
Linux on z Systems

libica Programmer's Reference
Version 2.6

SC34-2602-07

IBM

Linux on z Systems

libica Programmer's Reference
Version 2.6

SC34-2602-07

IBM

Note
Before using this document, be sure to read the information in “Notices” on page 179.

Edition notice

This edition applies to libica version 2.6 for openCryptoki version 3.4 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2009, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|

Contents

Summary of changes v
Updates for libica version 2.6 v
Updates for libica version 2.5 v
Updates for libica version 2.4 v

About this document vii
How this document is organized vii
Who should read this document vii
Distribution independence viii
Other publications for Linux on z Systems. . . . viii

Chapter 1. General information about
libica 1
libica examples 1
z Systems cryptographic hardware support 1
Check the prerequisites: cryptographic adapter and
device driver 2

Loading the Linux zcrypt device driver 2
Checking the cryptographic adapter availability . 2

Chapter 2. Installing and using libica
version 2.6 5
Installing libica version 2.6 from the libica RPM . . 5
Installing libica version 2.6 from the source package 5
Using libica version 2.6 6
libica version 1, version 2, version 2.1.0, and up to
version 2.6 coexistence 6

Chapter 3. libica version 2.6 application
programming interfaces 7
Open and close adapter functions 10

ica_open_adapter 10
ica_close_adapter 11

Secure hash operations 11
ica_sha1 11
ica_sha224 12
ica_sha256 14
ica_sha384 15
ica_sha512 16

Pseudo random number generation functions . . . 17
ica_random_number_generate 18
ica_drbg_instantiate 19
ica_drbg_reseed 20
ica_drbg_generate 20
ica_drbg_uninstantiate. 21
ica_drbg_health_test 21

RSA key generation functions 22
ica_rsa_key_generate_mod_expo 22
ica_rsa_key_generate_crt 23
ica_rsa_crt_key_check 24

RSA encrypt and decrypt operations 24
ica_rsa_mod_expo 25
ica_rsa_crt 25

DES functions 26

ica_des_cbc 27
ica_des_cbc_cs 27
ica_des_cfb 29
ica_des_cmac 30
ica_des_cmac_intermediate 31
ica_des_cmac_last 32
ica_des_ctr. 33
ica_des_ctrlist. 34
ica_des_ecb 35
ica_des_ofb 36
Compatibility with earlier versions 36

TDES/3DES functions 37
ica_3des_cbc 38
ica_3des_cbc_cs 39
ica_3des_cfb 40
ica_3des_cmac 41
ica_3des_cmac_intermediate 42
ica_3des_cmac_last 43
ica_3des_ctr 44
ica_3des_ctrlist 45
ica_3des_ecb 46
ica_3des_ofb 47
Compatibility with earlier versions 48

AES functions 48
ica_aes_cbc 49
ica_aes_cbc_cs 50
ica_aes_ccm 51
ica_aes_cfb 53
ica_aes_cmac 54
ica_aes_cmac_intermediate 55
ica_aes_cmac_last 56
ica_aes_ctr 57
ica_aes_ctrlist 58
ica_aes_ecb 59
ica_aes_gcm 60
ica_aes_gcm_initialize 62
ica_aes_gcm_intermediate 63
ica_aes_gcm_last. 65
ica_aes_ofb 66
ica_aes_xts. 67
Compatibility with earlier versions 68

Information retrieval function 69
ica_get_version 69
ica_get_functionlist 69

Chapter 4. Accessing libica functions
through the PKCS #11 API
(openCryptoki) 71
openCryptoki overview 71
Functions provided by openCryptoki with the ICA
token 74
Installing openCryptoki 74

Installing from the RPM 74
Installing from the source package. 74

Configuring openCryptoki 75

© Copyright IBM Corp. 2009, 2016 iii

||
||

||
||
||
||
||
||
||

||

||
||
||

Adjusting the openCryptoki configuration file . . 75
Configuring the ICA token 78
Initializing the token 78
How to recognize the ICA token 79

Using the ICA token 80
Supported mechanisms for the ICA token . . . 80

Chapter 5. libica constants, type
definitions, data structures, and return
codes 83
libica constants 83
Type definitions 83
Data structures 84
Return codes 86

Chapter 6. libica tools 87
icainfo - Show available libica functions 87
icastats - Show use of libica functions 88

Chapter 7. Examples 91
DES with ECB mode example 91
SHA-256 example 93
Pseudo random number generation example . . . 99

Key generation example 100
RSA example 106
DES with CTR mode example 111
Triple DES with CBC mode example 114
AES with CFB mode example 117
AES with CTR mode example 129
AES with OFB mode example 139
AES with XTS mode example 147
CMAC example 157
openCryptoki code samples 160

Coding samples (C) 160
Makefile example 171
Common Public License - V1.0 172

Accessibility 177

Notices 179
Trademarks 180

Glossary 181

Index 183

iv libica Programmer's Reference

Summary of changes

This revision reflects changes to the Development stream for libica version 2.6.

Updates for libica version 2.6
Edition SC34-2602-07
v A new deterministic random bit generator (DRBG), which is compliant to the

NIST SP800-90A specifications, has been added to libica.

Updates for libica version 2.5
Edition SC34-2602-07
v libica supports the CPACF MSA4 extension (AES GCM Mode) in accordance

with the current PKCS #11 specification version 2.40.
v A new function is available that analyzes an RSA CRT key and checks if the

components comply with the IBM® cryptographic architecture. If required, the
function converts the key to a conform format that can be used for IBM
cryptographic hardware acceleration.

Updates for libica version 2.4
Edition SC34-2602-06
v An enhanced version of the icastats utility collects statistical data per users, not

per system. The data is persistently available beyond the context of a single
process. See “icastats - Show use of libica functions” on page 88.

v An improved version of the icainfo function shows whether the supported
cryptographic algorithms are implemented by hardware, software or both. See
“icainfo - Show available libica functions” on page 87.

© Copyright IBM Corp. 2009, 2016 v

|

|

|
|

|
|

|

|
|

|
|
|
|

|

vi libica Programmer's Reference

About this document

This document describes how to install and use version 2.6 of the Library for IBM
Cryptographic Architecture (libica).

libica is a library of cryptographic functions used to write cryptographic
applications on IBM z Systems™, both with and without cryptographic hardware.

You can find the latest version of this document on the developerWorks® website
at:

www.ibm.com/developerworks/linux/linux390/documentation_dev.html

and on the IBM Knowledge Center at:

www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

How this document is organized
The information is divided into topics that describe installing, configuring and
using libica together with descriptions of the functions and example programs.

Chapter 1, “General information about libica,” on page 1 has general information
about the current libica version.

Chapter 2, “Installing and using libica version 2.6,” on page 5 contains installation
and set up instructions, and coexistence information for the current libica version.

Chapter 3, “libica version 2.6 application programming interfaces,” on page 7
describes the libica APIs.

Chapter 4, “Accessing libica functions through the PKCS #11 API (openCryptoki),”
on page 71 describes how the cryptographic functions provided by libica can be
accessed using the PKCS #11 API implemented by openCryptoki.

Chapter 5, “libica constants, type definitions, data structures, and return codes,” on
page 83 lists the defines, typedefs, structs, and return codes for libica.

Chapter 6, “libica tools,” on page 87 contains tools to investigate the capabilities of
your cryptographic hardware and how these capabilities are used by applications
that use libica.

Chapter 7, “Examples,” on page 91 is a set of programming examples that use the
libica APIs.

Who should read this document
This document is intended for C programmers that want to access IBM z Systems
hardware support for cryptographic methods.

In particular, this publication addresses programmers who write hardware-specific
plug-ins for cryptographic libraries such as OpenSSL and openCryptoki.

© Copyright IBM Corp. 2009, 2016 vii

|

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

Distribution independence
This publication does not provide information that is specific to a particular Linux
distribution.

The tools it describes are distribution independent.

Other publications for Linux on z Systems
You can find publications for Linux on z Systems™ on IBM Knowledge Center and
on developerWorks.

These publications are available on IBM Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html
v Device Drivers, Features, and Commands (distribution-specific editions)
v Using the Dump Tools (distribution-specific editions)
v KVM Virtual Server Quick Start, SC34-2753
v KVM Virtual Server Management, SC34-2752
v Device Drivers, Features, and Commands for Linux as a KVM Guest, SC34-2754
v Installing SUSE Linux Enterprise Server 12 as a KVM Guest, SC34-2755
v How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
v libica Programmer's Reference, SC34-2602
v Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
v Secure Key Solution with the Common Cryptographic Architecture Application

Programmer's Guide, SC33-8294
v Linux on z Systems Troubleshooting, SC34-2612
v Linux Health Checker User's Guide, SC34-2609
v Kernel Messages, SC34-2599
v How to Set up a Terminal Server Environment on z/VM®, SC34-2596

You can also find these publications on developerWorks at
www.ibm.com/developerworks/linux/linux390/documentation_dev.html

For versions of this and other documents that have been adapted to a particular
distribution, see one of the following web pages:
www.ibm.com/developerworks/linux/linux390/documentation_suse.html
www.ibm.com/developerworks/linux/linux390/documentation_red_hat.html

viii libica Programmer's Reference

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html
http://www.ibm.com/developerworks/linux/linux390/documentation_red_hat.html

Chapter 1. General information about libica

The libica library provides hardware support (and software fallbacks if the
hardware is not available) for cryptographic functions. The information about libica
version 2.6 presented in this document is valid for all libica versions 2.6.x., because
the changes in version 2.6 later than 2.6.0 are not relevant for user documentation.

The cryptographic adapters are used for asymmetric encryption and decryption.
The CPACF instructions are used for symmetric encryption and decryption, pseudo
random number generation, message authentication, and secure hashing. For some
of these functions, if the hardware is not available or failed, libica uses the
low-level cryptographic functions of OpenSSL, if available.

This product includes software that is developed by the OpenSSL Project for use in
the OpenSSL Toolkit (http://www.openssl.org). This product includes
cryptographic software that is written by Eric Young (eay@cryptsoft.com).

The libica library is part of the openCryptoki project in SourceForge. It is primarily
used by OpenSSL through the IBM OpenSSL CA engine or by openCryptoki
through the ica_s390 token. A higher level of security can be achieved by using it
through the PKCS #11 API implemented by openCryptoki.

The libica library is optimized to work on IBM z Systems hardware.

IBM reserves the right to change or modify this API at any time. However, an
effort is made to keep the API compatible with later versions within a major
release.

You can use the icastats utility to obtain statistics about cryptographic processes.
The icainfo command shows whether libica is using cryptographic hardware or
software fallback for each specific libica function. See “icastats - Show use of libica
functions” on page 88 and “icainfo - Show available libica functions” on page 87
for more information.

libica examples
There is a list of sample programs in the libica source for each API, as well as
instructions about how to use the functions.

You can find the open source version of libica at:
http://sourceforge.net/projects/opencryptoki/files/libica

Sample programs are also in Chapter 7, “Examples,” on page 91.

z Systems cryptographic hardware support

The information in this topic presents the different types of cryptographic
hardware support that may be available on IBM z Systems, depending on the
machine model.

© Copyright IBM Corp. 2009, 2016 1

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

http://www.openssl.org/
http://sourceforge.net/projects/opencryptoki/files/libica

Supported IBM CP Assist for Cryptographic Functions (CPACF):

Ciphers:
DES, TDES, AES128, AES192, and AES256 with the following modes of
operation: ECB, CBC, OFB, CFB, CTR, CMAC, GCM, and XTS.

Hashes:
SHA-1, SHA224, SHA256, SHA384, SHA512, and GHASH.

Random:
PRNG

Cryptographic cards:

Accelerator: RSA (CRT, MOD-EXPO) with supported key sizes in the range 57 -
4096 bit.

CCA Co-processor: RSA (CRT, MOD-EXPO) with supported key sizes in the range
57 - 4096 bit, and RNG.

Check the prerequisites: cryptographic adapter and device driver
To exploit hardware support of asymmetric cryptographic operations, you need a
loaded device driver and an installed IBM cryptographic adapter.

Loading the Linux zcrypt device driver
You also need an installed Linux kernel that includes the zcrypt device driver.

To check, enter the command:

$ lszcrypt
card06: CEX5A

If the following error message is displayed, load the zcrypt device driver main
module:

error - cryptographic device driver zcrypt is not loaded!

The zcrypt device driver is no longer monolithic as in older distributions where
the module was called z90crypt. The device driver is now loaded as separate
modules, where the main module is called ap. There is, however, an alias name
z90crypt that links to the ap main module.

To load the device driver ap main module, use the following command:

modprobe ap

See your Linux distribution documentation for how to load the module
persistently.

Checking the cryptographic adapter availability
Check whether you have plugged in and enabled your IBM cryptographic adapter
and validate your model and type configuration (accelerator or coprocessor). Use
the lszcrypt command to retrieve basic status information.

To check, enter the command:

2 libica Programmer's Reference

|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

$ lszcrypt
card06: CEX5A

Use the chzcrypt command to enable (online state) or disable (offline state) the
IBM crypto adapter:

$ chzcrypt -e 0x06 // set card06 online
$ chzcrypt -d 0x06 // set card06 offline

For more information about the IBM crypto adapter with Linux on z Systems, see
Device Drivers, Features, and Commands, SC33-8411 available at
www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Chapter 1. General information 3

|
|

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

4 libica Programmer's Reference

Chapter 2. Installing and using libica version 2.6

View the contained subtopics for information about where to obtain the libica
version 2.6 library (any 2.6.x version), and how to install it.

Installing libica version 2.6 from the libica RPM
To make use of the libica hardware support of cryptographic functions, it is
necessary to install the libica version 2.6 package. Obtain the current libica version
2.6 as an RPM package from your distribution provider for automated installation.

Procedure

The libica library is available as an RPM named libica-<version> within your
distribution package. See your Linux distribution documentation for how to install
an RPM. To check whether the libica library is installed, issue, for example:

rpm -qa | grep -i libica

Installing libica version 2.6 from the source package
If you prefer, you can install libica from the source package manually.

Procedure
1. Download the latest libica version 2.6 sources from the SourceForge website:

http://sourceforge.net/projects/opencryptoki/files/libica

2. Extract the tar archive. There should be a new directory named libica-2.x.x.
3. Change to that directory and execute the following scripts and commands:

$./bootstrap
$./configure
$ make
$ make install

where:

bootstrap
Initial setup, basic configurations

configure
Check configurations and build the makefile.

You can use the option --enable-testcases when running the
configure command to enable the build environment to automatically
compile the test-suite:
configure --enable-testcases

make Compile and link

make install
Install the libraries

© Copyright IBM Corp. 2009, 2016 5

|
|

|
|

|

|
|
|

|

http://sourceforge.net/projects/opencryptoki/files/libica
http://sourceforge.net/projects/opencryptoki/files/libica

Using libica version 2.6
The function prototypes are provided in this header file: include/ica_api.h.

Applications using these functions must link libica and libcrypto. The libcrypto
library is available from the OpenSSL package. You must have OpenSSL in order to
run libica version 2.6 programs.

libica version 1, version 2, version 2.1.0, and up to version 2.6
coexistence

Some of the libica version 1 APIs are available in libica version 2, libica version
2.1.0, up to libica version 2.6.

Some of them, such as those APIs that work with an environment other than Linux
on z Systems, were removed and are not present in libica version 2 or later
versions. If your application program has calls to libica version 1 APIs, check to
see whether these APIs are available in libica version 2.6. If they are, these API
calls still work. However, we suggest that you convert your application to use the
equivalent libica version 2.6 functions. See Chapter 3, “libica version 2.6 application
programming interfaces,” on page 7.

libica key generation is restricted to the limits imposed by the OpenSSL
implementation. Thus, the value of a public exponent passed to libica cannot be
greater than the maximum value that would fit in an unsigned long integer.

6 libica Programmer's Reference

|

|

|

|

Chapter 3. libica version 2.6 application programming
interfaces

View a list of application programming interfaces (APIs) for the functions of libica
version 2.6. All functions are included in include/ica_api.h.

Table 1. libica version 2.6 APIs

Function libica version 2.6 API name
Key length

in bits Supported on
CPACF

function
SW

fallback

Open and close adapter functions

Open adapter handle “ica_open_adapter” on page 10 N/A z10™, z196, zEC12,
z13™, z13s

No N/A

Close adapter handle “ica_close_adapter” on page 11 N/A z10, z196, zEC12,
z13, z13s

No N/A

Secure hash operations

Secure hash using the
SHA-1 algorithm

“ica_sha1” on page 11 N/A z10, z196, zEC12,
z13, z13s

Yes Yes

Secure hash using the
SHA-224 algorithm

“ica_sha224” on page 12 N/A z196, zEC12, z13,
z13s

Yes Yes

Secure hash using the
SHA-256 algorithm

“ica_sha256” on page 14 N/A z196, zEC12, z13,
z13s

Yes Yes

Secure hash using the
SHA-384 algorithm

“ica_sha384” on page 15 N/A z196, zEC12, z13,
z13s

Yes Yes

Secure hash using the
SHA-512 algorithm

“ica_sha512” on page 16 N/A z196, zEC12, z13,
z13s

Yes Yes

Random number generation

Generate a pseudo
random number

“ica_random_number_generate” on
page 18

N/A z10, z196, zEC12,
z13, z13s

Yes Yes

Generate pseudo
random bits NIST
compliant - instantiate

“ica_drbg_instantiate” on page 19 N/A z13, z13s Yes Yes

Generate pseudo
random bits NIST
compliant - reseed

“ica_drbg_reseed” on page 20 N/A z13, z13s Yes Yes

Generate pseudo
random bits NIST
compliant - generate

“ica_drbg_generate” on page 20 N/A z13, z13s Yes Yes

Generate pseudo
random bits NIST
compliant -
uninstantiate

“ica_drbg_uninstantiate” on page
21

N/A z13, z13s Yes Yes

Generate pseudo
random bits NIST
compliant - health_test

“ica_drbg_health_test” on page 21 N/A z13, z13s Yes Yes

RSA key generation functions

Generate RSA keys in
modulus/exponent
format

“ica_rsa_key_generate_mod_expo”
on page 22

N/A z10, z196, zEC12,
z13, z13s

No SW only

© Copyright IBM Corp. 2009, 2016 7

|
|

||

||
|
||
|
|
|
|

|||||

||||
|
||

||||
|
||

|||||

|
|
|||
|
||

|
|
|||
|
||

|
|
|||
|
||

|
|
|||
|
||

|
|
|||
|
||

|||||

|
|
|
|
||
|
||

|
|
|

|||||

|
|
|

|||||

|
|
|

|||||

|
|
|
|

|
|
||||

|
|
|

|||||

|||||

|
|
|

|
|
||
|
||

Table 1. libica version 2.6 APIs (continued)

Function libica version 2.6 API name
Key length

in bits Supported on
CPACF

function
SW

fallback

Generate RSA keys in
CRT format

“ica_rsa_key_generate_crt” on page
23

N/A z10, z196, zEC12,
z13, z13s

No SW only

RSA encryption and decryption operations

RSA encryption and
decryption operation
using a key in
modulus/exponent
format

“ica_rsa_mod_expo” on page 25 Depends on
supp. key

size of
Crypto
Express
feature

z10, z196, zEC12,
z13, z13s

No Key
length

max. 4K
bits

RSA encryption and
decryption operation
using a key in
Chinese-Remainder
Theorem (CRT) format

“ica_rsa_crt” on page 25 Depends on
supp. key

size of
Crypto
Express
feature

z10, z196, zEC12,
z13, z13s

No Key
length

max. 4K
bits

DES functions

DES with Cipher Block
Chaining mode

“ica_des_cbc” on page 27 56 z10, z196, zEC12,
z13, z13s

Yes Yes

DES with CBC-Cipher
text stealing mode

“ica_des_cbc_cs” on page 27 56 z10, z196, zEC12,
z13, z13s

Yes Yes

DES with Cipher
Feedback mode

“ica_des_cfb” on page 29 56 zEC12, z13, z13s Yes No

DES with CMAC mode “ica_des_cmac” on page 30 56 zEC12, z13, z13s Yes No

DES with CMAC mode
process intermediate
chunks

“ica_des_cmac_intermediate” on
page 31

56 zEC12, z13, z13s Yes No

DES with CMAC mode
process last chunk

“ica_des_cmac_last” on page 32 56 zEC12, z13, z13s Yes No

DES with Counter
mode

“ica_des_ctr” on page 33 56 zEC12, z13, z13s Yes No

DES with Counter
mode, using a list of
counters

“ica_des_ctrlist” on page 34 56 zEC12, z13, z13s Yes No

DES with Electronic
Codebook mode

“ica_des_ecb” on page 35 56 z10, z196, zEC12,
z13, z13s

Yes Yes

DES with Output
Feedback mode

“ica_des_ofb” on page 36 56 zEC12, z13, z13s Yes No

TDES/3DES functions

TDES with Cipher
Block Chaining mode

“ica_3des_cbc” on page 38 168 z10, z196, zEC12,
z13, z13s

Yes Yes

TDES with CBC-Cipher
text Stealing mode

“ica_3des_cbc_cs” on page 39 168 z10, z196, zEC12,
z13, z13s

Yes Yes

TDES with Cipher
Feedback mode

“ica_3des_cfb” on page 40 168 zEC12, z13, z13s Yes No

TDES with CMAC
mode

“ica_3des_cmac” on page 41 168 zEC12, z13, z13s Yes No

8 libica Programmer's Reference

|

||
|
||
|
|
|
|

|
|
|
|
||
|
||

|||||

|
|
|
|
|

||
|
|
|
|
|

|
|
||
|
|
|

|
|
|
|
|

||
|
|
|
|
|

|
|
||
|
|
|

|||||

|
|
|||
|
||

|
|
|||
|
||

|
|
|||||

||||||

|
|
|

|
|
||||

|
|
|||||

|
|
|||||

|
|
|

|||||

|
|
|||
|
||

|
|
|||||

|||||

|
|
|||
|
||

|
|
|||
|
||

|
|
|||||

|
|
|||||

Table 1. libica version 2.6 APIs (continued)

Function libica version 2.6 API name
Key length

in bits Supported on
CPACF

function
SW

fallback

TDES with CMAC
mode process
intermediate chunks

“ica_3des_cmac_intermediate” on
page 42

168 zEC12, z13, z13s Yes No

TDES with CMAC
mode process last
chunk

“ica_3des_cmac_last” on page 43 168 zEC12, z13, z13s Yes No

TDES with Counter
mode

“ica_3des_ctr” on page 44 168 zEC12, z13, z13s Yes No

TDES with Counter
mode, using a list of
counters

“ica_3des_ctrlist” on page 45 168 zEC12, z13, z13s Yes No

TDES with Electronic
Codebook mode

“ica_3des_ecb” on page 46 168 z10, z196, zEC12,
z13, z13s

Yes Yes

TDES with Output
Feedback mode

“ica_3des_ofb” on page 47 168 zEC12, z13, z13s Yes No

AES functions

AES with Cipher Block
Chaining mode

“ica_aes_cbc” on page 49 128, 192,
256

z10, z196, zEC12,
z13, z13s

Yes Yes

AES with CBC-Cipher
text stealing mode

“ica_aes_cbc_cs” on page 50 128, 192,
256

z10, z196, zEC12,
z13, z13s

Yes Yes

AES with Counter with
Cipher Block Chaining
- Message
Authentication Code
mode

“ica_aes_ccm” on page 51 128, 192,
256

zEC12, z13, z13s Yes No

AES with Cipher
Feedback mode

“ica_aes_cfb” on page 53 128, 192,
256

zEC12, z13, z13s Yes No

AES with CMAC mode “ica_aes_cmac” on page 54 128, 192,
256

zEC12, z13, z13s Yes No

AES with CMAC mode
process intermediate
chunks

“ica_aes_cmac_intermediate” on
page 55

128, 192,
256

zEC12, z13, z13s Yes No

AES with CMAC mode
process last chunk

“ica_aes_cmac_last” on page 56 128, 192,
256

zEC12, z13, z13s Yes No

AES with Counter
mode

“ica_aes_ctr” on page 57 128, 192,
256

zEC12, z13, z13s Yes No

AES with Counter
mode, using a list of
counters

“ica_aes_ctrlist” on page 58 128, 192,
256

zEC12, z13, z13s Yes No

AES with Electronic
Codebook mode

“ica_aes_ecb” on page 59 128, 192,
256

z10, z196, zEC12,
z13, z13s

Yes Yes

AES with
Galois/Counter Mode
(GCM) for single
operations

“ica_aes_gcm” on page 60 128, 192,
256

zEC12, z13, z13s Yes No

Chapter 3. libica APIs 9

|

||
|
||
|
|
|
|

|
|
|

|
|
||||

|
|
|

|||||

|
|
|||||

|
|
|

|||||

|
|
|||
|
||

|
|
|||||

|||||

|
|
||
|
|
|
||

|
|
||
|
|
|
||

|
|
|
|
|

||
|
|||

|
|
||
|
|||

|||
|
|||

|
|
|

|
|
|
|
|||

|
|
||
|
|||

|
|
||
|
|||

|
|
|

||
|
|||

|
|
||
|
|
|
||

|
|
|
|

||
|
|||

Table 1. libica version 2.6 APIs (continued)

Function libica version 2.6 API name
Key length

in bits Supported on
CPACF

function
SW

fallback

AES with
Galois/Counter Mode
(GCM) for streaming
operations - initialize

“ica_aes_gcm_initialize” on page 62 128, 192,
256

zEC12, z13, z13s Yes No

AES with
Galois/Counter Mode
(GCM) for streaming
operations -
intermediate

“ica_aes_gcm_intermediate” on
page 63

128, 192,
256

zEC12, z13, z13s Yes No

AES with
Galois/Counter Mode
(GCM) for streaming
operations - last

“ica_aes_gcm_last” on page 65 128, 192,
256

zEC12, z13, z13s Yes No

AES with Output
Feedback mode

“ica_aes_ofb” on page 66 128, 192,
256

zEC12, z13, z13s Yes No

AES with XEX-based
Tweaked CodeBook
mode (TCB) with
CipherText Stealing
(CTS)

“ica_aes_xts” on page 67 128, 256 zEC12, z13, z13s Yes No

Information retrieval functions

Return version
information for libica

“ica_get_version” on page 69 N/A z10, z196, zEC12,
z13, z13s

No N/A

Return a list of crypto
mechanisms supported
by libica

“ica_get_functionlist” on page 69 N/A z10, z196, zEC12,
z13, z13s

No N/A

Open and close adapter functions
These functions open or close the crypto adapter. It is recommended to open the
crypto adapter before using any of the libica crypto functions, and to close it after
the last usage of the libica crypto functions. However, in this version of the libica
only the RSA-related functions ica_rsa_mod_expo and ica_rsa_crt require a valid
adapter handle as input. A pointer to the value DRIVER_NOT_LOADED indicates
an invalid adapter handle. The parameter ica_adapter_handle_t is a redefine of int.

These functions are included in: include/ica_api.h.

ica_open_adapter
Purpose

Opens an adapter.

Format
unsigned int ica_open_adapter(ica_adapter_handle_t *adapter_handle);

10 libica Programmer's Reference

|

||
|
||
|
|
|
|

|
|
|
|

||
|
|||

|
|
|
|
|

|
|
|
|
|||

|
|
|
|

||
|
|||

|
|
||
|
|||

|
|
|
|
|

|||||

|||||

|
|
|||
|
||

|
|
|

|||
|
||

|

Parameters

ica_adapter_handle_t *adapter_handle
Pointer to the file descriptor for the adapter or to DRIVER_NOT_LOADED if
opening the crypto adapter failed.

Opening an adapter succeeds if a cryptographic device is accessible for reading
and writing. By default, cryptographic access must be available with the
/dev/z90crypt path name for the adapter open request to succeed. If the
environment variable LIBICA_CRYPT_DEVICE is set to a valid path name of
an accessible cryptographic device, accessing the device with that path name
takes precedence over the default path names.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_close_adapter
Purpose

Closes an adapter.

Comments

This API closes a device handle.

Format
unsigned int ica_close_adapter(ica_adapter_handle_t adapter_handle);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

Secure hash operations
These functions are included in: include/ica_api.h.

These functions perform secure hash on input data using the chosen algorithm of
SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

SHA context structs contain information about how much of the actual work was
already performed. Also, it contains the part of the hash that is already produced.
For the user, it is only interesting in cases where the message is not hashed at
once, because the context is needed for further operations.

ica_sha1
Purpose

Performs a secure hash operation on the input data using the SHA-1 algorithm.

