74
cryptographic token 1
cryptography

asymmetric 1
public key 1

Cryptoki 1

D
daemon

ep11TKEd 17
install 17
start 17
TKE EP11 17

DEB 34
decrypt 2
dedicated adapters 15
dependencies 3
device driver

ap main module 16
EP11 extension 3
loading 16

device driver status
checking 61

Dilithium
EP11 token 53
quantum safe cryptography 53

directory statement
CRYPTO APVIRTual 15

distribution independence xiv
domain control point

access control point ix, 41
Domain operand 15
domains 9
dynamic library calls 69

E
elliptic curve cryptography

EP11 token 53
encrypt 2
Enterprise PKCS #11 xiii
Enterprise PKCS #11 (EP11) 2
environment variables

OCK_EP11_TOKEN_DIR 44
OPENCRYPTOKI_TRACE_LEVEL 44

EP11
general information 1, 5
troubleshooting 61

EP11 adapters 15
EP11 crypto stack

building 9
EP11 enablement 1
EP11 extension 3
EP11 firmware 2, 3, 11
EP11 host part

installing 17
EP11 information tool 63
EP11 library

host part 3
module part 3
restrictions 58

EP11 library functions
programming samples 69

EP11 pkcstok_migrate 66
EP11 session 56
EP11 session tool 65
EP11 sessions

definition 65
managing 65

EP11 smart card 20
EP11 stack

building 9
dependencies 3
overview 5

EP11 TKE daemon 17
EP11 token

bit coin curve 53
configuring 39
Dilithium 53
elliptic curve cryptography 53
filtering mechanisms 51
installing and configuring 37
logging support 62
quantum safe cryptography 53
secp256k1 53
status information 45
supported mechanisms 47
using 47

EP11 token configuration file
APQN_WHITELIST 41
CPFILTER 41
ep11tok01.conf 39
OPTIMIZE_SINGLE_PART_OPERATIONS 41
sample 44
STRICT_MODE 41
VHSM_MODE 41

EP11 token instance xiii
EP11 token status

checking 61
EP11 token type xiii
ep11info 63
ep11TKEd 11
ep11TKEd daemon

install 17
start 17
TKE EP11 17

ep11TKEd TKE daemon 19
ep11tok01.conf configuration file 39
examples for programming 69
extended evaluations

configuring 59

F
filtering mechanisms

EP11 token 51
firmware

EP11 2
flags 61

G
glossary 83

86 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

H
hardware security module (HSM) 2, 58
host part

installing 17
HSM 2, 58

I
ibopencryptoki.so 5
importing keys

CKK_3DES 52
CKK_AES 52
CKK_DH 52
CKK_DSA 52
CKK_EC 52
CKK_RSA 52

installing EP11 host part 17
installing openCryptoki 34
introduction 1
ioctl commands 19

K
key importing 52
key word APQN_ANY 39
key word APQN_WHITELIST 39

L
limiting

usability of objects 56
Linux

distribution xiv
Linux on Z EP11 enablement 1
Linux zcrypt device driver

loading 16
loading Linux zcrypt device driver 16
log-in PIN 45
logging support 62
logical partition (LPAR) 9
LPAR 9
lszcrypt 11, 61

M
managing EP11 sessions 65
master key

setting on the CEX*P adapter 19
master key (MK)

migration process 63
master key (MK) migration tool

installing, configuring, using 63
pkcsep11_migrate 63

mechanisms
filtering according to access control points 51
supported for the EP11 token 47

migrating master keys 63
migration tool

for master (wrapping) keys 63
MK

setting on the CEX4P adapter 19
module part 3

multiple EP11 tokens
configuring 39

O
object handling 73
objects usability

limiting 56
OCK_EP11_TOKEN_DIR 44
openCryptoki

base library 37
C_Decrypt (AES) 74
C_Decrypt (RSA) 74
C_Encrypt (AES) 74
C_Encrypt (RSA) 74
C_GenerateKeyPair (RSA) 74
configuration file 37
configuring 37
dynamic library calls 69
installing

from DEB 34
from RPM 34

installing from source package 34
programming samples 69
shared library (C API) 1
SO PIN 45
standard PIN 45
status information 45
token library 37

openCryptoki configuration
opencryptoki.conf 44

openCryptoki library 5
OPENCRYPTOKI_TRACE_LEVEL 44
opencryptoki.conf

configuration file 37
OPTIMIZE_SINGLE_PART_OPERATIONS 41

P
PAM

pluggable authentication modules 17
permit TKE commands 11
PIN 45
pk_config_data 37
PKCS #11 1
PKCS #11 standard 5
PKCS #11 standard C API 47
pkcs11_startup 37
pkcsconf 6, 45
pkcsconf -t 45
pkcsconf -t command 37
pkcsconf command 37
pkcsep11_migrate 63
pkcsep11_session 63, 65
pkcsslotd 5
pkcstok_migrate 66
pluggable authentication modules

