
Linux on System z

Exploiting Enterprise PKCS #11 using
openCryptoki 3.1

SC34-2713-00

���

Linux on System z

Exploiting Enterprise PKCS #11 using
openCryptoki 3.1

SC34-2713-00

���

Note
Before using this document, be sure to read the information in “Notices” on page 71.

Edition notice

This edition applies to the EP11 token for openCryptoki version 3.1 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

About this document vii
How this document is organized vii
Who should read this document vii
Distribution independence viii
Other Linux on System z publications viii

Chapter 1. Introduction 1
What is PKCS #11? 1
What is openCryptoki? 1
What is a Crypto Express4S EP11 coprocessor? . . . 2

Chapter 2. The EP11 crypto stack. . . . 5
openCryptoki overview. 7

Chapter 3. Building the EP11 crypto
stack 11
Preparing the Crypto Express4S EP11 coprocessor . 11

Purpose of domains 11
Enabling the CEX4S adapter for EP11 firmware
exploitation 13
Assigning EP11 adapters as dedicated adapters to
z/VM guests 17
Restriction to extended evaluations 18

Loading the Linux zcrypt device driver 18
Installing the host part of the EP11 library 18
Setting a master key on the Crypto Express4S EP11
coprocessor 19
Installing openCryptoki 38

Chapter 4. Configuring openCryptoki
for EP11 support 41
Adjusting the openCryptoki configuration file . . . 41
Configuring the EP11 token 43

Assigning adapters and domains to LPARs 45
Setting environment variables 46
Initializing the token 46
How to recognize the EP11 token 47

Chapter 5. Using the EP11 token . . . 49
Supported mechanisms for the EP11 token 49
Restrictions with using the EP11 library functions . 51

Chapter 6. Managing master keys on
the Crypto Express4S EP11
coprocessor 53

Chapter 7. Troubleshooting EP11 . . . 57
Checking the device driver status 57
Checking the EP11 token status. 57
Enabling the logging support while running the
EP11 token 57

Chapter 8. Programming examples for
openCryptoki 59
Base procedures 59
Session and log-in procedures 61
Object handling procedures 62
Cryptographic operations. 63

Accessibility 69

Notices 71
Trademarks 72

Glossary 73

Index 75

© Copyright IBM Corp. 2014 iii

iv Exploiting EP11 using openCryptoki

Figures

1. Stack and process flow with a configured EP11
token 6

2. System Management in the Support Element 14
3. System Management - installed crypto

adapters 15
4. System Management - configure LPARs off 15
5. System Management - Cryptographic

Configuration 16
6. System Management - Cryptographic

Configuration 16
7. TKE Console - initial window 21
8. Crypto Adapter Logon 21
9. Initialize and enroll EP11 smart card 22

10. Insert CA smart card 22
11. Insert smart card to be initialized as an EP11

smart card 23
12. EP11 smart card successfully created 23
13. Entering a PIN for the EP11 smart card 23
14. EP11 smart card successfully personalized 24
15. TKE Console - initial window 25
16. Trusted Key Entry - main window 26
17. TKE - Create new Host 26
18. Trusted Key Entry - main window with new

created host 27
19. Log on to new host 28

20. Authenticate crypto module 28
21. Crypto Modules list 29
22. Crypto Module Administration - with context

menu 30
23. Select Source 30
24. Crypto Module Administration - Subject Key

Identifier 31
25. Crypto Module Administration - Setting

permissions and attribute controls 32
26. Crypto Module Administration - Generate key

part 33
27. Crypto Module Administration - Input for

total number of key parts to be generated . . 33
28. Crypto Module Administration - Load new

master key 34
29. Select key part from smart card 35
30. Crypto Module Administration - Commit new

master key 36
31. Crypto Module Administration - Set,

immediate 36
32. Warning before setting the master key . . . 37
33. Crypto Module Administration - valid current

master key 37
34. Cryptographic configuration for LPAR A2A 45

© Copyright IBM Corp. 2014 v

vi Exploiting EP11 using openCryptoki

About this document

Linux on System z® applications that are using a PKCS #11 API can take advantage
of the Enterprise PKCS #11 (EP11) coprocessor mode of the IBM® Crypto Express4S
(CEX4S) adapter.

EP11 is a stack architecture that provides a complete environment to use a library
of standard cryptographic functions that are used to write applications on IBM
System z with cryptographic hardware.

You can find the latest version of this document on the developerWorks® website
at:

www.ibm.com/developerworks/linux/linux390/documentation_dev.html

and on the IBM Knowledge Center at:

ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

How this document is organized
Chapter 1, “Introduction,” on page 1 contains general information about the Linux
on System z EP11 enablement.

Chapter 2, “The EP11 crypto stack,” on page 5 describes how the components of
the Linux on System z EP11 enablement are positioned within the different layers
between applications and hardware.

Chapter 3, “Building the EP11 crypto stack,” on page 11 describes how to prepare
or install the EP11 components within the stack.

Chapter 4, “Configuring openCryptoki for EP11 support,” on page 41 describes the
configuration and customization tasks for enabling the exploitation of the EP11
library functions from applications.

Chapter 5, “Using the EP11 token,” on page 49 describes the APIs for invoking the
EP11 library functions.

Chapter 6, “Managing master keys on the Crypto Express4S EP11 coprocessor,” on
page 53 tells how to use a tool to handle changes with secure master keys.

Chapter 7, “Troubleshooting EP11,” on page 57 provides information how to
resolve problems when using the Linux on System z EP11 enablement.

Chapter 8, “Programming examples for openCryptoki,” on page 59 is a set of
programming samples that use the EP11 library.

Who should read this document
This document is intended for C programmers who want to access IBM System z
hardware support for cryptographic methods. It is also intended for system
administrators who need to enable and configure the required cryptographic
hardware.

© Copyright IBM Corp. 2014 vii

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

Furthermore, this publication addresses users who want to enhance their existing
openCryptoki applications with the new features of Enterprise PKCS #11.

Distribution independence
This publication does not provide information that is specific to a particular Linux
distribution.

The tools it describes are distribution independent.

Other Linux on System z publications
You can find Linux on System z publications on developerWorks and on the IBM
Knowledge Center.

These publications are available on developerWorks at

www.ibm.com/developerworks/linux/linux390/documentation_dev.html
v Device Drivers, Features, and Commands, SC33-8411
v Using the Dump Tools, SC33-8412
v How to Improve Performance with PAV, SC33-8414
v How to use FC-attached SCSI devices with Linux on System z, SC33-8413
v How to use Execute-in-Place Technology with Linux on z/VM®, SC34-2594
v How to Set up a Terminal Server Environment on z/VM, SC34-2596
v Kernel Messages, SC34-2599
v libica Programmer's Reference, SC34-2602
v Secure Key Solution with the Common Cryptographic Architecture Application

Programmer's Guide, SC33-8294
v Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
v Linux on System z Troubleshooting, SC34-2612
v Linux Health Checker User's Guide, SC34-2609

These publications are available on the IBM Knowledge Center at

ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html
v libica Programmer's Reference, SC34-2602
v Secure Key Solution with the Common Cryptographic Architecture Application

Programmer's Guide, SC33-8294
v Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
v Linux Health Checker User's Guide, SC34-2609
v Linux on System z Troubleshooting, SC34-2612
v Kernel Messages, SC34-2599

viii Exploiting EP11 using openCryptoki

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

Chapter 1. Introduction

The Linux on System z Enterprise PKCS #11 (EP11) enablement allows applications
to use a PKCS #11 API to run secure key cryptographic operations on an IBM
Crypto Express adapter that is configured as an Crypto Express4S EP11
coprocessor. The CEX4S adapter card is the first Crypto Express adapter which can
be configured as an EP11 coprocessor.

The Linux on System z EP11 enablement comprises several components that need
to be installed and configured within certain locations of the EP11 stack as
described in Chapter 2, “The EP11 crypto stack,” on page 5.

An application's request is first submitted to a PKCS #11 API, implemented by the
openCryptoki library and the EP11 token. From this token, the request is finally
propagated to the Crypto Express4S EP11 coprocessor. The request is processed on
this coprocessor. The resulting output is returned to the application across the
involved interfaces.

The EP11 cryptography architecture offers a secure key infrastructure.

This introduction provides information about the standard software that is used in
this implementation and about the used Crypto Express4S EP11 coprocessor
(shortly referred to as CEX4P).

What is PKCS #11?
The Public-Key Cryptographic Standards (PKCS) comprise a group of
cryptographic standards that provide guidelines and application programming
interfaces (APIs) for the usage of cryptographic methods. As the name PKCS
suggests, these standards put an emphasis on the usage of public key (that is,
asymmetric) cryptography.

PKCS #11 is a cryptographic token interface standard, which specifies an API,
called Cryptoki. With this API, applications can address cryptographic devices as
tokens and can perform cryptographic functions as implemented by these tokens.
This standard, first developed by the RSA Laboratories in cooperation with
representatives from industry, science, and governments, is now an open standard
lead-managed by the OASIS PKCS 11 Technical Committee.

It follows an object-based approach, addressing the goals of technology
independence (any kind of HW device) and resource sharing. It also presents to
applications a common, logical view of the device that is called a cryptographic
token. PKCS #11 , or Cryptoki, assigns a slot ID to each token. An application
identifies the token that it wants to access by specifying the appropriate slot ID.

For more information about PKCS #11, refer to this URL:

PKCS #11 Cryptographic Token Interface Standard

What is openCryptoki?
openCryptoki is an open source implementation of the Cryptoki API defined by the
PKCS #11 Cryptographic Token Interface Standard.

© Copyright IBM Corp. 2014 1

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Thus, openCryptoki provides support for several cryptographic algorithms
according to the industry-wide PKCS #11 standards. The openCryptoki library
loads the so called tokens that provide hardware or software specific support for
cryptographic functions.

The EP11 token extends the openCryptoki token library. It uses special hardware
cryptographic functions that are provided by the IBM Crypto Express4S (CEX4S)
adapter, which is configured by a certain firmware (see “Enabling the CEX4S
adapter for EP11 firmware exploitation” on page 13).

openCryptoki can be used directly through the openCryptoki shared library (C
API).

For more information about the openCryptoki services, or about the interfaces
between the openCryptoki main module and its tokens, see
sourceforge.net/projects/opencryptoki.

You can also read topic “openCryptoki overview” on page 7 for an introduction of
the openCryptoki main features.

What is a Crypto Express4S EP11 coprocessor?
An IBM Crypto Express adapter, which is configured with the Enterprise PKCS #11
(EP11) firmware, is called an Crypto Express4S EP11 coprocessor. The Crypto
Express4 adapter is the first adapter that can be configured as an EP11 coprocessor.
Such an enabled adapter is also called CEX4P coprocessor. In the remainder of this
document, an Crypto Express4S EP11 coprocessor is sometimes shortly referred to
as CEX4P adapter.

The CEX4P adapter provides hardware-accelerated support for crypto operations
that are based on the PKCS #11 Cryptographic Token Interface Standard. Access
from applications to the functions of an CEX4P adapter is enabled through the
EP11 stack. This EP11 stack consists of certain EP11 user space libraries and an
EP11 extension in the Linux AP device driver. Using several layers of interfaces,
the PKCS #11 standard requests are propagated to and returned from the CEX4P
adapter by the device driver.

A CEX4P adapter is a hardware security module (HSM) that maintains and protects
secrets (for example, master keys) such that these secrets cannot be revealed from
outside the adapter: No operating system service or application can retrieve these
secrets and any trial to physically break into the card destroys its data due to its
tamper proof design.

The CEX4P adapter supports cryptographic operations with secure keys. A secure
key is a key that is encrypted (wrapped) by a master key that is stored in the
adapter. Therefore, on the CEX4P adapter, applications can decrypt (unwrap) a
secure key and use it for cryptographic operations inside the adapter. Outside the
adapter (for example, inside an operating system), a secure key cannot be used for
cryptographic operations. To use a secure key, an application must call functions
on the CEX4P adapter. It is therefore safe to keep a secure key in memory or to
store it in a file system.

Cryptographic keys that are not encrypted are called clear keys. If a clear key is
stored in memory or in a file, unauthorized access to that memory or file must

2 Exploiting EP11 using openCryptoki

http://sourceforge.net/projects/opencryptoki
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

carefully be prevented. Otherwise, the key can be stolen and used to decrypt
protected information. The CEX4P adapter does not support clear key
cryptography.

A Crypto Express4S EP11 coprocessor supports up to 16 domains. Each domain
acts like an EP11 coprocessor, but maintains its own master key. That means, that
the master key of one domain cannot be accessed by another domain. The CEX4P
adapter supports 16 domains. Different domains of a crypto adapter may be
assigned to different LPARs or z/VM guests, such that multiple LPARs or guests
can share one Crypto Express4S EP11 coprocessor without sharing their master
keys.

Chapter 1. Introduction 3

4 Exploiting EP11 using openCryptoki

Chapter 2. The EP11 crypto stack

The EP11 crypto stack for Linux on System z consists of various components
within the different layers from the application request down to the hardware and
back again, with the returned request result. The stack thus provides an end-to-end
solution for cryptographic operations.

For example, an application sends an encryption request to the crypto adapter.
Through various interfaces, such a request is propagated from the application layer
down to the target crypto adapter hardware. On its way down, the request passes
through the involved layers: the standard crypto interfaces, the System z crypto
libraries, and the operating system kernel. The zcrypt device driver finally sends
the request to the CEX4P coprocessor. The resulting request output is sent back to
the application just the other way round through the layer interfaces.

Figure 1 on page 6 illustrates the EP11 crypto stack within the Linux on System z
environment. The components that make up the Linux on System z EP11
enablement are highlighted:
v the EP11 token within openCryptoki
v the host part of the EP11 library (located in user space, which is named

libep11.so)
v the EP11 extension of the zcrypt device driver. This extension was included with

kernel level 3.14 on https://www.kernel.org/. Note that distributions sometimes
back-port features from newer kernel.org kernels into their current kernel
versions. Therefore check with your distribution partner, whether your
distribution release supports the EP11 enablement, if its kernel version is older
than 3.14.

v the module part of the EP11 library, that is, the EP11 firmware that is installed
on the CEX4S adapter hardware.