Chapter 3. libica APIs 11

Format
unsigned int ica_sha1(unsigned int message_part,

unsigned int input_length,
unsigned char *input_data,
sha_context_t *sha_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-1, or KLMD-SHA-1

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

unsigned int input_length
Length in bytes of the input data to be hashed using the SHA-1 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha_context_t *sha_context
Pointer to the SHA-1 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha1 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha1. Therefore, the application must not
modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_sha224
Purpose

Performs a secure hash operation on the input data using the SHA-224 algorithm.

12 libica Programmer's Reference

Format
unsigned int ica_sha224(unsigned int message_part,

unsigned int input_length,
unsigned char *input_data,
sha256_context_t *sha256_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-256, or KLMD-SHA-256

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

unsigned int input_length
Length in bytes of the input data to be hashed using the SHA-224 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha256_context_t *sha256_context
Pointer to the SHA-256 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha224 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha224. Therefore, the application must not
modify the contents of this structure in between chained calls.

Note: Due to the algorithm used by SHA-224, a SHA-256 context must be
used.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA224_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

Chapter 3. libica APIs 13

ica_sha256
Purpose

Performs a secure hash on the input data using the SHA-256 algorithm.

Format
unsigned int ica_sha256(unsigned int message_part,

unsigned int input_length,
unsigned char *input_data,
sha256_context_t *sha256_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-256, or KLMD-SHA-256

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

unsigned int input_length
Length in bytes of the input data to be hashed using the SHA-256 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha256_context_t *sha256_context
Pointer to the SHA-256 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha256 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha256. Therefore, the application must not
modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA256_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

14 libica Programmer's Reference

ica_sha384
Purpose

Performs a secure hash on the input data using the SHA-384 algorithm.

Format
unsigned int ica_sha384(unsigned int message_part,

uint64_t input_length,
unsigned char *input_data,
sha512_context_t *sha512_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-512, or KLMD-SHA-512

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

uint64_t input_length
Length in bytes of the input data to be hashed using the SHA-384 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha384 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha384. Therefore, the application must not
modify the contents of this structure in between chained calls.

Note: Due to the algorithm used by SHA-384, a SHA-512 context must be
used.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA384_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

Chapter 3. libica APIs 15

For return codes indicating exceptions, see “Return codes” on page 86.

ica_sha512
Purpose

Performs a secure hash operation on input data using the SHA-512 algorithm.

Format
unsigned int ica_sha512(unsigned int message_part,

uint64_t input_length,
unsigned char *input_data,
sha512_context_t *sha512_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-512, or KLMD-SHA-512

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

uint64_t input_length
Length in bytes of the input data to be hashed using the SHA-512 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha512 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha512. Therefore, the application must not
modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA512_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

16 libica Programmer's Reference

Pseudo random number generation functions
libica provides two methods of random number (random bit) generation:
v a conventional random number generator (“ica_random_number_generate” on

page 18).
v a NIST SP800-90A compliant deterministic random bit generator. This generator

is implemented by a combination of five separate functional APIs and is
hereafter referred to as ica_drbg to denote the complete generator as a whole.

Conventional ica_random_number_generate function

libica initialization tries to seed the CPACF random generator. To get the seed,
device /dev/hwrng is opened. Device /dev/hwrng provides true random data from
crypto adapters over the crypto device driver (main module name is ap, with an
alias name z90crypt, which is linking to ap). If that fails, the initialization
mechanism uses device /dev/urandom. Within the initialization, a byte counter
s390_byte_count is set to 0. If the CPACF pseudo random generator is available,
after 4096 bytes of the pseudo random number are generated, the random number
generator is seeded again. If the CPACF pseudo random generator is not available,
random numbers are read from /dev/urandom.

Since libica version 2.6, this API internally invokes the NIST compliant ica_drbg
functionality. The original code of this API is only processed if no MSA5, or at least
no MSA2 support is available, which is the prerequisite of the ica_drbg API (see
“NIST compliant ica_drbg functions”).

NIST compliant ica_drbg functions

The following APIs make up the complete ica_drbg functionality:
v “ica_drbg_instantiate” on page 19
v “ica_drbg_reseed” on page 20
v “ica_drbg_generate” on page 20
v “ica_drbg_uninstantiate” on page 21
v “ica_drbg_health_test” on page 21

The IBM zEnterprise® EC12 (zEC12) machines introduced an updated version 5 of
the message security assist (MSA5). If available, the ica_drbg function exploits this
updated MSA5 version that provides full hardware support for random number
generation based on SHA512 in accordance with NIST SP800-90A.

Note: If no MSA5 version is available, the ica_drbg software fallback exploits at
least MSA2 support, which includes SHA512. This fallback also produces NIST
SP800-90A compliant random numbers, however, without the mentioned high
performance MSA5 hardware support. If no MSA2 or higher support is available,
the ica_drbg mechanism cannot return any pseudorandom bytes to the requesting
application. In such cases, you must use the ica_random_number_generate function.

The implementation is designed to be thread-safe such that different threads can
share the same ica_drbg instantiation.

The ica_drbg functionality uses certain definitions and supports the following
DRBG mechanisms as shown in Table 2 on page 18.
typedef struct ica_drbg_mech ica_drbg_mech_t;
extern ica_drbg_mech_t *const ICA_DRBG_SHA512;

Chapter 3. libica APIs 17

|

|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

Table 2. Supported DRBG mechanisms

DRBG mechanism
supported security
strengths (in bits)

max. byte length of
pers/add parameters

DRBG_SHA512 112, 128, 196, 256 256 / 256

The following information list satisfies the NIST SP800-90A documentation
requirements:
v Entropy input is read from /dev/hwrng. If /dev/hwrng is not available, the

entropy input is read from /dev/prandom.
v ica_drbg provides the ica_drbg_health_test interface for validation and health

testing. This function together with test parameters can be found in
libica/src/include/s390_drbg.h. Nonce and entropy input can be injected via
these parameters for the purpose of known answer testing.

v No further support functions other than health testing are supported.
v The only DRBG mechanism currently implemented is Hash_DRBG using

SHA-512.
v ica_drbg supports 112, 128, 196, and 256 bits of security.
v ica_drbg supports prediction resistance.
v The generate function is tested every 264 - 1 calls. This interval size is chosen,

because CPACF hardware failures should not happen frequently.
v The integrety of the health test can be determined by inspecting the

checksum/hash of the package before install.

ica_random_number_generate
Purpose

This function generates a pseudo random number. Parameter *ouput_data is a
pointer to a buffer of byte length output_length. output_length number of bytes of
pseudo random data is placed in the buffer pointed to by output_data.

Format
unsigned int ica_random_number_generate(unsigned int output_length,

unsigned char *output_data);

Required hardware support

KMC-PRNG

Parameters

unsigned int output_length
Length in bytes of the output_data buffer, and the length of the generated
pseudo random number.

unsigned char *output_data
Pointer to the buffer to receive the generated pseudo random number.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

18 libica Programmer's Reference

||

|
|
|
|
|

|||
|

|
|

|
|

|
|
|
|

|

|
|

|

|

|
|

|
|

|

|

|
|
|

|

|
|

|

|

|

|
|
|

|
|

|
||

|

ica_drbg_instantiate
Purpose

This function instantiates a NIST SP800-90A compliant deterministic random bit
generator.

Format
int ica_drbg_instantiate(ica_drbg_t **sh,

int sec,
bool pr,
ica_drbg_mech_t *mech,
const unsigned char *pers,
size_t pers_len);

Parameters

ica_drbg_t **sh
State handle pointer. The (invalid) state handle is set to identify the new DRBG
instantiation and thus becomes valid.

int sec
Requested security strength in bits of the new DRBG instantiation. The security
strength is set to the lowest value supported by its DRBG mechanism that is
greater than or equal to your selected sec value (see Table 2 on page 18). For
example, if you request security strength 160 for your instance, it is actually set
to 196.

bool pr
Prediction resistance flag. Indicates whether or not prediction resistance may
be required by the consuming application during one or more requests for
pseudo random bytes.

ica_drbg_mech_t *mech
Pointer to the mechanism type selected for the new DRBG instantiation. The
new instantiation is then of this mechanism type. For available mechanisms,
see Table 2 on page 18.

const unsigned char *pers
Pointer to a personalization string. This is optional input that provides
personalization information. The personalization string should be unique for
all instantiations of the same mechanism type. NULL indicates that no
personalization string is used (not recommended).

size_t pers_len
Length in bytes of the string referenced by *pers.

Return codes
0 Success
ENOTSUP

Prediction resistance or the requested security strength is not supported.
EPERM

Failed to obtain a valid timestamp from clock.
ICA_DBRG_HEALTH_TEST_FAIL

Health test failed, see “ica_drbg_health_test” on page 21.
ICA_DBRG_ENTROPY_SOURCE_FAIL

Entropy source failed.

Chapter 3. libica APIs 19

|

|

|
|

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
||
|
|
|
|
|
|
|
|

ica_drbg_reseed
Purpose

This function reseeds a NIST SP800-90A compliant DRBG instantiation from
ica_drbg_instantiate.

Format
int ica_drbg_reseed(ica_drbg_t *sh,

bool pr,
const unsigned char *add,
size_t add_len);

Parameters

ica_drbg_t *sh
State handle pointer. Identifies the DRBG instantiation to be reseeded.

bool pr
Prediction resistance request. Indicates whether or not prediction resistance is
required.

const unsigned char *add
Pointer to additional optional input. NULL indicates that no additional input is
used.

size_t add_len
Length in bytes of parameter add.

Return codes
0 Success
ENOTSUP

Prediction resistance is not supported.
ICA_DBRG_HEALTH_TEST_FAIL

Health test failed, see “ica_drbg_health_test” on page 21.
ICA_DBRG_ENTROPY_SOURCE_FAIL

Entropy source failed.

ica_drbg_generate
Purpose

This function requests pseud random bytes from an ica_drbg instantiation created
by the ica_drbg_instantiate function.

Format
int ica_drbg_generate(ica_drbg_t *sh,

int sec,
bool pr,
const unsigned char *add,
size_t add_len,
unsigned char *prnd,
size_t prnd_len);

Parameters

ica_drbg_t *sh
State handle pointer. Identifies the DRBG instantiation from which
pseudorandom bytes are requested.

20 libica Programmer's Reference

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|

|
||
|
|
|
|
|
|

|

|

|
|

|

|
|
|
|
|
|
|

|

|
|
|

int sec
Requested security strength: Minimum bits of security that the generated
pseudo random bytes shall offer.

bool pr
Prediction resistance request. Indicates whether or not prediction resistance is
required.

const unsigned char *add
Pointer to additional optional input. NULL indicates that no additional input is
used.

size_t add_len
Length in bytes of parameter add.

unsigned char *prnd
Pointer to the generated pseudo random bytes.

size_t prnd_len
Length in bytes of parameter prnd, which corresponds to the number of
generated pseudo random bytes.

Return codes
0 Success
ENOTSUP

Prediction resistance or the requested security strength is not supported.
EPERM

Reseed required.
ICA_DBRG_HEALTH_TEST_FAIL

Health test failed, see “ica_drbg_health_test.”
ICA_DBRG_ENTROPY_SOURCE_FAIL

Entropy source failed.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_drbg_uninstantiate
Purpose

This function destroys an existing ica_drbg instance.

Format
int ica_drbg_uninstantiate(ica_drbg_t **sh);

Parameters

ica_drbg_t **sh
State handle pointer. The corresponding DRBG instantiation is destroyed and
the state handle is set to NULL (invalid).

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_drbg_health_test
Purpose

This function runs a health test for the complete ica_drbg function mechanism.

Chapter 3. libica APIs 21

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
||
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|
||

|

|

|

|

Format
int ica_drbg_health_test(void *func,

int sec,
bool pr,
ica_drbg_mech_t *mech);

Parameters

void *func
Pointer indicating which function should be tested. Options are:

ica_drbg_instantiate
ica_drbg_reseed
ica_drbg_generate

The ica_drbg_instantiate function is tested whenever other functions are tested.

int sec
Security strength. Argument for the call to the function denoted by parameter
func.

bool pr
Prediction resistance. Argument for the call to the function denoted by
parameter func.

ica_drbg_mech_t *mech
Pointer to the mechanism to be tested.

Return codes
0 Success
ICA_DBRG_HEALTH_TEST_FAIL

Health test failed.
ENOTSUP

Prediction resistance or the requested security strength is not supported.
ICA_DBRG_ENTROPY_SOURCE_FAIL

Entropy source failed.

For return codes indicating exceptions, see “Return codes” on page 86.

RSA key generation functions
These functions are included in: include/ica_api.h.

These functions generate an RSA public/private key pair. These functions are
performed using software through OpenSSL. Hardware is not used.

ica_rsa_key_generate_mod_expo
Purpose

Generates RSA keys in modulus/exponent format.

Comments

For specific information about some of these parameters, see the considerations in
“Data structures” on page 84.

22 libica Programmer's Reference

|

|
|
|
|

|

|
|

|

|

|

|

|
|
|

|
|
|

|
|

|
||
|
|
|
|
|
|

|

Format
unsigned int ica_rsa_key_generate_mod_expo(ica_adapter_handle_t adapter_handle,

unsigned int modulus_bit_length,
ica_rsa_key_mod_expo_t *public_key,
ica_rsa_key_mod_expo_t *private_key);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned int modulus_bit_length
Length in bits of the modulus. This value should comply with the length of the
keys (in bytes), according to this calculation:
key_length = (modulus_bits + 7) / 8

ica_rsa_key_mod_expo_t *public_key
Pointer to where the generated public key is to be placed. If the exponent
element in the public key is not set, it is randomly generated. A poorly chosen
exponent could result in the program looping endlessly. Common public
exponents are 3 and 65537.

ica_rsa_key_mod_expo_t *private_key
Pointer to where the generated private key in modulus/exponent format is to
be placed. The length of both the private and public keys should be set in
bytes. This value should comply with the length of the keys (in bytes),
according to this calculation:
key_length = (modulus_bits + 7) / 8

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_rsa_key_generate_crt
Purpose

Generates RSA keys in Chinese-Remainder Theorem (CRT) format.

Comments

For specific information about some of these parameters, see the considerations in
“Data structures” on page 84.

With libica version 2.5, this function has been extended to allow RSA key
generation for any granularity in the range 57 - 4096 bits.

Format
unsigned int ica_rsa_key_generate_crt(ica_adapter_handle_t adapter_handle,

unsigned int modulus_bit_length,
ica_rsa_key_mod_expo_t *public_key,
ica_rsa_key_crt_t *private_key);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

Chapter 3. libica APIs 23

|
|

unsigned int modulus_bit_length
Length in bits of the modulus part of the key. This value should comply with
the length of the keys (in bytes), according to this calculation:
key_length = (modulus_bits + 7) / 8

ica_rsa_key_mod_expo_t *public_key
Pointer to where the generated public key is to be placed. If the exponent
element in the public key is not set, it is randomly generated. A poorly chosen
exponent can result in the program looping endlessly. Common public
exponents are 3 and 65537.

ica_rsa_key_crt_t *private_key
Pointer to where the generated private key in CRT format is to be placed.
Length of both private and public keys should be set in bytes. This value
should comply with the length of the keys (in bytes), according to this
calculation
key_length = (modulus_bits + 7) / 8

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_rsa_crt_key_check
Purpose

Analyzes an RSA CRT key and check if the components are conform with the IBM
cryptographic architecture. If necessary the key is converted to a conform format
that can be used for IBM cryptographic hardware acceleration.

Checks if the RSA key credentials in CRT format are presented in privileged form,
respectively whether prime p is greater than prime q (p > q) In case of p < q, key
credentials p and q as well as dp and dq are swapped and qInverse is recalculated.

Format
unsigned int ica_rsa_crt_key_check(ica_rsa_key_crt_t *rsa_key);

Parameters

ica_rsa_key_crt_t *rsa_key
Pointer to the key to be used in CRT format.

Return codes
0 All key credentials are in the correct format.
1 Key credentials were recalculated.
ENOMEM

Memory allocation fails.

For return codes indicating exceptions, see “Return codes” on page 86.

RSA encrypt and decrypt operations
These functions are included in: include/ica_api.h.

These functions perform a modulus/exponent operation using an RSA key whose
type is either ica_rsa_key_mod_expo_t or ica_rsa_key_crt_t.

24 libica Programmer's Reference

|

|

|
|
|

|
|
|

|

|

|

|
|

|
||
||
|
|

|

ica_rsa_mod_expo
Purpose

Performs an RSA encryption or decryption operation using a key in
modulus/exponent format.

Comments

Make sure that your message is padded before using this function.

Format
unsigned int ica_rsa_mod_expo(ica_adapter_handle_t adapter_handle,

unsigned char *input_data,
ica_rsa_key_mod_expo_t *rsa_key,
unsigned char *output_data);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned char *input_data
Pointer to the input data to be encrypted or decrypted. This data must be in
big endian format. Make sure that the input data is not longer than the bit
length of the key. The byte length for the input data and the key must be the
same. Right align the input data inside the data block.

ica_rsa_key_mod_expo_t *rsa_key
Pointer to the key to be used, in modulus/exponent format.

unsigned char *output_data
Pointer to the location where the output results are to be placed. This buffer
has to be at least the same size as input_data and therefore at least the same
size as the size of the modulus.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_rsa_crt
Purpose

Performs an RSA encryption or decryption operation using a key in CRT format.

Comments

Make sure that your message is padded before using this function.

Format
unsigned int ica_rsa_crt(ica_adapter_handle_t adapter_handle,

unsigned char *input_data,
ica_rsa_key_crt_t *rsa_key,
unsigned char *output_data);

Chapter 3. libica APIs 25

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned char *input_data
Pointer to the input data to be encrypted or decrypted. This data must be in
big endian format. Make sure that the input data is not longer than the bit
length of the key. The byte length for the input data and the key must be the
same. Right align the input data inside the data block.

ica_rsa_key_crt_t *rsa_key
Pointer to the key to be used, in CRT format.

unsigned char *output_data
Pointer to the location where the output results are to be placed. This buffer
must be as large as the input_data, and as large as the length of the modulus
specified in rsa_key.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

DES functions
These functions are included in: include/ica_api.h.

These functions perform encryption and decryption and computation or
verification of message authentication codes using a DES (DEA) key. A DES key
has a size of 8 bytes. Each byte of a DES key contains one parity bit, such that each
64-bit DES key contains only 56 security-relevant bits. The cipher block size for
DES is 8 bytes.

To securely apply DES encryption to messages that are longer than the cipher
block size, modes of operation can be used to chain multiple encryption,
decryption, or authentication operations. Most modes of operation require an
initialization vector as additional input. As long as the messages are encrypted or
decrypted using such a mode of operation, and have a size that is a multiple of a
particular block size (mostly the cipher block size), the functions encrypting or
decrypting according to a mode of operation also compute an output vector. This
output vector can be used as the initialization vector of a chained encryption or
decryption operation in the same mode with the same block size and the same key.

When decrypting a cipher text, these values used for the decryption function must
match the corresponding settings of the encryption function that transformed the
plain text into the cipher text:
v The mode of operation
v The key
v The initialization vector (if applicable)
v For the ica_des_cfb function, the lcfb parameter

26 libica Programmer's Reference

ica_des_cbc
Purpose

Encrypt or decrypt data with a DES key using Cipher Block Chaining (CBC) mode,
as described in NIST Special Publication 800-38A Chapter 6.2.

Format
unsigned int ica_des_cbc(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMC-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. This buffer must be
at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(a multiple of 8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (8
bytes for DES). This vector is overwritten by this function. The result value in
iv can be used as the initialization vector for a chained ica_des_cbc or
ica_des_cbc_cs call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_des_cbc_cs
Purpose

Encrypt or decrypt data with a DES key using Cipher Block Chaining with
Ciphertext Stealing (CBC-CS) mode, as described in NIST Special Publication

Chapter 3. libica APIs 27

800-38A, Chapter 6.2 and the Addendum to NIST Special Publication 800-38A on
Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext
Stealing for CBC Mode.

ica_des_cbc_cs can be used to encrypt or decrypt the last chunk of a message
consisting of multiple chunks, where all chunks except the last one are encrypted
or decrypted by chained calls to ica_des_cbc. To do this, the resulting iv of the last
call to ica_des_cbc is fed into the iv of the ica_des_cbc_cs call, provided that the
chunk is greater than the cipher block size (8 bytes for DES).

Format
unsigned int ica_des_cbc_cs(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction,
unsigned int variant);

Required hardware support

KMC-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as the data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. This buffer must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be greater than or equal to the cipher
block size (8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes.
This vector is overwritten during the function. For variant equal to 1 or variant
equal to 2, the result value in iv can be used as the initialization vector for a
chained ica_des_cbc or ica_des_cbc_cs call with the same key, if data_length is
a multiple of the cipher block size.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

unsigned int variant
1 Use variant CBC-CS1 of the Addendum to NIST Special Publication

800-38A to encrypt or decrypt the message: always keep last two
blocks in order.

2 Use variant CBC-CS2 of the Addendum to NIST Special Publication

28 libica Programmer's Reference

800-38A to encrypt or decrypt the message: switch order of the last two
blocks if data_length is not a multiple of the cipher block size (a
multiple of 8 bytes for DES).

3 Use variant CBC-CS3 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always switch order of the
last two blocks.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_des_cfb
Purpose

Encrypt or decrypt data with a DES key using Cipher Feedback (CFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.3.

Format
unsigned int ica_des_cfb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int lcfb,
unsigned int direction);

Required hardware support

KMF-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as the data_length parameter.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as the
data_length parameter.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size bytes (8 bytes for
DES). This vector is overwritten during the function. The result value in iv can
be used as the initialization vector for a chained ica_des_cfb call with the same
key, if data_length in the preceding call is a multiple of the lcfb parameter.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal
to 1 and less than or equal to the cipher block size (8 bytes for DES).

Chapter 3. libica APIs 29

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_des_cmac
Purpose

Authenticate data or verify the authenticity of data with a DES key using the Block
Cipher Based Message Authentication Code (CMAC) mode, as described in NIST
Special Publication 800-38B. ica_des_cmac can be used to authenticate or verify the
authenticity of a complete message.

Format
unsigned int ica_des_cmac(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int direction);

Required hardware support
KMAC-DEA
PCC-Compute-Last_block-CMAC-Using-DEA

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message to be authenticated or of which the
authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac, which is less than or
equal to the cipher block size (8 bytes for DES). It is recommended to use a
mac_length of 8.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

30 libica Programmer's Reference

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_des_cmac_intermediate
Purpose

Authenticate data or verify the authenticity of data with a DES key using the Block
Cipher Based Message Authentication Code (CMAC) mode, as described in NIST
Special Publication 800-38B. ica_des_cmac_intermediate and ica_des_cmac_last can
be used when the message to be authenticated or to be verified using CMAC is
supplied in multiple chunks. ica_des_cmac_intermediate is used to process all but
the last chunk. All message chunks to be processed by ica_des_cmac_intermediate
must have a size that is a multiple of the cipher block size (8 bytes for DES).

Note that ica_des_cmac_intermediate has no direction argument. This function can
be used during authentication and during authenticity verification.

Format
unsigned int ica_des_cmac_intermediate(const unsigned char *message,

unsigned long message_length,
const unsigned char *key,
unsigned char *iv);

Required hardware support

KMAC-DEA

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a non-final part of a message to be authenticated, or
of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple
of the cipher block size.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size bytes (8 bytes for
DES). For the first message part, this parameter must be set to a string of
zeros. For processing the n-th message part, this parameter must be the
resulting iv value of the ica_des_cmac_intermediate function applied to the
(n-1)-th message part. This vector is overwritten during the function. The result
value in iv can be used as the initialization vector for a chained call to
ica_des_cmac_initermediate, or to ica_des_cmac_last with the same key.

Return codes
0 Success

Chapter 3. libica APIs 31

For return codes indicating exceptions, see “Return codes” on page 86.

ica_des_cmac_last
Purpose

Authenticate data or verify the authenticity of data with a DES key using the Block
Cipher Based Message Authentication Code (CMAC) mode, as described in NIST
Special Publication 800-38B. ica_des_cmac_last can be used to authenticate or
verify the authenticity of a complete message or of the final part of a message for
which all preceding parts were processed with ica_des_cmac_intermediate.

Format
unsigned int ica_des_cmac_last(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support
KMAC-DEA
PCC-Compute-Last_block-CMAC-Using-DEA

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message or the final part of a message, to be
either authenticated or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code that is verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac that is less than or
equal to the cipher block size (8 bytes for DES). It is recommended to use a
mac_length of 8.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If
iv is NULL, message is assumed to be the complete message to be processed.
Otherwise, message is the final part of a composite message to be processed
and iv contains the output vector resulting from processing all previous parts
with chained calls to ica_des_cmac_intermediate (the value returned in iv of
the ica_des_cmac_intermediate call applied to the penultimate message part).

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

32 libica Programmer's Reference

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_des_ctr
Purpose

Encrypt or decrypt data with a DES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A Chapter 6.5. With the counter mode, each
message block of the same size as the cipher block (8 bytes for DES) is combined
with a counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block,
subsequent counter values to be combined with subsequent message blocks are
derived from preceding counter values by an increment function. The increment
function used in ica_des_ctr is an arithmetic increment without carry on the M
least significant bytes in the counter, where M is a parameter to ica_des_ctr.

Format
unsigned int ica_des_ctr(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *ctr,
unsigned int ctr_width,
unsigned int direction);

Required hardware support

KMCTR-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block
in bytes. ctr contains an initialization value for a counter function, and it is
replaced by a new value. That new value can be used as the initialization
value for a counter function in a chained ica_des_ctr call with the same key, if
the data_length used in the preceding call is a multiple of the cipher block size.

Chapter 3. libica APIs 33

unsigned int ctr_width
A number M between 1 and the cipher block size. This value is used by the
counter increment function, which increments a counter value by incrementing
without carry the least significant M bytes of the counter value.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_des_ctrlist
Purpose

Encrypt or decrypt data with a DES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A ,Chapter 6.5. With the counter mode, each
message block of the same size as the cipher block is combined with a counter
value of the same size during encryption and decryption.

The ica_des_ctrlist function assumes that a list n of precomputed counter values is
provided, where n is the smallest integer that is less than or equal to the message
size divided by the cipher block size. This function is used to optimally utilize IBM
z Systems hardware support for non-standard counter functions.

Format
unsigned int ica_des_ctrlist(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
const unsigned char *ctrlist,
unsigned int direction);

Required hardware support

KMCTR-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

Calls to ica_des_ctrlist with the same key can be chained if:
v With the possible exception of the last call in the chain the data_length used

is a multiple of the cipher block size.
v The ctrlist argument of each chained call contains a list of counters that

follows the counters used in the preceding call.

34 libica Programmer's Reference

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

const unsigned char *ctrlist
Pointer to a readable buffer of a size greater than or equal to data_length, and a
multiple of the cipher block size (8 bytes for DES). ctrlist should contain a list
of precomputed counter values, each of the same size as the cipher block.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_des_ecb
Purpose

Encrypt or decrypt data with a DES key using Electronic Code Book (ECB) mode,
as described in NIST Special Publication 800-38A Chapter 6.1.

Format
unsigned int ica_des_ecb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int direction);

Required hardware support

KM-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writeable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

Chapter 3. libica APIs 35

For return codes indicating exceptions, see “Return codes” on page 86.

ica_des_ofb
Purpose

Encrypt or decrypt data with a DES key using Output Feedback (OFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.4.

Format
unsigned int ica_des_ofb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMO-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that contains the resulting encrypted or decrypted
message. The size of this buffer must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes (8 bytes for DES). This vector is overwritten during the function. If
data_length is a multiple of the cipher block size (8 bytes for DES), the result
value in iv can be used as the initialization vector for a chained ica_des_ofb
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following DES
interfaces remain supported:

36 libica Programmer's Reference

unsigned int ica_des_encrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_single_t *des_key,
unsigned char *output_data);

unsigned int ica_des_decrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_single_t *des_key,
unsigned char *output_data);

Table 3 shows libica version 2.0 DES functions calls, and their corresponding libica
version 2.4 DES function calls.