PAM 17
post-quantum cryptography

Dilithium 53
EP11 token 53

process flow 3
programming samples 69

Index 87

public key cryptography 1
Public-Key Cryptography Standards 1

Q
quantum safe cryptography

Dilithium 53
EP11 token 53

QUERY CRYPto DOMains 15

R
restrictions of EP11 library 58
RPM 3, 34

S
sample code

cryptographic operations 74
dynamic library calls 70
object handling 73
static linked library 71

samples 69
secp256k1

bit coin curve 53
secure key 2, 19
secure key concept 58
secure key infrastructure 1
security officer (SO)

log-in PIN 45
session pin-blob 57
setting environment variables

OCK_EP11_TOKEN_DIR 44
OPENCRYPTOKI_TRACE_LEVEL 44

shadow group 17
slot entry 37
slot entry, defining 39
slot manager

starting 37
slot token dynamic link libraries (STDLLs) 5
smart card

creating 20
initializing 20

SO
log-in PIN 45

source package 34
stack 3
stack and process flow 3
standard user (User)

log-in PIN 45
starting the slot manager 37
static linked library 71
status flags 61
status information 45
status of EP11 token 61
STDLL 5
STDLLs 5
sticky bit 17
strict session mode 57
strict session mode, virtual HSM mode

combined 58
STRICT_MODE 41
summary of changes

summary of changes (continued)
updates for the openCryptoki version 3.10 EP11 token x
updates for the openCryptoki version 3.12 EP11 token ix

Support Element 11
supported mechanisms

EP11 token 47

T
terminology xiii
TKE commands

permit 11
TKE daemon 11, 17
TKE daemon ep11TKEd 19
TKE workstation

connect with IBM Z mainframe 19
token

initializing 45
token directory 9
tokname 39
tools

ep11info 63
pkcsep11_migrate 63
pkcsep11_session 63, 65
pkcstok_migrate 66

troubleshooting EP11 61
Trusted Key Entry (TKE) 19
Trusted Key Entry workstation 10, 19

U
unwrap 2
usability of objects

limiting 56
usage domains 9
User

log-in PIN 45
using the EP11 token 47
utilities

ep11info 63
pkcsep11_migrate 63
pkcsep11_session 63, 65
pkcstok_migrate 66

V
VHSM 57
VHSM mode, strict session mode

combined 58
VHSM_MODE 41
virtual HSM mode

VHSM 57
virtual HSM mode, strict session mode

combined 58

W
who should read this document xiv
wrap 2
wrapping key

setting on the CEX*P adapter 19

88 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

Z
z/VM guests 15
z90crypt

alias name 16
zcrypt 16
zcrypt device driver

loading 16
zcrypt device driver status

checking 61

Index 89

90 Linux on Z and LinuxONE : Exploiting EP11 using openCryptoki

IBM®

SC34-2713-02

	Contents
	Figures
	Tables
	Summary of changes
	Updates for the EP11 token for openCryptoki versions 3.11 up to 3.15
	Updates for the openCryptoki version 3.10 EP11 token type

	About this document
	How this document is organized
	Terminology
	Who should read this document
	Distribution independence
	Other publications for Linux on Z and LinuxONE

	Chapter 1. Introduction
	What is PKCS #11?
	What is openCryptoki?
	What is a Crypto Express EP11 coprocessor ?

	Chapter 2. The EP11 crypto stack
	openCryptoki overview

	Chapter 3. Building the EP11 crypto stack
	Preparing the Crypto Express EP11 coprocessor
	Purpose of domains
	Assigning adapters and domains to LPARs
	Enabling a cryptographic coprocessor for EP11 firmware exploitation
	Assigning EP11 adapters as dedicated adapters to z/VM guests

	Installing and loading the cryptographic device driver
	Installing the host part of the EP11 library
	Setting a master key on the Crypto Express EP11 coprocessor
	Installing openCryptoki

	Chapter 4. Configuring openCryptoki for EP11 support
	Adjusting the openCryptoki configuration file
	Adding EP11 tokens to openCryptoki

	Defining an EP11 token-specific configuration file
	Setting environment variables
	Initializing EP11 tokens
	How to recognize an EP11 token

	Chapter 5. Using an EP11 token
	Supported mechanisms for EP11 tokens
	Filtering mechanisms

	Importing keys
	Quantum safe cryptography with the EP11 token
	Supported curves with elliptic curve cryptography in the EP11 token
	Re-encrypting data with a mechanism
	Supporting the BSICC2017 compliance mode
	Controlling access to cryptographic objects
	Restrictions with using the EP11 library functions
	Restriction to extended evaluations

	Chapter 6. Troubleshooting EP11
	Checking the device driver status
	Checking the EP11 token status
	Enabling the logging support while running the EP11 token

	Chapter 7. Tools and utilities
	Obtaining information about an EP11 environment with the ep11info tool
	Migrating master keys with the pkcsep11_migrate tool
	Managing EP11 sessions with the pkcsep11_session tool
	Migrating to FIPS compliance using the pkcstok_migrate tool

	Chapter 8. Programming examples for openCryptoki
	Base procedures
	Session and log-in procedures
	Object handling procedures
	Cryptographic operations

	Accessibility
	Notices
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