You can use the openCryptoki shared library directly (C API).

openCryptoki supports several tokens, which can offer different functionality for
different hardware devices or software solutions. The EP11 token interacts with the
host part of the EP11 library. EP11 can operate with the Crypto Express4S (CEX4S)
adapter with EP11 firmware load for symmetric and asymmetric cryptographic
functions.

© Copyright IBM Corp. 2014 5

https://www.kernel.org/

The EP11 token itself does not implement PKCS #11 but provides services for
accessing EP11 functions to openCryptoki. For a description of these services or the
interface between the common part of openCryptoki and its tokens, see the
openCryptoki documentation. Once the EP11 token is configured, cryptographic
functions from the EP11 token are available to an application through the PKCS
#11 API provided by the common openCryptoki code. The EP11 token itself
accesses the EP11 library. The EP11 library is the host part of EP11, the module
part of EP11 runs in the Crypto Express4S card. An installed EP11 library is a

Application
(C)

openCryptoki

openCryptoki API

Soft
Token

(STDLL)

ICA
Token

(STDLL)

Other
Token

(STDLL)

EP11 library (host part)

zcrypt
device driver

EP11
Token

(STDLL)

Crypto Adapter
(Crypto Express 4S required for EP11)

S
ta

n
d
a
rd

c
ry

p
to

lib
ra

ri
e
s

H
a
rd

w
a
re

A
p
p
lic

a
ti
o
n

la
y
e
r

S
y
s
te

m
z

H
W

c
ry

p
to

lib
ra

ri
e
s

L
in

u
x

k
e
rn

e
l

EP11 library (module part)

EP11 extension

slot manager

Figure 1. Stack and process flow with a configured EP11 token

6 Exploiting EP11 using openCryptoki

prerequisite for enabling openCryptoki to use the EP11 token. The EP11 library
passes requests to the Crypto Express4S card through the zcrypt device driver of
Linux on System z.

The host part of the EP11 library transforms cryptographic requests from the EP11
token into buffers. These transformed requests are sent to the CEX4P adapter. The
host part also converts response buffers that are received from the adapter into
data structures that are expected by the EP11 token. The EP11 token makes these
APIs accessible to openCryptoki and thus the applications, but does not implement
any cryptographic mechanism. The mechanisms available and their parameters
depend on the EP11 implementation (EP11 library and Crypto Express4S card) and
its configuration. The PKCS #11 Cryptographic Token Interface Standard defines
methods for inquiring available mechanisms. All mechanisms and their parameters
reported by PKCS #11 functions C_GetMechanismList and C_GetMechaninfo are
available.

Besides the CEX4S adapter that is loaded with the EP11 firmware (also referred to
as the EP11 module part), the EP11 token furthermore requires a zcrypt device
driver that is loaded into the kernel, extended with the Linux on System z EP11
enablement support (see “Loading the Linux zcrypt device driver” on page 18). In
addition, the EP11 token requires the availability of the host part of the EP11
library.

Therefore, check the following dependencies:
v Dependencies on distributors: Distributors build the openCryptoki RPM

packages that comprise the EP11 support (EP11 token) for delivering them to
customers. See also “Installing openCryptoki” on page 38.

v Dependencies on hardware: The EP11 library functions run on the IBM
zEnterprise EC12 (zEC12) processor family (processor types 2827-H20, -H43,
-H66, -H89, -HA1) or follow-on processors with an IBM Crypto Express4S
(CEX4S) or follow-on adapter.

Note: In the remainder of this publication, the terms EP11 or Linux on System z
EP11 enablement stand for the entirety of the implementation components that
consists of the EP11 token, the EP11 extension of the zcrypt device driver, and the
EP11 library (host part and module part) as shown in Figure 1 on page 6.

openCryptoki overview
openCryptoki consists of an implementation of the PKCS #11 API, a slot manager,
an API for slot token dynamic link libraries (STDLLs), and a set of STDLLs (or
tokens). The EP11 token is a new STDLL introduced with openCryptoki version
3.1.

The openCryptoki base library (libopencryptoki.so) provides the generic API as
outlined in the PKCS #11 specification (version 2.20). This library also loads
token-specific modules (STDLLs) that provide the token specific implementation of
the PKCS #11 API and cryptographic functions (for example, session management,
object management, and crypto algorithms). For a description of the PKCS #11
version 2.20 standard, refer to the following URL: PKCS #11 Cryptographic Token
Interface Standard

A global configuration file (/etc/opencryptoki/opencryptoki.conf) is provided
which describes the available tokens. This configuration file can be customized for
the individual tokens. The openCryptoki package contains man pages that describe

Chapter 2. The EP11 crypto stack 7

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

the format of the configuration files. For more information, see “Adjusting the
openCryptoki configuration file” on page 41.

The EP11 token is a plug-in into the openCryptoki token library, providing support
for several cryptographic algorithms.

Slot manager

The slot manager (pkcsslotd) runs as a daemon. Upon startup, it creates a shared
memory segment and reads the openCryptoki configuration file to acquire the
available token and slot information. The openCryptoki API attaches to this
memory segment to retrieve token information. Thus, the slot manager provides
the openCryptoki API with the token information when required. An application in
turn links to or loads the openCryptoki API.

Slot token dynamic link libraries (STDLLs)

The EP11 token is an example of an STDLL within openCryptoki. STDLLs are
plug-in modules to the openCryptoki (main) API. They provide token-specific
functions that implement the interfaces. Specific devices can be supported by
building an appropriate STDLL. Figure 1 on page 6 illustrates the stack and the
process flow in a System z environment.

The STDLLs require local disk space to store persistent data, such as token
information, personal identification numbers (PINs) and token objects. This
information is stored in a separate directory for each token (for example in
/var/lib/opencryptoki/ep11tok for the EP11 token). Within each of these
directories there is a sub-directory TOK_OBJ that contains the token objects (token
key store). Each private token object is represented by an encrypted file. Most of
these directories are created during installation of openCryptoki.

The pkcsconf command line program

openCryptoki provides a command line program (/usr/lib/pkcs11/methods/
pkcsconf) to configure and administer tokens that are supported within the
system. The pkcsconf capabilities include token initialization, and security officer
(SO) PIN and user PIN initialization and maintenance (see also “Initializing the
token” on page 46).

pkcsconf operations that address a specific token must specify the slot that
contains the token with the -c option. You can view the list of tokens present
within the system by specifying the -t option (without -c option). For example,
the following code shows the options for the pkcsconf command and displays slot
information for the system:

pkcsconf -?
pkcsconf: invalid option - ?
usage: pkcsconf [-itsmlIupPh] [-c slotnumber -U user-PIN -S SO-PIN -n new PIN]

The available options have the following meanings:

-i display PKCS11 info

-t display token info

-s display slot info

-m display mechanism list

8 Exploiting EP11 using openCryptoki

-l display slot description

-I initialize token

-u initialize user PIN

-p set the user PIN

-P set the SO PIN

-h show this help

-c specify the token slot for the operation

-U the current user PIN (for use when changing the user pin with -u and -p
options); if not specified, user will be prompted

-S the current Security Officer (SO) pin (for use when changing the SO pin
with -P option); if not specified, user will be prompted

-n the new pin (for use when changing either the user pin or the SO pin with
-u, -p or -P options); if not specified, user will be prompted

For more information about the pkcsconf command, see the pkcsconf man page.

Chapter 2. The EP11 crypto stack 9

10 Exploiting EP11 using openCryptoki

Chapter 3. Building the EP11 crypto stack

The components of the Linux on System z EP11 enablement must be embedded
into an infrastructure of hardware and software cryptographic components. In this
environment, applications can start the provided functions by using the PKCS #11
openCryptokiAPI. This infrastructure is referred to as EP11 stack.

To enable the EP11 hardware cryptographic function support on System z, you
must prepare some hardware components. You must also install and load specific
driver modules and libraries, configure and start daemons, and set up your system
environment.

Building this EP11 stack comprises several subtasks that are described in the
following topics:
v “Preparing the Crypto Express4S EP11 coprocessor”
v “Loading the Linux zcrypt device driver” on page 18
v “Installing the host part of the EP11 library” on page 18
v “Setting a master key on the Crypto Express4S EP11 coprocessor” on page 19
v “Installing openCryptoki” on page 38
v “Configuring the EP11 token” on page 43

Preparing the Crypto Express4S EP11 coprocessor
To take advantage of the hardware-accelerated support for crypto operations from
a CEX4P adapter, you must switch the CEX4S adapter into the CEX4P mode. This
modification enables the installed and required EP11 firmware to run on this card.

The required information is presented in the following subtopics:
v “Purpose of domains”
v “Assigning adapters and domains to LPARs” on page 45
v “Enabling the CEX4S adapter for EP11 firmware exploitation” on page 13
v “Assigning EP11 adapters as dedicated adapters to z/VM guests” on page 17

Purpose of domains
When you configure your system on the Support Element (SE), you can specify
how a logical partition (LPAR) uses coprocessors and accelerators. In this context,
the Crypto Express cards support a concept of cryptographic domains. Each
domain is protected by a master key, thus preventing access across domains and
effectively separating the contained keys.

For information on how to configure domains, refer to zEnterprise System Support
Element Operations Guide, which you can download from the IBM Resource Link.

There are two types of access to a cryptographic domain:
v for usage of cryptographic functions
v for management (control) of the domain, which includes the management of the

master keys

A domain, which is assigned to an LPAR for usage access is called a usage domain
of that LPAR. A domain, which is assigned to an LPAR for management (control)

© Copyright IBM Corp. 2014 11

https://www.ibm.com/servers/resourcelink/svc03100.nsf/pages/zResourceLinkUrl?OpenDocument&url=http://www.ibm.com/servers/resourcelink/lib03010.nsf/0/00373B9974F6CDB8852577610069E8BF/$File/SC28-6896-02.pdf

access is called a control domain of that LPAR. Every domain, which is a usage
domain of an LPAR must also be a control domain of that LPAR, but not the other
way round.

Usage domains

A logical partition's usage domains are domains in the coprocessors that can be used
for cryptographic functions.

In Linux, you can use the lszcrypt -b command to find out which usage domain
is configured for that Linux system:

$ lszcrypt -b

ap_domain=0
ap_interrupts are enabled
config_time=30 (seconds)
poll_thread is disabled
poll_timeout=250000 (nanoseconds)

Control domains

A logical partition's control domains are those cryptographic domains for which
remote secure administration functions can be established and administered from
this logical partition.

This logical partition's control domains must include its usage domains. So for
each index that is selected in the Usage domain index list, you must select the same
index in the Control domain index list.

But a logical partition's control domains can also include the control domains of
other logical partitions. Assigning multiple logical partitions' control domains as
control domains of a single logical partition allows using the partition to perform
administrative functions from the TKE .

If you are using the Integrated Cryptographic Service Facility (ICSF) from z/OS,
select at least one control domain with its matching usage domain. Refer to the
ICSF documentation for information about ICSF basic operations.

If you are using a Trusted Key Entry (TKE) workstation to manage cryptographic
keys, you can define your TKE host and the control domains for a logical partition.
See “Setting a master key on the Crypto Express4S EP11 coprocessor” on page 19
for more information.

Control domain exposure

For configuration and management purposes the TKE needs to know which
control domains are configured on the system.

In Linux, use a sysfs attribute called ap_control_domain_mask in /sys/bus/ap/ to
display the configured control domains. This information is set automatically from
the device driver.

The attribute ap_control_domain_mask is read-only and contains a 32-byte field in
hexadecimal notation, representing the installed control domain facilities. Each bit
position represents a dedicated control domain. Thus, a maximum number of 256

12 Exploiting EP11 using openCryptoki

domains could be addressed. For zEC12 processors, up to 16 domains are
supported.

Example:

cat /sys/bus/ap/ap_control_domain_mask
0x000400

Byte Meaning

1 domain 0-7

2 domain 8-15

3 - 32 reserved

In this example, the control domain 13 was configured.

Enabling the CEX4S adapter for EP11 firmware exploitation
You must have a CEX4S adapter, which is configured as an EP11 coprocessor card,
and that is initialized and personalized in your z/VM guest or LPAR. Read this
topic to learn how to check for the existence of a suitably configured CEX4P
adapter and how to configure this adapter if it is missing yet.

About this task

A CEX4S Crypto Express card configured in the Enterprise PKCS #11 coprocessor
mode (or shortly EP11 coprocessor mode) is also called a Crypto Express4S EP11
coprocessor (CEX4P). Such a coprocessor, which is installed in your z/VM guest or
LPAR, is a prerequisite for using the functions of the EP11 library. This procedure
shows you how to configure a CEX4S Crypto Express adapter into a CEX4P
adapter by enabling the installed EP11 firmware from the Support Element.

Procedure
1. Check whether you have already plugged in and enabled your CEX4S Crypto

Express card, and validate your model and type configuration (accelerator or
coprocessor).
To check, enter the lszcrypt command and check the output:

$ lszcrypt
card06: CEX4P

If you see the output as shown, with an output line similar to
cardxx: CEX4P

then an CEX4P adapter is available and ready for use with EP11 and the task
is completed.

2. If the following error message is displayed, the zcrypt device driver module
must be installed.
error - cryptographic device driver zcrypt is not loaded!

For installation information, refer to “Loading the Linux zcrypt device driver”
on page 18.

3. If the output from the lszcrypt command in step 1 does not show CEX4P,
check the reason why this happend. If a CEX4S card is correctly assigned to
the LPAR or z/VM guest, where the Linux is running in, but CEX4P is not
shown, then you must activate the EP11 firmware on the CEX4S adapter. For

Chapter 3. Building the EP11 crypto stack 13

this purpose, log on to the Support Element with a user ID granted the
appropriate access rights. You can either go directly to the Support Element,
or you can use its web interface.