Table 3. Compatibility of libica version 2.0 DES functions calls to libica version 2.4 DES function calls

Calling this libica version 2.0 DES function Corresponds to calling this libica version 2.4 DES
function

ica_des_encrypt(MODE_ECB, data_length,in_data,NULL,
key, out_data);

ica_des_ecb(in_data,out_data,(long)data_length,
key,1);

ica_des_encrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,iv,1);

ica_des_decrypt(MODE_ECB,data_length,in_data,NULL,
key,out_data);

ica_des_ecb(in_data,out_data,(long)data_length,
key,0);

ica_des_decrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,iv,0);

The functions ica_des_encrypt and ica_des_decrypt remain supported, but their
use is discouraged in favor of ica_des_ecb and ica_des_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference
version 2.0.

TDES/3DES functions
These functions are included in: include/ica_api.h.

These functions perform encryption and decryption or computation and
verification of message authentication codes using a triple-DES (3DES, TDES or
TDEA) key. A 3DES key consists of a concatenation of three DES keys, each of
which has a size of 8 bytes. Note that each byte of a DES key contains one parity
bit, such that each 64-bit DES key contains only 56 security-relevant bits. The
cipher block size for 3DES is 8 bytes.

3DES is known in two variants: a two key variant and a three key variant. This
library implements only the three key variant. The two key variant can be derived
from functions for the three key variant by using the same key as the first and
third key.

To securely apply 3DES encryption to messages that are longer than the cipher
block size, modes of operation can be used to chain multiple encryption,
decryption, or authentication operations. Most modes of operation require an
initialization vector as additional input. As long as the messages are encrypted or
decrypted using such a mode of operation and have a size that is a multiple of a
particular block size (mostly the cipher block size), the functions encrypting or
decryption according to that mode of operation also compute an output vector that

Chapter 3. libica APIs 37

can be used as the initialization vector of a chained encryption or decryption
operation in the same mode with the same block size and the same key.

Note that when decrypting a cipher text, the mode of operation, the key, the
initialization vector (if applicable), and for ica_3des_cfb the lcfb value used for the
decryption function must match the corresponding settings of the encryption
function that was used to transform the plain text into the cipher text.

ica_3des_cbc
Purpose

Encrypt or decrypt data with an 3DES key using Cipher Block Chaining (CBC)
mode, as described in NIST Special Publication 800-38A Chapter 6.2.

Format
unsigned int ica_3des_cbc(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMC-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes.
This vector is overwritten during the function. The result value in iv can be
used as the initialization vector for a chained ica_3des_cbc or ica_3des_cbc_cs
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

38 libica Programmer's Reference

ica_3des_cbc_cs
Purpose

Encrypt or decrypt data with a 3DES key using Cipher Block Chaining with
Ciphertext Stealing (CBC-CS) mode, as described in NIST Special Publication
800-38A Chapter 6.2 and the Addendum to NIST Special Publication 800-38A on
Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext
Stealing for CBC Mode.

ica_3des_cbc_cs can be used to encrypt or decrypt the last chunk of a message
consisting of multiple chunks, where all chinks except the last one are encrypted or
decrypted by chained calls to ica_3des_cbc. To do this, the resulting iv of the last
call to ica_3des_cbc is fed into the iv of the ica_3des_cbc_cs call, provided that the
chunk is greater than the cipher block size (8 bytes for 3DES).

Format
unsigned int ica_3des_cbc_cs(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction,
unsigned int variant);

Required hardware support

KMC-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be greater than or equal to the cipher
block size (8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes. This vector is overwritten during the function. For variant equal to 1 or
variant equal to 2, the result value in iv can be used as the initialization vector
for a chained ica_3des_cbc or ica_3des_cbc_cs call with the same key, if
data_length is a multiple of the cipher block size.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

unsigned int variant

Chapter 3. libica APIs 39

1 Use variant CBC-CS1 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always keep last two
blocks in order.

2 Use variant CBC-CS2 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: switch order of the last two
blocks if data_length is not a multiple of the cipher block size (a
multiple of 8 bytes for 3DES).

3 Use variant CBC-CS3 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always switch order of the
last two blocks.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_3des_cfb
Purpose

Encrypt or decrypt data with a 3DES key using Cipher Feedback (CFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.3.

Format
unsigned int ica_3des_cfb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int lcfb,
unsigned int direction);

Required hardware support

KMF-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (8
bytes for 3DES). This vector is overwritten during the function. The result
value in iv can be used as the initialization vector for a chained ica_3des_cfb
call with the same key, if the data_length in the preceding call is a multiple of
lcfb.

40 libica Programmer's Reference

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal
to 1 and less than or equal to the cipher block size (8 bytes for 3DES).

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_3des_cmac
Purpose

Authenticate data or verify the authenticity of data with an 3DES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_3des_cmac can be used to authenticate or
verify the authenticity of a complete message.

Format
unsigned int ica_3des_cmac(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int direction);

Required hardware support
KMAC-TDEA-192
PCC-Compute-Last_block-CMAC-Using-TDEA-192

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message to be authenticated, or of which the
authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac, which is less than or
equal to the cipher block size (8 bytes for 3DES). It is recommended to use a
mac_length of 8.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned int direction
0 Verify message authentication code.

Chapter 3. libica APIs 41

1 Compute message authentication code for the message.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_3des_cmac_intermediate
Purpose

Authenticate data or verify the authenticity of data with an 3DES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_3des_cmac_intermediate and
ica_3des_cmac_last can be used when the message to be authenticated or to be
verified using CMAC is supplied in multiple chunks. ica_3des_cmac_intermediate
is used to process all but the last chunk. All message chunks to be processed by
ica_3des_cmac_intermediate must have a size that is a multiple of the cipher block
size (a multiple of 8 bytes for 3DES).

Note that ica_3des_cmac_intermediate has no direction argument. This function
can be used during authentication and during authenticity verification.

Format
unsigned int ica_3des_cmac_intermediate(const unsigned char *message,

unsigned long message_length,
const unsigned char *key,
unsigned char *iv);

Required hardware support

KMAC-TDEA-192

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a non-final part of a message to be authenticated, or
of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple
of the cipher block size.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of size cipher block size (8 bytes for
3DES). For the first message part, this parameter must be set to a string of
zeros. For processing the n-th message part, this parameter must be the
resulting iv value of the ica_3des_cmac_intermediate applied to the (n-1)-th
message part. This vector is overwritten during the function. The result value
in iv can be used as the initialization vector for a chained call to
ica_3des_cmac_initermediate or to ica_3des_cmac_last with the same key.

42 libica Programmer's Reference

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_3des_cmac_last
Purpose

Authenticate data or verify the authenticity of data with an 3DES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_3des_cmac_last can be used to authenticate
or verify the authenticity of a complete message or of the final part of a message,
for which all preceding parts were processed with ica_3des_cmac_intermediate.

Format
unsigned int ica_3des_cmac_last(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support
KMAC-TDEA,-192
PCC-Compute-Last_block-CMAC-Using-TDEA-192

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. It contains a message or the final part of a message to be authenticated,
or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code that is to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes that is less
than or equal to the cipher block size (8 bytes for 3DES). It is recommended to
use a mac_length of 8.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If
iv is NULL, message is assumed to be the complete message to be processed.
Otherwise, message is the final part of a composite message to be processed
and iv contains the output vector resulting from processing all previous parts
with chained calls to ica_des_cmac_intermediate (the value returned in iv of
the ica_des_cmac_intermediate call applied to the penultimate message part.

Chapter 3. libica APIs 43

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_3des_ctr
Purpose

Encrypt or decrypt data with a triple-length DES key using Counter (CTR) mode,
as described in NIST Special Publication 800-38A Chapter 6.5. With the counter
mode, each message block of size cipher block size (8 bytes for 3DES) is combined
with a counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block,
subsequent counter values to be combined with subsequent message blocks are
derived from preceding counter values by an increment function. The increment
function used in ica_3des_ctr is an arithmetic increment without carry on the M
least significant bytes in the counter, where M is a parameter to ica_3des_ctr.

Format
unsigned int ica_3des_ctr(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *ctr,
unsigned int ctr_width,
unsigned int direction);

Required hardware support

KMCTR-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block

44 libica Programmer's Reference

in bytes. ctr contains an initialization value for a counter function that is
replaced by a new value. The new value can be used as an initialization value
for a counter function in a chained ica_3des_ctr call with the same key, if the
data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 1 and the cipher block size. The value is used by the
counter increment function, which increments a counter value by incrementing
without carry the least significant M bytes of the counter value.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_3des_ctrlist
Purpose

Encrypt or decrypt data with an 3DES key using Counter (CTR) mode, as
described in NIST Special Publication 800-38A ,Chapter 6.5. With the counter
mode, each message block of the same size as the cipher block is combined with a
counter value of the same size during encryption and decryption.

The ica_3des_ctrlist function assumes that a list n of precomputed counter values
is provided where n is the smallest integer that is less than or equal to the message
size divided by the cipher block size. This function is used to optimally utilize IBM
z Systems hardware support for non-standard counter functions.

Format
unsigned int ica_3des_ctrlist(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
const unsigned char *ctrlist,
unsigned int direction);

Required hardware support

KMCTR-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

Chapter 3. libica APIs 45

Calls to ica_3des_ctrlist with the same key can be chained if:
v With the possible exception of the last call in the chain the data_length used

is a multiple of the cipher block size.
v The ctrlist argument of each chained call contains a list of counters that

follows the counters used in the preceding call.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

const unsigned char *ctrlist
Pointer to a readable buffer that is both of size greater than or equal to
data_length, and a multiple of the cipher block size (8 bytes for 3DES). ctrlist
should contain a list of precomputed counter values, each of the same size as
the cipher block.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_3des_ecb
Purpose

Encrypt or decrypt data with an 3DES key using Electronic Code Book (ECB)
mode, as described in NIST Special Publication 800-38A Chapter 6.1.

Format
unsigned int ica_3des_ecb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int direction);

Required hardware support

KM-DEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writeable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

46 libica Programmer's Reference

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_3des_ofb
Purpose

Encrypt or decrypt data with an 3DES key using Output Feedback (OFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.4.

Format
unsigned int ica_3des_ofb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMO-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that contains the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes (8 bytes for 3DES). This vector is overwritten during the function. If
data_length is a multiple of the cipher block size (a multiple of 8 for 3DES), the
result value in iv can be used as the initialization vector for a chained
ica_3des_ofb call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

Chapter 3. libica APIs 47

For return codes indicating exceptions, see “Return codes” on page 86.

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following 3DES
interfaces remain supported:
unsigned int ica_3des_encrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_triple_t *des_key,
unsigned char *output_data);

unsigned int ica_3des_decrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_triple_t *des_key,
unsigned char *output_data);

Table 4 shows libica version 2.0 TDES functions calls, and their corresponding
libica version 2.4 TDES function calls.

Table 4. Compatibility of libica version 2.0 TDES functions calls to libica version 2.4 TDES function calls

Calling this libica version 2.0 TDES function Corresponds to calling this libica version 2.4 TDES
function

ica_3des_encrypt(MODE_ECB, data_length,in_data,NULL,
key, out_data);

ica_3des_ecb(in_data,out_data,(long)data_length,
key,1);

ica_3des_encrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_3des_cbc(in_data,out_data,(long)data_length,
key,iv,1);

ica_3des_decrypt(MODE_ECB,data_length,in_data,NULL,
key,out_data);

ica_3des_ecb(in_data,out_data,(long)data_length,
key,0);

ica_3des_decrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_3des_cbc(in_data,out_data,(long)data_length,,
key,iv,0);

The functions ica_3des_encrypt and ica_3des_decrypt remain supported, but their
use is discouraged in favor of ica_3des_ecb and ica_3des_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference
version 2.0.

AES functions
These functions are included in: include/ica_api.h.

These functions perform encryption and decryption or computation or verification
of message authentication codes using an AES key. Supported key lengths are 16,
24 or 32 bytes for AES-128, AES-192 and AES-256 respectively. The cipher block
size for AES is 16 bytes.

To securely apply AES encryption to messages that are longer than the cipher
block size, modes of operation can be used to chain multiple encryption,
decryption, or authentication operations. Most modes of operation require an
initialization vector as additional input.

As long as the messages are encrypted or decrypted using such a mode of
operation, have a size that is a multiple of a particular block size (mostly the
cipher block size), the functions encrypting or decryption according to a mode of
operation also compute an output vector. The output vector can be used as the

48 libica Programmer's Reference

initialization vector of a chained encryption or decryption operation in the same
mode with the same block size and the same key.

Note that when decrypting a cipher text the mode of operation, the key, the
initialization vector (if applicable), and for ica_aes_cfb the lcfb value used for the
decryption function must match the corresponding settings of the encryption
function that transformed the plain text into the cipher text.

ica_aes_cbc
Purpose

Encrypt or decrypt data with an AES key using Cipher Block Chaining (CBC)
mode, as described in NIST Special Publication 800-38A Chapter 6.2.

Format
unsigned int ica_aes_cbc(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMC-AES-128, KMC-AES-192, or KMC-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(a multiple of 16 for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for
AES-128, AES-192, and AES-256 respectively. Therefore, you can use the
definitions: AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes. This vector is overwritten during the function. The result value in iv can
be used as the initialization vector for a chained ica_aes_cbc or ica_aes_cbc_cs
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Chapter 3. libica APIs 49

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_cbc_cs
Purpose

Encrypt or decrypt data with an AES key using Cipher Block Chaining with
Ciphertext Stealing (CBC-CS) mode, as described in NIST Special Publication
800-38A Chapter 6.2, and the Addendum to NIST Special Publication 800-38A on
Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext
Stealing for CBC Mode.

ica_aes_cbc_cs can be used to encrypt or decrypt the last chunk of a message
consisting of multiple chunks, where all chunks except the last one are encrypted
or decrypted by chained calls to ica_aes_cbc. To do this, the resulting iv of the last
call to ica_aes_cbc is fed into the iv of the ica_aes_cbc_cs call, provided that the
chunk is greater than the cipher block size (greater than 16 bytes for AES).

Format
unsigned int ica_aes_cbc_cs(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction,
unsigned int variant);

Required hardware support

KMC-AES-128, KMC-AES-192 or KMC-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be greater than or equal to the cipher
block size (16 bytes for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for
AES-128, AES-192, and AES-256 respectively. . Therefore, you can use the
definitions: AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

50 libica Programmer's Reference

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes.
This vector is overwritten during the function. For variant equal to 1 or variant
equal to 2, the result value in iv can be used as the initialization vector for a
chained ica_aes_cbc or ica_aes_cbc_cs call with the same key, if data_length is a
multiple of the cipher block size.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

unsigned int variant
1 Use variant CBC-CS1 of the Addendum to NIST Special Publication

800-38A to encrypt or decrypt the message: always keep last two
blocks in order.

2 Use variant CBC-CS2 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: switch order of the last two
blocks if data_length is not a multiple of the cipher block size (a
multiple of 16 bytes for AES).

3 Use variant CBC-CS3 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always switch order of the
last two blocks.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_ccm
Purpose

Encrypt and authenticate or decrypt data and check authenticity of data with an
AES key using Counter with Cipher Block Chaining Message Authentication Code
(CCM) mode, as described in NIST Special Publication 800-38C. Formatting and
counter functions are implemented according to NIST 800-38C Appendix A.

Format
unsigned int ica_aes_ccm(unsigned char *payload,

unsigned long payload_length,
unsigned char *ciphertext_n_mac,
unsigned int mac_length,
const unsigned char *assoc_data,
unsigned long assoc_data_length,
const unsigned char *nonce,
unsigned int nonce_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support
KMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256
KMAC-AES-128, KMAC-AES-192, or KMAC-AES-256

Parameters

unsigned char *payload
Pointer to a buffer of size greater than or equal to payload_length bytes. If
direction is equal to 1, the payload buffer must be readable and contain a

Chapter 3. libica APIs 51

payload message of size payload_length to be encrypted. If direction is equal to
0, the payload buffer must be writable. If the authentication verification
succeeds, the decrypted message in the most significant payload_length bytes of
ciphertext_n_mac is written to this buffer. Otherwise, the contents of this buffer
is undefined.

unsigned long payload_length
Length in bytes of the message to be encrypted or decrypted. This value can be
0 unless assoc_data_length is equal to 0.

unsigned char *ciphertext_n_mac
Pointer to a buffer of size greater than or equal to payload_length plus
mac_length bytes. If direction is equal to 1, the buffer must be writable and the
encrypted message from payload followed by the message authentication code
for the nonce, the payload, and associated data are written to that buffer. If
direction is equal to 0, then the buffer is readable and contains an encrypted
message of length payload_length followed by a message authentication code of
length mac_length.

unsigned int mac_length
Length in bytes of the message authentication code. Valid values are: 4, 6, 8,
10, 12, and 16.

const unsigned char *assoc_data
Pointer to a readable buffer of size greater than or equal to assoc_data_length
bytes. The associated data in the most significant assoc_data_length bytes is
subject to the authentication code computation, but is not encrypted.

unsigned long assoc_data_length
Length of the associated data in assoc_data. This value can be 0 unless
payload_length is equal to 0.

const unsigned char *nonce
Pointer to readable buffer of size greater than or equal to nonce_length bytes,
which contains a nonce (number used once) of size nonce_length bytes.

unsigned int nonce_length
Length of the nonce in bytes. Valid values are greater than 6 and less than 14.

const unsigned char *key
Specifies a pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192 and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

52 libica Programmer's Reference

ica_aes_cfb
Purpose

Encrypt or decrypt data with an AES key using Cipher Feedback (CFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.3.

Format
unsigned int ica_aes_cfb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int lcfb,
unsigned int direction);

Required hardware support

KMF-AES-128, KMF-AES-192, or KMF-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for
AES-128, AES-192, and AES-256 respectively. Therefore, you can use the
definitions: AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes (16 bytes for AES). This vector is overwritten during the function. The
result value in iv can be used as the initialization vector for a chained
ica_aes_cfb call with the same key, if the data_length in the preceding call is a
multiple of lcfb.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal
to 1 and less than or equal to the cipher block size (16 bytes for AES).

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

Chapter 3. libica APIs 53

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_cmac
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_aes_cmac can be used to authenticate or
verify the authenticity of a complete message.

Format
unsigned int ica_aes_cmac(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support
KMAC-AES-128, KMAC-AES-192 or KMAC-AES-256
PCC-Compute-Last_block-CMAC-Using-AES-128, PCC-Compute-Last_block-
CMAC-Using-AES-192, or PCC-Compute-Last_block-CMAC-Using-AES-256

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message to be authenticated, or of which the
authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to this buffer. If
direction is equal to 0, this buffer must be readable and contain a message
authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes, which is less
than or equal to the cipher block size (16 bytes for AES). It is recommended to
use values greater than or equal to 8.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success

54 libica Programmer's Reference

EFAULT
If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_cmac_intermediate
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_aes_cmac_intermediate and
ica_aes_cmac_last can be used when the message to be authenticated or to be
verified using CMAC is supplied in multiple chunks. ica_aes_cmac_intermediate is
used to process all but the last chunk. All message chunks to be processed by
ica_aes_cmac_intermediate must have a size that is a multiple of the cipher block
size (a multiple of 16 bytes for AES).

Note that ica_aes_cmac_intermediate has no direction argument. This function can
be used during authentication and during authenticity verification.

Format
unsigned int ica_aes_cmac_intermediate(const unsigned char *message,

unsigned long message_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv);

Required hardware support

KMAC-AES-128, KMAC-AES-192, or KMAC-AES-256

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a non-final part of a message, to be authenticated or
of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple
of the cipher block size.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (16
bytes for AES). For the first message part, this parameter must be set to a
string of zeros. For processing the n-th message part, this parameter must be
the resulting iv value of the ica_aes_cmac_intermediate function applied to the
(n-1)-th message part. This vector is overwritten during the function. The result

Chapter 3. libica APIs 55

value in iv can be used as the initialization vector for a chained call to
ica_aes_cmac_initermediate or to ica_aes_cmac_last with the same key.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_cmac_last
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_aes_cmac_last can be used to authenticate or
verify the authenticity of a complete message, or of the final part of a message for
which all preceding parts were processed with ica_aes_cmac_intermediate.

Format
unsigned int ica_aes_cmac_last(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support
KMAC-AES-128, KMAC-AES-192 or KMAC-AES-256
PCC-Compute-Last_block-CMAC-Using-AES-128, PCC-Compute-Last_block-
CMAC-Using-AES-192, or PCC-Compute-Last_block-CMAC-Using-AES-256

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message or the final part of a message to be
authenticated, or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code that is verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes, which is less
than or equal to the cipher block size (16 bytes for AES). It is recommended to
use values greater than or equal to 8.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,

56 libica Programmer's Reference

AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If
iv is NULL, message is assumed to be the complete message to be processed.
Otherwise, message is the final part of a composite message to be processed,
and iv contains the output vector resulting from processing all previous parts
with chained calls to ica_aes_cmac_intermediate (the value returned in iv of
the ica_aes_cmac_intermediate call applied to the penultimate message part).

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_ctr
Purpose

Encrypt or decrypt data with an AES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A Chapter 6.5. With the counter mode, each
message block of size cipher block size (16 bytes for AES) is combined with a
counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block,
subsequent counter values to be combined with subsequent message blocks are
derived from preceding counter values by an increment function. The increment
function used in ica_aes_ctr is an arithmetic increment without carry on the M
least significant bytes in the counter where M is a parameter to ica_aes_ctr.

Format
unsigned int ica_aes_ctr(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *ctr,
unsigned int ctr_width,
unsigned int direction);

Required hardware support

KMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

Chapter 3. libica APIs 57

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block
in bytes. ctr contains an initialization value for a counter function, and it is
replaced by a new value. That new value can be used as an initialization value
for a counter function in a chained ica_aes_ctr call with the same key, if the
data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 1 and the cipher block size. The value is used by the
counter increment function, which increments a counter value by incrementing
without carry the least significant M bytes of the counter value.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_ctrlist
Purpose

Encrypt or decrypt data with an AES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A ,Chapter 6.5. With the counter mode, each
message block of the same size as the cipher block in bytes is combined with a
counter value of the same size during encryption and decryption.

The ica_aes_ctrlist function assumes that a list n of precomputed counter values is
provided, where n is the smallest integer that is less than or equal to the message
size divided by the cipher block size. This function optimally uses IBM z Systems
hardware support for non-standard counter functions.

Format
unsigned int ica_aes_ctrlist(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
const unsigned char *ctrlist,
unsigned int direction);

58 libica Programmer's Reference

Required hardware support

KMCTR-DEAKMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

Calls to ica_aes_ctrlist with the same key can be chained if:
v With the possible exception of the last call in the chain the data_length used

is a multiple of the cipher block size.
v The ctrlist argument of each chained call contains a list of counters that

follows the counters used in the preceding call.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

const unsigned char *ctrlist
Pointer to a readable buffer that is both of a size greater than or equal to
data_length, and a multiple of the cipher block size (16 bytes for AES). ctrlist
should contain a list of precomputed counter values, each of the same size as
the cipher block.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_ecb
Purpose

Encrypt or decrypt data with an AES key using Electronic Code Book (ECB) mode,
as described in NIST Special Publication 800-38A Chapter 6.1.

Chapter 3. libica APIs 59

Format
unsigned int ica_aes_ecb(const unsigned char *in_data,

unsigned char *output,
unsigned int data_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support

KM-AES-128, KM-AES-192, or KM-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(a multiple of 16 for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_gcm
Purpose

Encrypt data and authenticate data or decrypt data and check authenticity of data
with an AES key using the Galois/Counter Mode (GCM), as described in NIST
Special Publication 800-38D. If no message needs to be encrypted or decrypted and
only authentication or authentication checks are requested, then this method
implements the GMAC mode.

Format
unsigned int ica_aes_gcm(unsigned char *plaintext,

unsigned long plaintext_length,
unsigned char *ciphertext,
const unsigned char *iv,
unsigned int iv_length,

60 libica Programmer's Reference

const unsigned char *aad,
unsigned long aad_length,
unsigned char *tag,
unsigned int tag_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support
KM-AES-128, KM-AES-192 or KM-AES-256
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

Parameters

unsigned char *plaintext
Pointer to a buffer of size greater than or equal to plaintext_length bytes. If
direction is equal to 1, the plaintext buffer must be readable and contain a
payload message of size plaintext_length to be encrypted. If direction is equal to
0, the plaintext buffer must be writable and if the authentication verification
succeeds, the decrypted message in the most significant plaintext_length bytes
of ciphertext is written to the buffer. Otherwise, the contents of the buffer are
undefined.

unsigned long plaintext_length
Length in bytes of the message to be encrypted or decrypted. This value can be
0 unless aad_length is equal to 0. The value must be greater than or equal to 0
and less than (2**36) - 32.

unsigned char *ciphertext
Pointer to a buffer of size greater than or equal to plaintext_length bytes. If
direction is equal to 1, then this buffer must be writable and the encrypted
message from plaintext is written to that buffer. If direction is equal to 0, then
this buffer is readable and contains an encrypted message of length
plaintext_length.

const unsigned char *iv
Pointer to a readable buffer of size greater than or equal to iv_length bytes,
which contains an initialization vector of size iv_length.

unsigned int iv_length
Length in bytes of the initialization vector in iv. The value must be greater
than 0 and less than 2**61. A length of 12 is recommended.

const unsigned char *aad
Pointer to a readable buffer of size greater than or equal to aad_length bytes.
The additional authenticated data in the most significant aad_length bytes is
subject to the message authentication code computation, but is not encrypted.

unsigned int aad_length
Length in bytes of the additional authenticated data in aad. The value must be
greater than or equal to 0 and less than 2**61.

unsigned char *tag
Pointer to a buffer of size greater than or equal to tag_length bytes. If direction
is equal to 1, this buffer must be writable, and a message authentication code
for the additional authenticated data in aad and the plain text in plaintext of
size tag_length bytes is written to this buffer. If direction is equal to 0, this buffer
must be readable and contain a message authentication code to be verified
against the additional authenticated data in aad and the decrypted cipher text
from ciphertext.

Chapter 3. libica APIs 61

unsigned int tag_length
Length in bytes of the message authentication code tag. Valid values are 4, 8,
12, 13, 14, 15, and 16.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Verify message authentication code and decrypt encrypted payload.
1 Encrypt payload and compute message authentication code for the

additional authenticated data and the payload.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_gcm_initialize
Purpose

Start and initialize a new session of AES-GCM for stream cipher requests.

Format
unsigned int ica_aes_gcm_initialize(const unsigned char *iv,

unsigned int iv_length,
unsigned char *key,
unsigned int key_length,
unsigned char *icb,
unsigned char *ucb,
unsigned char *subkey,
unsigned int direction);

Required hardware support
KM-AES-128, KM-AES-192 or KM-AES-256
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

Parameters

unsigned char *iv
Pointer to a readable buffer of size greater than or equal to iv_length bytes,
that contains an initialization vector of size iv_length.

unsigned int iv_length
Length in bytes of the initialization vector in iv. It must be greater than 0 and
less than 2**61. A length of 12 is recommended.

unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,

62 libica Programmer's Reference

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

AES-192 and AES-256 respectively. Therefore, you can use the macros:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *icb
Pointer to the initial counter block, which is a writable buffer that is created
during ica_aes_gcm_initialize() and is used in ica_aes_gcm_last() for the final
tag computation. The length of this counter block is AES_BLOCK_SIZE (16 bytes).

unsigned char *ucb
Pointer to the usage counter block, which is a writable buffer that is created
during ica_aes_gcm_initialize() and is updated (increased) during the
intermediate update operations. The length of this counter block is
AES_BLOCK_SIZE (16 bytes).

unsigned char *subkey
Pointer to a writable buffer generated in ica_aes_gcm_initialize() and used in
ica_aes_gcm_intermediate() and ica_aes_gcm_last(). The length of this subkey
block is AES_BLOCK_SIZE (16 bytes).

unsigned int direction
0 Verify message authentication code and decrypt encrypted payload.
1 Encrypt payload and compute message authentication code for the

additional authenticated data and the payload.

Return codes
0 Success
EIO If the operation fails.
EFAULT

If direction equals 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_gcm_intermediate
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Galois/Counter Mode (GCM), as described in NIST Special Publication 800-38D.
ica_aes_gcm_intermediate() and ica_aes_gcm_last() can be used when the message
to be authenticated or to be verified using GCM is supplied in multiple chunks.
ica_aes_gcm_intermediate() is used to process all data chunks. Be aware that all
subsequent chunks, unless the last one, must be a multiple of 16 bytes. The last
data chunk might be any size (regardless of BLOCKSIZE). In any cases the
ica_aes_gcm_last() must be called at the end to calculate the final authentication
tag.

Format
unsigned int ica_aes_gcm_intermediate(unsigned char *plaintext,

unsigned long plaintext_length,
unsigned char *ciphertext,
unsigned char *ucb,
unsigned char *aad,
unsigned long aad_length,
unsigned char *tag,
unsigned int tag_length,
unsigned char *key,
unsigned int key_length,
unsigned char *subkey,
unsigned int direction);

Chapter 3. libica APIs 63

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
||
||
|

|
||
||
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

Required hardware support
KM-AES-128, KM-AES-192 or KM-AES-256
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

Parameters

unsigned char *plaintext
Pointer to a buffer of size greater than or equal to plaintext_length bytes.

If direction equals 1, the plaintext buffer must be readable and contain a
payload message of size plaintext_length that is encrypted. If direction
equals 0 the plaintext buffer must be writable.

If the authentication verification succeeds, the decrypted message in the most
significant plaintext_length bytes of ciphertext is written to the buffer.
Otherwise the contents of the buffer is undefined.

unsigned long plaintext_length
Length in bytes of the message to be encrypted or decrypted. It must be equal
or greater than 0 and less than (2**36)-32. In case of intermediate operations,
the length must not be a multiple of the blocksize. Padding is done
automatically.

unsigned char *ciphertext
Pointer to a buffer of size greater than or equal to plaintext_length bytes.

If direction equals 1, then the buffer must be writable and the encrypted
message from plaintext is written to that buffer. If direction equals 0, then
the buffer is readable and contains an encrypted message of length
plaintext_length.

unsigned char *ucb
Pointer to the usage counter block, which is a writable buffer that is created
during ica_aes_gcm_initialize() and is updated (increased) during the
intermediate update operations. The length of this counter block is
AES_BLOCK_SIZE (16 bytes).

unsigned char *aad
Pointer to a readable buffer of size greater than or equal to aad_length bytes.
The additional authenticated data in the most significant aad_length bytes is
subject to the authentication code computation, but is not encrypted.

unsigned long aad_length
Length in bytes of the additional authenticated data in aad. It must be equal or
greater than 0 and less than 2**61.

unsigned char *tag
Contains the temporary hash/tag value.

unsigned int tag_length
Length in bytes of the message authentication code tag. Valid values are 4, 8,
12, 13, 14, 15, and 16.

unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the macros:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

64 libica Programmer's Reference

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

unsigned char *subkey
Pointer to a writable buffer, generated in ica_aes_gcm_initialize() and used in
ica_aes_gcm_intermediate() and ica_aes_gcm_last(). The length of this buffer is
AES_BLOCK_SIZE (16 bytes).

unsigned int direction
0 Verify message authentication code and decrypt encrypted payload.
1 Encrypt payload and compute message authentication code for the

additional authenticated data and the payload.

Return codes
0 Success
EIO If the operation fails.
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_gcm_last
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Galois/Counter Mode (GCM), as described in NIST Special Publication 800-38D.
ica_aes_gcm_last() can be used to authenticate or verify the authenticity of a
complete message or of the final part of a message, for which all preceding parts
were processed with ica_aes_gcm_intermediate() .

Format
unsigned int ica_aes_gcm_last(unsigned char *icb,

unsigned long aad_length,
unsigned long ciph_length,
unsigned char *tag,
unsigned char *final_tag,
unsigned int final_tag_length,
unsigned char *key,
unsigned int key_length,
unsigned char *subkey,
unsigned int direction);

Required hardware support
KM-AES-128, KM-AES-192 or KM-AES-256
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

Parameters

unsigned char *icb
Pointer to the initial counter block, which is a writable buffer that is created
during ica_aes_gcm_initialize() and is used in ica_aes_gcm_last() for the final
tag computation. The length of this counter block is AES_BLOCK_SIZE (16 bytes).

unsigned long aad_length
Overall length of authentication data, cumulated over all intermediate
operations.

unsigned long ciph_length
Length in bytes of the overall ciphertext, cumulated over all intermediate
operations.

Chapter 3. libica APIs 65

|
|
|
|

|
||
||
|

|
||
||
|
|
|

|

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

unsigned char *tag
Contains the temporary hash/tag value.

unsigned char *final_tag
Pointer to a readable buffer of size greater than or equal to final_tag_length
bytes. If direction is 1, the buffer is not used. If direction is 0, this message
authentication code (tag) is verified with the message authentication code
computed over the intermediate update operations.

unsigned int final_tag_length
Length in bytes of the final message authentication code (tag).

unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192 and AES-256 respectively. Therefore, you can use the macros:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *subkey
Pointer to a writable buffer generated in ica_aes_gcm_initialize() and used in
ica_aes_gcm_intermediate() and ica_aes_gcm_last(). The length of this subkey
block is AES_BLOCK_SIZE (16 bytes).

unsigned int direction
0 Verify message authentication code and decrypt encrypted payload.
1 Encrypt payload and compute message authentication code for the

additional authenticated data and the payload.

Return codes
0 Success
EIO If the operation fails.
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_ofb
Purpose

Encrypt or decrypt data with an AES key using Output Feedback (OFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.4.

Format
unsigned int ica_aes_ofb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMO-AES-128, KMO-AES-192, or KMO-AES-256

66 libica Programmer's Reference

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
||
||
|

|
||
||
|
|
|

|

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that to contain the resulting encrypted or
decrypted message. The size of this buffer in bytes must be at least as large as
data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block, in
bytes (16 bytes for AES). This vector is overwritten during the function. If
data_length is a multiple of the cipher block size (16 bytes for AES), the result
value in iv can be used as the initialization vector for a chained ica_aes_ofb
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_aes_xts
Purpose

Encrypt or decrypt data with an AES key using the XEX Tweakable Bloc Cipher
with Ciphertext Stealing (XTS) mode, as described in NIST Special Publication
800-38E and IEEE standard 1619-2007.

Format
unsigned int ica_aes_xts(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key1,
const unsigned char *key2,
unsigned int key_length,
unsigned char *tweak,
unsigned int direction);

Required hardware support
KM-XTS-AES-128, or KM-XTS-AES-256

Chapter 3. libica APIs 67

PCC-Compute-XTS-Parameter-Using-AES-128, or PCC-Compute-XTS-Parameter-
Using-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. The minimal value of data_length is 16.

const unsigned char *key1
Pointer to a buffer containing a valid AES key. key1 is used for the actual
encryption of the message buffer, combined with some vector computed from
the tweak value (Key1 in IEEE Std 1619-2007).

const unsigned char *key2
Pointer to a buffer containing a valid AES key key2 is used to encrypt the
tweak (Key2 in IEEE Std 1619-2007).

unsigned int key_length
The length in bytes of the AES key. XTS supported AES key sizes are 16 and
32, for AES-128 and AES-256 respectively. Therefore, you can use:

2 * AES_KEY_LEN128 and 2 * AES_KEY_LEN256.

unsigned char *tweak
Pointer to a valid 16-byte tweak value (as in IEEE standard 1619-2007). This
tweak is overwritten during the function. If data_length is a multiple of the
cipher block size (a multiple of 16 for AES), the result value in tweak can be
used as the tweak value for a chained ica_aes_xts call with the same key pair.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following AES
interfaces remain supported:
unsigned int ica_aes_encrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_aes_vector_t *iv, unsigned int key_length, unsigned char *aes_key,
unsigned char *output_data);

unsigned int ica_aes_decrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_aes_vector_t *iv, unsigned int key_length, unsigned char *aes_key,
unsigned char *output_data);

68 libica Programmer's Reference

Table 5 shows libica version 2.0 AES functions calls, and their corresponding libica
version 2.4 AES function calls.

Table 5. Compatibility of libica version 2.0 AES functions calls to libica version 2.4 AES function calls

Calling this libica version 2.0 AES function Corresponds to calling this libica version 2.4 AES
function

ica_aes_encrypt(MODE_ECB, data_length,in_data,NULL,
key_length,key,out_data);

ica_aes_ecb(in_data,out_data,(long)data_length,
key,key_length,1);

ica_aes_encrypt(MODE_CBC,data_length,in_data,iv,
key_length,key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,key_length,iv,1);

ica_aes_decrypt(MODE_ECB,data_length,in_data,NULL,
key_length,key,out_data);

ica_aes_ecb(in_data,out_data,(long)data_length,
key,key_length,0);

ica_aes_decrypt(MODE_CBC,data_length,in_data,iv,
key_length,key,out_data);

ica_aes_cbc(in_data,out_data,(long)data_length,
key,key_length,iv,0);

The functions ica_aes_encrypt and ica_aes_decrypt remain supported, but their
use is discouraged in favor of ica_aes_ecb and ica_aes_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference
version 2.0.

Information retrieval function
These functions are included in: include/ica_api.h.

ica_get_version
Purpose

Return libica version information.

Format
unsigned int ica_get_version(libica_version_info *version_info);

Parameters

libica_version_info *version_info
Pointer to a libica_version_info structure. The structure is filled with the current
libica version information.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 86.

ica_get_functionlist
Purpose

Returns a list of crypto mechanisms supported by libica.

Format
unsigned int ica_get_functionlist(libica_func_list_element *mech_list,
unsigned int *mech_list_len);

Chapter 3. libica APIs 69

Parameters

libica_func_list_element *mech_list
Null or pointer to an array of at least as many libica_func_list_element structures
as denoted in the *mech_list_len argument. If the value in the *mech_list_len
argument is equal to or greater than the number of mechanisms available in
libica then the libica_func_list_element structures in *mech_list are filled (in the
order of the array indices) with information for the supported otherwise the
*mech_list argument remains unchanged.

unsigned int *mech_list_len
Pointer to an integer which contain the actual number of array elements
(number of structures). If *mech_list was NULL the contents of *mech_list_len
will be replaced by the number of mechanisms available in libica.

Return codes
0 Success
EINVAL

The value in *mech_list is to small

For return codes indicating exceptions, see “Return codes” on page 86.

Recommended usage

First call ica_get_functionlist with a NULL mechanism list, then allocate the
mechanism list according to number of mechanisms in libica returned by that
function, and then call ica_get_functionlist with the allocated mechanism list.

70 libica Programmer's Reference

Chapter 4. Accessing libica functions through the PKCS #11
API (openCryptoki)

Learn how the cryptographic functions provided by libica can be accessed using
the PKCS #11 API implemented by openCryptoki.

For a description of the current PKCS #11 standard, see PKCS #11 Cryptographic
Token Interface Standard.

openCryptoki overview
openCryptoki consists of an implementation of the PKCS #11 API, a slot manager,
an API for slot token dynamic link libraries (STDLLs), and a set of STDLLs (or
tokens). The libica token is such a STDLL introduced into openCryptoki.

The openCryptoki base library (libopencryptoki.so) supports the generic PKCS
#11 API as outlined in the PKCS #11 specification. Currently, openCryptoki 3.4
conforms to PKCS #11 version 2.40. openCryptoki also loads token-specific
modules (STDLLs) that provide the token specific implementation of the PKCS #11
API and cryptographic functions (for example, session management, object
management, and crypto algorithms). So currently, openCryptoki 3.4 conforming to
PKCS #11 2.40 requires libica version 2.5 or later.

A global configuration file (/etc/opencryptoki/opencryptoki.conf) is provided
which describes the available tokens. This configuration file can be customized for
the individual tokens. The openCryptoki package contains man pages that describe
the format of the configuration files. For more information, see “Adjusting the
openCryptoki configuration file” on page 75.

The libica token is a plug-in into the openCryptoki token library, providing
support for several cryptographic algorithms.

Slot manager

The slot manager (pkcsslotd) runs as a daemon. Upon start-up, it creates a shared
memory segment and reads the openCryptoki configuration file to acquire the
available token and slot information. The openCryptoki API attaches to this
memory segment to retrieve token information. Thus, the slot manager provides
the openCryptoki API with the token information when required. An application in
turn links to or loads the openCryptoki API.

Slot token dynamic link libraries (STDLLs)

The libica token is an example of an STDLL within openCryptoki. STDLLs are
plug-in modules to the openCryptoki (main) API. They provide token-specific
functions that implement the interfaces. Specific devices can be supported by
building an appropriate STDLL. Figure 1 on page 73 illustrates the stack and the
process flow in a z Systems environment.

The STDLLs require local disk space to store persistent data, such as token
information, personal identification numbers (PINs) and token objects. This
information is stored in a separate directory for each token (for example in
/var/lib/opencryptoki/lite for the libica token). Within each of these directories

© Copyright IBM Corp. 2009, 2016 71

|
|

|
|

|
|

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11

there is a sub-directory TOK_OBJ that contains the token objects (token key store).
Each private token object is represented by an encrypted file. Most of these
directories are created during installation of openCryptoki.

The pkcsconf command line program

openCryptoki provides a command line program (/usr/sbin/pkcsconf) to
configure and administer tokens that are supported within the system. The
pkcsconf capabilities include token initialization, and security officer (SO) PIN and
user PIN initialization and maintenance.

pkcsconf operations that address a specific token must specify the slot that
contains the token with the -c option. You can view the list of tokens present
within the system by specifying the -t option (without -c option). For example,
the following code shows the options for the pkcsconf command and displays slot
information for the system:

pkcsconf ?
usage: pkcsconf [-itsmlIupPh] [-c slotnumber -U user-PIN -S SO-PIN -n new PIN]

The available options have the following meanings:

-i display PKCS11 info

-t display token info

-s display slot info

-m display mechanism list

-l display slot description

-I initialize token

-u initialize user PIN

-p set the user PIN

-P set the SO PIN

-h | --help | ?
show pkcsconf help information

-c specify the token slot for the operation

-U the current user PIN (for use when changing the user pin with -u and -p
options); if not specified, user will be prompted

-S the current Security Officer (SO) pin (for use when changing the SO pin
with -P option); if not specified, user will be prompted

-n the new pin (for use when changing either the user pin or the SO pin with
-u, -p or -P options); if not specified, user will be prompted

For more information about the pkcsconf command, see the pkcsconf man page.

Figure 1 on page 73 illustrates the stack and the process flow:

72 libica Programmer's Reference

Application
(C)

openCryptoki

openCryptoki API

Soft
Token

(STDLL)

ICA
Token

(STDLL)

CCA
Token

(STDLL)

ica library

zcrypt
device driver

EP11
Token

(STDLL)

CEX5S Crypto Adapter
(CEX5A, CEX5C) *)

S
ta

n
d

a
rd

 c
ry

p
to

lib
ra

ri
e

s
H

a
rd

w
a

re
A

p
p

lic
a

ti
o

n
la

y
e
r

S
y
s
te

m
 z

H
W

 c
ry

p
to

lib
ra

ri
e

s

L
in

u
x

k
e

rn
e

l

slot manager

Application
(C)

Application
(C)

Application
(C)

CPACF

*) earlier adapters are also applicable

Figure 1. Stack and process flow

Chapter 4. Accessing libica through openCryptoki 73

|

|
|
|

Functions provided by openCryptoki with the ICA token
The PKCS #11 functions that manage tokens, slots, and sessions are described in
the PKCS #11 standard.

For an overview of the algorithms supported by the ica token, see “Supported
mechanisms for the ICA token” on page 80.

The PKCS #11 standard describes the exact API for the mentioned mechanisms. For
more information, see PKCS #11 Cryptographic Token Interface Standard

For more details about how to use openCryptoki, see “Using the ICA token” on
page 80.

Installing openCryptoki
openCryptoki is shipped with the Linux on z Systems distributions. Follow the
instructions in this section to install openCryptoki.

Check whether you have already installed openCryptoki in your current
environment:

$ rpm -qa | grep -i opencryptoki

Note: This command example is distribution dependent. opencryptoki must in
certain distribution be specified as openCryptoki (case-sensitive).

You should see all installed openCryptoki packages. If required packages are
missing, use the installation tool of your Linux distribution to install the
appropriate openCryptoki RPM.

Note: You must remove any previous package of openCryptoki, before you can
install the new package version 3.4.

Installing from the RPM
The current distributions already provide the openCryptoki binary RPMs.

The openCryptoki version 3.4 or higher packages, are delivered by the distributors.
Distributors build these packages as RPM packages for delivering them to
customers.

Customers can install these openCryptoki RPM packages by using the installation
tool of their selected distribution.

If you received openCryptoki as an RPM package, follow the RPM installation
process that is described in the RPM man page. This process is the preferred
installation method.

Installing from the source package
If you prefer, you can install openCryptoki from the source package.

As an alternative, for example for development purposes, you can get the latest
openCryptoki version (inclusive latest patches) from the SourceForge repository

74 libica Programmer's Reference

|

|

|

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11

(sourceforge.net/projects/opencryptoki) and build it yourself. But this version is
not serviced. It is suitable for non-production systems and early feature testing, but
you should not use it for production.
1. Download the latest version of the openCryptoki sources from:

http://sourceforge.net/projects/opencryptoki/files/opencryptoki/3.4/

2. Decompress and extract the compressed tape archive (TGZ file). There is a new
directory named opencryptoki.

3. Change to that directory and issue the following scripts and commands:

$./bootstrap
$./configure
$ make
$ make install

The scripts or commands perform the following functions:
bootstrap

Initial setup, basic configurations
configure

Check configurations and build the makefile

make Compile and link

make install
Install the libraries

Note: When installing openCryptoki from the source package, the location of some
installed files will differ from the location of files installed from an RPM.

Configuring openCryptoki
After a successful installation of openCryptoki, you need to perform certain
configuration and customization tasks to enable the exploitation of the libica
functions from applications. Especially, you need to set up tokens and daemons
and then initialize the tokens.

openCryptoki, and in particular the slot manager, can handle several tokens, which
can have different support for different hardware devices or software solutions. As
shown in Figure 1 on page 73, libica interacts with the libica library host part.
libica can operate with all Crypto Express adapters in accelerator or coprocessor
mode, up to CEX5S (CEX5A and CEX5C), for asymmetric cryptographic functions.
Furthermore it can operate with CPACF for symmetric cryptographic functions.

For a complete configuration of openCryptoki, finish the tasks as described in the
contained subtopics:
v “Adjusting the openCryptoki configuration file”
v “Configuring the ICA token” on page 78
v “Initializing the token” on page 78
v “How to recognize the ICA token” on page 79

Finally, to control your configuration results, follow the instructions provided in
“How to recognize the ICA token” on page 79.

Adjusting the openCryptoki configuration file
A preconfigured list of all available tokens that are ready to register to the
openCryptoki slot daemon is required before the openCryptoki daemon can start.

Chapter 4. Accessing libica through openCryptoki 75

|
|
|

http://sourceforge.net/projects/opencryptoki
http://sourceforge.net/projects/opencryptoki/files/opencryptoki/3.4/

This list is provided by the global configuration file. Read this topic for
information on how to adapt this file according to your installation.

Table 6 provides an overview of supported libraries (tokens) that may be in place
after you have successfully installed openCryptoki. The list may vary for different
distributions and is dependent from the installed RPM packages.

Also, Linux on z Systems does not support the TPM token library.

A token is only available, if the token library is installed, and the appropriate
software and hardware support pertaining to the stack of the token is also
installed.

A token needs not be available, even if the corresponding token library is installed.
Display the list of available tokens by using the command:

$ pkcsconf -t

Table 6. openCryptoki libraries

Library Explanation

/usr/lib64/opencryptoki/libopencryptoki.so openCryptoki base library

/usr/lib64/opencryptoki/stdll/libpkcs11_ica.so ICA token library

/usr/lib64/opencryptoki/stdll/libpkcs11_sw.so software token library

/usr/lib64/opencryptoki/stdll/libpkcs11_tpm.so TPM token library

/usr/lib64/opencryptoki/stdll/libpkcs11_cca.so CCA token library

/usr/lib64/opencryptoki/stdll/libpkcs11_ep11.so EP11 token library

/usr/lib64/opencryptoki/stdll/libpkcs11_icsf.so ICSF token library

Note: An analogous set of libraries is available for 32 bit compatibility mode.

Sample configuration file:

76 libica Programmer's Reference

-------------- content of opencryptoki.conf ---------
version opencryptoki-3.4

The following defaults are defined:
hwversion = 0.0
firmwareversion = 0.0
description = Linux
manufacturer = IBM
#
The slot definitions below may be overriden and/or customized.
For example:
slot 0
{
stdll = libpkcs11_cca.so
description = "OCK CCA Token"
manufacturer = "MyCompany Inc."
hwversion = 2.32
firmwareversion = 1.0
}
See man(5) opencryptoki.conf for further information.
#
slot 0
{
stdll = libpkcs11_tpm.so
}

slot 1
{
stdll = libpkcs11_ica.so
description = "ICA Token"
manufacturer = "IBM"
hwversion = 1.0
firmwareversion = 1.0
}

slot 2
{
stdll = libpkcs11_cca.so
}

slot 3
{
stdll = libpkcs11_sw.so
}

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok.conf
}
---------------------------- end ----------------------------------

Note:

v The standard path for slot token dynamic link libraries (STDLLs) is:
/usr/lib64/opencryptoki/stdll/.

Use one of the following command to start the slot-daemon, which reads out the
configuration information and sets up the tokens:

$ pkcsslotd start
$ service pkcsslotd start
$ systemctl start pkcsslotd.service

For a permanent solution, for example, for an automatic start-up of the
slot-daemon, refer to the distribution documentation.

Chapter 4. Accessing libica through openCryptoki 77

|

|

Configuring the ICA token
You need to connect the libica library to the ICA token. For this purpose, you
should check the slot entry definition in the openCryptoki configuration file.

Each token has its own token directory, which is used by openCryptoki to store
token-specific information (like for example, key objects, user PIN, or SO PIN). The
ICA token directory is /var/lib/opencryptoki/lite/.

Note: This configuration is token-based. It applies to all applications that use this
ICA token.

Defining the slot entry for the ICA token in openCryptoki

Normally, the default openCryptoki configuration file opencryptoki.conf already
provides a slot entry for the ICA token. It is preconfigured to slot #1. Check this
default entry to find out whether you can use it as is. If it is missing, then define a
slot entry that sets the stdll attribute to libpkcs11_ica.so.

Initializing the token
Once the configuration files of openCryptoki and the ICA token are set up, and the
pkcsslotd daemon is started, the ICA token must be initialized.

Note: PKCS #11 defines two users for each token: a security officer (SO) whose
responsibility is the administration of the token, and a standard user (User) who
wants to use the token to perform cryptographic operations. openCryptoki requires
that for both the SO and the User a log-in PIN is defined as part of the token
initialization.

The following command provides some useful slot information:

pkcsconf -s

Slot #0 Info
Description: EP11 Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 4.0
Firmware Version: 2.11

Slot #1 Info
Description: ICA Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 4.0
Firmware Version: 2.10

Find your preferred token in the details list and select the correct slot number. This
number is used in the next initialization steps to identify your token:

$ pkcsconf -I -c <slot> // Initialize the Token and setup a Token Label

$ pkcsconf -P -c <slot> // change the SO PIN (recommended)

$ pkcsconf -u -c <slot> // Initialize the User PIN (SO PIN required)

$ pkcsconf -p -c <slot> // change the User PIN (optional)

78 libica Programmer's Reference

pkcsconf -I
During token initialization, you are asked for a token label. Provide a
meaningful name, because you might need this reference for identification
purposes.

pkcsconf -P
For security reasons, openCryptoki requires that you change the default SO
PIN (87654321) to a different value. Use the pkcsconf -P option to change
the SO PIN.

pkcsconf -u
When you enter the user PIN initialization you are asked for the newly set
SO PIN. The length of the user PIN must be 4 - 8 characters.

pkcsconf -p
You must at least once change the user PIN with pkcsconf -p option. After
you completed the PIN setup, the token is prepared and ready for use.

Note: An initialization (pkcsconf -u option) with 12345678 will work without any
issues. However, this is not recommended, because this pattern is checked
internally and marked as default PIN. Therefore, change to a user PIN that is
different from 12345678.

How to recognize the ICA token
You can use the pkcsconf -t command to display a table that shows all available
tokens. You can check the slot and token information, and the PIN status at any
time.

The following information provided by the pkcsconf -t command about the ICA
token is returned in the Token Info section, where, for example, Token #1 Info
displays information about the token plugged into slot number 1.

$ pkcsconf -t

Token #1 Info:
Label: IBM ICA PKCS #11

Manufacturer: IBM Corp.
Model: IBM ICA
Serial Number: 123
Flags: 0x880045 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|USER_PIN_TO_BE_CHANGED|

SO_PIN_TO_BE_CHANGED)
Sessions: 0/-2
R/W Sessions: -1/-2
PIN Length: 4-8
Public Memory: 0xFFFFFFFF/0xFFFFFFFF
Private Memory: 0xFFFFFFFF/0xFFFFFFFF
Hardware Version: 1.0
Firmware Version: 1.0
Time: 14:16:45

The most important information is as follows:
v The token Label you assigned at the initialization phase (IBM ICA PKCS #11, in

the example). You can initialize or change a token label by using the pkcsconf
-I command.

v The Model name is unique and designates the token that is in use.
v The Flags provide information about the token initialization status, the PIN

status, and features such as Random Number Generator (RNG). They also
provide information about requirements, such as Login required, which means
that there is at least one mechanism that requires a session log-in to use that
cryptographic function.

Chapter 4. Accessing libica through openCryptoki 79

The flag USER_PIN_TO_BE_CHANGED indicates that the user PIN must be
changed before the token can be used. The flag SO_PIN_TO_BE_CHANGED
indicates that the SO PIN must be changed before administration commands can
be used.
For more information about the flags provided in this output, see the description
of the TOKEN_INFO structure and the Token Information Flags in the PKCS #11
Cryptographic Token Interface Standard.

v The PIN length range declared for this token.

Using the ICA token
Applications that are designed to work with openCryptoki can take advantage of
the libica library functions by using the openCryptoki standard interface (PKCS #11
standard C API).

Applications that are designed to work with openCryptoki are also able to use the
functions provided by the ICA token.

For a list of code samples, refer to “openCryptoki code samples” on page 160.

Supported mechanisms for the ICA token
View a list of the supported mechanisms for the ICA token in the openCryptoki
implementation.

Use the following command to retrieve a complete list of algorithms (or
mechanisms) that are supported by the token:

$ pkcsconf -m -c <slot>
Mechanism #2

Mechanism: 0x131 (CKM_DES3_KEY_GEN)
Key Size: 24-24
Flags: 0x8001 (CKF_HW|CKF_GENERATE)

...
Mechanism #10

Mechanism: 0x132 (CKM_DES3_ECB)
Key Size: 24-24
Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)

...
Mechanism #11

Mechanism: 0x133 (CKM_DES3_CBC)
Key Size: 24-24
Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)

...

The list displays all mechanisms supported by this token. The mechanism ID and
name corresponds to the PKCS #11 specification. Each mechanism provides its
supported key size and some further properties such as hardware support and
mechanism information flags. These flags provide information about the PKCS #11
functions that may use the mechanism. Typical functions are for example, encrypt,
decrypt, wrap key, unwrap key, sign, or verify.