4. In the System Management window, select the CPC that holds the CEX4S
adapter that you want to configure. In the sample screen from Figure 2, the
selected CPC is P23.

5. Select Cryptos from the dialog or from the navigation area to get a list of
installed adapters as shown in Figure 3 on page 15.

Figure 2. System Management in the Support Element

14 Exploiting EP11 using openCryptoki

6. Select the crypto card to be changed and also select Configure On/Off from
the Crypto Service Operations.

Figure 3. System Management - installed crypto adapters

Figure 4. System Management - configure LPARs off

Chapter 3. Building the EP11 crypto stack 15

7. Select all LPARs, where this adapter is configured online, if any. The Crypto
Express4S adapter must be configured offline in all LPARs, before you can
change the configuration type. For this purpose, specify Toggle from the
Select Action pull-down and press OK. This selection brings you back to the
system level from Figure 2 on page 14.

8. From the System Management window, select Cryptographic Configuration
from the CPC Configuration offerings (see Figure 2 on page 14).

9. Select the desired adapter again (see step 4). Now press Crypto Type
Configuration from the dialog shown in Figure 5. This selection brings you to
the dialog shown in Figure 6.

Figure 5. System Management - Cryptographic Configuration

Figure 6. System Management - Cryptographic Configuration

16 Exploiting EP11 using openCryptoki

10. Select EP11 Coprocessor and press OK. This action makes the adapter to
become a CEX4P adapter that is upgraded with the EP11 firmware. Also note,
that TKE commands are always permitted for a CEX4P adapter, so that it can
communicate with the TKE daemon ep11TKEd.

11. You must now select those LPARs that you want to allow to access and use
the reconfigured adapter. For these LPARs, you need to configure back online
the reconfigured adapter. Therefore, go to the dialog shown in Figure 4 on
page 15, now toggling the status of the adapter for the LPAR back to online.

12. A restart of z/VM or the LPAR is required to activate the reconfiguration. For
z/VM, check before, that the correct definitions have been applied to the EP11
coprocessor card. Also for the LPARs, on z/VM and on Linux, you must add
the reconfigured adapter to the activation profile. Now deactivate and activate
the LPAR. Then perform an IPL of Linux on that LPAR, respectively perform
an IPL of z/VM and then start the guests using the reconfigured adapter.

13. Optionally, you can use the chzcrypt command to enable (online state) and
disable (offline state) the IBM crypto adapter:

$ chzcrypt -e 0x06 // set card06 online
$ chzcrypt -d 0x06 // set card06 offline

For more information about the IBM crypto adapter, see Device Drivers,
Features, and Commands, SC33-8411 available at
www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Results

Now that the EP11 firmware has been enabled on your CEX4S Crypto Express
card, this card turned into a so called CEX4P coprocessor which can take
advantage of the Linux on System z EP11 enablement. To check the capability of a
configured adapter, you can use the following lszcrypt -c <card-number>
command:

$ lszcrypt -c 03
card03 provides capability for:
EP11 Secure Key

Assigning EP11 adapters as dedicated adapters to z/VM
guests

On a z/VM guest, you can authorize the user to define virtual cryptographic
facilities and provide the guest access to the AP queues on the PCI cryptographic
cards. You achieve this with the help of the CRYPTO directory statement using the
DOMAIN and APDEDicated operands.

The DOMAIN operand specifies up to 16 domains the virtual machine may use. The
APDEDicated operand specifies up to 64 APs the virtual machine may use for
dedicated access to the Adjunct Processor (AP) cryptographic facility. You can
specify as many CRYPTO statements as you need to assign domains or APs to the
virtual machine.

You can use the z/VM CP command QUERY CRYPto DOMains to request the display
of the status of the cryptographic hardware and of installed AP domains.

Note: The CRYPTO APVIRTual directory statement cannot be used with the EP11
enablement.

Chapter 3. Building the EP11 crypto stack 17

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

For more information, see also z/VM CP Planning and Administration and z/VM CP
Commands and Utilities Reference from the IBM Knowledge Center.

Restriction to extended evaluations
You can configure an CEX4P adapter to support extended evaluations to meet
public sector requirements with regard to both FIPS and Common Criteria
certifications. For more details, see the EP11 library structure documentation (by
Tamas Visegrady).

The EP11 token of openCryptoki only supports the functions and mechanisms that
are available on the adapter if the extended evaluations are configured. The
available mechanisms and their attributes are reflected by the openCryptoki
functions C_GetMechanismList and C_GetMechaninfo. However, there is one
restriction on RSA mechanisms that cannot be reflected in the result of
C_GetMechanismInfo: The CKA_PUBLIC_EXPONENT must have a value of at least 17.

Loading the Linux zcrypt device driver
You also need an installed Linux kernel that includes the zcrypt device driver with
the EP11 extension.

About this task

With the EP11 enablement, the zcrypt device driver is no longer monolithic as in
older distributions where the module was called z90crypt. The device driver is
now loaded as separate modules, where the main module is called ap. There is,
however, an alias name z90crypt that links to the ap main module.

Procedure
1. Check whether you loaded the current zcrypt device driver. To check, enter the

lszcrypt command (see also “Enabling the CEX4S adapter for EP11 firmware
exploitation” on page 13).

2. If the following error message is displayed, the device driver is not yet loaded:
error - cryptographic device driver zcrypt is not loaded!

To load the device driver ap main module, use the following command:
modprobe ap

See your Linux distribution documentation for how to load the module
persistently.

Results

The zcrypt device driver that contains the EP11 extension is loaded.

Installing the host part of the EP11 library
Read the contained information about how to install the host part of the EP11
library as a component of the EP11 stack.

About this task

As a part of the EP11 stack, you need to install the host part of the EP11 library on
your System z, as shown in Figure 1 on page 6.

18 Exploiting EP11 using openCryptoki

www.ibm.com/support/knowledgecenter/SSB27U_6.3.0/com.ibm.zvm.v630/zvminfoc03.htm

Also, to use the EP11 functionality, the TKE daemon (ep11TKEd) must be available
and running to perform certain communication tasks. This communication path is
necessary, for example, for the initial key personalization or for key updates (see
also “Setting a master key on the Crypto Express4S EP11 coprocessor”).

Procedure
1. Obtain the RPM packages that contain the Linux on System z EP11 enablement

from the IBM website:
http://www.ibm.com/security/cryptocards/pciecc/zlinuxsoftware.shtml

The names of the RPM packages are as follows:
v ep11-host-2.6-0release.s390x.rpm contains the ep11TKEd and the

libep11.so

v ep11-host-devel-2.6-0release.s390x.rpm contains ep11.h (which are the
API definitions for standard crypto functions) and ep11adm.h (which are the
admin API definitions)

Note: The host part of the EP11 library is developed and maintained by IBM
and therefore not part of any commercial Linux distribution.
.

2. Install the RPM. Use the command:
rpm -ivh <rpm_packet>

3. The EP11 TKE daemon (ep11TKEd), which comes along with the RPM packages
obtained in step 1 is also installed during RPM installation. It is required and
must be running for handling administrative commands and for managing
communication between the TKE workstation and the Crypto Express4S EP11
coprocessor.

Setting a master key on the Crypto Express4S EP11 coprocessor
To generate a secure master key, use the TKE workstation that is connected to the
System z mainframe. Note that the master key is referred to as wrapping key in
the respective documentation.

Note: This publication outlines a selection of the basic steps for creating and
initializing EP11 smart cards and for generating a master key. It does not document
the complete process of setting up a comprehensive security concept, nor does it
demonstrate all security features available from the TKE workstation. For
information about sophisticated features, for example, for a dual control security
policy, for the zone concept, or for using TKE domain groups, refer to the Trusted
Key Entry Workstation User's Guide from the IBM Resource Link.

Trusted Key Entry (TKE) is a priced optional feature that is used for managing
System z secure coprocessors in a customer environment. Secure coprocessors
operate with a master key that is located inside the coprocessor itself. These secure
coprocessors use keys that are protected by being encrypted (wrapped) with the
master key. These wrapped keys are called secure keys and are only decrypted
inside the coprocessor's secure enclosure.

Information is provided in the following topics:
v “Setting up the TKE environment” on page 20
v “Create and initialize an EP11 smart card” on page 20
v “Creating a master key on the TKE workstation” on page 24

Chapter 3. Building the EP11 crypto stack 19

http://www.ibm.com/security/cryptocards/pciecc/zlinuxsoftware.shtml
https://www-304.ibm.com/servers/resourcelink/svc03100.nsf?Opendatabase

For more information about these tasks, refer to topics Using the Crypto Module
Notebook to administer EP11 crypto modules and Smart Card Utility Program (SCUP) in
the Trusted Key Entry Workstation User's Guide from the IBM Resource Link.

Setting up the TKE environment

For a Crypto Express4S EP11 coprocessor, a TKE workstation is required to
perform certain key management functions.

A TKE version 7.3 is required to detect EP11 adapters and set and manage
wrapping keys (master keys) correctly.

Note: For any master key transactions to the card (key generation or import) and
for initialization/personalization purposes, you need at least two smart card
readers. Furthermore, the described outline uses one CA (Certificate Authority)
smart card and two smart cards that hold two separate key parts which make up
the master key. The smart cards can be initialized from scratch by using the TKE
interfaces.

To use the EP11 functions of the TKE, the EP11 library (libep11.so) and the TKE
daemon (ep11TKEd) to handle administrative commands between the TKE and the
crypto adapter must be installed.

To start the daemon, use the command
service ep11TKEd start

This command is redirected and performs the same processing as the command
systemctl start ep11TKEd.service

The ep11TKEd TKE daemon is listening on port 50004 for administrative TKE
commands. These commands are translated into ioctl commands to talk to the
zcrypt device driver.

Create and initialize an EP11 smart card

Step 1

As a prerequisite, you need a valid CA (Certificate Authority) smart card to be
authorized to create EP11 smart cards (see Step 4).

The Trusted Key Entry console automatically loads on start-up with a set of
commonly used tasks. After the TKE console started, the initial Trusted Key Entry
Console window appears.

This initial window provides access to applications and utilities available on the
TKE workstation.

20 Exploiting EP11 using openCryptoki

http://www-01.ibm.com/support/docview.wss?uid=isg24ec7196bd076424e85257bec004681f5

Step 2

Click the Smart Card Utility Program application as shown in Figure 7.

When you open a TKE application or utility, you must sign on with a profile that
is on the TKE workstation crypto adapter. Therefore, depending on how you have
initialized your environment, the Crypto Adapter Logon window is displayed with
profile IDs that represent a single or group passphrase logon. The individual or
group profile you choose must have enough authority to do the functions that are
performed by the application or utility. The steps described here use the default
TKEADM user name.

Step 3

After a successful log-on, the Smart Card Utility Program opens and shows a table
for each smart card reader for all detected plugged-in smart card types. The tables
are still empty at this point in time, because the EP11 smart card is not yet created.
The missing information is provided during the process of initializing and
personalizing the smart card as described in the remainder of this topic.

Figure 7. TKE Console - initial window

Figure 8. Crypto Adapter Logon

Chapter 3. Building the EP11 crypto stack 21

To continue, select Initialize and enroll EP11 smart card from the EP11 Smart
Card pulldown choice.

Step 4

The Smart Card Utility Program prompts you to insert the CA smart card into the
smart card reader 1 and then press the OK button. For detailed information, read
the TKE documentation.

Step 5

As next step, the Smart Card Utility Program prompts you to insert a smart card
to be initialized as an EP11 smart card into smart card reader 2 and then press the
OK button.

Figure 9. Initialize and enroll EP11 smart card

Figure 10. Insert CA smart card

22 Exploiting EP11 using openCryptoki

Step 6

The Smart Card Utility Program creates the EP11 smart card and displays a
message when the creation was successful. In this case, press the OK button.

Step 7

The Smart Card Utility Program now goes back to the window shown in Figure 9
on page 22, where you now select item Personalize EP11 smart card from the EP11
Smart Card pull-down choice.

To personalize the EP11 smart card, the Smart Card Utility Program prompts you
to enter a PIN to be used for this smart card on the smart card reader PIN pad.
The PIN must be entered twice for confirmation.

The Smart Card Utility Program informs you of a successful personalization of the
EP11 smart card. This smart card now contains a certificate signed by the CA
authority, and a PIN to access the smart card.

Figure 11. Insert smart card to be initialized as an EP11 smart card

Figure 12. EP11 smart card successfully created

Figure 13. Entering a PIN for the EP11 smart card

Chapter 3. Building the EP11 crypto stack 23

Available smart card information is shown next time in the table shown in Figure 9
on page 22 next time you log on.

The EP11 smart card is needed whenever you want to set a new master key on the
adapter.

Step 8

Repeat Step 3 through Step 7 to create the second EP11 smart card.

Creating a master key on the TKE workstation

Read an outline of the required steps for creating a master key and installing it on
the CEX4P adapter. For detailed information about how to use the TKE
workstation, refer to z/OS Cryptographic Services ICSF TKE Workstation User's Guide,
SA23-2211.

Step 1

Go to the Trusted Key Entry console as described in Step 1 of “Create and
initialize an EP11 smart card” on page 20.

Figure 14. EP11 smart card successfully personalized

24 Exploiting EP11 using openCryptoki

Step 2

Click the Trusted Key Entry application as shown in Figure 15. Then proceed with
the logon procedure as described in Step 2 of “Create and initialize an EP11 smart
card” on page 20.

Step 3

Select the default profile ID TKEUSER, click OK, and in the upcoming Passphrae
Logon dialog for this profile, logon with the passphrase associated to TKEUSER.

Step 4

The Trusted Key Entry main window is displayed (Figure 16 on page 26). Open
the context menu for hosts and select action Create Host.

Figure 15. TKE Console - initial window

Chapter 3. Building the EP11 crypto stack 25

Step 5

In the Create New Host dialog, enter the required values of the host for which you
want to create the master key. It is assumed that this host is a Linux on System z
system running the ep11TKEd TKE daemon. Press OK to return to the Trusted Key
Entry main window.