Table 7. Supported mechanism list for the ica token

Mechanisms ica token
supported with

openCryptoki version

CKM_GENERIC_SECRET_KEY_GEN x 3.4

CKM_RSA_PKCS_KEY_PAIR_GEN x 2.4

80 libica Programmer's Reference

|||

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11

Table 7. Supported mechanism list for the ica token (continued)

Mechanisms ica token
supported with

openCryptoki version

CKM_RSA_PKCS x 2.4

CKM_RSA_X_509 x 2.4

CKM_RSA_PKCS_PSS x 3.4

CKM_RSA_PKCS_OAEP x 3.4

CKM_MD5_RSA_PKCS x 2.4

CKM_SHA1_RSA_PKCS x 2.4

CKM_SHA256_RSA_PKCS x 2.4.3.1

CKM_SHA384_RSA_PKCS x 2.4.3.1

CKM_SHA512_RSA_PKCS x 2.4.3.1

CKM_DES_OFB64 x 3.0

CKM_DES_KEY_GEN x 2.4

CKM_DES_ECB x 2.4

CKM_DES_CFB8 x 3.0

CKM_DES_CFB64 x 3.0

CKM_DES_CBC x 2.4

CKM_DES_CBC_PAD x 2.4

CKM_DES3_MAC x 3.0

CKM_DES3_MAC_GENERAL x 3.0

CKM_DES3_KEY_GEN x 2.4

CKM_DES3_ECB x 2.4

CKM_DES3_CBC x 2.4

CKM_DES3_CBC_PAD x 2.4

CKM_MD5 x 2.4

CKM_MD5_HMAC x 2.4

CKM_MD5_HMAC_GENERAL x 2.4

CKM_SHA_1 x 2.4

CKM_SHA_1_HMAC x 2.4

CKM_SHA_1_HMAC_GENERAL x 2.4

CKM_SHA256 x 2.4

CKM_SHA256_HMAC x 2.4

CKM_SHA256_HMAC_GENERAL x 2.4

CKM_SHA384 x 2.4

CKM_SHA384_HMAC x 2.4.3.1

Chapter 4. Accessing libica through openCryptoki 81

|||

|||

Table 7. Supported mechanism list for the ica token (continued)

Mechanisms ica token
supported with

openCryptoki version

CKM_SHA384_HMAC_GENERAL x 2.4.3.1

CKM_SHA512 x 2.4

CKM_SHA512_HMAC x 2.4.3.1

CKM_SHA512_HMAC_GENERAL x 2.4.3.1

CKM_SSL3_PRE_MASTER_KEY_GEN x 2.4

CKM_SSL3_MASTER_KEY_DERIVE x 2.4

CKM_SSL3_KEY_AND_MAC_DERIVE x 2.4

CKM_SSL3_MD5_MAC x 2.4

CKM_SSL3_SHA1_MAC x 2.4

CKM_AES_OFB x 3.0

CKM_AES_MAC x 3.0

CKM_AES_MAC_GENERAL x 3.0

CKM_AES_KEY_GEN x 2.4

CKM_AES_ECB x 2.4

CKM_AES_CFB8 x 3.0

CKM_AES_CFB64 x 3.0

CKM_AES_CFB128 x 3.0

CKM_AES_CBC x 2.4

CKM_AES_CBC_PAD x 2.4

CKM_AES_CTR x 2.4

CKM_AES_GCM x 3.4

82 libica Programmer's Reference

|||

Chapter 5. libica constants, type definitions, data structures,
and return codes

Use these constants, type definitions, data structures, and return codes when you
program with the libica APIs.

The APIs are described in Chapter 3, “libica version 2.6 application programming
interfaces,” on page 7. To use them, include ica_api.h in your programs.

libica constants
The constants listed in this topic are provided and valid for the current libica
version.

Use these constants instead of the equivalent libica version 1 constants. There is no
difference in their values.
#define ica_adapter_handle_t int

#define SHA_HASH_LENGTH 20

#define SHA1_HASH_LENGTH SHA_HASH_LENGTH

#define SHA224_HASH_LENGTH 28

#define SHA256_HASH_LENGTH 32

#define SHA384_HASH_LENGTH 48

#define SHA512_HASH_LENGTH 64

#define ica_aes_key_t ica_key_t

#define ICA_ENCRYPT 1

#define ICA_DECRYPT 0

#define ICA_DRBG_NEW_STATE_HANDLE NULL

Type definitions
These type definitions are available to ensure compatibility with libica version 1
types.
typedef ica_des_vector_t ICA_DES_VECTOR;

typedef ica_des_key_single_t ICA_KEY_DES_SINGLE;

typedef ica_des_key_triple_t ICA_KEY_DES_TRIPLE;

typedef ica_aes_vector_t ICA_AES_VECTOR;

typedef ica_aes_key_single_t ICA_KEY_AES_SINGLE;

typedef ica_aes_key_len_128_t ICA_KEY_AES_LEN128;

typedef ica_aes_key_len_192_t ICA_KEY_AES_LEN192;

typedef ica_aes_key_len_256_t ICA_KEY_AES_LEN256;

typedef sha_context_t SHA_CONTEXT;

typedef sha256_context_t SHA256_CONTEXT;

typedef sha512_context_t SHA512_CONTEXT;

typedef unsigned char ica_des_vector_t[8];

typedef unsigned char ica_des_key_single_t[8];

typedef unsigned char ica_key_t[8];

typedef unsigned char ica_aes_vector_t[16];

typedef unsigned char ica_aes_key_single_t[8];

© Copyright IBM Corp. 2009, 2016 83

|

typedef unsigned char ica_aes_key_len_128_t[16];

typedef unsigned char ica_aes_key_len_192_t[24];

typedef unsigned char ica_aes_key_len_256_t[32];

typedef struct ica_drbg_mech ica_drbg_mech_t;

typedef struct ica_drbg ica_drbg_t;

Data structures
These structures are used in the API of the current libica version.

For the definitions of older functions, see previous versions of this book. The older
functions are no longer recommended for use, but they are supported.
typedef struct {
unsigned int key_length;
unsigned char* modulus;
unsigned char* exponent;
} ica_rsa_key_mod_expo_t;

typedef struct {
unsigned int key_length;
unsigned char* p;
unsigned char* q;
unsigned char* dp;
unsigned char* dq;
unsigned char* qInverse;
} ica_rsa_key_crt_t;

typedef struct {
unsigned int mech_mode_id;
unsigned int flags;
unsigned int property;
} libica_func_list_element;

* mech_mode_id: Unique mechanism ID for each mechanism implemented in libica
#define SHA1 1
#define SHA224 2
#define SHA256 3
#define SHA384 4
#define SHA512 5
#define DES_ECB 20
#define DES_CBC 21
#define DES_CBC_CS 22
#define DES_OFB 23
#define DES_CFB 24
#define DES_CTR 25
#define DES_CTRLST 26
#define DES_CBC_MAC 27
#define DES_CMAC 28
#define DES3_ECB 41
#define DES3_CBC 42
#define DES3_CBC_CS 43
#define DES3_OFB 44
#define DES3_CFB 45
#define DES3_CTR 46
#define DES3_CTRLST 47
#define DES3_CBC_MAC 48
#define DES3_CMAC 49
#define AES_ECB 60
#define AES_CBC 61
#define AES_CBC_CS 62
#define AES_OFB 63
#define AES_CFB 64
#define AES_CTR 65
#define AES_CTRLST 66

84 libica Programmer's Reference

|

|

#define AES_CBC_MAC 67
#define AES_CMAC 68
#define AES_CCM 69
#define AES_GCM 70
#define AES_XTS 71
#define P_RNG 80
#define RSA_ME 90
#define RSA_CRT 91
#define RSA_KEY_GEN_ME 92
#define RSA_KEY_GEN_CRT 93

For more details regarding these mechanism please refer to the openCryptoki v
2.20 specification.

* flags
This flag represents the type of hardware/software support for each
mechanism.

#define ICA_FLAG_SHW 4
Static hardware support (operations on CPACF). Hardware support will be
available unless a hardware error occurs.

#define ICA_FLAG_DHW 2
Dynamic hardware support (operations on crypto cards). Hardware support
will be available unless the hardware is reconfigured.

#define ICA_FLAG_SW 1
Software support. If both static and dynamic hardware support as well as
software support are available, then software support is used as fall back if
hardware support fails.

* property
This property field is optional depending on the mechanism. It is used to
declare mechanism specific parameters, such as key sizes for RSA and AES.

For RSA mechanisms:

- bit 0
512 bit key size support

- bit 1
1024 bit key size support

- bit 2
2048 bit key size support

- bit 3
4096 bit key size support

For AES mechanisms:

- bit 0
128 bit key size support

- bit 1
192 bit key size support

- bit 2
256 bit key size support

For all non-RSA/AES mechanisms this field is empty.

Take note of these considerations:

Chapter 5. libica programming definitions 85

v The buffers pointed to by members of type unsigned char * must be manually
allocated and deallocated by the user.

v Key parts must always be right-aligned in their fields.
v All buffers pointed to by members modulus and exponent in struct

ica_rsa_key_mod_expo_t must be of length key_length.
v All buffers pointed to by members p, q, dp, dq, and qInverse in struct

ica_rsa_key_crt_t must be of size key_length / 2 or larger.
v In the struct ica_rsa_key_crt_t, the buffers p, dp, and qInverse must contain 8 bytes

of zero padding in front of the actual values.
v If an exponent is set in struct ica_rsa_key_mod_expo_t as part of a public key for

key generation, be aware that due to a restriction in OpenSSL, the public
exponent cannot be larger than a size of unsigned long. Therefore, you must
have zeros left-padded in the buffer pointed to by exponent in the struct
ica_rsa_key_mod_expo_t struct. Be aware that this buffer also must be of size
key_length.

v This key_length value should be calculated from the length of the modulus in
bits, according to this calculation:
key_length = (modulus_bits + 7) / 8

typedef struct {
uint64_t runningLength;
unsigned char shaHash[LENGTH_SHA_HASH];

} sha_context_t;

typedef struct {
uint64_t runningLength;
unsigned char sha256Hash[LENGTH_SHA256_HASH];

} sha256_context_t;

typedef struct {
uint64_t runningLengthHigh;
uint64_t runningLengthLow;
unsigned char sha512Hash[LENGTH_SHA512_HASH];

} sha512_context_t;

typedef struct {
unsigned int major_version;
unsigned int minor_version;
unsigned int fixpack_version;

} libica_version_info;

Return codes
The current libica functions use the standard Linux return codes listed in this topic.
0 Success
EFAULT

The message authentication failed.
EINVAL

Incorrect parameter
EIO I/O error
EPERM

Operation not permitted by Hardware (CPACF).
ENODEV

No such device
ENOMEM

Not enough memory
errno When libica calls open, close, begin_sigill_section, or OpenSSL function

RSA_generate_key_ex(), the error codes of these programs are returned.

86 libica Programmer's Reference

|

Chapter 6. libica tools

The libica package includes tools to investigate the capabilities of your
cryptographic hardware and how these capabilities are used by applications that
use libica.

icainfo - Show available libica functions
Use the icainfo command to find out which libica functions are available on your
Linux system.

Format

icainfo syntax

►► icainfo
-v
-h

►◄

Where:

-v or --version
Displays the version number of icainfo, then exits.

-h or --help
Displays help information for the command.

Examples

To obtain an overview of the supported algorithms with modes of operations and
how they are implemented on your Linux system (hardware, software, or both),
enter:

icainfo

View the output produced by this command:
The following CP Assist for Cryptographic Function (CPACF) operations are
supported by libica on this system:

function | # hardware | #software
---------------+------------+--------------

SHA-1 | yes | yes
SHA-224 | yes | yes
SHA-256 | yes | yes
SHA-384 | yes | yes
SHA-512 | yes | yes

GHASH | yes | no
P_RNG | yes | yes
RSA ME | no | yes
RSA CRT | no | yes
DES ECB | yes | yes
DES CBC | yes | yes

© Copyright IBM Corp. 2009, 2016 87

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DES OFB | yes | no
DES CFB | yes | no
DES CTR | yes | no
DES CMAC | yes | no
3DES ECB | yes | yes
3DES CBC | yes | yes
3DES OFB | yes | no
3DES CFB | yes | no
3DES CTR | yes | no
3DES CMAC | yes | no

AES ECB | yes | yes
AES CBC | yes | yes
AES OFB | yes | no
AES CFB | yes | no
AES CTR | yes | no
AES CMAC | yes | no
AES XTS | yes | no

icastats - Show use of libica functions
Use the icastats utility to find out whether libica uses hardware acceleration
features or works with software fallbacks. icastats collects the statistical data per
user and not per system.

The command also shows which specific functions of libica are used. For a
standard user, icastats shows a statistics table with all crypto operations that are
used by the user’s processes. For the root user, icastats provides statistics for all
users, or processes, on the system.

The shared memory segment that holds the statistic data is created when a user
starts icastats or when a program is started, that performs cryptographic
operations using libica. Once the shared memory segment exists, it can only be
removed by one of the delete options (-d or -D) provided with the icastats utility.
Thus, this function collects crypto statistics independently from the process context
for continuing availability of data. All cryptographic operations using libica are
counted into the statistics.

Note: Before deleting the shared memory segment, ensure that there are no
running applications that are using this memory segment.

Format

icastats syntax

►► icastats
-A
-d
-D
-r
-R
-S
-U < username>
-h
-v

►◄

Where:

88 libica Programmer's Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

-A or --all
Shows the statistic tables from all users (for root users only).

-d or --delete
Removes the user specific shared memory segment.

-D or --delete-all
Removes all shared memory segments (for root users only).

-r or --reset
Resets the user statistic data table.

-R or --reset-all
Resets all statistic data tables from all users (for root users only).

-S or --summary
Shows accumulated statistics from all users (for root users only).

-U <username> or --user <username>
Shows statistic data for a dedicated user (for root users only).

-h or --help
Displays help information for the command.

-v or --version
Displays the version number of icastats, then exits.

Examples

To display the current use of libica functions issue:

icastats

View an excerpt of a sample output produced by this command:
function | # hardware | # software
--------------+--------------------------+-------------------------

| ENC CRYPT DEC | ENC CRYPT DEC
--------------+--------------------------+-------------------------

SHA-1 | 0 | 0
SHA-224 | 0 | 0
SHA-256 | 0 | 0
SHA-384 | 0 | 0
SHA-512 | 0 | 0
GHASH | 0 | 0
P_RNG | 55 | 0
RSA-ME | 351 | 1
RSA-CRT | 64 | 0
DES ECB | 0 0 | 0 0
DES CBC | 0 0 | 0 0
DES OFB | 0 0 | 0 0
DES CFB | 0 0 | 0 0
DES CTR | 0 0 | 0 0
DES CMAC | 0 0 | 0 0
3DES ECB | 0 0 | 0 0
3DES CBC | 0 0 | 0 0
3DES OFB | 0 0 | 0 0
3DES CFB | 0 0 | 0 0
3DES CTR | 0 0 | 0 0

3DES CMAC | 0 0 | 0 0
AES ECB | 0 0 | 0 0
AES CBC | 0 0 | 0 0
AES OFB | 0 0 | 0 0
AES CFB | 0 0 | 0 0

Chapter 6. libica tools 89

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

AES CTR | 0 0 | 0 0
AES CMAC | 0 0 | 0 0
AES XTS | 0 0 | 0 0

Logging and error handling

Access failures to the shared memory segments that are used by the icastats
utility, are logged once via the syslog interface. After a failed attempt to access the
shared memory segment, the library no longer collects any statistic data for this
application (related to application lifetime and user).

Example of syslog message:
<date> <machine> <application>: failed to create or access shared memory segment.

The icastats utility prints an error messages if it cannot create, access, or remove
the shared memory segment.

Note: The log message may indicate a permission problem with the shared
memory segment. An administrator can remove the defect memory segment. The
next call of icastats should create a new memory segment automatically.

90 libica Programmer's Reference

|
|
|

|

Chapter 7. Examples

These sample program segments illustrate the use of the libica APIs.

These examples are released under the Common Public License - V1.0, which is
stated in full at the end of this chapter. See “Common Public License - V1.0” on
page 172.

View a list of examples for libica, and the makefile used to create the library.
v “DES with ECB mode example”
v “SHA-256 example” on page 93
v “Pseudo random number generation example” on page 99
v “Key generation example” on page 100
v “RSA example” on page 106
v “DES with CTR mode example” on page 111
v “Triple DES with CBC mode example” on page 114
v “AES with CFB mode example” on page 117
v “AES with CTR mode example” on page 129
v “AES with OFB mode example” on page 139
v “AES with XTS mode example” on page 147
v “CMAC example” on page 157
v “openCryptoki code samples” on page 160
v “Makefile example” on page 171
v “Common Public License - V1.0” on page 172

DES with ECB mode example
This program prints the version of libica and then encrypts the contents of a
character array (plain_data[]) using DES in ECE mode and a key stored in another
character array (des_key[]). The program then decrypts the result and prints it as a
string. Intermediate results are written as hex dumps.

/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*
* Copyright IBM Corp. 2011
*
*/

#include <stdio.h>
#include <string.h>
#include <errno.h>

#include <ica_api.h>

#define DES_CIPHER_BLOCK_SIZE 8

/* Prints hex values to standard out. */
static void dump_data(unsigned char *data, unsigned long length);
/* Prints a description of the return value to standard out. */
static int handle_ica_error(int rc);

© Copyright IBM Corp. 2009, 2016 91

int main(char **argv, int argc)
{
int rc;
libica_version_info version;

/* This example uses a static key. In real life you would
* use your real DES key, which is negotiated between the
* encrypting and the decrypting entity.
*
* Note: DES key size is cipher block size (DES_CIPHER_BLOCK_SIZE)
*/

unsigned char des_key[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

};

/* This is the plain data, you want to encrypt. For the
* encryption mode, used in this example, it is necessary,
* that the length of the encrypted data is a multiple of
* cipher block size (DES_CIPHER_BLOCK_SIZE).
*/

unsigned char plain_data[] = {
0x55, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x6c, 0x69,
0x62, 0x69, 0x63, 0x61, 0x20, 0x69, 0x73, 0x20,
0x73, 0x6d, 0x61, 0x72, 0x74, 0x20, 0x61, 0x6e,
0x64, 0x20, 0x65, 0x61, 0x73, 0x79, 0x21, 0x00,

};

unsigned char cipher_data[sizeof(plain_data)];
unsigned char decrypt_data[sizeof(plain_data)];

/* Print out libica version.
*/

ica_get_version(&version);
printf("libica version %i.%i.%i\n\n",

version.major_version,
version.minor_version,
version.fixpack_version);

/* Dump key and plain data to standard output, just for
* a visual control.
*/

printf("DES key:\n");
dump_data(des_key, DES_CIPHER_BLOCK_SIZE);
printf("plain data:\n");
dump_data(plain_data, sizeof(plain_data));

/* Encrypt plain data to cipher data, using libica API.
*/

rc = ica_des_ecb(plain_data, cipher_data, sizeof(plain_data),
des_key,
ICA_ENCRYPT);

/* Error handling (if necessary).
*/

if (rc)
return handle_ica_error(rc);

/* Dump encrypted data.
*/

printf("encrypted data:\n");
dump_data(cipher_data, sizeof(plain_data));

/* Decrypt cipher data to decrypted data, using libica API.
* Note: The same DES key must be used for encryption and decryption.
*/

rc = ica_des_ecb(cipher_data, decrypt_data, sizeof(plain_data),
des_key,

92 libica Programmer's Reference

ICA_DECRYPT);

/* Error handling (if necessary).
*/
if (rc)
return handle_ica_error(rc);

/* Dump decrypted data.
* Note: Please compare output with the plain data, they are the same.
*/
printf("decrypted data:\n");
dump_data(decrypt_data, sizeof(plain_data));

/* Surprise... :-)
* Note: The following will only work in this example!
*/
printf("%s\n", decrypt_data);

}

static void dump_data(unsigned char *data, unsigned long length)
{
unsigned char *ptr;
int i;

for (ptr = data, i = 1; ptr < (data+length); ptr++, i++) {
printf("0x%02x ", *ptr);
if ((i % DES_CIPHER_BLOCK_SIZE) == 0)
printf("\n");

}
if (i % DES_CIPHER_BLOCK_SIZE)
printf("\n");

}

static int handle_ica_error(int rc)
{
switch (rc) {
case 0:
printf("OK\n");
break;
case EINVAL:
printf("Incorrect parameter.\n");
break;
case EPERM:
printf("Operation not permitted by Hardware (CPACF).\n");
break;
case EIO:
printf("I/O error.\n");
break;
default:
printf("unknown error.\n");
}

return rc;
}

SHA-256 example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2005, 2009, 2011 */
/* (C) COPYRIGHT International Business Machines Corp. 2005, 2009 */
#include <fcntl.h>
#include <sys/errno.h>

Chapter 7. Examples 93

#include <stdio.h>
#include <string.h>
#include "ica_api.h"

#define NUM_FIPS_TESTS 3

unsigned char FIPS_TEST_DATA[NUM_FIPS_TESTS][64] = {
// Test 0: "abc"
{ 0x61,0x62,0x63 },
// Test 1: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
{

0x61,0x62,0x63,0x64,0x62,0x63,0x64,0x65,0x63,0x64,0x65,0x66,0x64,0x65,0x66,0x67,
0x65,0x66,0x67,0x68,0x66,0x67,0x68,0x69,0x67,0x68,0x69,0x6a,0x68,0x69,0x6a,0x6b,
0x69,0x6a,0x6b,0x6c,0x6a,0x6b,0x6c,0x6d,0x6b,0x6c,0x6d,0x6e,0x6c,0x6d,0x6e,0x6f,
0x6d,0x6e,0x6f,0x70,0x6e,0x6f,0x70,0x71,

},
// Test 2: 1,000,000 ’a’ -- don’t actually use this... see the special case
// in the loop below.
{

0x61,
},

};

unsigned int FIPS_TEST_DATA_SIZE[NUM_FIPS_TESTS] = {
// Test 0: "abc"
3,
// Test 1: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
56,
// Test 2: 1,000,000 ’a’
1000000,

};

unsigned char FIPS_TEST_RESULT[NUM_FIPS_TESTS][LENGTH_SHA256_HASH] =
{

// Hash for test 0: "abc"
{

0xBA,0x78,0x16,0xBF,0x8F,0x01,0xCF,0xEA,0x41,0x41,0x40,0xDE,0x5D,0xAE,0x22,0x23,
0xB0,0x03,0x61,0xA3,0x96,0x17,0x7A,0x9C,0xB4,0x10,0xFF,0x61,0xF2,0x00,0x15,0xAD,

},
// Hash for test 1: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
{

0x24,0x8D,0x6A,0x61,0xD2,0x06,0x38,0xB8,0xE5,0xC0,0x26,0x93,0x0C,0x3E,0x60,0x39,
0xA3,0x3C,0xE4,0x59,0x64,0xFF,0x21,0x67,0xF6,0xEC,0xED,0xD4,0x19,0xDB,0x06,0xC1,

},
// Hash for test 2: 1,000,000 ’a’
{

0xCD,0xC7,0x6E,0x5C,0x99,0x14,0xFB,0x92,0x81,0xA1,0xC7,0xE2,0x84,0xD7,0x3E,0x67,
0xF1,0x80,0x9A,0x48,0xA4,0x97,0x20,0x0E,0x04,0x6D,0x39,0xCC,0xC7,0x11,0x2C,0xD0,

},
};

void dump_array(unsigned char *ptr, unsigned int size)
{

unsigned char *ptr_end;
unsigned char *h;
int i = 1, trunc = 0;

if (size > 64) {
trunc = size - 64;
size = 64;

}
h = ptr;
ptr_end = ptr + size;
while (h < ptr_end) {

printf("0x%02x ", *h);
h++;
if (i == 8) {

94 libica Programmer's Reference

if (h != ptr_end)
printf("\n");

i = 1;
} else {
++i;

}
}
printf("\n");
if (trunc > 0)

printf("... %d bytes not printed\n", trunc);
}

int old_api_sha256_test(void)
{

ICA_ADAPTER_HANDLE adapter_handle;
SHA256_CONTEXT Sha256Context;
int rc = 0, i = 0;
unsigned char input_data[1000000];
unsigned int output_hash_length = LENGTH_SHA256_HASH;
unsigned char output_hash[LENGTH_SHA256_HASH];

rc = icaOpenAdapter(0, &adapter_handle);
if (rc != 0) {

printf("icaOpenAdapter failed and returned %d (0x%x).\n", rc, rc);
if (rc == ENODEV)

printf("The usual cause of this on zSeries is that the CPACF instruction is not available.\n");
return 2;

}

for (i = 0; i < NUM_FIPS_TESTS; i++) {
// Test 2 is a special one, because we want to keep the size of the
// executable down, so we build it special, instead of using a static
if (i != 2)

memcpy(input_data, FIPS_TEST_DATA[i], FIPS_TEST_DATA_SIZE[i]);
else

memset(input_data, ’a’, FIPS_TEST_DATA_SIZE[i]);

printf("\nOriginal data for test %d:\n", i);
dump_array(input_data, FIPS_TEST_DATA_SIZE[i]);

rc = icaSha256(adapter_handle,
SHA_MSG_PART_ONLY,
FIPS_TEST_DATA_SIZE[i],
input_data,
LENGTH_SHA256_CONTEXT,
&Sha256Context,
&output_hash_length,
output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x).\n", rc, rc);
return 2;

}

if (output_hash_length != LENGTH_SHA256_HASH) {
printf("icaSha256 returned an incorrect output data length, %u (0x%x).\n",

output_hash_length, output_hash_length);
return 2;

}

printf("\nOutput hash for test %d:\n", i);
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[i], LENGTH_SHA256_HASH) != 0) {

printf("This does NOT match the known result.\n");
} else {

printf("Yes, it’s what it should be.\n");

Chapter 7. Examples 95

}
}

// This test is the same as test 2, except that we use the SHA256_CONTEXT and
// break it into calls of 1024 bytes each.
printf("\nOriginal data for test 2(chunks = 1024) is calls of 1024 ’a’s at a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {

unsigned int shaMessagePart;
memset(input_data, ’a’, 1024);

if (i == FIPS_TEST_DATA_SIZE[2])
shaMessagePart = SHA_MSG_PART_FIRST;

else if (i <= 1024)
shaMessagePart = SHA_MSG_PART_FINAL;

else
shaMessagePart = SHA_MSG_PART_MIDDLE;

rc = icaSha256(adapter_handle,
shaMessagePart,
(i < 1024) ? i : 1024,
input_data,
LENGTH_SHA256_CONTEXT,
&Sha256Context,
&output_hash_length,
output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x) on iteration %d.\n", rc, rc, i);
return 2;

}

i -= 1024;
}

if (output_hash_length != LENGTH_SHA256_HASH) {
printf("icaSha256 returned an incorrect output data length, %u (0x%x).\n",

output_hash_length, output_hash_length);
return 2;

}

printf("\nOutput hash for test 2(chunks = 1024):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0) {

printf("This does NOT match the known result.\n");
} else {

printf("Yes, it’s what it should be.\n");
}

// This test is the same as test 2, except that we use the SHA256_CONTEXT and
// break it into calls of 64 bytes each.
printf("\nOriginal data for test 2(chunks = 64) is calls of 64 ’a’s at a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {

unsigned int shaMessagePart;
memset(input_data, ’a’, 64);

if (i == FIPS_TEST_DATA_SIZE[2])
shaMessagePart = SHA_MSG_PART_FIRST;

else if (i <= 64)
shaMessagePart = SHA_MSG_PART_FINAL;

else
shaMessagePart = SHA_MSG_PART_MIDDLE;

rc = icaSha256(adapter_handle,
shaMessagePart,
(i < 64) ? i : 64,

96 libica Programmer's Reference

input_data,
LENGTH_SHA256_CONTEXT,
&Sha256Context,
&output_hash_length,
output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x) on iteration %d.\n", rc, rc, i);
return 2;

}

i -= 64;
}

if (output_hash_length != LENGTH_SHA256_HASH) {
printf("icaSha256 returned an incorrect output data length, %u (0x%x).\n",

output_hash_length, output_hash_length);
return 2;

}

printf("\nOutput hash for test 2(chunks = 64):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0) {

printf("This does NOT match the known result.\n");
} else {

printf("Yes, it’s what it should be.\n");
}

printf("\nAll SHA256 tests completed successfully\n");

icaCloseAdapter(adapter_handle);

return 0;
}

int new_api_sha256_test(void)
{
sha256_context_t sha256_context;
int rc = 0, i = 0;
unsigned char input_data[1000000];
unsigned int output_hash_length = LENGTH_SHA256_HASH;
unsigned char output_hash[LENGTH_SHA256_HASH];

for (i = 0; i < NUM_FIPS_TESTS; i++) {
// Test 2 is a special one, because we want to keep the size of the
// executable down, so we build it special, instead of using a static
if (i != 2)
memcpy(input_data, FIPS_TEST_DATA[i], FIPS_TEST_DATA_SIZE[i]);
else
memset(input_data, ’a’, FIPS_TEST_DATA_SIZE[i]);

printf("\nOriginal data for test %d:\n", i);
dump_array(input_data, FIPS_TEST_DATA_SIZE[i]);

rc = ica_sha256(SHA_MSG_PART_ONLY, FIPS_TEST_DATA_SIZE[i], input_data,
&sha256_context, output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x).\n", rc, rc);
return rc;
}

printf("\nOutput hash for test %d:\n", i);
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[i], LENGTH_SHA256_HASH) != 0)
printf("This does NOT match the known result.\n");
else

Chapter 7. Examples 97

printf("Yes, it’s what it should be.\n");
}

// This test is the same as test 2, except that we use the SHA256_CONTEXT and
// break it into calls of 1024 bytes each.
printf("\nOriginal data for test 2(chunks = 1024) is calls of 1024"

" ’a’s at a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {
unsigned int sha_message_part;
memset(input_data, ’a’, 1024);

if (i == FIPS_TEST_DATA_SIZE[2])
sha_message_part = SHA_MSG_PART_FIRST;
else if (i <= 1024)
sha_message_part = SHA_MSG_PART_FINAL;
else
sha_message_part = SHA_MSG_PART_MIDDLE;

rc = ica_sha256(sha_message_part, (i < 1024) ? i : 1024,
input_data, &sha256_context, output_hash);

if (rc != 0) {
printf("ica_sha256 failed with errno %d (0x%x) on"

" iteration %d.\n", rc, rc, i);
return rc;
}
i -= 1024;

}

printf("\nOutput hash for test 2(chunks = 1024):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0)
printf("This does NOT match the known result.\n");

else
printf("Yes, it’s what it should be.\n");

// This test is the same as test 2, except that we use the
// SHA256_CONTEXT and break it into calls of 64 bytes each.
printf("\nOriginal data for test 2(chunks = 64) is calls of 64 ’a’s at"

" a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {
unsigned int sha_message_part;
memset(input_data, ’a’, 64);

if (i == FIPS_TEST_DATA_SIZE[2])
sha_message_part = SHA_MSG_PART_FIRST;
else if (i <= 64)
sha_message_part = SHA_MSG_PART_FINAL;
else
sha_message_part = SHA_MSG_PART_MIDDLE;

rc = ica_sha256(sha_message_part, (i < 64) ? i : 64,
input_data, &sha256_context, output_hash);

if (rc != 0) {
printf("ica_sha256 failed with errno %d (0x%x) on iteration"

" %d.\n", rc, rc, i);
return rc;
}
i -= 64;

}

printf("\nOutput hash for test 2(chunks = 64):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0)

98 libica Programmer's Reference

printf("This does NOT match the known result.\n");
else
printf("Yes, it’s what it should be.\n");

printf("\nAll SHA256 tests completed successfully\n");

return 0;
}

int main(int argc, char **argv)
{
int rc = 0;
rc = old_api_sha256_test();
if (rc) {
printf("old_api_sha256_test: returned rc = %i\n", rc);
return rc;
}

rc = new_api_sha256_test();
if (rc) {
printf("new_api_sha256_test: returned rc = %i\n", rc);
return rc;
}

return rc;
}

Pseudo random number generation example
This example uses the libica version 1 API. Examples for using the libica version
2.4 API for random number generation are located in other examples, such as the
DES with CTR mode example.