Step 6

The new host is visible now within the list of host IDs.

Figure 16. Trusted Key Entry - main window

Figure 17. TKE - Create new Host

26 Exploiting EP11 using openCryptoki

Before you continue to work on the new host, ensure the following:
v The ep11TKEd TKE daemon is started on the host.
v The TKE has connectivity to the host.

Then open the new host's context menu and select action Open Host.

Step 7

When prompted by the TKE workstation, log on to the selected host with the
appropriate credentials. The values that you enter as the user ID and password, are
not relevant, because they are not validated. You just need to press the OK button.

Figure 18. Trusted Key Entry - main window with new created host

Chapter 3. Building the EP11 crypto stack 27

Step 8

The TKE now requests a verification of any new crypto adapter. Press the Yes
button to continue.

Step 9

The Crypto Modules list now displays the available adapters. In the sample from
Figure 21 on page 29, there is just one adapter available with host ID p2314002.
Select a crypto adapter of your choice and trigger action Open Crypto Module
from its context menu.

Figure 19. Log on to new host

Figure 20. Authenticate crypto module

28 Exploiting EP11 using openCryptoki

Step 10

The Crypto Module Administration window for the selected crypto adapter
opens. Now you can start to configure the domains. Click on the Domains tab at
the top. On the right side, the window now shows an Index tab for each available
domain. Choose one of these indexes and select the Domain Administrators tab at
the bottom of the window to add a new administrator role. In this documentation,
the configuration is outlined for the domain with index 13. For detailed
information on domain configuration, refer to the TKE documentation.

Step 11

Now create a user ID with administrator role in the Crypto Module
Administration window for the selected crypto adapter. Open the context menu by
right-clicking into the white space of the window. Select action Add Administrator.

Figure 21. Crypto Modules list

Chapter 3. Building the EP11 crypto stack 29

From the opening Select Source window, TKE requests certain information from
the previously CA prepared smart card that contains the administrator key and
certificate.

After a successful authentication on the smart card reader, the TKE workstation
imports the administrator key and certificate and creates an administrator profile.

Figure 22. Crypto Module Administration - with context menu

Figure 23. Select Source

30 Exploiting EP11 using openCryptoki

Step 12

Now select the Domain Attributes tab at the bottom of the window. This selection
opens the window that is shown in Figure 25 on page 32 where you can specify
the required permissions and attribute controls for the current domain.

Per default, the Signature Threshold and the Revocation Signature Threshold are set to
0. Both values must be changed at least to 1 to release the card from the IMPRINT
mode. For more information, see the TKE documentation. Press Send updates to
apply your settings.

Figure 24. Crypto Module Administration - Subject Key Identifier

Chapter 3. Building the EP11 crypto stack 31

Step 13

Now select the Domain Keys tab from the bottom of the Crypto Module
Administration window.

The new Crypto Module Administration window with verification patterns for the
new and current master key is displayed. The patterns are all set to 0, because the
current and new master keys are empty yet.

Open the context menu by right-clicking in the white space, and select action
Generate key part.

Figure 25. Crypto Module Administration - Setting permissions and attribute controls

32 Exploiting EP11 using openCryptoki

Step 14

The TKE workstation now prompts you to enter the total number of key parts to
be generated. You must at least generate two parts. Enter your input and press the
OK button.

Step 15

In a similar way as in the previous step, you are now prompted to insert an EP11
smart card and to enter a name and description for each generated key part. The
TKE workstation informs you about a successful storage of all generated key parts
and descriptions. The new master key can now be generated by the TKE
component.

Step 16

During the current process, the new master key now needs to go through three
stages:

Load The key is just stored on the adapter, but not active.

Figure 26. Crypto Module Administration - Generate key part

Figure 27. Crypto Module Administration - Input for total number of key parts to be generated

Chapter 3. Building the EP11 crypto stack 33

Commit
The key is activated and is now present on the adapter as the new master
key. In this state, the existing objects encrypted under the current master
key can be re-encrypted by using this new master key.

Set The new master key is now switched to become the current key to be
used.

Start with the Load step: Load the new generated master key parts from the cards
to the target crypto adapter. For this purpose, open the context menu from the
Crypto Module Administration window and select action Load new master key.
TKE now prompts you for the total number of key parts to be loaded. Type the
number of previously generated key parts. TKE then prompts you to load each key
part separately.

The TKE workstation opens the window Select key part from smart card as
shown in Figure 29 on page 35. From this window, you can commit the single
parts of your key. From the list of shown key parts, select that part that you now
want to commit and press OK.

Figure 28. Crypto Module Administration - Load new master key

34 Exploiting EP11 using openCryptoki

Step 17

After you loaded all single master key parts, the complete master key is
successfully loaded onto the CEX4P adapter.

The TKE workstation switches back to the Crypto Module Administration
window. You can see that the new master key is full/complete, but yet
uncommitted. To commit the new master key, invoke the context menu and select
action Commit new master key. The status switches to Full Committed, as shown in
Figure 31 on page 36.

Figure 29. Select key part from smart card

Chapter 3. Building the EP11 crypto stack 35

Step 18

You can now immediately set the new master key. From the context menu, start
action Set, immediate.

Figure 30. Crypto Module Administration - Commit new master key

Figure 31. Crypto Module Administration - Set, immediate

36 Exploiting EP11 using openCryptoki

Before you actually perform the action, the TKE comes up with a warning. If this
is the first time you generated a master key, or if there are no keys stored on your
host that are wrapped by the current master key, you can ignore the warning by
pressing the OK button.

If there are keys wrapped by the current master key on your host, then you should
not generate a new master key, but follow the procedure described in Chapter 6,
“Managing master keys on the Crypto Express4S EP11 coprocessor,” on page 53.

See the result in Figure 33: The new master key is now switched to the Current
Master Key, and its status is Valid.

Figure 32. Warning before setting the master key

Figure 33. Crypto Module Administration - valid current master key

Chapter 3. Building the EP11 crypto stack 37

If you need to change the master key, see Chapter 6, “Managing master keys on
the Crypto Express4S EP11 coprocessor,” on page 53.

Installing openCryptoki
The EP11 token is part of openCryptoki package starting with version 3.1.
openCryptoki in turn is shipped with the Linux on System z distributions.

Check whether you already installed openCryptoki in your current environment,
for example:

$ rpm -qa | grep -i opencryptoki

Note: This command example is distribution dependent. opencryptoki must in
certain distribution be specified as openCryptoki (case-sensitive).

You should see all installed openCryptoki packages. If required packages are
missing, use the installation tool of your Linux distribution to install the
appropriate openCryptoki RPM.

Note: You must remove any previous package of openCryptoki, before you can
install the new package version 3.1.

Installing from the RPM

The openCryptoki version 3.1 or higher packages, that comprise the EP11 support
(EP11 token) are delivered by the distributors. Distributors build these packages as
RPM packages for delivering them to customers.

Customers can install these openCryptoki RPM packages by using the installation
tool of their selected distribution.

If you received openCryptoki as an RPM package, follow the RPM installation
process that is described in the RPM man page. This process is the preferred
installation method.

Installing from the source package

As an alternative, for example for development purposes, you can get the latest
openCryptoki version (inclusive latest patches) from the sourceforge repository
(sourceforge.net/projects/opencryptoki) and build it yourself. But this version is
not serviced. It is suitable for non-production systems and early feature testing, but
you should not use it for production.

In this case, refer to the INSTALL file in the top level of the source tree. You can
start from the instructions that are provided with the subtopics of this INSTALL file
and select from the described alternatives. If you use this installation method
parallel to the installation of an RPM package, then you should keep both
installations isolated from each other.
1. Download the latest version of the openCryptoki sources from:

http://sourceforge.net/projects/opencryptoki/files/opencryptoki/v3.1/

2. Decompress and extract the compressed tape archive (TGZ file). There is a new
directory named opencryptoki-3.1-x.x.x.

3. Change to that directory and issue the following scripts and commands:

38 Exploiting EP11 using openCryptoki

http://sourceforge.net/projects/opencryptoki
http://sourceforge.net/projects/opencryptoki/files/opencryptoki/v3.1/

$./bootstrap
$./configure
$ make
$ make install

The scripts or commands perform the following functions:
bootstrap

Initial setup, basic configurations
configure

Check configurations and build the makefile

make Compile and link

make install
Install the libraries

Note: When installing openCryptoki from the source package, the location of some
installed files will differ from the location of files installed from an RPM.

Chapter 3. Building the EP11 crypto stack 39

40 Exploiting EP11 using openCryptoki

Chapter 4. Configuring openCryptoki for EP11 support

After a successful installation of openCryptoki, you need to perform certain
configuration and customization tasks to enable the exploitation of the EP11 library
functions from applications. Especially, you need to set up tokens and daemons
and then initialize the tokens.

openCryptoki, and in particular the slot manager, can handle several tokens, which
can have different support for different hardware devices or software solutions. As
shown in Figure 1 on page 6, the EP11 token interacts with the host part of the
EP11 library. EP11 can operate with the Crypto Express4S (CEX4S) adapter with
EP11 firmware load for symmetric and asymmetric cryptographic functions.

For a complete configuration of the Linux on System z EP11 enablement, finish the
tasks as described in the contained subtopics:
v “Adjusting the openCryptoki configuration file”
v “Configuring the EP11 token” on page 43
v “Assigning adapters and domains to LPARs” on page 45
v “Setting environment variables” on page 46
v “Initializing the token” on page 46

Finally, to control your configuration results, follow the instructions provided in
“How to recognize the EP11 token” on page 47.

Adjusting the openCryptoki configuration file
A preconfigured list of all available tokens that are ready to register to the
openCryptoki slot daemon is required before the slot daemon can start. This list is
provided by the global configuration file. Read this topic for information on how
to adapt this file according to your installation.

Table 1 lists the maximum number of available libraries that may be in place after
you successfully installed openCryptoki. It may vary for different distributions and
is dependent from the installed RPM packages.

Also, Linux on System z does not support the TPM token library.

A token is only available, if the token library is installed, and the appropriate
software and hardware support pertaining to the stack of the token is also
installed. For example, the EP11 token is only available if all parts of the EP11
library software are installed and a Crypto Express4S EP11 coprocessor is detected.

A token needs not be available, even if the corresponding token library is installed.
Display the list of available tokens by using the command:

$ pkcsconf -t

Table 1. openCryptoki libraries.

Library Explanation

/usr/lib64/opencryptoki/libopencryptoki.so openCryptoki base library

© Copyright IBM Corp. 2014 41

Table 1. openCryptoki libraries (continued).

Library Explanation

/usr/lib64/opencryptoki/stdll/libpkcs11_ica.so libica token library

/usr/lib64/opencryptoki/stdll/libpkcs11_sw.so software token library

/usr/lib64/opencryptoki/stdll/libpkcs11_tpm.so TPM token library

/usr/lib64/opencryptoki/stdll/libpkcs11_cca.so CCA token library

/usr/lib64/opencryptoki/stdll/libpkcs11_ep11.so EP11 token library

/usr/lib64/opencryptoki/stdll/libpkcs11_icsf.so ICSF token library

Note: An analogous set of libraries is available for 32-bit compatibility mode.

The /etc/opencryptoki/opencryptoki.conf file must exist and it must contain an
entry for the EP11 token to make the token available. By default, this entry is
available upon installation (see the slot 4 entry in the provided sample
configuration).

-------------- content of opencryptoki.conf ---------
version opencryptoki-3.1
The following defaults are defined:
hwversion = 0.0
firmwareversion = 0.0
description = Linux
manufacturer = IBM
#
The slot definitions below may be overriden and/or customized.
For example:
slot 0
{
stdll = libpkcs11_cca.so
description = "OCK CCA Token"
manufacturer = "MyCompany Inc."
hwversion = 2.32
firmwareversion = 1.0
}
See man(5) opencryptoki.conf for further information.
#
slot 0
{
stdll = libpkcs11_tpm.so
}

slot 1
{
stdll = libpkcs11_ica.so
}

slot 2
{
stdll = libpkcs11_cca.so
}

slot 3
{
stdll = libpkcs11_sw.so
}

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok.conf
}
---------------------------- end ----------------------------------

42 Exploiting EP11 using openCryptoki

Note:

v The standard path for slot token dynamic link libraries (STDLLs) is:
/usr/lib64/opencryptoki/stdll/.

v The standard path for the token-specific ep11tok.conf configuration file is
/etc/opencryptoki/. You can change this path by using the OCK_EP11_TOKEN_DIR
environment variable. For more information, read “Defining an EP11
token-specific configuration file” on page 44.

Use one of the following command to start the slot-daemon, which reads out the
configuration information and sets up the tokens:

$ pkcsslotd
$ pkcsslotd start
$ systemctl start pkcsslotd.service

For a permanent solution, specify:

$ chkconfig pkcsslotd on

Configuring the EP11 token
You need to introduce the EP11 token into the openCryptoki library. For this
purpose, you must define a slot entry in the global openCryptoki configuration
file. You must also create a specific EP11 token configuration file.

Each token has its own token directory, which is used by openCryptoki to store
token-specific information (like for example, key objects, user PIN, SO PIN, or
hashes). The EP11 token directory is /var/lib/opencryptoki/ep11tok/.

Note: This configuration is token-based. It applies to all applications that use this
EP11 token.

Defining the slot entry for the EP11 token in openCryptoki

Define a slot entry in the global openCryptoki configuration file that sets the stdll
attribute to libpkcs11_ep11.so.

The default openCryptoki configuration file opencryptoki.conf provides a slot
entry for the EP11 token. It is preconfigured to slot #4. Check this default entry to
find out whether you can use it as is.

Among others, this slot entry must specify the EP11 token-specific configuration
file. For this purpose, use the confname attribute with value ep11tok.conf. This
EP11-specific configuration file defines the target adapters and target adapter
domains to which the EP11 token sends its cryptographic requests. Insert the
complete slot entry into the global openCryptoki configuration file called
opencryptoki.conf to complete the EP11 token specification.

The following example defines the name of the configuration file of the EP11 token
to be ep11tok.conf. Per default, this file is searched in the directory where
openCryptoki searches its global configuration file.

Chapter 4. Configuring openCryptoki for EP11 support 43

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok.conf
description = "Ep11 Token"
manufacturer = "IBM"
hwversion = 4.11
firmwareversion = 2.0
}

Defining an EP11 token-specific configuration file

The configuration file for the EP11 token is delivered by openCryptoki, but must
be adapted according to the installation's system environment. As described in the
previous section, the slot entry defines this configuration file name as
ep11tok.conf. If the environment variable OCK_EP11_TOKEN_DIR is set, then the EP11
token looks for file ep11tok.conf in this directory. If OCK_EP11_TOKEN_DIR is not set,
then ep11tok.conf is searched in the global openCryptoki directory:
/etc/opencryptoki/ep11tok.conf.

Because different EP11 hardware security modules (HSM) can use different
wrapping keys (referred to as master keys in the TKE environment), users need to
specify which HSM, in practice an adapter/domain pair, can be used by the EP11
token as a target for cryptographic requests. Therefore, an EP11 token
configuration file contains a list of adapter/domain pairs to be used.

You can specify this list as a white list, starting with a line containing the key word
APQN_WHITELIST. This keyword specifies up to 512 pairs of unsigned, decimal
numbers in the range 0-65535, followed by the key word END. Each pair
designates an adapter (first number) and a domain (second number). Alternatively,
you can use the key word APQN_ANY to define that all adapter/domain pairs with
EP11 firmware, that are available to the system, can be used as target adapters.
This is the default.

An adapter number corresponds to the numerical part xx of an adapter ID of the
form cardxx, as displayed by the lszcrypt tool or in the sys file system (for
example, in /sys/bus/ap/devices).

Currently, Linux on System z supports only a single domain. That domain number
can be displayed with lszcrypt -b (see the value of ap_domain) or alternatively as
contents of /sys/bus/ap/ap_domain.

In addition to the target adapter, you can define a log level in the EP11
configuration file. For this purpose, use a line that consists of the key word
LOGLEVEL followed by an integer between 0 and 9. For information about log
levels, read topic “Enabling the logging support while running the EP11 token” on
page 57.

Example of an EP11 token configuration file ep11tok.conf

#
EP11 token configuration
#
APQN_ANY
LOGLEVEL 3
#

44 Exploiting EP11 using openCryptoki

APQN_WHITELIST
5 2
6 2
END

In this example, adapter 5 with domain 2 and adapter 6 with domain 2 is
specified.

Note: At least one adapter/domain pair must be specified. If more than one
APQN (adapter/domain pair) is used by a token, then all used adapter/domain
pairs must be configured with the same master key.

Assigning adapters and domains to LPARs
After you set up the Crypto Express adapter in the Support Element, you must
allow access to it from your LPAR. You achieve this by using the Hardware
Management Console (HMC) or the Support Element (SE).

You can define a certain LPAR to use a domain (or multiple domains) as a usage
domain and as a control domain, or as a control domain only. You can retrieve this
information from the Support Element. Each adapter supports 16 domains (see
Figure 34). The selected domains apply to all selected adapters. For a more detailed
information about planning the cryptographic configuration, see IBM System z10
Enterprise Class Configuration Setup, SG24-7571.

Figure 34. Cryptographic configuration for LPAR A2A

Chapter 4. Configuring openCryptoki for EP11 support 45

In Figure 34 on page 45, LPAR A2A is defined to use and control the cryptographic
domain number 11. It is also allowed to access the crypto adapters, numbers 0 and
7. They are brought online if they are present in the system, if the LPAR is
activated, and if the zcrypt device driver is loaded.

Linux can only use one crypto domain at a given time. If the LPAR contains
multiple domains, the kernel selects one of them. If you want to use a different
domain, you need to specify this domain as a parameter when loading the ap main
module of the zcrypt device driver.

Setting environment variables
To customize your EP11 enablement, you can set environment variables. Setting
environment variables overrides the settings in the ep11tok.conf configuration file.

The following variables are available:

OCK_EP11_TOKEN_DIR
specifies a new location for the EP11 token configuration file. The default is
/etc/opencryptoki/. Example:
export OCK_EP11_TOKEN_DIR=/home/user/ep11token

OCK_EP11_TOKEN_LOGLEVEL
defines the granularity of logging support. Valid values are between 0 and
9. For information about log levels, read topic “Enabling the logging
support while running the EP11 token” on page 57. Example:
export OCK_EP11_TOKEN_LOGLEVEL=2

Initializing the token
Once the configuration files of openCryptoki and the EP11 token are set up, and
the pkcsslotd daemon is started, the EP11 token must be initialized.

Note: PKCS #11 defines two users for each token: a security officer (SO) whose
responsibility is the administration of the token, and a standard user (User) who
wants to use the token to perform cryptographic operations. openCryptoki requires
that for both the SO and the User a log-in PIN is defined as part of the token
initialization.

The following command provides some useful slot information:

pkcsconf -s

Slot #0 Info
Description: EP11 Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 4.0
Firmware Version: 2.11

Slot #1 Info
Description: ICA Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 4.0
Firmware Version: 2.10

Find your preferred token in the details list and select the correct slot number. This
number is used in the next initialization steps to identify your token:

46 Exploiting EP11 using openCryptoki

$ pkcsconf -I -c <slot> // Initialize the Token and setup a Token Label

$ pkcsconf -P -c <slot> // change the SO PIN (recommended)

$ pkcsconf -u -c <slot> // Initialize the User PIN (SO PIN required)

$ pkcsconf -p -c <slot> // change the User PIN (optional)

pkcsconf -I
During token initialization, you are asked for a token label. Provide a
meaningful name, because you might need this reference for identification
purposes.

pkcsconf -P
For security reasons, openCryptoki requires that you change the default SO
PIN (87654321) to a different value. Use the pkcsconf -P option to change
the SO PIN.

pkcsconf -u
When you enter the user PIN initialization you are asked for the newly set
SO PIN. The length of the user PIN must be 4 - 8 characters.

pkcsconf -p
You must at least once change the user PIN with pkcsconf -p option. After
you completed the PIN setup, the token is prepared and ready for use.

Note: Define a user PIN that is different from 12345678, because this pattern is
checked internally and marked as default PIN. A log-in attempt with this user PIN
is recognized as not initialized.

How to recognize the EP11 token
You can use the pkcsconf -t command to display a table that shows all available
tokens. You can check the slot and token information, and the PIN status at any
time.

The following information provided by the pkcsconf -t command about the EP11
token is returned in the Token Info section, where, for example, Token #1 Info
displays information about the token plugged into slot number 1.

$ pkcsconf -t

Token #1 Info:
Label: ep11

Manufacturer: IBM Corp.
Model: IBM EP11Tok
Serial Number: 123
Flags: 0x880445

(RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|TOKEN_INITIALIZED|USER_PIN_TO_BE_CHANGED
|SO_PIN_TO_BE_CHANGED)

Sessions: 0/-2
R/W Sessions: -1/-2
PIN Length: 4-8
Public Memory: 0xFFFFFFFF/0xFFFFFFFF
Private Memory: 0xFFFFFFFF/0xFFFFFFFF
Hardware Version: 1.0
Firmware Version: 1.0
Time: 15:29:43

The most important information is as follows:

Chapter 4. Configuring openCryptoki for EP11 support 47

v The token Label you assigned at the initialization phase (ep11, in the example).
You can initialize or change a token label by using the pkcsconf -I command.

v The Model name is unique and designates the token that is in use.
v The Flags provide information about the token initialization status, the PIN

status, and features such as Random Number Generator (RNG). They also
provide information about requirements, such as Login required, which means
that there is at least one mechanism that requires a session log-in to use that
cryptographic function. For example, the mask for TOKEN_INITIALIZED is
0x00000400 and it is true, if the token has been initialized.
The flag USER_PIN_TO_BE_CHANGED indicates that the user PIN must be
changed before the token can be used. The flag SO_PIN_TO_BE_CHANGED
indicates that the SO PIN must be changed before the token can be used.
For more information about the flags provided in this output, see the description
of the TOKEN_INFO structure and the Token Information Flags in the PKCS #11
Cryptographic Token Interface Standard.

v The PIN length range declared for this token.

48 Exploiting EP11 using openCryptoki

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Chapter 5. Using the EP11 token

You can take advantage of the EP11 library functions by using the openCryptoki
standard interface (PKCS #11 standard C API).

The PKCS #11 Cryptographic Token Interface Standard describes the exact API.

Applications that are designed to work with openCryptoki are also able to use the
Linux on System z EP11 enablement.

The EP11 token plugged into openCryptoki works only on IBM System z
hardware, with further prerequisites as described in this publication.

Supported mechanisms for the EP11 token
View a list of the supported mechanisms for the EP11 token in the openCryptoki
implementation.

Use the pkcsconf command with the shown parameters to retrieve a complete list
of algorithms (or mechanisms) that are supported by the token:

$ pkcsconf -m -c <slot>
Mechanism #2

Mechanism: 0x131 (CKM_DES3_KEY_GEN)
Key Size: 24-24
Flags: 0x8001 (CKF_HW|CKF_GENERATE)

...
Mechanism #10

Mechanism: 0x132 (CKM_DES3_ECB)
Key Size: 24-24
Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)

Mechanism #11
Mechanism: 0x133 (CKM_DES3_CBC)
Key Size: 24-24
Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)

...

The list displays all mechanisms that are supported by this token. The mechanism
ID and name corresponds to the PKCS #11 specification. Each mechanism provides
its supported key size and some further properties such as hardware support and
mechanism information flags. These flags provide information about the PKCS #11
functions that may use the mechanism. In some cases, the flags also provide
further attributes that describe the supported variants of the mechanism. Typical
functions are for example, encrypt, decrypt, wrap key, unwrap key, sign, or verify.

The Crypto Express4S card in a zEC12 (at least GA1) together with openCryptoki
version 3.1 and EP11 token support these PKCS #11 mechanisms:

Table 2. PKCS #11 mechanisms supported by the EP11 token.

Mechanism Key sizes Properties

CKM_RSA_PKCS 1024-4096 ENCRYPT, DECRYPT,
SIGN,VERIFY,
WRAP,UNWRAP

CKM_RSA_PKCS_KEY_PAIR_GEN 1024-4096 GENERATE_KEY_PAIR

CKM_RSA_X9_31_KEY_PAIR_GEN 1024-4096 GENERATE_KEY_PAIR

© Copyright IBM Corp. 2014 49

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Table 2. PKCS #11 mechanisms supported by the EP11 token (continued).

Mechanism Key sizes Properties

CKM_RSA_PKCS_PSS 1024-4096 SIGN,VERIFY

CKM_SHA1_RSA_X9_31 1024-4096 SIGN,VERIFY

CKM_SHA1_RSA_PKCS 1024-4096 SIGN,VERIFY

CKM_SHA1_RSA_PKCS_PSS 1024-4096 SIGN,VERIFY

CKM_SHA256_RSA_PKCS 1024-4096 SIGN,VERIFY

CKM_SHA384_RSA_PKCS 1024-4096 SIGN,VERIFY

CKM_SHA512_RSA_PKCS 1024-4096 SIGN,VERIFY

CKM_AES_KEY_GEN 16,24,32 GENERATE

CKM_AES_ECB 16,24,32 ENCRYPT,DECRYPT

CKM_AES_CBC 16,24,32 ENCRYPT,DECRYPT,
WRAP,UNWRAP

CKM_AES_CBC_PAD 16,24,32 ENCRYPT,DECRYPT,
WRAP,UNWRAP

CKM_DES2_KEY_GEN 16,16 GENERATE

CKM_DES3_KEY_GEN 24,24 GENERATE

CKM_DES3_ECB 16,24 ENCRYPT,DECRYPT

CKM_DES3_CBC 16,24 ENCRYPT,DECRYPT,
WRAP,UNWRAP

CKM_DES3_CBC_PAD 16,24 ENCRYPT,DECRYPT,
WRAP,UNWRAP

CKM_SHA256 0,0 DIGEST

CKM_SHA256_KEY_DERIVATION 0,0 DERIVE

CKM_SHA256_HMAC 16,256 SIGN,VERIFY

CKM_SHA_1 0,0 DIGEST

CKM_SHA1_KEY_DERIVATION 0,0 DERIVE

CKM_SHA_1_HMAC 16,256 SIGN,VERIFY

CKM_SHA384 0,0 DIGEST

CKM_SHA384_HMAC 16,256 SIGN,VERIFY

CKM_SHA512 0,0 DIGEST

CKM_SHA512_HMAC 16,256 SIGN,VERIFY

CKM_EC_KEY_PAIR_GEN 192,521 GENERATE_KEY_PAIR,
CKF_EC_F_P,
EC_ECPARAMETERS,
EC_NAMEDCURVE,
EC_UNCOMPRESS

CKM_ECDSA 192,521 SIGN,VERIFY,
CKF_EC_F_P,
EC_ECPARAMETERS,
EC_NAMEDCURVE,
EC_UNCOMPRESS

CKM_ECDSA_SHA1 192,521 SIGN,VERIFY,
CKF_EC_F_P,
EC_ECPARAMETERS,
EC_NAMEDCURVE,
EC_UNCOMPRESS

50 Exploiting EP11 using openCryptoki

Table 2. PKCS #11 mechanisms supported by the EP11 token (continued).

Mechanism Key sizes Properties

CKM_ECDH1_DERIVE 192,521 DERIVE, CKF_EC_F_P,
EC_UNCOMPRESS

CKM_DSA_PARAMETER_GEN 1024-3072 GENERATE

CKM_DSA_KEY_PAIR_GEN 1024-3072 GENERATE_KEY_PAIR

CKM_DSA 1024-3072 SIGN,VERIFY

CKM_DSA_SHA1 1024-3072 SIGN,VERIFY

CKM_DH_PKCS_PARAMETER_GEN 1024-3072 GENERATE

CKM_DH_PKCS_KEY_PAIR_GEN 1024-3072 GENERATE_KEY_PAIR

CKM_DH_PKCS_DERIVE 1024-3072 DERIVE

CKM_RSA_X_509 1024-4096 ENCRYPT,DECRYPT, SIGN,
VERIFY

CKM_RSA_X9_31 1024-4096 SIGN, VERIFY

CKM_PBE_SHA1_DES3_EDE_CBC 24,24 GENERATE

For explanation about the key object properties see the PKCS #11 Cryptographic
Token Interface Standard.