/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include "ica_api.h"

unsigned char R[512];

extern int errno;

void dump_array(unsigned char *ptr, unsigned int size)
{

unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {

printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {

printf("\n");
i = 1;

} else {
++i;

Chapter 7. Examples 99

}
}
printf("\n");

}

int main(int ac, char **av)
{

int rc;
ICA_ADAPTER_HANDLE adapter_handle;

rc = icaOpenAdapter(0, &adapter_handle);
if (rc != 0) {

printf("icaOpenAdapter failed and returned %d (0x%x).\n", rc, rc);
}

rc = icaRandomNumberGenerate(adapter_handle, sizeof R, R);
if (rc != 0) {

printf("icaRandomNumberGenerate failed and returned %d (0x%x).\n", rc, rc);
#ifdef __s390__

if (rc == ENODEV)
printf("The usual cause of this on zSeries is that the CPACF instruction is not available.\n");

#endif
}
else {

printf("\nHere it is:\n");
}

dump_array(R, sizeof R);

if (!rc) {
printf("\nWell, does it look random?\n\n");

}

icaCloseAdapter(adapter_handle);

return 0;
}

Key generation example
This example uses the various key generation APIs, as well as those to open and
close an adapter, and random number generation.

/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* (C) COPYRIGHT International Business Machines Corp. 2001, 2009 */
#include <sys/errno.h>
#include <fcntl.h>
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "ica_api.h"

#define KEY_BYTES ((key_bits + 7) / 8)
#define KEY_BYTES_MAX 256

extern int errno;

void dump_array(char *ptr, int size)
{
char *ptr_end;
char *h;

100 libica Programmer's Reference

int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");

}

int main(int argc, char **argv)
{
ICA_ADAPTER_HANDLE adapter_handle;
ICA_KEY_RSA_CRT crtkey;
ICA_KEY_RSA_MODEXPO wockey, wockey2;
unsigned char decrypted[KEY_BYTES_MAX], encrypted[KEY_BYTES_MAX],

original[KEY_BYTES_MAX];
int rc;
unsigned int length, length2;
unsigned int exponent_type = RSA_PUBLIC_FIXED, key_bits = 1024;

length = sizeof wockey;
length2 = sizeof wockey2;
bzero(&wockey, sizeof wockey);
bzero(&wockey2, sizeof wockey2);

rc = icaOpenAdapter(0, &adapter_handle);
if (rc != 0) {
printf("icaOpenAdapter failed and returned %d (0x%x).\n", rc,

rc);
}
exponent_type = RSA_PUBLIC_FIXED;
printf("a fixed exponent . . .\n");
rc = icaRandomNumberGenerate(adapter_handle, KEY_BYTES,

wockey.keyRecord);
if (rc != 0) {

printf("icaRandomNumberGenerate failed and returned %d (0x%x)"
".\n", rc, rc);

return -1;
}
wockey.nLength = KEY_BYTES / 2;
wockey.expLength = sizeof(unsigned long);
wockey.expOffset = SZ_HEADER_MODEXPO;
wockey.keyRecord[wockey.expLength - 1] |= 1;
if (argc > 1) {
key_bits = atoi(argv[1]);
if (key_bits > KEY_BYTES_MAX * 8) {
printf("The maximum key length is %d bits.",

KEY_BYTES_MAX * 8);
exit(0);
}
wockey.modulusBitLength = key_bits;
printf("Using %u-bit keys and ", key_bits);
if (argc > 2) {
switch (argv[2][0]) {
case ’3’:
exponent_type = RSA_PUBLIC_3;
printf("exponent 3 . . .\n");
wockey.expLength = 1;

Chapter 7. Examples 101

break;
case ’6’:
exponent_type = RSA_PUBLIC_65537;
printf("exponent 65537 . . .\n");
wockey.expLength = 3;
break;

case ’R’:
case ’r’:
exponent_type = RSA_PUBLIC_RANDOM;
printf("a random exponent . . .\n");
break;

default:
break;

}
}

}

rc = icaRandomNumberGenerate(adapter_handle, sizeof(original),
original);

if (rc != 0) {
printf("icaRandomNumberGenerate failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;

}
original[0] = 0;

rc = icaRsaKeyGenerateModExpo(adapter_handle, key_bits, exponent_type,
&length, &wockey, &length2, &wockey2);

if (rc != 0) {
printf("icaRsaKeyGenerateModExpo failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;

}

printf("Public key:\n");
dump_array((char *) wockey.keyRecord, 2 * KEY_BYTES);
printf("Private key:\n");
dump_array((char *) wockey2.keyRecord, 2 * KEY_BYTES);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
printf("encrypt \n");
rc = icaRsaModExpo(adapter_handle, KEY_BYTES, original, &wockey,

&length, encrypted);
if (rc != 0) {
printf("icaRsaModExpo failed and returned %d (0x%x).\n", rc, rc);
return rc;

}
bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
printf("decrypt \n");
rc = icaRsaModExpo(adapter_handle, KEY_BYTES, encrypted, &wockey2,

&length, decrypted);
if (rc != 0) {
printf("icaRsaModExpo failed and returned %d (0x%x).\n", rc,

rc);
return rc;

}

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext. Failure!\n");

102 libica Programmer's Reference

icaCloseAdapter(adapter_handle);
return errno ? errno : -1;
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext."

"That can’t be good.\n");
return -1;
}
}
fflush(stdout);

length = sizeof wockey;
length2 = sizeof crtkey;
bzero(&wockey, sizeof wockey);
wockey.expLength = sizeof(unsigned long);
if (exponent_type == RSA_PUBLIC_FIXED) {
wockey.keyType = KEYTYPE_MODEXPO;
wockey.keyLength = sizeof wockey;
wockey.modulusBitLength = key_bits;
wockey.nLength = KEY_BYTES;
wockey.expOffset = SZ_HEADER_MODEXPO;
wockey.expLength = sizeof (unsigned long);
wockey.nOffset = KEY_BYTES + wockey.expOffset;
rc = icaRandomNumberGenerate(adapter_handle, KEY_BYTES,

wockey.keyRecord);
if (rc != 0) {
printf("icaRandomNumberGenerate failed and returned %d"

"(0x%x).\n", rc, rc);
return rc;
}
wockey.keyRecord[wockey.expLength - 1] |= 1;
}
rc = icaRsaKeyGenerateCrt(adapter_handle, key_bits, exponent_type,

&length, &wockey, &length2, &crtkey);
printf("wockey.modulusBitLength = %i, crtkey.modulusBitLength = %i"

" \n", wockey.modulusBitLength, crtkey.modulusBitLength);
if (rc != 0) {
printf("icaRsaKeyGenerateCrt failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;
}

printf("Public key:\n");
dump_array((char *) wockey.keyRecord, 2 * KEY_BYTES);
printf("Private key:\n");
dump_array((char *) crtkey.keyRecord, 5 * KEY_BYTES / 2 + 24);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
rc = icaRsaModExpo(adapter_handle, KEY_BYTES, original, &wockey,

&length, encrypted);
if (rc != 0)
printf("icaRsaModExpo failed and returned %d (0x%x).\n", rc, rc);

bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
rc = icaRsaCrt(adapter_handle, KEY_BYTES, encrypted, &crtkey, &length,

decrypted);
if (rc != 0)
printf("icaRsaCrt failed and returned %d (0x%x).\n", rc, rc);

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");

Chapter 7. Examples 103

dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext. Failure!\n");
icaCloseAdapter(adapter_handle);
return errno ? errno : -1;

} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext. That can’t be good.\n");
return -1;
}

}
fflush(stdout);

printf("TEST NEW API - MOD_EXPO\n");
rc = ica_close_adapter(adapter_handle);
printf("ica_close_adapter rc = %i\n", rc);

rc = ica_open_adapter(&adapter_handle);
if (rc)
printf("Adapter not open\n");

else
printf("Adapter open\n");

ica_rsa_key_mod_expo_t modexpo_public_key;
unsigned char modexpo_public_n[KEY_BYTES];
bzero(modexpo_public_n, KEY_BYTES);
unsigned char modexpo_public_e[KEY_BYTES];
bzero(modexpo_public_e, KEY_BYTES);
modexpo_public_key.modulus = modexpo_public_n;
modexpo_public_key.exponent = modexpo_public_e;
modexpo_public_key.key_length = KEY_BYTES;
if (exponent_type == RSA_PUBLIC_65537)
(unsigned long)((unsigned char *)modexpo_public_key.exponent +

modexpo_public_key.key_length -
sizeof(unsigned long)) = 65537;

if (exponent_type == RSA_PUBLIC_3)
(unsigned long)((unsigned char *)modexpo_public_key.exponent +

modexpo_public_key.key_length -
sizeof(unsigned long)) = 3;

ica_rsa_key_mod_expo_t modexpo_private_key;
unsigned char modexpo_private_n[KEY_BYTES];
bzero(modexpo_private_n, KEY_BYTES);
unsigned char modexpo_private_e[KEY_BYTES];
bzero(modexpo_private_e, KEY_BYTES);
modexpo_private_key.modulus = modexpo_private_n;
modexpo_private_key.exponent = modexpo_private_e;
modexpo_private_key.key_length = KEY_BYTES;

rc = ica_rsa_key_generate_mod_expo(adapter_handle,
key_bits,
&modexpo_public_key,
&modexpo_private_key);

if (rc)
printf("ica_rsa_key_generate_mod_expo rc = %i\n",rc);

printf("Public key:\n");
dump_array((char *) (char *)modexpo_public_key.exponent, KEY_BYTES);
dump_array((char *) (char *)modexpo_public_key.modulus, KEY_BYTES);
printf("Private key:\n");
dump_array((char *) (char *)modexpo_private_key.exponent, KEY_BYTES);
dump_array((char *) (char *)modexpo_private_key.modulus, KEY_BYTES);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
printf("encrypt \n");

104 libica Programmer's Reference

rc = ica_rsa_mod_expo(adapter_handle, original, &modexpo_public_key,
encrypted);

if (rc != 0) {
printf("ica_rsa_mod_expo failed and returned %d (0x%x).\n", rc,

rc);
return rc;
}
bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
printf("decrypt \n");
rc = ica_rsa_mod_expo(adapter_handle, encrypted, &modexpo_private_key,

decrypted);
if (rc != 0) {
printf("ica_rsa_mod_expo failed and returned %d (0x%x).\n", rc,

rc);
return rc;
}

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext. Failure!\n");
return -1;
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext. That can’t be good.\n");
return -1;
}
}
fflush(stdout);

printf("TEST NEW API - CRT\n");
ica_rsa_key_mod_expo_t public_key;
ica_rsa_key_crt_t private_key;

unsigned char public_n[KEY_BYTES];
bzero(public_n, KEY_BYTES);
unsigned char public_e[KEY_BYTES];
bzero(public_e, KEY_BYTES);
public_key.modulus = public_n;
public_key.exponent = public_e;
public_key.key_length = KEY_BYTES;

unsigned char private_p[(key_bits + 7) / (8 * 2) + 8];
bzero(private_p, KEY_BYTES + 1);
unsigned char private_q[(key_bits + 7) / (8 * 2)];
bzero(private_q, KEY_BYTES);
unsigned char private_dp[(key_bits + 7) / (8 * 2) + 8];
bzero(private_dp, KEY_BYTES + 1);
unsigned char private_dq[(key_bits + 7) / (8 * 2)];
bzero(private_dq, KEY_BYTES);
unsigned char private_qInverse[(key_bits + 7) / (8 * 2) + 8];
bzero(private_qInverse, KEY_BYTES + 1);
private_key.p = private_p;
private_key.q = private_q;
private_key.dp = private_dp;
private_key.dq = private_dq;
private_key.qInverse = private_qInverse;
private_key.key_length = (key_bits + 7) / 8;

if (exponent_type == RSA_PUBLIC_65537)

Chapter 7. Examples 105

(unsigned long)((unsigned char *)public_key.exponent +
public_key.key_length -
sizeof(unsigned long)) = 65537;

if (exponent_type == RSA_PUBLIC_3)
(unsigned long)((unsigned char *)public_key.exponent +

public_key.key_length -
sizeof(unsigned long)) = 3;

rc = ica_rsa_key_generate_crt(adapter_handle, key_bits, &public_key,
&private_key);

if (rc != 0) {
printf("ica_rsa_key_generate_crt failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;

}

printf("Public key:\n");
dump_array((char *) (char *)&public_key, 2 * KEY_BYTES);
printf("Private key:\n");
dump_array((char *) (char *)&private_key, 5 * KEY_BYTES / 2 + 24);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
rc = ica_rsa_mod_expo(adapter_handle, original, &public_key, encrypted);
if (rc != 0) {
printf("ica_rsa_mod_expo failed and returned %d (0x%x).\n",

rc, rc);
return rc;

}
bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
rc = ica_rsa_crt(adapter_handle, encrypted, &private_key, decrypted);
if (rc != 0) {
printf("icaRsaCrt failed and returned %d (0x%x).\n", rc, rc);
return rc;

}

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext."

"Failure!\n");
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext."

"That can’t be good.\n");
}

}
fflush(stdout);
ica_close_adapter(adapter_handle);
return 0;
}

RSA example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2001, 2009, 2011 */

106 libica Programmer's Reference

#include <fcntl.h>
#include <memory.h>
#include <sys/errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "ica_api.h"

unsigned char pubkey1024[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 };

unsigned char modulus1024[] =
{ 0xec, 0x51, 0xab, 0xa1, 0xf8, 0x40, 0x2c, 0x08,

0x2e, 0x24, 0x52, 0x2e, 0x3c, 0x51, 0x6d, 0x98,
0xad, 0xee, 0xc7, 0x7d, 0x00, 0xaf, 0xe1, 0xa8,
0x61, 0xda, 0x32, 0x97, 0xb4, 0x32, 0x97, 0xe3,
0x52, 0xda, 0x28, 0x45, 0x55, 0xc6, 0xb2, 0x46,
0x65, 0x1b, 0x02, 0xcb, 0xbe, 0xf4, 0x2c, 0x6b,
0x2a, 0x5f, 0xe1, 0xdf, 0xe9, 0xe3, 0xbc, 0x47,
0xb7, 0x38, 0xb5, 0xa2, 0x78, 0x9d, 0x15, 0xe2,
0x59, 0x81, 0x77, 0x6b, 0x6b, 0x2e, 0xa9, 0xdb,
0x13, 0x26, 0x9c, 0xca, 0x5e, 0x0a, 0x1f, 0x3c,
0x50, 0x9d, 0xd6, 0x79, 0x59, 0x99, 0x50, 0xe5,
0x68, 0x1a, 0x98, 0xca, 0x11, 0xce, 0x37, 0x63,
0x58, 0x22, 0x40, 0x19, 0x29, 0x72, 0x4c, 0x41,
0x89, 0x0b, 0x56, 0x9e, 0x3e, 0xd5, 0x6d, 0x75,
0x9e, 0x3f, 0x8a, 0x50, 0xf1, 0x0a, 0x59, 0x4a,
0xc3, 0x59, 0x4b, 0xf6, 0xbb, 0xc9, 0xa5, 0x93 };

unsigned char Bp[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0xa7, 0xcf, 0xa2, 0x18, 0x2c, 0xa9, 0xb4, 0xb9,
0xf5, 0x9e, 0xc9, 0x04, 0x16, 0xd9, 0xa6, 0x8b,
0x90, 0x4a, 0x19, 0x6d, 0x64, 0xb7, 0x17, 0x67,
0x53, 0xfa, 0x4e, 0x8d, 0xde, 0xa6, 0x94, 0x32,
0x5d, 0xcf, 0x58, 0x3e, 0x90, 0xbb, 0x30, 0x19,
0x96, 0x38, 0x95, 0xb6, 0xca, 0x2f, 0xfa, 0x22,
0x81, 0x65, 0x3b, 0x3c, 0x95, 0x9e, 0x79, 0x75,
0xe4, 0x93, 0x50, 0xf1, 0x88, 0x6b, 0xc1, 0x87 };

unsigned char Bq[] =
{ 0xa0, 0x3a, 0x18, 0xa4, 0x1c, 0x3c, 0x49, 0x09,

0xd0, 0x84, 0x4a, 0x8c, 0x7c, 0xce, 0xdf, 0x9e,
0x90, 0x7d, 0xc4, 0xca, 0x7e, 0x2d, 0x3d, 0xbc,
0x09, 0x71, 0x79, 0xd0, 0xc0, 0xae, 0xa6, 0xc1,
0x9d, 0xf0, 0x16, 0xf0, 0x1f, 0x68, 0x9a, 0xc5,
0x2b, 0xf3, 0x5a, 0xfc, 0x2c, 0xf5, 0xa7, 0xec,
0xd9, 0xa2, 0xac, 0x49, 0xcc, 0x76, 0x9c, 0xd8,
0x4c, 0x59, 0x5e, 0x38, 0xd2, 0x85, 0xd3, 0x3b };

Chapter 7. Examples 107

unsigned char Np[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0xfb, 0xb7, 0x73, 0x24, 0x42, 0xfe, 0x8f, 0x16,
0xf0, 0x6e, 0x2d, 0x86, 0x22, 0x46, 0x79, 0xd1,
0x58, 0x6f, 0x26, 0x24, 0x17, 0x12, 0xa3, 0x1a,
0xfd, 0xf7, 0x75, 0xd4, 0xcd, 0xf9, 0xde, 0x4b,
0x8c, 0xb7, 0x04, 0x5d, 0xd9, 0x18, 0xc8, 0x26,
0x61, 0x54, 0xe0, 0x92, 0x2f, 0x47, 0xf7, 0x33,
0xc2, 0x17, 0xd8, 0xda, 0xe0, 0x6d, 0xb6, 0x30,
0xd6, 0xdc, 0xf9, 0x6a, 0x4c, 0xa1, 0xa2, 0x4b };

unsigned char Nq[] =
{ 0xf0, 0x57, 0x24, 0xf6, 0x2a, 0x5a, 0x6d, 0x8e,

0xb8, 0xc6, 0x6f, 0xd2, 0xbb, 0x36, 0x4f, 0x6d,
0xd8, 0xbc, 0xa7, 0x2f, 0xbd, 0x43, 0xdc, 0x9a,
0x0e, 0x2a, 0x36, 0xb9, 0x21, 0x05, 0xfa, 0x22,
0x6c, 0xe8, 0x22, 0x68, 0x2f, 0x1c, 0xe8, 0x27,
0xc1, 0xed, 0x08, 0x7a, 0x43, 0x70, 0x7b, 0xe3,
0x46, 0x74, 0x02, 0x6e, 0xb2, 0xb1, 0xeb, 0x44,
0x72, 0x86, 0x0d, 0x55, 0x3b, 0xc8, 0xbc, 0xd9 };

unsigned char U[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x83, 0xf1, 0xca, 0x06, 0x58, 0x4a, 0x04, 0x5e,
0x96, 0xb5, 0x30, 0x32, 0x40, 0x36, 0x48, 0xb9,
0x02, 0x0c, 0xe3, 0x37, 0xb7, 0x51, 0xbc, 0x22,
0x26, 0x5d, 0x74, 0x03, 0x47, 0xd3, 0x33, 0x20,
0x8e, 0x75, 0x62, 0xf2, 0x9d, 0x4e, 0xc8, 0x7d,
0x5d, 0x8e, 0xb6, 0xd9, 0x69, 0x4a, 0x9a, 0xe1,
0x36, 0x6e, 0x1c, 0xbe, 0x8a, 0x14, 0xb1, 0x85,
0x39, 0x74, 0x7c, 0x25, 0xd8, 0xa4, 0x4f, 0xde };

unsigned char R[128];

unsigned char A[] =
{ 0x00, 0x02, 0x08, 0x68, 0x30, 0x9a, 0x32, 0x08,

0x57, 0xb0, 0x28, 0xaa, 0x76, 0x30, 0x3d, 0x84,
0x5f, 0x92, 0x0d, 0x8e, 0x34, 0xe0, 0xd5, 0xcc,
0x36, 0x97, 0xed, 0x00, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23,
0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33,
0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43,
0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b,
0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53,
0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b,
0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63 };

unsigned char Ciphertext[] =
{ 0xb2, 0xb2, 0x82, 0xd7, 0x2c, 0x6f, 0x53, 0x29,

0xee, 0x4c, 0xd1, 0x77, 0xb7, 0x13, 0xf3, 0x1c,
0x51, 0x60, 0xd8, 0xa9, 0x4e, 0x52, 0x72, 0x43,
0x29, 0xfa, 0x51, 0xaa, 0xd8, 0xbc, 0x31, 0x21,
0xe0, 0xac, 0x9b, 0x4e, 0x0, 0x94, 0xac, 0x91,
0x7f, 0x1e, 0xfd, 0xfb, 0x1c, 0xfa, 0xa8, 0xe8,
0x56, 0x5a, 0x1, 0x17, 0xf1, 0x5f, 0x1, 0xba,
0xcd, 0x77, 0xa1, 0x8c, 0x74, 0x8a, 0xef, 0xfa,
0x64, 0x58, 0x79, 0x13, 0xaa, 0x54, 0x13, 0x2b,
0xaa, 0xe7, 0xc3, 0x50, 0x3b, 0x69, 0x3b, 0xb,

108 libica Programmer's Reference

0x9a, 0xa9, 0x9d, 0x15, 0x8a, 0x6, 0x45, 0x71,
0x40, 0x7a, 0x80, 0x85, 0x4a, 0xbe, 0x68, 0x48,
0x6c, 0xe6, 0xdd, 0x96, 0xb0, 0xdc, 0xf4, 0x23,
0xa8, 0xea, 0x21, 0x9f, 0xbc, 0x6b, 0x15, 0xa4,
0x87, 0x6e, 0x93, 0x56, 0xae, 0xa7, 0x17, 0x4e,
0xd7, 0x14, 0xe4, 0x69, 0x4, 0xd5, 0x2e, 0x62 };

extern int errno;

void dump_array(unsigned char *ptr, unsigned int size)
{

unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {

printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {

printf("\n");
i = 1;

} else {
++i;

}
}
printf("\n");

}

int main()
{

ICA_ADAPTER_HANDLE adapter_handle;
ICA_KEY_RSA_CRT icakey;
ICA_KEY_RSA_MODEXPO wockey;
caddr_t key;
caddr_t my_result;
caddr_t my_result2;
/* icaRsaModExpo_t rsawoc; */
int i;
unsigned int length;

i = icaOpenAdapter(0, &adapter_handle);
if (i != 0) {

printf("icaOpenAdapter failed and returned %d (0x%x), errno=%d\n", i, i, errno);
return i;

}

/*
* encrypt with public key
*/

printf("modulus size = %ld\n", (long)sizeof(modulus1024));
bzero(&wockey, sizeof(wockey));
wockey.keyType = KEYTYPE_MODEXPO;
wockey.keyLength = sizeof(ICA_KEY_RSA_MODEXPO);
wockey.modulusBitLength = sizeof(modulus1024) * 8;
wockey.nLength = sizeof(modulus1024);
wockey.expLength = sizeof(pubkey1024);

key = (caddr_t)wockey.keyRecord;

bcopy(&pubkey1024, key, sizeof(pubkey1024));
wockey.expOffset = key - (char *) &wockey;
key += sizeof(pubkey1024);
bcopy(&modulus1024, key, sizeof(modulus1024));

Chapter 7. Examples 109

wockey.nOffset = key - (char *) &wockey;

my_result = (caddr_t) malloc(sizeof(A));
bzero(my_result, sizeof(A));
length = sizeof(A);

printf("wockey.modulusBitLength = %i\n", wockey.modulusBitLength);
if ((i = icaRsaModExpo(adapter_handle, sizeof(A), A,

&wockey, &length, (unsigned char *)my_result)) != 0) {
printf("icaRsaModExpo failed and returned %d (0x%x).\n", i, i);

}

printf("\n\n\n\n\n result of encrypt with public key\n");
dump_array((unsigned char *)my_result,sizeof(A));
printf("Ciphertext \n");
dump_array(Ciphertext,sizeof(A));
if (memcmp(my_result,Ciphertext,sizeof(A))){

printf("Ciphertext mismatch\n");
return 0;

} else {
printf("ENCRYPT WORKED\n");

}

bzero(&icakey, sizeof(icakey));

/* Card level CRT operation */
icakey.keyType = KEYTYPE_PKCSCRT;
icakey.keyLength = sizeof(ICA_KEY_RSA_CRT);
icakey.modulusBitLength = sizeof(modulus1024)*8;

my_result2 = (caddr_t)malloc(sizeof(A));
bzero(my_result2,sizeof(A));

key = (caddr_t)icakey.keyRecord;
/*
* Bp is copied into the key */

bcopy(Bp,key,sizeof(Bp));
icakey.dpLength = sizeof(Bp);
icakey.dpOffset = key - (char *)&icakey;
key += sizeof(Bp);
/*
* Bq is copied into the key */

bcopy(Bq,key,sizeof(Bq));
icakey.dqLength = sizeof(Bq);
icakey.dqOffset = key - (char *)&icakey;
key += sizeof(Bq);
/*
* Np is copied into the key */

bcopy(Np,key,sizeof(Np));
icakey.pLength = sizeof(Np);
icakey.pOffset = key - (char *)&icakey;
key += sizeof(Np);
/*
* Nq is copied into the key */

bcopy(Nq,key,sizeof(Nq));
icakey.qLength = sizeof(Nq);
icakey.qOffset = key - (char *)&icakey;
key += sizeof(Nq);
/*
* U is copied into the key */

bcopy(U,key,sizeof(U));
icakey.qInvLength = sizeof(U);
icakey.qInvOffset = key - (char *)&icakey;
key += sizeof(U);

/* printf("size of Bp=%d\n",sizeof(Bp));

110 libica Programmer's Reference

printf("size of Bq=%d\n",sizeof(Bq));
printf("size of Np=%d\n",sizeof(Np));
printf("size of Nq=%d\n",sizeof(Nq));
printf("size of U=%d\n",sizeof(U));
printf("size of R=%d\n",sizeof(R));

printf("icakey private Key record\n");
dump_array(&icakey,sizeof(ICA_KEY_RSA_CRT)); */

length = sizeof(Ciphertext);
icakey.modulusBitLength = length * 8;
icakey.keyLength = length;

if ((i = icaRsaCrt(adapter_handle, sizeof(Ciphertext), Ciphertext,
&icakey, &length, (unsigned char *)my_result2)) != 0) {

printf("icaRsaCrt failed and returned %d (0x%x).\n", i, i);
}

printf("Result of decrypt\n");
dump_array((unsigned char *)my_result2, sizeof(A));
printf("original data\n");
dump_array(A, sizeof(A));
if(memcmp(A,my_result2,sizeof(A)) != 0) {

printf("Results do not match. Failure!\n");
return -1;