Restrictions with using the EP11 library functions
In this topic, you find information about certain limitations of the EP11 library.
v The EP11 library implements the secure key concept (that is, a key is wrapped

(encrypted) by a master key, which is kept within the EP11 adapter). That
means, that EP11 key values are never accessible. The secure key concept
ensures that clear keys never leave the hardware security module (HSM), which
is the EP11 module part that is installed on the IBM Crypto Express4S card.
Therefore, all keys must have the attribute CKA_SENSITIVE set to CK_TRUE.
Since the PKCS #11 standard does not define a (token-specific) default for secret
keys, the attribute must be explicitly provided whenever a secret key is
generated, unwrapped, or build with C_CreateObject.
In addition, all keys that are used with the EP11 token are extractable, that is,
they must have the attribute CKA_EXTRACTABLE set to CK_TRUE.

v Keys leaving the hardware security module (HSM) are encrypted by the HSM
master key (wrapping key) and come as binary large object (BLOB). In
openCryptoki, objects can have special attributes that describe the key
properties. Besides dedicated attributes defined by the application, there are
some attributes defined as token-specific by openCryptoki.
Table 3 and Table 4 on page 52 show the EP11 token-specific attributes and their
default values for private and secure keys.

Table 3. Private key default attributes of the EP11 token

Private key attributes value

CKA_SENSITIVE CK_TRUE

CKA_EXTRACTABLE CK_TRUE

Chapter 5. Using the EP11 token 51

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Table 4. Secret key default attributes of the EP11 token

Secret key attributes value

CKA_EXTRACTABLE CK_TRUE

v When you create keys the default values of the attributes CKA_ENCRYPT, CKA
DECRYPT, CKA_VERIFY, CKA_SIGN, CKA_WRAP and CKA_UNWRAP are
CK_TRUE. Note, no EP11 mechanism supports the Sign/Recover or
Verify/Recover functions.

Note: During secret key generation, it is necessary to set the CKA_SENSITIVE
attribute to CKA_TRUE explicitly, otherwise the key generation fails.
Even if settings of CKA_SENSITIVE, CKA_EXTRACTABLE, or CKA_NEVER_EXTRACTABLE
would allow accessing the key value, then openCryptoki returns 00..00 as key
value (due to the secure key concept).
For information about the key attributes, see the PKCS #11 Cryptographic Token
Interface Standard.

v All RSA keys must have a public exponent (CKA_PUBLIC_EXPONENT) greater
than or equal to 17.

v The Crypto Express EP11 coprocessor restricts RSA keys (primes and moduli)
according to ANSI X9.31. Therefore, in the EP11 token, the lengths of the RSA
primes (p or q) must be a multiple of 128 bits. Also, the length of the modulus
(CKA_MODULUS_BITS) must be a multiple of 256.

v The mechanisms CKM_DES3_CBC and CKM_AES_CBC can only wrap keys, which have
a length that is a multiple of the block size of DES3 or AES respectively. See the
mechanism list and mechanism information (pkcsconf -m) for supported
mechanisms together with supported functions and key sizes.

v The EP11 coprocessor adapter can be configured to restrict the cryptographic
capabilities in order for the adapter to comply with specific security
requirements and regulations. Such restrictions on the adapter impact the
capability of the EP11 token.

v The EP11 library functions do not provide a key import for DSA, DH, and EC
keys, but only support key generation on the adapter.

52 Exploiting EP11 using openCryptoki

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Chapter 6. Managing master keys on the Crypto Express4S
EP11 coprocessor

There may be situations when the master key on (a domain of) a CEX4P or later
adapter must be changed, for example, if company policies require periodic
changes of all master keys. Simply changing the master keys using the TKE results
in all secure keys stored in the EP11 token to become useless. Therefore all data
encrypted by these keys are lost. To avoid this situation, you must accomplish a
master key migration process, where activities on the TKE and on the Linux
system must be interlocked.

The EP11 token stores all token key objects in the Linux file system in the
/var/lib/opencryptoki/ep11/TOK_OBJ directory. All secret and private keys are
secure keys, that means they are enciphered (wrapped) with the master key (MK)
of the CEX4P adapter domain. Therefore, the master key is often also referred to as
wrapping key. If master keys are changed in a domain of a CEX4P adapter, all key
objects for secure keys in the EP11 token object repository become invalid.
Therefore, all key objects for secure keys must be re-enciphered with the new MK.
In order to re-encipher secure keys that are stored as EP11 key objects in the EP11
token object repository, openCryptoki provides the master key migration tool
pkcsep11_migrate.

How to access the master key migration tool

The pkcsep11_migrate key migration utility is part of openCryptoki version 3.1,
which includes the EP11 support.

Prerequisites for the master key migration process

The master key migration process for the EP11 token requires a TKE version 7.3
environment. How to set up this environment is described in “Setting up the TKE
environment” on page 20.

To use the pkcsep11_migrate migration tool, the EP11 crypto stack including
openCryptoki must be installed and configured. For information on how to set up
this environment, refer to Chapter 3, “Building the EP11 crypto stack,” on page 11.

The master key migration process

Prerequisite for re-encipherment: The EP11 token may be configured to use more
than one adapter/domain pair to perform its cryptographic operations. This is
defined in the EP11 token configuration file. If the EP11 token is configured to use
more than one adapter/domain pair, then all adapter/domain pairs must be
configured to each have the same set of master keys. Therefore, if a master key on
one of these adapter/domain pairs is changed, it must be changed on all those
other adapter/domain pairs, too.

To migrate master keys on the set of adapter/domain pairs used by an EP11 token,
you must perform the following steps:
1. On the Trusted Key Entry console (TKE), submit and commit the (same) new

master key on all CEX4P adapter/domain combinations used by the EP11
token.

© Copyright IBM Corp. 2014 53

2. On Linux, stop all processes that are currently using openCryptoki with the
EP11 token.

3. On Linux, back up the token object repository of the EP11 token. For example,
you can use the following commands:

cd /var/lib/opencryptoki/ep11
tar -cvzf ~/ep11TOK_OBJ_backup.tgz TOK_OBJ

4. On Linux, migrate the keys of the EP11 token object repository with the
pkcsep11_migrate migration tool (see the invocation information provided at the
end of these process steps). The pkcsep11_migrate tool must only be called once
for one of the adapter/domain pairs that the EP11 token uses. If a failure
occurs, restore the backed-up token repository and try this step again.
Attention: Do not continue with step 5 unless step 4 was successful.
Otherwise you will lose your encrypted data.

5. On the TKE, activate the new master keys on all EP11 adapter/domain
combinations that the EP11 token uses.

6. On Linux, restart the applications that used openCryptoki with the EP11 token.

In step 1 on page 53 of the master key migration process, the new master key must
be submitted and committed via the TKE interface. That means the new EP11
master key must be in the state Full Committed. The current MK is in the state
Valid. Now both (current and new) EP11 master keys are available and accessible.
The utility can now decrypt all relevant key objects within the token and
re-encrypt all these key objects with the new master key.

Note: All the decrypt and encrypt operations are done inside the EP11 coprocessor
card, that means that at no time clear key values are visible within memory.

Invocation: pkcsep11_migrate <-slot> <-adapter> <-domain>

The following parameters are mandatory:

-slot - slot number for the EP11 token

-adapter
- the card ID, using the numerical suffix value form the card ID in the sysfs
(to be retrieved from /sys/devices/ap/cardxx or with lszcrypt)

-domain
- the card domain number (to be retrieved from /sys/bus/ap/ap_domain or
with lszcrypt -b)

All token objects representing secret or private keys that are found for the EP11
token, are re-encrypted.

Usage: The environment variable PKCS11_USER_PIN_ENV_VAR must be set with the
USER pin of the EP11 token.

Example:
export PKCS11_USER_PIN_ENV_VAR=12345678
pkcsep11_migrate -slot 0 -adapter 8 -domain 13

Note: The program stops if the re-encryption of a token object fails. In this case,
restore the back-up.

54 Exploiting EP11 using openCryptoki

After this utility re-enciphered all key objects, the new master key must be
activated. This activation must be done by using the TKE interface command Set,
immediate. Finally, the new MK becomes the current MK and the previous MK
must be deleted.

Note: This tool is embedded in the users sbin path and therefore callable from
everywhere.

To prevent token object generation during re-encryption, openCryptoki with the
EP11 token must not be running during re-encryption. It is recommended to make
a back-up of the EP11 token object directory (/usr/local/var/lib/opencryptoki/
ep11tok/TOK_OBJ).

Chapter 6. Managing master keys on the Crypto Express4S EP11 coprocessor 55

56 Exploiting EP11 using openCryptoki

Chapter 7. Troubleshooting EP11

Troubleshooting can provide helpful information, if problems occur while you
work with the Linux on System z EP11 enablement.

The contained subtopics introduce different methods, which support
troubleshooting:
v “Checking the device driver status”
v “Checking the EP11 token status”
v “Enabling the logging support while running the EP11 token”

Checking the device driver status
The first step of troubleshooting while working with the EP11 enablement may be
to check the device driver status as described in this topic.

Use the lszcrypt command like shown to retrieve basic status information. Type
lszcrypt -VV to achieve the following output:

$ lszcrypt -VV
card06: CEX4P online hwtype=10 depth=8 request_count=0

This call can be used to check whether the EP11 requests are sent to a specific
crypto adapter.

For more information about using IBM cryptographic adapters with Linux on
System z, see Device Drivers, Features, and Commands, SC33-8411 available at
www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Checking the EP11 token status
You can request information about the EP11 token status by using the pkcsconf -t
command. The Flags entry shows the actual status flags for the token and whether
the token is ready to be used. In the shown example, the SO PIN needs to be
changed before the token can be used.

$ pkcsconf -t

Token #1 Info:
...

Model: IBM EP11Tok
...
Flags: 0x80044D

(RNG|LOGIN_REQUIRED|USER_PIN_INITIALIZED|CLOCK_ON_TOKEN|TOKEN_INITIALIZED
|SO_PIN_TO_BE_CHANGED)

...

...
Time: 15:29:43

Enabling the logging support while running the EP11 token
Read about the tasks how to run the EP11 token with enabled logging support.

© Copyright IBM Corp. 2014 57

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Logging support can be enabled either by setting the LOGLEVEL variable in the
EP11 configuration file (ep11tok.conf) or by setting the environment variable
OCK_EP11_TOKEN_LOGLEVEL. If neither the configuration file variable nor the
environment variable was set, logging is disabled by default. If both variables are
set, the environment variable overrules the settings in the configuration file.

Example of an EP11 token configuration file (ep11tok.conf) with log level 3:
#
EP11 token configuration
#
APQN_ANY
LOGLEVEL 3

Table 5. EP11 log levels.

Log level Description

0 No logging at all, not even for unrecoverable errors. This level is
default in field mode.

1 Basic logging mode for unrecoverable errors and errors important for
the user. No information logs are provided.

2 Like log level 1, including information logs, which can give additional
information to the user. This level is favorite when users need
debugging help.

3 Like log level 2, including warnings and additional information
messages important to the developer. Select this level, if you need to
forward logging information to the IBM support.

4 Like log level 3, including additional information, for example session
and log-in tracing messages.

5 Like log level 4, including additional information, for example, API
function entry and exit messages.

6 - 9 Tracing modes for increasingly elaborated debugging.

If a log level > 0 is defined in the environment variable OCK_EP11_TOKEN_LOGLEVEL
or by the LOGLEVEL entry in the EP11 configuration file, then log entries are
written to file /var/log/ock_ep11_token.<pid>.log. In this file name specification,
<pid> denotes the ID of the running process that uses the EP11 token.

The log file is created with ownership user, and group pkcs11, and permission 640
(user: read, write; group: read only; others: nothing). For every application, which
is using openCryptoki with the EP11 token, a new log file is created during token
initialization. Prerequisite for a working EP11 stack is the existence of the EP11
coprocessor card and an appropriate device driver with EP11 support.

A log level > 3 is only recommended for developers.

Note: Future releases of openCryptoki may provide a different framework for
logging and tracing which may lead to changes of the logging performed by the
EP11 token.

58 Exploiting EP11 using openCryptoki

Chapter 8. Programming examples for openCryptoki

The provided program segments in C illustrate some openCryptoki version 3.1
sample APIs to be used for EP11.

The contained openCryptoki code samples provide an insight into how to deal
with the openCryptoki API's. After describing some basic functions such as
initialization, session and log-in handling, the samples provide an introduction
about how to create key objects and process symmetric encryption/decryption
(AES). The last section shows RSA key generation with RSA encrypt and decrypt
operations.

To develop an application that uses the openCryptoki library, you need to access
the library. You achieve the loading of shared objects by using dynamic library
calls (dlopen) as described in the sample provided in “Base procedures.”

At compile time, you need to specify the openCryptoki library:
gcc test_ock.c -g -O0 -o test_ock -lopencryptoki -ldl
-I /usr/include/opencryptoki/

The exact location of the include files depends on your Linux distribution.

The following sample categories are provided:
v Base procedures
v Session and log-in
v Object handling
v Cryptographic operations

Base procedures
View some openCryptoki code samples for base procedures, such as a main
program, an initialization procedure, and finalize information.