} else {
printf("Results match!\n");

}

icaCloseAdapter(adapter_handle);

return 0;
}

DES with CTR mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_RANDOM_TESTS 100

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;

Chapter 7. Examples 111

} else {
++i;
}

}
printf("\n");
}

void dump_ctr_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);
}

int random_des_ctr(int iteration, int silent, unsigned int data_length, unsigned int iv_length)
{
unsigned int key_length = sizeof(ica_des_key_single_t);
if (data_length % sizeof(ica_des_vector_t))
iv_length = sizeof(ica_des_vector_t);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
rc = ica_random_number_generate(data_length, input_data);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;

}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;

}

rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;

}
memcpy(tmp_iv, iv, iv_length);

rc = ica_des_ctr(input_data, encrypt, data_length, key, tmp_iv,
32,1);

if (rc) {
printf("ica_des_ctr encrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
return rc;

}
if (!silent && !rc) {

112 libica Programmer's Reference

printf("Encrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

memcpy(tmp_iv, iv, iv_length);
rc = ica_des_ctr(encrypt, decrypt, data_length, key, tmp_iv,

32, 0);
if (rc) {
printf("ica_des_ctr decrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int main(int argc, char **argv)
{
unsigned int silent = 0;
unsigned int endless = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;
if (strstr(argv[1], "endless"))
endless = 1;

}
int rc = 0;
int error_count = 0;
int i = 0;
unsigned int data_length = sizeof(ica_des_key_single_t);
unsigned int iv_length = sizeof(ica_des_key_single_t);

if (endless) {
silent = 1;
while (1) {
printf("i = %i\n",i);
rc = random_des_ctr(i, silent, 320, 320);
if (rc) {
printf("kat_des_ctr failed with rc = %i\n",
rc);

return rc;
} else
printf("kat_des_ctr finished successfuly\n");

i++;
}
} else {
for (i = 1; i < NR_RANDOM_TESTS; i++) {
rc = random_des_ctr(i, silent, data_length, iv_length);

if (rc) {
printf("random_des_ctr failed with rc = %i\n",

Chapter 7. Examples 113

rc);
error_count++;

} else
printf("random_des_ctr finished "
"successfuly\n");

if (!(data_length % sizeof(ica_des_key_single_t))) {
/* Always when the full block size is reached use a

* counter with the same size as the data */
rc = random_des_ctr(i, silent,

data_length, data_length);
if (rc) {

printf("random_des_ctr failed with "
"rc = %i\n", rc);

error_count++;
} else

printf("random_des_ctr finished "
"successfuly\n");

}
data_length++;
}

}

if (error_count)
printf("%i testcases failed\n", error_count);

else
printf("All testcases finished successfully\n");

return rc;
}

Triple DES with CBC mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_RANDOM_TESTS 10000

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}

}

114 libica Programmer's Reference

printf("\n");
}

void dump_cbc_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;

}

int random_3des_cbc(int iteration, int silent, unsigned int data_length)
{
unsigned int iv_length = sizeof(ica_des_vector_t);
unsigned int key_length = sizeof(ica_des_key_triple_t);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

Chapter 7. Examples 115

rc = ica_3des_cbc(input_data, encrypt, data_length, key, tmp_iv, 1);
if (rc) {
printf("ica_3des_cbc encrypt failed with rc = %i\n", rc);
dump_cbc_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_cbc_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (rc) {
printf("3DES CBC test exited after encryption\n");
return rc;

}

memcpy(tmp_iv, iv, iv_length);

rc = ica_3des_cbc(encrypt, decrypt, data_length, key, tmp_iv,
0);

if (rc) {
printf("ica_3des_cbc decrypt failed with rc = %i\n", rc);
dump_cbc_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;

}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_cbc_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;

}
return rc;
}

int main(int argc, char **argv)
{
// Default mode is 0. ECB,CBC and CFQ tests will be performed.
unsigned int silent = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
unsigned int data_length = sizeof(ica_des_vector_t);
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
int silent = 1;
rc = random_3des_cbc(iteration, silent, data_length);
if (rc) {
printf("random_3des_cbc failed with rc = %i\n", rc);
error_count++;
goto out;
} else

116 libica Programmer's Reference

printf("random_3des_cbc finished successfuly\n");
data_length += sizeof(ica_des_vector_t);
}

out:
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

AES with CFB mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 12
#define NR_RANDOM_TESTS 1000

/* CFB128 data -1- AES128 */
unsigned char NIST_KEY_CFB_E1[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_CFB_E1[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_CFB_E1[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,

};

unsigned char NIST_TEST_DATA_CFB_E1[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_CFB_E1[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,

};

unsigned int NIST_LCFB_E1 = 128 / 8;

/* CFB128 data -2- AES128 */
unsigned char NIST_KEY_CFB_E2[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_CFB_E2[] = {

Chapter 7. Examples 117

0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned char NIST_EXPECTED_IV_CFB_E2[] = {
0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,
0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b,
};

unsigned char NIST_TEST_DATA_CFB_E2[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CFB_E2[] = {
0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,
0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b,
};

unsigned int NIST_LCFB_E2 = 128 / 8;

/* CFB8 data -3- AES128 */
unsigned char NIST_KEY_CFB_E3[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CFB_E3[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E3[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b,
};
unsigned char NIST_TEST_DATA_CFB_E3[] = {
0x6b,
};

unsigned char NIST_TEST_RESULT_CFB_E3[] = {
0x3b,
};
unsigned int NIST_LCFB_E3 = 8 / 8;

/* CFB8 data -4- AES128 */
unsigned char NIST_KEY_CFB_E4[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CFB_E4[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b,
};

unsigned char NIST_EXPECTED_IV_CFB_E4[] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b, 0x79,
};
unsigned char NIST_TEST_DATA_CFB_E4[] = {
0xc1,
};

unsigned char NIST_TEST_RESULT_CFB_E4[] = {
0x79,
};

118 libica Programmer's Reference

unsigned int NIST_LCFB_E4 = 8 / 8;

/* CFB 128 data -5- for AES192 */
unsigned char NIST_KEY_CFB_E5[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,

};

unsigned char NIST_IV_CFB_E5[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_CFB_E5[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,

};

unsigned char NIST_TEST_DATA_CFB_E5[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_CFB_E5[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,

};

unsigned int NIST_LCFB_E5 = 128 / 8;

/* CFB 128 data -6- for AES192 */
unsigned char NIST_KEY_CFB_E6[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,

};

unsigned char NIST_IV_CFB_E6[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,

};

unsigned char NIST_EXPECTED_IV_CFB_E6[] = {
0x67, 0xce, 0x7f, 0x7f, 0x81, 0x17, 0x36, 0x21,
0x96, 0x1a, 0x2b, 0x70, 0x17, 0x1d, 0x3d, 0x7a,

};

unsigned char NIST_TEST_DATA_CFB_E6[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

};

unsigned char NIST_TEST_RESULT_CFB_E6[] = {
0x67, 0xce, 0x7f, 0x7f, 0x81, 0x17, 0x36, 0x21,
0x96, 0x1a, 0x2b, 0x70, 0x17, 0x1d, 0x3d, 0x7a,

};

unsigned int NIST_LCFB_E6 = 128 / 8;

/* CFB 128 data -7- for AES192 */
unsigned char NIST_KEY_CFB_E7[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,

Chapter 7. Examples 119

};

unsigned char NIST_IV_CFB_E7[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E7[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd,
};

unsigned char NIST_TEST_DATA_CFB_E7[] = {
0x6b,
};

unsigned char NIST_TEST_RESULT_CFB_E7[] = {
0xcd,
};

unsigned int NIST_LCFB_E7 = 8 / 8;

/* CFB 128 data -8- for AES192 */
unsigned char NIST_KEY_CFB_E8[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_CFB_E8[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd,
};

unsigned char NIST_EXPECTED_IV_CFB_E8[] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd, 0xa2,
};

unsigned char NIST_TEST_DATA_CFB_E8[] = {
0xc1,
};

unsigned char NIST_TEST_RESULT_CFB_E8[] = {
0xa2,
};

unsigned int NIST_LCFB_E8 = 8 / 8;

/* CFB128 data -9- for AES256 */
unsigned char NIST_KEY_CFB_E9[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E9[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E9[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

120 libica Programmer's Reference

};

unsigned char NIST_TEST_DATA_CFB_E9[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_CFB_E9[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

};

unsigned int NIST_LCFB_E9 = 128 / 8;

/* CFB128 data -10- for AES256 */
unsigned char NIST_KEY_CFB_E10[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CFB_E10[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

};

unsigned char NIST_EXPECTED_IV_CFB_E10[] = {
0x39, 0xff, 0xed, 0x14, 0x3b, 0x28, 0xb1, 0xc8,
0x32, 0x11, 0x3c, 0x63, 0x31, 0xe5, 0x40, 0x7b,

};

unsigned char NIST_TEST_DATA_CFB_E10[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

};

unsigned char NIST_TEST_RESULT_CFB_E10[] = {
0x39, 0xff, 0xed, 0x14, 0x3b, 0x28, 0xb1, 0xc8,
0x32, 0x11, 0x3c, 0x63, 0x31, 0xe5, 0x40, 0x7b,

};

unsigned int NIST_LCFB_E10 = 128 / 8;

/* CFB8 data -11- for AES256 */
unsigned char NIST_KEY_CFB_E11[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CFB_E11[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_CFB_E11[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc,

};

unsigned char NIST_TEST_DATA_CFB_E11[] = {
0x6b,

};

unsigned char NIST_TEST_RESULT_CFB_E11[] = {

Chapter 7. Examples 121

0xdc,
};

unsigned int NIST_LCFB_E11 = 8 / 8;

/* CFB8 data -12- for AES256 */
unsigned char NIST_KEY_CFB_E12[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E12[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc,
};

unsigned char NIST_EXPECTED_IV_CFB_E12[] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc, 0x1f,
};

unsigned char NIST_TEST_DATA_CFB_E12[] = {
0xc1,
};

unsigned char NIST_TEST_RESULT_CFB_E12[] = {
0x1f,
};

unsigned int NIST_LCFB_E12 = 8 / 8;

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}

}
printf("\n");
}

void dump_cfb_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");

122 libica Programmer's Reference

dump_array(output_data, data_length);
}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_CFB_E1);
*iv_length = sizeof(NIST_IV_CFB_E1);
*key_length = sizeof(NIST_KEY_CFB_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_CFB_E2);
*iv_length = sizeof(NIST_IV_CFB_E2);
*key_length = sizeof(NIST_KEY_CFB_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_CFB_E3);
*iv_length = sizeof(NIST_IV_CFB_E3);
*key_length = sizeof(NIST_KEY_CFB_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_CFB_E4);
*iv_length = sizeof(NIST_IV_CFB_E4);
*key_length = sizeof(NIST_KEY_CFB_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_CFB_E5);
*iv_length = sizeof(NIST_IV_CFB_E5);
*key_length = sizeof(NIST_KEY_CFB_E5);
break;
case 6:
*data_length = sizeof(NIST_TEST_DATA_CFB_E6);
*iv_length = sizeof(NIST_IV_CFB_E6);
*key_length = sizeof(NIST_KEY_CFB_E6);
break;
case 7:
*data_length = sizeof(NIST_TEST_DATA_CFB_E7);
*iv_length = sizeof(NIST_IV_CFB_E7);
*key_length = sizeof(NIST_KEY_CFB_E7);
break;
case 8:
*data_length = sizeof(NIST_TEST_DATA_CFB_E8);
*iv_length = sizeof(NIST_IV_CFB_E8);
*key_length = sizeof(NIST_KEY_CFB_E8);
break;
case 9:
*data_length = sizeof(NIST_TEST_DATA_CFB_E9);
*iv_length = sizeof(NIST_IV_CFB_E9);
*key_length = sizeof(NIST_KEY_CFB_E9);
break;
case 10:
*data_length = sizeof(NIST_TEST_DATA_CFB_E10);
*iv_length = sizeof(NIST_IV_CFB_E10);
*key_length = sizeof(NIST_KEY_CFB_E10);
break;
case 11:
*data_length = sizeof(NIST_TEST_DATA_CFB_E11);
*iv_length = sizeof(NIST_IV_CFB_E11);
*key_length = sizeof(NIST_KEY_CFB_E11);
break;
case 12:
*data_length = sizeof(NIST_TEST_DATA_CFB_E12);
*iv_length = sizeof(NIST_IV_CFB_E12);
*key_length = sizeof(NIST_KEY_CFB_E12);
break;

Chapter 7. Examples 123

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *iv, unsigned char *expected_iv,
unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned int *lcfb, unsigned int iteration)

{
switch (iteration) {
case 1:
memcpy(data, NIST_TEST_DATA_CFB_E1, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E1, data_length);
memcpy(iv, NIST_IV_CFB_E1, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E1, iv_length);
memcpy(key, NIST_KEY_CFB_E1, key_length);
*lcfb = NIST_LCFB_E1;
break;
case 2:
memcpy(data, NIST_TEST_DATA_CFB_E2, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E2, data_length);
memcpy(iv, NIST_IV_CFB_E2, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E2, iv_length);
memcpy(key, NIST_KEY_CFB_E2, key_length);
*lcfb = NIST_LCFB_E2;
break;
case 3:
memcpy(data, NIST_TEST_DATA_CFB_E3, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E3, data_length);
memcpy(iv, NIST_IV_CFB_E3, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E3, iv_length);
memcpy(key, NIST_KEY_CFB_E3, key_length);
*lcfb = NIST_LCFB_E3;
break;
case 4:
memcpy(data, NIST_TEST_DATA_CFB_E4, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E4, data_length);
memcpy(iv, NIST_IV_CFB_E4, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E4, iv_length);
memcpy(key, NIST_KEY_CFB_E4, key_length);
*lcfb = NIST_LCFB_E4;
break;
case 5:
memcpy(data, NIST_TEST_DATA_CFB_E5, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E5, data_length);
memcpy(iv, NIST_IV_CFB_E5, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E5, iv_length);
memcpy(key, NIST_KEY_CFB_E5, key_length);
*lcfb = NIST_LCFB_E5;
break;
case 6:
memcpy(data, NIST_TEST_DATA_CFB_E6, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E6, data_length);
memcpy(iv, NIST_IV_CFB_E6, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E6, iv_length);
memcpy(key, NIST_KEY_CFB_E6, key_length);
*lcfb = NIST_LCFB_E6;
break;
case 7:
memcpy(data, NIST_TEST_DATA_CFB_E7, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E7, data_length);
memcpy(iv, NIST_IV_CFB_E7, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E7, iv_length);
memcpy(key, NIST_KEY_CFB_E7, key_length);
*lcfb = NIST_LCFB_E7;

124 libica Programmer's Reference

break;
case 8:
memcpy(data, NIST_TEST_DATA_CFB_E8, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E8, data_length);
memcpy(iv, NIST_IV_CFB_E8, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E8, iv_length);
memcpy(key, NIST_KEY_CFB_E8, key_length);
*lcfb = NIST_LCFB_E8;
break;
case 9:
memcpy(data, NIST_TEST_DATA_CFB_E9, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E9, data_length);
memcpy(iv, NIST_IV_CFB_E9, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E9, iv_length);
memcpy(key, NIST_KEY_CFB_E9, key_length);
*lcfb = NIST_LCFB_E9;
break;
case 10:
memcpy(data, NIST_TEST_DATA_CFB_E10, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E10, data_length);
memcpy(iv, NIST_IV_CFB_E10, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E10, iv_length);
memcpy(key, NIST_KEY_CFB_E10, key_length);
*lcfb = NIST_LCFB_E10;
break;
case 11:
memcpy(data, NIST_TEST_DATA_CFB_E11, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E11, data_length);
memcpy(iv, NIST_IV_CFB_E11, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E11, iv_length);
memcpy(key, NIST_KEY_CFB_E11, key_length);
*lcfb = NIST_LCFB_E11;
break;
case 12:
memcpy(data, NIST_TEST_DATA_CFB_E12, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E12, data_length);
memcpy(iv, NIST_IV_CFB_E12, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E12, iv_length);
memcpy(key, NIST_KEY_CFB_E12, key_length);
*lcfb = NIST_LCFB_E12;
break;

}

}

int kat_aes_cfb(int iteration, int silent)
{
unsigned int data_length;
unsigned int iv_length;
unsigned int key_length;

get_sizes(&data_length, &iv_length, &key_length, iteration);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char expected_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;
unsigned int lcfb;
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

Chapter 7. Examples 125

load_test_data(input_data, data_length, result, iv, expected_iv,
iv_length, key, key_length, &lcfb, iteration);

memcpy(tmp_iv, iv, iv_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i,"

" lcfb = %i\n", key_length, data_length, iv_length, lcfb);

if (iteration == 3)
rc = ica_aes_cfb(input_data, encrypt, lcfb, key, key_length, tmp_iv,

lcfb, 1);
else
rc = ica_aes_cfb(input_data, encrypt, data_length, key, key_length,

tmp_iv, lcfb, 1);
if (rc) {
printf("ica_aes_cfb encrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;

}

if (memcmp(expected_iv, tmp_iv, iv_length)) {
printf("Update of IV does not match the expected IV!\n");
printf("Expected IV:\n");
dump_array(expected_iv, iv_length);
printf("Updated IV:\n");
dump_array(tmp_iv, iv_length);
printf("Original IV:\n");
dump_array(iv, iv_length);
rc++;

}
if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;

}

memcpy(tmp_iv, iv, iv_length);
if (iteration == 3)
rc = ica_aes_cfb(encrypt, decrypt, lcfb, key, key_length, tmp_iv,

lcfb, 0);
else
rc = ica_aes_cfb(encrypt, decrypt, data_length, key, key_length,

tmp_iv, lcfb, 0);
if (rc) {
printf("ica_aes_cfb decrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;

}

if (!silent && !rc) {
printf("Decrypt:\n");

126 libica Programmer's Reference

dump_cfb_data(iv, iv_length, key, key_length, encrypt,
data_length, decrypt);

}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;

}

int random_aes_cfb(int iteration, int silent, unsigned int data_length,
unsigned int lcfb)

{
unsigned int iv_length = sizeof(ica_aes_vector_t);
unsigned int key_length = AES_KEY_LEN128;

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
for (key_length = AES_KEY_LEN128; key_length <= AES_KEY_LEN256; key_length += 8) {
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i,"

" lcfb = %i\n", key_length, data_length, iv_length, lcfb);

Chapter 7. Examples 127

rc = ica_aes_cfb(input_data, encrypt, data_length, key, key_length,
tmp_iv, lcfb, 1);

if (rc) {
printf("ica_aes_cfb encrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;

}

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_cfb(encrypt, decrypt, data_length, key, key_length,
tmp_iv, lcfb, 0);

if (rc) {
printf("ica_aes_cfb decrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;

}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;

}
}
return rc;
}

int main(int argc, char **argv)
{
unsigned int silent = 0;
unsigned int endless = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;
if (strstr(argv[1], "endless"))
endless = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_cfb(iteration, silent);
if (rc) {
printf("kat_aes_cfb failed with rc = %i\n", rc);
error_count++;
} else

128 libica Programmer's Reference

printf("kat_aes_cfb finished successfuly\n");

}

unsigned int data_length = 1;
unsigned int lcfb = 1;
unsigned int j;
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
for (j = 1; j <= 3; j++) {
int silent = 1;
if (!(data_length % lcfb)) {
rc = random_aes_cfb(iteration, silent, data_length, lcfb);
if (rc) {
printf("random_aes_cfb failed with rc = %i\n", rc);
error_count++;

} else
printf("random_aes_cfb finished successfuly\n");

}
switch (j) {
case 1:
lcfb = 1;
break;

case 2:
lcfb = 8;
break;

case 3:
lcfb = 16;
break;

}
}
if (data_length == 1)
data_length = 8;
else
data_length += 8;

}
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

AES with CTR mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 7

/* CTR data - 1 for AES128 */
unsigned char NIST_KEY_CTR_E1[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

Chapter 7. Examples 129

unsigned char NIST_IV_CTR_E1[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E1[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
};

unsigned char NIST_TEST_DATA_CTR_E1[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CTR_E1[] = {
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
};

/* CTR data - 2 for AES128 */
unsigned char NIST_KEY_CTR_E2[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CTR_E2[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E2[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,
};

unsigned char NIST_TEST_DATA_CTR_E2[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
};

unsigned char NIST_TEST_RESULT_CTR_E2[] = {
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff,
0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e,
0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1,
0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee,
};

/* CTR data - 3 - for AES192 */
unsigned char NIST_KEY_CTR_E3[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

130 libica Programmer's Reference

unsigned char NIST_IV_CTR_E3[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

};

unsigned char NIST_EXPECTED_IV_CTR_E3[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,

};

unsigned char NIST_TEST_DATA_CTR_E3[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_CTR_E3[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,

};

/* CTR data - 4 - for AES192 */
unsigned char NIST_KEY_CTR_E4[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CTR_E4[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,

};

unsigned char NIST_EXPECTED_IV_CTR_E4[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,

};

unsigned char NIST_TEST_DATA_CTR_E4[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

};

unsigned char NIST_TEST_RESULT_CTR_E4[] = {
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,

};

/* CTR data 5 - for AES 256 */
unsigned char NIST_KEY_CTR_E5[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CTR_E5[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

};

unsigned char NIST_EXPECTED_IV_CTR_E5[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,

};

unsigned char NIST_TEST_DATA_CTR_E5[] = {

Chapter 7. Examples 131

0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
};

unsigned char NIST_TEST_RESULT_CTR_E5[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6,
};

/* CTR data 6 - for AES 256.
* Data is != BLOCK_SIZE */
unsigned char NIST_KEY_CTR_E6[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E6[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E6[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,
};

unsigned char NIST_TEST_DATA_CTR_E6[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
};

unsigned char NIST_TEST_RESULT_CTR_E6[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
};

/* CTR data 7 - for AES 256
* Counter as big as the data. Therefore the counter
* should not be updated. Because it is already pre
* computed. */
unsigned char NIST_KEY_CTR_E7[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,

132 libica Programmer's Reference

0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CTR_E7[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x02,

};

unsigned char NIST_EXPECTED_IV_CTR_E7[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x02,

};

unsigned char NIST_TEST_DATA_CTR_E7[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,

};

unsigned char NIST_TEST_RESULT_CTR_E7[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6,

};

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}

Chapter 7. Examples 133

printf("\n");
}

void dump_ctr_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);
}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_CTR_E1);
*iv_length = sizeof(NIST_IV_CTR_E1);
*key_length = sizeof(NIST_KEY_CTR_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_CTR_E2);
*iv_length = sizeof(NIST_IV_CTR_E2);
*key_length = sizeof(NIST_KEY_CTR_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_CTR_E3);
*iv_length = sizeof(NIST_IV_CTR_E3);
*key_length = sizeof(NIST_KEY_CTR_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_CTR_E4);
*iv_length = sizeof(NIST_IV_CTR_E4);
*key_length = sizeof(NIST_KEY_CTR_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_CTR_E5);
*iv_length = sizeof(NIST_IV_CTR_E5);
*key_length = sizeof(NIST_KEY_CTR_E5);
break;
case 6:
*data_length = sizeof(NIST_TEST_DATA_CTR_E6);
*iv_length = sizeof(NIST_IV_CTR_E6);
*key_length = sizeof(NIST_KEY_CTR_E6);
break;
case 7:
*data_length = sizeof(NIST_TEST_DATA_CTR_E7);
*iv_length = sizeof(NIST_IV_CTR_E7);
*key_length = sizeof(NIST_KEY_CTR_E7);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *iv, unsigned char *expected_iv,
unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned int iteration)

134 libica Programmer's Reference

{
switch (iteration) {
case 1:
memcpy(data, NIST_TEST_DATA_CTR_E1, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E1, data_length);
memcpy(iv, NIST_IV_CTR_E1, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E1, iv_length);
memcpy(key, NIST_KEY_CTR_E1, key_length);
break;
case 2:
memcpy(data, NIST_TEST_DATA_CTR_E2, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E2, data_length);
memcpy(iv, NIST_IV_CTR_E2, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E2, iv_length);
memcpy(key, NIST_KEY_CTR_E2, key_length);
break;
case 3:
memcpy(data, NIST_TEST_DATA_CTR_E3, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E3, data_length);
memcpy(iv, NIST_IV_CTR_E3, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E3, iv_length);
memcpy(key, NIST_KEY_CTR_E3, key_length);
break;
case 4:
memcpy(data, NIST_TEST_DATA_CTR_E4, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E4, data_length);
memcpy(iv, NIST_IV_CTR_E4, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E4, iv_length);
memcpy(key, NIST_KEY_CTR_E4, key_length);
break;
case 5:
memcpy(data, NIST_TEST_DATA_CTR_E5, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E5, data_length);
memcpy(iv, NIST_IV_CTR_E5, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E5, iv_length);
memcpy(key, NIST_KEY_CTR_E5, key_length);
break;
case 6:
memcpy(data, NIST_TEST_DATA_CTR_E6, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E6, data_length);
memcpy(iv, NIST_IV_CTR_E6, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E6, iv_length);
memcpy(key, NIST_KEY_CTR_E6, key_length);
break;
case 7:
memcpy(data, NIST_TEST_DATA_CTR_E7, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E7, data_length);
memcpy(iv, NIST_IV_CTR_E7, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E7, iv_length);
memcpy(key, NIST_KEY_CTR_E7, key_length);
break;

}

}

int random_aes_ctr(int iteration, int silent, unsigned int data_length, unsigned int iv_length)
{
unsigned int key_length = AES_KEY_LEN256;
if (data_length % sizeof(ica_aes_vector_t))
iv_length = sizeof(ica_aes_vector_t);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];

Chapter 7. Examples 135

unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
rc = ica_random_number_generate(data_length, input_data);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;

}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;

}

rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;

}
memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_ctr(input_data, encrypt, data_length, key, key_length,
tmp_iv, 32, 1);

if (rc) {
printf("ica_aes_ctr encrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
return rc;

}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

memcpy(tmp_iv, iv, iv_length);
rc = ica_aes_ctr(encrypt, decrypt, data_length, key, key_length,

tmp_iv, 32, 0);
if (rc) {
printf("ica_aes_ctr decrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;

}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;

}
return rc;
}

int kat_aes_ctr(int iteration, int silent)

136 libica Programmer's Reference

{
unsigned int data_length;
unsigned int iv_length;
unsigned int key_length;

get_sizes(&data_length, &iv_length, &key_length, iteration);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char expected_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;

load_test_data(input_data, data_length, result, iv, expected_iv,
iv_length, key, key_length, iteration);

memcpy(tmp_iv, iv, iv_length);

if (iv_length == 16)
rc = ica_aes_ctr(input_data, encrypt, data_length, key, key_length,

tmp_iv, 32, 1);
else
rc = ica_aes_ctrlist(input_data, encrypt, data_length, key, key_length,

tmp_iv, 1);
if (rc) {
printf("ica_aes_ctr encrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

if (memcmp(expected_iv, tmp_iv, iv_length)) {
printf("Update of IV does not match the expected IV!\n");
printf("Expected IV:\n");
dump_array(expected_iv, iv_length);
printf("Updated IV:\n");
dump_array(tmp_iv, iv_length);
printf("Original IV:\n");
dump_array(iv, iv_length);
rc++;
}
if (rc) {
printf("AES CTR test exited after encryption\n");
return rc;
}

Chapter 7. Examples 137

memcpy(tmp_iv, iv, iv_length);
rc = ica_aes_ctr(encrypt, decrypt, data_length, key, key_length,

tmp_iv, 32,0);
if (rc) {
printf("ica_aes_ctr decrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;

}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;

}
return rc;
}

int main(int argc, char **argv)
{
// Default mode is 0. ECB,CBC and CFQ tests will be performed.
unsigned int silent = 0;
unsigned int endless = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;
if (strstr(argv[1], "endless"))
endless = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
if (!endless)
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_ctr(iteration, silent);
if (rc) {
printf("kat_aes_ctr failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_ctr finished successfuly\n");