© Copyright IBM Corp. 2014 59

Main program
/* Example program to test opencryptoki
* build: gcc test_ock.c -g -O0 -o test_ock -lopencryptoki -ldl

-I /root/opencryptoki/usr/include/pkcs11/
* execute: ./test_ock -c <slot> -p <PIN> */

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <dlfcn.h>
#include <pkcs11types.h>
#include <string.h>
#include <unistd.h>
#define OCKSHAREDLIB "libopencryptoki.so"

void *lib_ock;
char *pin = NULL;
int count, arg;
CK_SLOT_ID slotID = 0;
CK_ULONG rsaKeyLen = 2048, cipherTextLen = 0, clearTextLen = 0;
CK_BYTE *pCipherText = NULL, *pClearText = NULL;
CK_BYTE *pRSACipher = NULL, *pRSAClear = NULL;
CK_FLAGS rw_sessionFlags = CKF_RW_SESSION | CKF_SERIAL_SESSION;
CK_SESSION_HANDLE hSession;
CK_BYTE keyValue[] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,

0xCA,0xFE,0xBE,0xEF,0xCA,0xFE,0xBE,0xEF};
CK_BYTE msg[] = "The quick brown fox jumps over the lazy dog";
CK_ULONG msgLen = sizeof(msg);
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;

/*** <insert helper functions (provided below) here> ***/
/*** usage / help ***/
void usage(void)
{

printf("Usage:\n");
printf(" -s <slot number> \n");
printf(" -p <user PIN>\n");
printf("\n");
exit (8); }

int main(int argc, char *argv[]) {
while ((arg = getopt (argc, argv, "s:p:")) != -1) {

switch (arg) {
case ’s’: slotID = atoi(optarg);

break;
case ’p’: pin = malloc(strlen(optarg));

strcpy(pin,optarg);
break;

default: printf("wrong option %c", arg);
usage();

} }

if ((!pin) || (!slotID)) {
printf("Incorrect parameter given!\n");
usage();
exit (8); }

init();
openSession(slotID, rw_sessionFlags, &hSession);
loginSession(CKU_USER, pin, 8, hSession);
createKeyObject(hSession, (CK_BYTE_PTR)&keyValue, sizeof(keyValue));
AESencrypt(hSession, (CK_BYTE_PTR)&msg, msgLen, &pCipherText, &cipherTextLen);
AESdecrypt(hSession, pCipherText, cipherTextLen, &pClearText, &clearTextLen);
generateRSAKeyPair(hSession, rsaKeyLen, &hPublicKey, &hPrivateKey);
RSAencrypt(hSession, hPublicKey, (CK_BYTE_PTR)&msg, msgLen, &pRSACipher, &rsaKeyLen);
RSAdecrypt(hSession, hPrivateKey, pRSACipher, rsaKeyLen, &pRSAClear, &rsaKeyLen);
logoutSession(hSession); closeSession(hSession);
finalize();
return 0;

}

60 Exploiting EP11 using openCryptoki

C_Initialize
/*
* initialize
*/
CK_RV init(void){

CK_RV rc;
lib_ock = dlopen(OCKSHAREDLIB, RTLD_GLOBAL | RTLD_NOW);
if (!lib_ock) {
printf("Error loading shared lib ’%s’ [%s]", OCKSHAREDLIB, dlerror());
return 1;
}
rc = C_Initialize(NULL);
if (rc != CKR_OK) {

printf("Error initializing the opencryptoki library: 0x%X\n", rc);
}
return CKR_OK;

}

C_Finalize
/*
* finalize
*/
CK_RV finalize(void) {

CK_RV rc;
rc = C_Finalize(NULL);
if (rc != CKR_OK) {
printf("Error during finalize: %x\n", rc);
return rc;
}
if (pCipherText) free(pCipherText);
if (pClearText) free(pClearText);
if (pRSACipher) free(pRSACipher);
if (pRSAClear) free(pRSAClear);
return CKR_OK;

}

Session and log-in procedures
When you use your sample code with a static linked library you can access the
APIs directly. View some openCryptoki code samples for opening and closing
sessions and for log-in.

C_OpenSession:
/*
* opensession
*/

CK_RV openSession(CK_SLOT_ID slotID, CK_FLAGS sFlags,
CK_SESSION_HANDLE_PTR phSession) {

CK_RV rc;
rc = C_OpenSession(slotID, sFlags, NULL, NULL, phSession);
if (rc != CKR_OK) {

printf("Error opening session: %x\n", rc);
return rc;

}
printf("Open session successful.\n");
return CKR_OK;

}

Chapter 8. Programming examples for openCryptoki 61

C_CloseSession:
/*
* closesession
*/
CK_RV closeSession(CK_SESSION_HANDLE hSession) {

CK_RV rc;
rc = C_CloseSession(hSession);
if (rc != CKR_OK) {
printf("Error closing session: 0x%X\n", rc);
return rc;
}
printf("Close session successful.\n");
return CKR_OK;

}

C_Login:
/*
* login
*/
CK_RV loginSession(CK_USER_TYPE userType, CK_CHAR_PTR pPin,

CK_ULONG ulPinLen, CK_SESSION_HANDLE hSession) {
CK_RV rc;
rc = C_Login(hSession, userType, pPin, ulPinLen);
if (rc != CKR_OK) {
printf("Error login session: %x\n", rc);
return rc;
}
printf("Login session successful.\n");
return CKR_OK;

}

C_Logout:
/*
* logout
*/
CK_RV logoutSession(CK_SESSION_HANDLE hSession) {

CK_RV rc;
rc = C_Logout(hSession);
if (rc != CKR_OK) {
printf("Error logout session: %x\n", rc);
return rc;
}
printf("Logout session successful.\n");
return CKR_OK;

}

Object handling procedures
When you use your sample code with a static linked library you can access the
APIs directly. View some openCryptoki code samples for procedures dealing with
object handling.

62 Exploiting EP11 using openCryptoki

C_CreateKeyObject:
/*
* createKeyObject
*/
CK_RV createKeyObject(CK_SESSION_HANDLE hSession, CK_BYTE_PTR key, CK_ULONG keyLength) {

CK_RV rc;

CK_OBJECT_HANDLE hKey;
CK_BBOOL true = TRUE;
CK_BBOOL false = FALSE;
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_AES;
CK_ATTRIBUTE keyTempl[] = {

{CKA_CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_DECRYPT, &true, sizeof(true)},
{CKA_SIGN, &true, sizeof(true)},
{CKA_VERIFY, &true, sizeof(true)},
{CKA_TOKEN, &true, sizeof(true)}, /* token object */
{CKA_PRIVATE, &false, sizeof(false)}, /* public object */
{CKA_VALUE, keyValue, keyLength}, /* AES key */
{CKA_LABEL, "My_AES_Key", sizeof("My_AES_Key")}

};
rc = C_CreateObject(hSession, keyTempl, sizeof (keyTempl)/sizeof (CK_ATTRIBUTE), &hKey);
if (rc != CKR_OK) {
printf("Error creating key object: 0x%X\n", rc); return rc;
}
printf("AES Key object creation successful.\n");

}

C_FindObjects:
/*
* findObjects
*/
CK_RV getKey(CK_CHAR_PTR label, int labelLen, CK_OBJECT_HANDLE_PTR hObject,

CK_SESSION_HANDLE hSession) {
CK_RV rc;
CK_ULONG ulMaxObjectCount = 1;
CK_ULONG ulObjectCount;
CK_ATTRIBUTE objectMask[] = { {CKA_LABEL, label, labelLen} };
rc = C_FindObjectsInit(hSession, objectMask, 1);
if (rc != CKR_OK) {
printf("Error FindObjectsInit: 0x%X\n", rc); return rc;
}
rc = C_FindObjects(hSession, hObject, ulMaxObjectCount, &ulObjectCount);
if (rc != CKR_OK) {
printf("Error FindObjects: 0x%X\n", rc); return rc;
}
rc = C_FindObjectsFinal(hSession);
if (rc != CKR_OK) {
printf("Error FindObjectsFinal: 0x%X\n", rc); return rc;
}

}

Cryptographic operations
When you use your sample code with a static linked library you can access the
APIs directly. View some openCryptoki code samples for procedures that perform
cryptographic operations.

Chapter 8. Programming examples for openCryptoki 63

C_Encrypt (AES):
/*
* AES encrypt
*/
CK_RV AESencrypt(CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
CK_BYTE **pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {
CK_RV rc;
CK_MECHANISM myMechanism = {CKM_AES_CBC_PAD, "01020304050607081122334455667788", 16};
CK_MECHANISM_PTR pMechanism = &myMechanism;
CK_OBJECT_HANDLE hKey;
getKey("My_AES_Key", sizeof("My_AES_Key"), &hKey, hSession);
rc = C_EncryptInit(hSession, pMechanism, hKey);
if (rc != CKR_OK) {
printf("Error initializing encryption: 0x%X\n", rc);
return rc;
}
rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
NULL, pulEncryptedDataLen);
if (rc != CKR_OK) {
printf("Error during encryption (get length): %x\n", rc);
return rc;
}
*pEncryptedData = (CK_BYTE *)malloc(*pulEncryptedDataLen * sizeof(CK_BYTE));

rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
*pEncryptedData, pulEncryptedDataLen);
if (rc != CKR_OK) {
printf("Error during encryption: %x\n", rc);
return rc;
}
printf("Encrypted data: ");
CK_BYTE_PTR tmp = *pEncryptedData;
for (count = 0; count < *pulEncryptedDataLen; count++, tmp++) {
printf("%X", *tmp);
}
printf("\n");

return CKR_OK;
}

64 Exploiting EP11 using openCryptoki

C_Decrypt (AES):
/*
* AES decrypt
*/
CK_RV AESdecrypt(CK_SESSION_HANDLE hSession,

CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
CK_BYTE **pClearData, CK_ULONG_PTR pulClearDataLen) {
CK_RV rc;
CK_MECHANISM myMechanism = {CKM_AES_CBC_PAD, "01020304050607081122334455667788", 16};
CK_MECHANISM_PTR pMechanism = &myMechanism;
CK_OBJECT_HANDLE hKey;
getKey("My_AES_Key", sizeof("My_AES_Key"), &hKey, hSession);
rc = C_DecryptInit(hSession, pMechanism, hKey);
if (rc != CKR_OK) {
printf("Error initializing decryption: 0x%X\n", rc);
return rc;
}
rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen, NULL, pulClearDataLen);
if (rc != CKR_OK) {
printf("Error during decryption (get length): %x\n", rc);
return rc;
}
*pClearData = malloc(*pulClearDataLen * sizeof(CK_BYTE));
rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen, *pClearData,

pulClearDataLen);
if (rc != CKR_OK) {
printf("Error during decryption: %x\n", rc);
return rc;
}
printf("Decrypted data: ");
CK_BYTE_PTR tmp = *pClearData;
for (count = 0; count < *pulClearDataLen; count++, tmp++) {
printf("%c", *tmp);
}
printf("\n");
return CKR_OK;

}

Chapter 8. Programming examples for openCryptoki 65

C_GenerateKeyPair (RSA):
/*
* RSA key generate
*/
CK_RV generateRSAKeyPair(CK_SESSION_HANDLE hSession, CK_ULONG keySize,

CK_OBJECT_HANDLE_PTR phPublicKey, CK_OBJECT_HANDLE_PTR phPrivateKey) {
CK_RV rc;
CK_BBOOL true = TRUE;
CK_BBOOL false = FALSE;
CK_OBJECT_CLASS keyClassPub = CKO_PUBLIC_KEY;
CK_OBJECT_CLASS keyClassPriv = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyTypeRSA = CKK_RSA;
CK_ULONG modulusBits = keySize;
CK_BYTE_PTR pModulus = malloc(sizeof(CK_BYTE)*modulusBits/8);
CK_BYTE publicExponent[] = {1, 0, 1};
CK_MECHANISM rsaKeyGenMech = {CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0};
CK_ATTRIBUTE pubKeyTempl[] = {
{CKA_CLASS, &keyClassPub, sizeof(keyClassPub)},
{CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_PRIVATE, &true, sizeof(true)},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VERIFY, &true, sizeof(true)},
{CKA_WRAP, &true, sizeof(true)},
{CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
{CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)},
{CKA_LABEL, "My_Private_Token_RSA1024_PubKey",
sizeof("My_Private_Token_RSA1024_PubKey")},
{CKA_MODIFIABLE, &true, sizeof(true)},
};
CK_ATTRIBUTE privKeyTempl[] = {
{CKA_CLASS, &keyClassPriv, sizeof(keyClassPriv)},
{CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
{CKA_EXTRACTABLE, &true, sizeof(true)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_PRIVATE, &true, sizeof(true)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DECRYPT, &true, sizeof(true)},
{CKA_SIGN, &true, sizeof(true)},
{CKA_UNWRAP, &true, sizeof(true)},
{CKA_LABEL, "My_Private_Token_RSA1024_PrivKey",
sizeof("My_Private_Token_RSA1024_PrivKey")},
{CKA_MODIFIABLE, &true, sizeof(true)},
};
rc = C_GenerateKeyPair(hSession, &rsaKeyGenMech ,

&pubKeyTempl, sizeof(pubKeyTempl)/sizeof (CK_ATTRIBUTE),
&privKeyTempl, sizeof(privKeyTempl)/sizeof (CK_ATTRIBUTE),
phPublicKey, phPrivateKey);

if (rc != CKR_OK) {
printf("Error generating RSA keys: %x\n", rc);
return rc;
}
printf("RSA Key generation successful.\n");

}

66 Exploiting EP11 using openCryptoki

C_Encrypt (RSA):
/*
* RSA encrypt
*/
CK_RV RSAencrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
CK_BYTE **pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {
CK_RV rc;
CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};
rc = C_EncryptInit(hSession, rsaMechanism, hKey);
if (rc != CKR_OK) {
printf("Error initializing RSA encryption: %x\n", rc);
return rc;
}
rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
NULL, pulEncryptedDataLen);
if (rc != CKR_OK) {
printf("Error during RSA encryption: %x\n", rc);
return rc;
}

*pEncryptedData = (CK_BYTE *)malloc(rsaKeyLen * sizeof(CK_BYTE));
rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
*pEncryptedData, pulEncryptedDataLen);
if (rc != CKR_OK) {
printf("Error during RSA encryption: %x\n", rc);
return rc;
}

printf("Encrypted data: ");
CK_BYTE_PTR tmp = *pEncryptedData;
for (count = 0; count < *pulEncryptedDataLen; count++, tmp++) {
printf("%X", *tmp);
}
printf("\n");
return CKR_OK;

}

Chapter 8. Programming examples for openCryptoki 67

C_Decrypt (RSA):
/*
* RSA decrypt
*/
CK_RV RSAdecrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
CK_BYTE **pClearData, CK_ULONG_PTR pulClearDataLen) {
CK_RV rc;
CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};
rc = C_DecryptInit(hSession, rsaMechanism, hKey);
if (rc != CKR_OK) {
printf("Error initializing RSA decryption: %x\n", rc);
return rc;
}
rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
NULL, pulClearDataLen);
if (rc != CKR_OK) {
printf("Error during RSA decryption: %x\n", rc);
return rc;
}

*pClearData = malloc(rsaKeyLen*sizeof(CK_BYTE));
rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
*pClearData, pulClearDataLen);
if (rc != CKR_OK) {
printf("Error during RSA decryption: %x\n", rc);
return rc;
}
printf("Decrypted data: ");
CK_BYTE_PTR tmp = *pClearData;
for (count = 0; count < *pulClearDataLen; count++, tmp++) {
printf("%c", *tmp);
}
printf("\n");
return CKR_OK;

}

68 Exploiting EP11 using openCryptoki

Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Documentation accessibility

The Linux on System z publications are in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when you use the PDF file and want to request a Web-based format for
this publication, use the Readers' Comments form in the back of this publication,
send an email to eservdoc@de.ibm.com, or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility at
www.ibm.com/able

© Copyright IBM Corp. 2014 69

http://www.ibm.com/able

70 Exploiting EP11 using openCryptoki

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

© Copyright IBM Corp. 2014 71

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems
Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

72 Exploiting EP11 using openCryptoki

http://www.ibm.com/legal/copytrade.shtml

Glossary

Advanced Encryption Standard (AES)
A data encryption technique that
improved upon and officially replaced the
Data Encryption Standard (DES). AES is
sometimes referred to as Rijndael, which
is the algorithm on which the standard is
based.

asymmetric cryptography
Synonym for public key cryptography..

Central Processor Assist for Cryptographic
Function (CPACF)

Hardware that provides support for
symmetric ciphers and secure hash
algorithms (SHA) on every central
processor. Hence the potential
encryption/decryption throughput scales
with the number of central processors in
the system.

Chinese-Remainder Theorem (CRT)
A mathematical problem described by
Sun Tsu Suan-Ching using the remainder
from a division operation.

Cipher Block Chaining (CBC)
A method of reducing repetitive patterns
in cipher-text by performing an
exclusive-OR operation on each 8-byte
block of data with the previously
encrypted 8-byte block before it is
encrypted.

Cipher block length
The length of a block that can be
encrypted or decrypted by a symmetric
cipher. Each symmetric cipher has a
specific cipher block length.

clear key
Any type of encryption key not protected
by encryption under another key.

CPACF instructions
Instruction set for the CPACF hardware.

Crypto Express4S (CEX4S)
Successor to the Crypto Express3 feature.
The PCIe adapter on a CEX4S feature can
be configured in three ways: Either as
cryptographic accelerator (CEX4A), or as
CCA coprocessor (CEX4C) for secure key
encrypted transactions, or in EP11

coprocessor mode (CEX4P) for exploiting
Enterprise PKCS #11 functionality.

A CEX4P only supports secure key mode.

electronic code book mode (ECB mode)
A method of enciphering and deciphering
data in address spaces or data spaces.
Each 64-bit block of plain-text is
separately enciphered and each block of
the cipher-text is separately deciphered.

libica Library for IBM Cryptographic
Architecture.

master key (MK)
In computer security, the top-level key in
a hierarchy of key-encrypting keys.

Mode of operation
A schema describing how to apply a
symmetric cipher to encrypt or decrypt a
message that is longer than the cipher
block length. The goal of most modes of
operation is to keep the security level of
the cipher by avoiding the situation
where blocks that occur more than once
will always be translated to the same
value. Some modes of operations allow
handling messages of arbitrary lengths.

modulus-exponent (Mod-Expo)
A type of exponentiation performed using
a modulus.

public key cryptography
In computer security, cryptography in
which a public key is used for encryption
and a private key is used for decryption.
Synonymous with asymmetric
cryptography.

Rivest-Shamir-Adleman (RSA)
An algorithm used in public key
cryptography. These are the surnames of
the three researchers responsible for
creating this asymmetric or public/private
key algorithm.

Secure Hash Algorithm (SHA)
An encryption method in which data is
encrypted in a way that is mathematically
impossible to reverse. Different data can
possibly produce the same hash value,
but there is no way to use the hash value
to determine the original data.

© Copyright IBM Corp. 2014 73

secure key
A key that is encrypted under a master
key. When using a secure key, it is passed
to a cryptographic coprocessor where the
coprocessor decrypts the key and
performs the function. The secure key
never appears in the clear outside of the
cryptographic coprocessor.

symmetric cryptogrphy
An encryption method that uses the same
key for encryption and decryption. Keys
of symmetric ciphers are private keys.

zcrypt device driver
Kernel device driver to access Crypto
Express adapters. Formerly, a monolithic
module called z90crypt. Today, it consists
of multiple modules that are implicitly
loaded when loading the ap main module
of the device driver.

74 Exploiting EP11 using openCryptoki

Index

Special characters
EP11 token configuration file

ep11tok.conf 43

A
about this document vii
accessibility 69
adapter

assigning to domain 43
adapter/domain pair 43
adapters

dedicated EP11 adapters 17
adapters and domains

assigning to LPARs 45
alias name for z90crypt 18
ap module 18
APDEDicated operand 17
APQN_ANY 43
APQN_WHITELIST 43
assigning adapters and domains

to LPARs 45
asymmetric cryptography 1
available libraries in openCryptoki 41

C
C API 2, 49
C_Decrypt (AES) 64
C_Decrypt (RSA) 64
C_Encrypt (AES) 64
C_Encrypt (RSA) 64
C_GenerateKeyPair (RSA) 64
CEX4P 1

configuring 13
preparing 11

CEX4P adapter 2
setting the master key 19

CEX4S 2
CEX4S adapter 2
checking EP11 token status 57
checking the device driver status 57
chzcrypt command 13
clear key 2
code sample

base procedures 60
cryptographic operations 64
dynamic library calls 60
object handling 63
static linked library 61

command line program
pkcsconf 8

command pkcsconf 41
configuration file

ep11tok.conf 43
sample for opencryptoki.conf 41

configuring
EP11 token 43
extended evaluations 18

configuring CEX4P 13

configuring extended evaluations 18
configuring openCryptoki 41
control domain exposure 11
control domains 11
coprocessor mode vii
creating an EP11 smart card 20
CRYPTO APVIRTual

APDEDicated operand 17
Domain operand 17

Crypto Express4S (CEX4S) adapter 2
Crypto Express4S EP11 coprocessor 1, 2

configuring 13
preparing 11

crypto stack 5
building 11

cryptographic domains 11
cryptographic operations 64
cryptographic token 1
cryptography

asymmetric 1
public key 1

Cryptoki 1, 2

D
daemon

install 18
start 18
TKE EP11 18

decrypt 2
dedicated adapters 17
dependencies 5
device driver

ap main module 18
EP11 extension 5
loading 18

device driver status
checking 57

directory statement
CRYPTO APVIRTual 17

distribution independence viii
Domain operand 17
domains 11
dynamic library calls 59

E
encrypt 2
Enterprise PKCS #11 vii
Enterprise PKCS #11 (EP11) 2
environment variables 43

setting 46
EP11 vii

general information 1, 7
troubleshooting 57

EP11 adapters 17
EP11 crypto stack 5

building 11
EP11 enablement 1
EP11 extension 5

EP11 firmware 2, 5, 13
EP11 host part

installing 18
EP11 library

host part 5
module part 5
restrictions 51

EP11 library functions 49
programming samples 59

EP11 smart card 20
EP11 stack 1, 5

building 11
dependencies 5
overview 7

EP11 TKE daemon 18
EP11 token

configuring 43
installing and configuring 41
logging support 58
status information 47
supported mechanisms 49
using 49

EP11 token configuration file 43
defining 44
sample 44

EP11 token status
checking 57

ep11TKEd 13, 18
ep11TKEd TKE daemon 19
ep11tok.conf configuration file 43
examples for programming 59
extended evaluations

configuring 18

F
firmware

EP11 2
flags 57

G
glossary 73

H
hardware security module (HSM) 2, 51
host part 5

installing 18
HSM 2, 51

I
ibopencryptoki.so 7
installing EP11 host part 18
installing openCryptoki 38
introduction 1
ioctl commands 19

© Copyright IBM Corp. 2014 75

K
key word APQN_ANY 43
key word APQN_WHITELIST 43

L
Linux

distribution viii
Linux on System z EP11 enablement 1
Linux zcrypt device driver

loading 18
loading Linux zcrypt device driver 18
log-in PIN 46
logging support 58
logical partition (LPAR) 11
LPAR 11
lszcrypt 13, 57

M
master key

setting on the CEX4P adapter 19
master key (MK)

migration process 53
master key (MK) migration tool

installing, configuring, using 53
pkcsep11_migrate 53

mechanisms
supported for the EP11 token 49

migration process
for master key 53

migration tool
for master (wrapping) keys 53

MK
setting on the CEX4P adapter 19

module part 5

O
object handling 63
openCryptoki 2

base library 41
C_Decrypt (AES) 64
C_Decrypt (RSA) 64
C_Encrypt (AES) 64
C_Encrypt (RSA) 64
C_GenerateKeyPair (RSA) 64
configuration file 41
configuring 41
dynamic library calls 59
installing from RPM 38
installing from source package 38
programming samples 59
shared library (C API) 2
SO PIN 46
standard PIN 46
status information 47
token library 41

openCryptoki library 7
opencryptoki.conf

configuration file 41

P
permit TKE commands 13
PIN 46
pk_config_data 41
PKCS #11 1
PKCS #11 standard 7
PKCS #11 standard C API 49
pkcs11_startup 41
pkcsconf 8, 46
pkcsconf -t 47
pkcsconf -t command 41
pkcsconf command 41
pkcsep11_migrate 53
pkcsslotd 8
private key 53
process flow 5
public key 53
public key cryptography 1
Public-Key Cryptographic Standards 1

Q
QUERY CRYPto DOMains 17

R
restrictions of EP11 library 51
RPM 5, 38
RSA private key 53
RSA public key 53

S
sample code

cryptographic operations 64
dynamic library calls 60
object handling 63
static linked library 61

samples 59
secret key 53
secure key 2, 19
secure key concept 51
secure key infrastructure 1
security officer (SO) 8

log-in PIN 46
setting environment variables 46
slot entry 41
slot entry, defining 43
slot manager 7, 41

starting 41
slot token dynamic link libraries

(STDLLs) 8
smart card

creating 20
initializing 20

SO
log-in PIN 46

source package 38
stack 5
stack and process flow 5
standard user (User)

log-in PIN 46
starting the slot manager 41
static linked library 61
status flags 57

status information 47
status of EP11 token 57
STDLL 8
STDLLs 8
Support Element 13
supported mechanisms

EP11 token 49

T
TKE commands

permit 13
TKE daemon 13, 18
TKE daemon ep11TKEd 19
TKE workstation 12

connect with System z mainframe 19
token 1

initializing 46
token directory 11
troubleshooting EP11 57
Trusted Key Entry (TKE) 19
Trusted Key Entry workstation 12, 19

U
unwrap 2
usage domains 11
User

log-in PIN 46
using the EP11 token 49

W
who should read this document viii
wrap 2
wrapping key 53

setting on the CEX4P adapter 19

Z
z/VM guests 17
z90crypt

alias name 18
zcrypt 18
zcrypt device driver 5

loading 18
zcrypt device driver status

checking 57

76 Exploiting EP11 using openCryptoki

Readers’ Comments — We'd Like to Hear from You

Linux on System z
Exploiting Enterprise PKCS #11 using openCryptoki 3.1

Publication No. SC34-2713-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via email to: eservdoc@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2713-00

SC34-2713-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-2713-00

	Contents
	Figures
	About this document
	How this document is organized
	Who should read this document
	Distribution independence
	Other Linux on System z publications

	Chapter 1. Introduction
	What is PKCS #11?
	What is openCryptoki?
	What is a Crypto Express4S EP11 coprocessor?

	Chapter 2. The EP11 crypto stack
	openCryptoki overview

	Chapter 3. Building the EP11 crypto stack
	Preparing the Crypto Express4S EP11 coprocessor
	Purpose of domains
	Enabling the CEX4S adapter for EP11 firmware exploitation
	Assigning EP11 adapters as dedicated adapters to z/VM guests
	Restriction to extended evaluations

	Loading the Linux zcrypt device driver
	Installing the host part of the EP11 library
	Setting a master key on the Crypto Express4S EP11 coprocessor
	Installing openCryptoki

	Chapter 4. Configuring openCryptoki for EP11 support
	Adjusting the openCryptoki configuration file
	Configuring the EP11 token
	Assigning adapters and domains to LPARs
	Setting environment variables
	Initializing the token
	How to recognize the EP11 token

	Chapter 5. Using the EP11 token
	Supported mechanisms for the EP11 token
	Restrictions with using the EP11 library functions

	Chapter 6. Managing master keys on the Crypto Express4S EP11 coprocessor
	Chapter 7. Troubleshooting EP11
	Checking the device driver status
	Checking the EP11 token status
	Enabling the logging support while running the EP11 token

	Chapter 8. Programming examples for openCryptoki
	Base procedures
	Session and log-in procedures
	Object handling procedures
	Cryptographic operations

	Accessibility
	Notices
	Trademarks

	Glossary
	Index
	Special characters
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	Z

	Readers’ Comments — We'd Like to Hear from You