}
int i = 0;
if (endless)
while (1) {
printf("i = %i\n",i);
silent = 1;
rc = random_aes_ctr(i, silent, 320, 320);
if (rc) {
printf("kat_aes_ctr failed with rc = %i\n", rc);
return rc;
} else
printf("kat_aes_ctr finished successfuly\n");
i++;

}

if (error_count)

138 libica Programmer's Reference

printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

AES with OFB mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 6
#define NR_RANDOM_TESTS 10000

/* OFB data - 1 for AES128 */
unsigned char NIST_KEY_OFB_E1[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_OFB_E1[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_OFB_E1[] = {
0x50, 0xfe, 0x67, 0xcc, 0x99, 0x6d, 0x32, 0xb6,
0xda, 0x09, 0x37, 0xe9, 0x9b, 0xaf, 0xec, 0x60,

};

unsigned char NIST_TEST_DATA_OFB_E1[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_OFB_E1[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,

};

/* OFB data - 2 for AES128 */
unsigned char NIST_KEY_OFB_E2[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_OFB_E2[] = {
0x50, 0xfe, 0x67, 0xcc, 0x99, 0x6d, 0x32, 0xb6,
0xda, 0x09, 0x37, 0xe9, 0x9b, 0xaf, 0xec, 0x60,

};

unsigned char NIST_EXPECTED_IV_OFB_E2[] = {
0xd9, 0xa4, 0xda, 0xda, 0x08, 0x92, 0x23, 0x9f,
0x6b, 0x8b, 0x3d, 0x76, 0x80, 0xe1, 0x56, 0x74,

Chapter 7. Examples 139

};

unsigned char NIST_TEST_DATA_OFB_E2[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_OFB_E2[] = {
0x77, 0x89, 0x50, 0x8d, 0x16, 0x91, 0x8f, 0x03,
0xf5, 0x3c, 0x52, 0xda, 0xc5, 0x4e, 0xd8, 0x25,
};

/* OFB data - 3 - for AES192 */
unsigned char NIST_KEY_OFB_E3[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_OFB_E3[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_OFB_E3[] = {
0xa6, 0x09, 0xb3, 0x8d, 0xf3, 0xb1, 0x13, 0x3d,
0xdd, 0xff, 0x27, 0x18, 0xba, 0x09, 0x56, 0x5e,
};

unsigned char NIST_TEST_DATA_OFB_E3[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_OFB_E3[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

/* OFB data - 4 - for AES192 */
unsigned char NIST_KEY_OFB_E4[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_OFB_E4[] = {
0xa6, 0x09, 0xb3, 0x8d, 0xf3, 0xb1, 0x13, 0x3d,
0xdd, 0xff, 0x27, 0x18, 0xba, 0x09, 0x56, 0x5e,
};

unsigned char NIST_EXPECTED_IV_OFB_E4[] = {
0x52, 0xef, 0x01, 0xda, 0x52, 0x60, 0x2f, 0xe0,
0x97, 0x5f, 0x78, 0xac, 0x84, 0xbf, 0x8a, 0x50,
};

unsigned char NIST_TEST_DATA_OFB_E4[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_OFB_E4[] = {
0xfc, 0xc2, 0x8b, 0x8d, 0x4c, 0x63, 0x83, 0x7c,
0x09, 0xe8, 0x17, 0x00, 0xc1, 0x10, 0x04, 0x01,
};

/* OFB data 5 - for AES 256 */

140 libica Programmer's Reference

unsigned char NIST_KEY_OFB_E5[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_OFB_E5[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_OFB_E5[] = {
0xb7, 0xbf, 0x3a, 0x5d, 0xf4, 0x39, 0x89, 0xdd,
0x97, 0xf0, 0xfa, 0x97, 0xeb, 0xce, 0x2f, 0x4a,

};

unsigned char NIST_TEST_DATA_OFB_E5[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_OFB_E5[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

};

/* OFB data 6 - for AES 256 */
unsigned char NIST_KEY_OFB_E6[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_OFB_E6[] = {
0xb7, 0xbf, 0x3a, 0x5d, 0xf4, 0x39, 0x89, 0xdd,
0x97, 0xf0, 0xfa, 0x97, 0xeb, 0xce, 0x2f, 0x4a,

};

unsigned char NIST_EXPECTED_IV_OFB_E6[] = {
0xe1, 0xc6, 0x56, 0x30, 0x5e, 0xd1, 0xa7, 0xa6,
0x56, 0x38, 0x05, 0x74, 0x6f, 0xe0, 0x3e, 0xdc,

};

unsigned char NIST_TEST_DATA_OFB_E6[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

};

unsigned char NIST_TEST_RESULT_OFB_E6[] = {
0x4f, 0xeb, 0xdc, 0x67, 0x40, 0xd2, 0x0b, 0x3a,
0xc8, 0x8f, 0x6a, 0xd8, 0x2a, 0x4f, 0xb0, 0x8d,

};

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;

Chapter 7. Examples 141

if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}

}
printf("\n");
}

void dump_ofb_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);
}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_OFB_E1);
*iv_length = sizeof(NIST_IV_OFB_E1);
*key_length = sizeof(NIST_KEY_OFB_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_OFB_E2);
*iv_length = sizeof(NIST_IV_OFB_E2);
*key_length = sizeof(NIST_KEY_OFB_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_OFB_E3);
*iv_length = sizeof(NIST_IV_OFB_E3);
*key_length = sizeof(NIST_KEY_OFB_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_OFB_E4);
*iv_length = sizeof(NIST_IV_OFB_E4);
*key_length = sizeof(NIST_KEY_OFB_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_OFB_E5);
*iv_length = sizeof(NIST_IV_OFB_E5);
*key_length = sizeof(NIST_KEY_OFB_E5);
break;
case 6:
*data_length = sizeof(NIST_TEST_DATA_OFB_E6);
*iv_length = sizeof(NIST_IV_OFB_E6);
*key_length = sizeof(NIST_KEY_OFB_E6);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *iv, unsigned char *expected_iv,
unsigned int iv_length,

142 libica Programmer's Reference

unsigned char *key, unsigned int key_length,
unsigned int iteration)

{
switch (iteration) {
case 1:
memcpy(data, NIST_TEST_DATA_OFB_E1, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E1, data_length);
memcpy(iv, NIST_IV_OFB_E1, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E1, iv_length);
memcpy(key, NIST_KEY_OFB_E1, key_length);
break;
case 2:
memcpy(data, NIST_TEST_DATA_OFB_E2, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E2, data_length);
memcpy(iv, NIST_IV_OFB_E2, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E2, iv_length);
memcpy(key, NIST_KEY_OFB_E2, key_length);
break;
case 3:
memcpy(data, NIST_TEST_DATA_OFB_E3, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E3, data_length);
memcpy(iv, NIST_IV_OFB_E3, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E3, iv_length);
memcpy(key, NIST_KEY_OFB_E3, key_length);
break;
case 4:
memcpy(data, NIST_TEST_DATA_OFB_E4, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E4, data_length);
memcpy(iv, NIST_IV_OFB_E4, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E4, iv_length);
memcpy(key, NIST_KEY_OFB_E4, key_length);
break;
case 5:
memcpy(data, NIST_TEST_DATA_OFB_E5, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E5, data_length);
memcpy(iv, NIST_IV_OFB_E5, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E5, iv_length);
memcpy(key, NIST_KEY_OFB_E5, key_length);
break;
case 6:
memcpy(data, NIST_TEST_DATA_OFB_E6, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E6, data_length);
memcpy(iv, NIST_IV_OFB_E6, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E6, iv_length);
memcpy(key, NIST_KEY_OFB_E6, key_length);
break;

}

}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}

Chapter 7. Examples 143

rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;

}
return rc;
}

int random_aes_ofb(int iteration, int silent, unsigned int data_length)
{
int i;
int rc = 0;
unsigned int iv_length = sizeof(ica_aes_vector_t);
unsigned int key_length = AES_KEY_LEN128;
unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
for (i = 0; i <= 2; i++) {

unsigned char key[key_length];

memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);
printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

rc = ica_aes_ofb(input_data, encrypt, data_length, key, key_length,
tmp_iv, 1);

if (rc) {
printf("ica_aes_ofb encrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;

}

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_ofb(encrypt, decrypt, data_length, key, key_length,
tmp_iv, 0);

if (rc) {
printf("ica_aes_ofb decrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;

}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

144 libica Programmer's Reference

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
return rc;
}
key_length += 8;

}

return rc;
}

int kat_aes_ofb(int iteration, int silent)
{
unsigned int data_length;
unsigned int iv_length;
unsigned int key_length;

get_sizes(&data_length, &iv_length, &key_length, iteration);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char expected_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;

load_test_data(input_data, data_length, result, iv, expected_iv,
iv_length, key, key_length, iteration);

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_ofb(input_data, encrypt, data_length, key, key_length,
tmp_iv, 1);

if (rc) {
printf("ica_aes_ofb encrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

Chapter 7. Examples 145

if (memcmp(expected_iv, tmp_iv, iv_length)) {
printf("Update of IV does not match the expected IV!\n");
printf("Expected IV:\n");
dump_array(expected_iv, iv_length);
printf("Updated IV:\n");
dump_array(tmp_iv, iv_length);
printf("Original IV:\n");
dump_array(iv, iv_length);
rc++;

}
if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;

}

memcpy(tmp_iv, iv, iv_length);
rc = ica_aes_ofb(encrypt, decrypt, data_length, key, key_length,

tmp_iv, 0);
if (rc) {
printf("ica_aes_ofb decrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;

}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;

}
return rc;
}

int main(int argc, char **argv)
{
unsigned int silent = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
unsigned int data_length = sizeof(ica_aes_vector_t);
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_ofb(iteration, silent);
if (rc) {
printf("kat_aes_ofb failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_ofb finished successfuly\n");

}
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
int silent = 1;
rc = random_aes_ofb(iteration, silent, data_length);
if (rc) {

146 libica Programmer's Reference

printf("random_aes_ofb failed with rc = %i\n", rc);
error_count++;
goto out;
} else
printf("random_aes_ofb finished successfuly\n");
data_length += sizeof(ica_aes_vector_t);
}

out:
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

AES with XTS mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 5
#define NR_RANDOM_TESTS 20000

/* XTS data -1- AES128 */
unsigned char NIST_KEY_XTS_E1[] = {
0x46, 0xe6, 0xed, 0x9e, 0xf4, 0x2d, 0xcd, 0xb3,
0xc8, 0x93, 0x09, 0x3c, 0x28, 0xe1, 0xfc, 0x0f,
0x91, 0xf5, 0xca, 0xa3, 0xb6, 0xe0, 0xbc, 0x5a,
0x14, 0xe7, 0x83, 0x21, 0x5c, 0x1d, 0x5b, 0x61,

};

unsigned char NIST_TWEAK_XTS_E1[] = {
0x72, 0xf3, 0xb0, 0x54, 0xcb, 0xdc, 0x2f, 0x9e,
0x3c, 0x5b, 0xc5, 0x51, 0xd4, 0x4d, 0xdb, 0xa0,

};

/* TWEAK should not be updated, so the exptected tweak is the same as the
* original TWEAK.
*/

unsigned char NIST_EXPECTED_TWEAK_XTS_E1[] = {
0x72, 0xf3, 0xb0, 0x54, 0xcb, 0xdc, 0x2f, 0x9e,
0x3c, 0x5b, 0xc5, 0x51, 0xd4, 0x4d, 0xdb, 0xa0,

};

unsigned char NIST_TEST_DATA_XTS_E1[] = {
0xe3, 0x77, 0x8d, 0x68, 0xe7, 0x30, 0xef, 0x94,
0x5b, 0x4a, 0xe3, 0xbc, 0x5b, 0x93, 0x6b, 0xdd,

};

unsigned char NIST_TEST_RESULT_XTS_E1[] = {
0x97, 0x40, 0x9f, 0x1f, 0x71, 0xae, 0x45, 0x21,
0xcb, 0x49, 0xa3, 0x29, 0x73, 0xde, 0x4d, 0x05,

};

Chapter 7. Examples 147

/* XTS data -2- AES128 */
unsigned char NIST_KEY_XTS_E2[] = {
0x93, 0x56, 0xcd, 0xad, 0x25, 0x1a, 0xb6, 0x11,
0x14, 0xce, 0xc2, 0xc4, 0x4a, 0x60, 0x92, 0xdd,
0xe9, 0xf7, 0x46, 0xcc, 0x65, 0xae, 0x3b, 0xd4,
0x96, 0x68, 0x64, 0xaa, 0x36, 0x26, 0xd1, 0x88,
};

unsigned char NIST_TWEAK_XTS_E2[] = {
0x68, 0x88, 0x27, 0x83, 0x65, 0x24, 0x36, 0xc4,
0x85, 0x7a, 0x88, 0xc0, 0xc3, 0x73, 0x41, 0x7e,
};

unsigned char NIST_EXPECTED_TWEAK_XTS_E2[] = {
0x68, 0x88, 0x27, 0x83, 0x65, 0x24, 0x36, 0xc4,
0x85, 0x7a, 0x88, 0xc0, 0xc3, 0x73, 0x41, 0x7e,
};

unsigned char NIST_TEST_DATA_XTS_E2[] = {
0xce, 0x17, 0x6b, 0xdd, 0xe3, 0x39, 0x50, 0x5b,
0xa1, 0x5d, 0xea, 0x36, 0xd2, 0x8c, 0xe8, 0x7d,
};

unsigned char NIST_TEST_RESULT_XTS_E2[] = {
0x22, 0xf5, 0xf9, 0x37, 0xdf, 0xb3, 0x9e, 0x5b,
0x74, 0x25, 0xed, 0x86, 0x3d, 0x31, 0x0b, 0xe1,
};

/* XTS data -3- AES128 */
unsigned char NIST_KEY_XTS_E3[] = {
0x63, 0xf3, 0x6e, 0x9c, 0x39, 0x7c, 0x65, 0x23,
0xc9, 0x9f, 0x16, 0x44, 0xec, 0xb1, 0xa5, 0xd9,
0xbc, 0x0f, 0x2f, 0x55, 0xfb, 0xe3, 0x24, 0x44,
0x4c, 0x39, 0x0f, 0xae, 0x75, 0x2a, 0xd4, 0xd7,
};

unsigned char NIST_TWEAK_XTS_E3[] = {
0xcd, 0xb1, 0xbd, 0x34, 0x86, 0xf3, 0x53, 0xcc,
0x16, 0x0a, 0x84, 0x0b, 0xea, 0xdf, 0x03, 0x29,
};

unsigned char NIST_EXPECTED_TWEAK_XTS_E3[] = {
0xcd, 0xb1, 0xbd, 0x34, 0x86, 0xf3, 0x53, 0xcc,
0x16, 0x0a, 0x84, 0x0b, 0xea, 0xdf, 0x03, 0x29,
};

unsigned char NIST_TEST_DATA_XTS_E3[] = {
0x9a, 0x01, 0x49, 0x88, 0x8b, 0xf7, 0x61, 0x60,
0xa8, 0x14, 0x28, 0xbc, 0x91, 0x40, 0xec, 0xcd,
0x26, 0xed, 0x18, 0x36, 0x8e, 0x24, 0xd4, 0x9b,
0x9c, 0xc5, 0x12, 0x92, 0x9a, 0x88, 0xad, 0x1e,
0x66, 0xc7, 0x63, 0xf4, 0xf5, 0x6b, 0x63, 0xbb,
0x9d, 0xd9, 0x50, 0x8c, 0x5d, 0x4d, 0xf4, 0x65,
0xad, 0x98, 0x82, 0x14, 0x82, 0xfc, 0x71, 0x94,
0xee, 0x23, 0x54, 0xa3, 0xfa, 0xdc, 0xe9, 0x23,
0x18, 0x54, 0x8e, 0x8c, 0xe9, 0x45, 0x20, 0x81,
0x60, 0x49, 0x7b, 0x93, 0x05, 0xd9, 0xab, 0x10,
0x91, 0xab, 0x41, 0xd1, 0xf0, 0x9a, 0x0c, 0x7b,
0xfa, 0xf9, 0xf9, 0x4f, 0xe7, 0xc8, 0xf1, 0xea,
0x96, 0x8f, 0x8f, 0x9a, 0x71, 0x3a, 0xca, 0xde,
0x18, 0xb6, 0x82, 0x32, 0x10, 0x6f, 0xfd, 0x6d,
0x42, 0x81, 0xe9, 0x9e, 0x11, 0xd6, 0xa4, 0x28,
0xb5, 0x16, 0x53, 0xc0, 0xc7, 0xdd, 0xe5, 0xa0,
0xf2, 0x73, 0xe7, 0x4f, 0xf0, 0x15, 0xce, 0x80,
0x27, 0x7d, 0x74, 0x30, 0xf5, 0xda, 0xea, 0x8f,
0x73, 0x40, 0x64, 0x5e, 0x0b, 0xec, 0x25, 0xf4,

148 libica Programmer's Reference

0x04, 0x0f, 0xa1, 0x3c, 0x0b, 0x33, 0x06, 0x93,
0xb1, 0x00, 0x83, 0xa8, 0xb9, 0xbc, 0x10, 0x8f,
0xe6, 0x4f, 0x3a, 0x5b, 0x61, 0x3c, 0xbb, 0x56,
0x5a, 0xee, 0x2f, 0x09, 0xf5, 0xb2, 0x04, 0xae,
0xe1, 0x72, 0x28, 0xfe, 0x65, 0x31, 0xc7, 0x0c,
0x0e, 0xc9, 0x47, 0xd2, 0xa5, 0x14, 0x7b, 0x45,
0xc5, 0x1a, 0xc7, 0xdc, 0x8e, 0x85, 0x87, 0x03,
0x87, 0xeb, 0x8d, 0xb6, 0x25, 0x13, 0x68, 0x36,
0x8b, 0xf5, 0xf2, 0x46, 0xb2, 0x95, 0x7d, 0xaf,
0xf7, 0x02, 0xe3, 0x79, 0x02, 0x2e, 0x99, 0x16,
0x17, 0x49, 0xe6, 0xbe, 0x8e, 0xb7, 0x9d, 0x51,
0x97, 0x99, 0xaa, 0xe0, 0x7c, 0x18, 0x31, 0xbd,
0x0e, 0xe7, 0x25, 0x50, 0xb8, 0x53, 0x33, 0xab,
0x9e, 0x96, 0xa5, 0x33, 0xe2, 0x97, 0x25, 0xd7,
0x02, 0x3d, 0x82, 0x1a, 0xbe, 0x1c, 0xe3, 0xa7,
0x44, 0xbe, 0x02, 0xe0, 0x52, 0x56, 0x8f, 0x84,
0xe6, 0xe3, 0xf7, 0x44, 0x42, 0xbb, 0xa5, 0x0d,
0x02, 0xad, 0x2d, 0x6c, 0xa5, 0x8a, 0x69, 0x1f,
0xd2, 0x43, 0x9a, 0xa3, 0xaf, 0x0c, 0x03, 0x3a,
0x68, 0xc4, 0x38, 0xb2, 0xd9, 0xa0, 0xa0, 0x1d,
0x78, 0xc4, 0xf8, 0x7c, 0x50, 0x9f, 0xea, 0x0a,
0x43, 0x5b, 0xe7, 0x1b, 0xa2, 0x37, 0x06, 0xd6,
0x08, 0x2d, 0xcb, 0xa6, 0x26, 0x25, 0x99, 0x9e,
0xce, 0x09, 0xdf, 0xb3, 0xfc, 0xbe, 0x08, 0xeb,
0xb6, 0xf2, 0x15, 0x1e, 0x2f, 0x12, 0xeb, 0xe8,
0xa5, 0xbf, 0x11, 0x62, 0xc2, 0x59, 0xf2, 0x02,
0xc1, 0xba, 0x47, 0x8b, 0x5f, 0x46, 0x8a, 0x28,
0x69, 0xf1, 0xe7, 0x6c, 0xf5, 0xed, 0x38, 0xde,
0x53, 0x86, 0x9a, 0xdc, 0x83, 0x70, 0x9e, 0x21,
0xb3, 0xf8, 0xdc, 0x13, 0xba, 0x3d, 0x6a, 0xa7,
0xf6, 0xb0, 0xcf, 0xb3, 0xe5, 0xa4, 0x3c, 0x23,
0x72, 0xe0, 0xee, 0x60, 0x99, 0x1c, 0xe1, 0xca,
0xd1, 0x22, 0xa3, 0x1d, 0x93, 0x97, 0xe3, 0x0b,
0x92, 0x1f, 0xd2, 0xf6, 0xee, 0x69, 0x6e, 0x68,
0x49, 0xae, 0xee, 0x29, 0xe2, 0xb4, 0x45, 0xc0,
0xfd, 0x9a, 0xde, 0x65, 0x56, 0xc3, 0xc0, 0x69,
0xc5, 0xd6, 0x05, 0x95, 0xab, 0xbd, 0xf5, 0xba,
0xe2, 0xcc, 0xc7, 0x9a, 0x49, 0x6e, 0x83, 0xcc,
0xab, 0x95, 0x74, 0x0e, 0xb8, 0xe4, 0xf2, 0x92,
0x5d, 0xbf, 0x72, 0x97, 0xa8, 0xc9, 0x92, 0x75,
0x6e, 0x62, 0x87, 0x0e, 0xdc, 0xe9, 0x8f, 0x6c,
0xba, 0x1a, 0xa0, 0xd5, 0xb8, 0x6f, 0x09, 0x21,
0x43, 0xb1, 0x6d, 0xa1, 0x44, 0x15, 0x47, 0xd1,
0xd4, 0x2b, 0x80, 0x06, 0xfa, 0xce, 0x69, 0x5b,
0x03, 0xfd, 0xfa, 0xe6, 0x45, 0xf9, 0x5b, 0xd6,

};

unsigned char NIST_TEST_RESULT_XTS_E3[] = {
0x0e, 0xee, 0xf2, 0x8c, 0xa1, 0x59, 0xb8, 0x05,
0xf5, 0xc2, 0x15, 0x61, 0x05, 0x51, 0x67, 0x8a,
0xb7, 0x72, 0xf2, 0x79, 0x37, 0x4f, 0xb1, 0x40,
0xab, 0x55, 0x07, 0x68, 0xdb, 0x42, 0xcf, 0x6c,
0xb7, 0x36, 0x37, 0x64, 0x19, 0x34, 0x19, 0x5f,
0xfc, 0x08, 0xcf, 0x5a, 0x91, 0x88, 0xb8, 0x2b,
0x84, 0x0a, 0x00, 0x7d, 0x52, 0x72, 0x39, 0xea,
0x3f, 0x0d, 0x7d, 0xd1, 0xf2, 0x51, 0x86, 0xec,
0xae, 0x30, 0x87, 0x7d, 0xad, 0xa7, 0x7f, 0x24,
0x3c, 0xdd, 0xb2, 0xc8, 0x8e, 0x99, 0x04, 0x82,
0x7d, 0x3e, 0x09, 0x82, 0xda, 0x0d, 0x13, 0x91,
0x1d, 0x0e, 0x2d, 0xbb, 0xbb, 0x2d, 0x01, 0x6c,
0xbe, 0x4d, 0x06, 0x76, 0xb1, 0x45, 0x9d, 0xa8,
0xc5, 0x3a, 0x91, 0x45, 0xe8, 0x3c, 0xf4, 0x2f,
0x30, 0x11, 0x2c, 0xa6, 0x5d, 0x77, 0xc8, 0x93,
0x4a, 0x26, 0xee, 0x00, 0x1f, 0x39, 0x0f, 0xfc,
0xc1, 0x87, 0x03, 0x66, 0x2a, 0x8f, 0x71, 0xf9,
0xda, 0x0e, 0x7b, 0x68, 0xb1, 0x04, 0x3c, 0x1c,
0xb5, 0x26, 0x08, 0xcf, 0x0e, 0x69, 0x51, 0x0d,

Chapter 7. Examples 149

0x38, 0xc8, 0x0f, 0xa0, 0x0d, 0xe4, 0x3d, 0xef,
0x98, 0x4d, 0xff, 0x2f, 0x32, 0x4e, 0xcf, 0x39,
0x89, 0x44, 0x53, 0xd3, 0xe0, 0x1b, 0x3d, 0x7b,
0x3b, 0xc0, 0x57, 0x04, 0x9d, 0x19, 0x5c, 0x8e,
0xb9, 0x3f, 0xe4, 0xd9, 0x5a, 0x83, 0x00, 0xa5,
0xe6, 0x0a, 0x7c, 0x89, 0xe4, 0x0c, 0x69, 0x16,
0x79, 0xfb, 0xca, 0xfa, 0xd8, 0xeb, 0x41, 0x8f,
0x8d, 0x1f, 0xf7, 0xb9, 0x11, 0x75, 0xf8, 0xeb,
0x3c, 0x6f, 0xf2, 0x87, 0x2d, 0x32, 0xee, 0x4c,
0x57, 0x36, 0x9e, 0x61, 0xb6, 0x6d, 0x16, 0x6f,
0xd0, 0xa4, 0x34, 0x57, 0x47, 0x82, 0x75, 0xfe,
0x14, 0xbf, 0x34, 0x63, 0x8a, 0x9e, 0x4e, 0x1d,
0x25, 0xcc, 0x5a, 0x5f, 0x9e, 0x25, 0x7e, 0x61,
0x7a, 0xdc, 0xdd, 0xe6, 0x5e, 0x25, 0x57, 0x40,
0x53, 0x62, 0xc8, 0x91, 0xe6, 0x54, 0x6a, 0x6d,
0xee, 0xaa, 0x8f, 0xc0, 0x3b, 0x12, 0x2a, 0x55,
0x87, 0x4d, 0x33, 0xe0, 0xa7, 0x73, 0x52, 0x34,
0x68, 0x32, 0x5e, 0xc2, 0x4d, 0x4f, 0xaf, 0xfb,
0x63, 0xc0, 0x52, 0xc8, 0x11, 0xa1, 0xc0, 0x22,
0xba, 0xfc, 0xcb, 0x97, 0x98, 0x8b, 0x7e, 0x45,
0x67, 0xb2, 0x47, 0xd4, 0x04, 0x4b, 0x05, 0x2f,
0xf7, 0x3f, 0x4c, 0x67, 0x1d, 0x27, 0xe0, 0x52,
0xe2, 0xeb, 0xc7, 0x2d, 0x00, 0x57, 0xcb, 0x21,
0x7c, 0x52, 0x59, 0xb6, 0x09, 0x50, 0xe3, 0xc8,
0xb3, 0xd9, 0xe3, 0xe7, 0x63, 0x0f, 0x9e, 0xcb,
0xe5, 0x48, 0xb9, 0xe3, 0x62, 0x20, 0xf3, 0x3c,
0x2b, 0x45, 0x68, 0x30, 0x7c, 0xd0, 0x37, 0x5b,
0xba, 0x13, 0x35, 0xe5, 0x8b, 0xfb, 0xcd, 0xe8,
0x5c, 0xc8, 0x4c, 0x9c, 0x9c, 0x1c, 0xe7, 0x4f,
0x44, 0xb2, 0x8e, 0xa1, 0xb6, 0x97, 0x30, 0x5b,
0xb6, 0xba, 0x3b, 0x46, 0x4e, 0x5a, 0xb7, 0x45,
0x01, 0x29, 0x3e, 0xf9, 0x15, 0x2c, 0x0f, 0x5d,
0x33, 0x07, 0xd2, 0x6a, 0x1f, 0x07, 0x41, 0xc5,
0xe5, 0x72, 0x1a, 0x71, 0x3d, 0x1b, 0x86, 0xc1,
0x80, 0x82, 0x11, 0xf5, 0x7a, 0xad, 0x09, 0xa9,
0x50, 0xb6, 0x86, 0x30, 0xaf, 0xce, 0x4f, 0x0a,
0xd9, 0xf3, 0x2e, 0x67, 0x69, 0xb5, 0xfe, 0x31,
0x92, 0x9c, 0x44, 0x6f, 0x7a, 0x33, 0x55, 0xf4,
0x58, 0x84, 0xc7, 0x48, 0xc9, 0x05, 0x54, 0x15,
0xe6, 0x37, 0xd9, 0xad, 0x87, 0xd9, 0x4c, 0x46,
0x57, 0xb1, 0xad, 0x03, 0x4c, 0xb1, 0x4d, 0x9a,
0x72, 0xea, 0x74, 0x5f, 0xe5, 0x2d, 0x7a, 0x71,
0x1b, 0xa4, 0x1c, 0xa0, 0x35, 0x85, 0x6a, 0x5a,
0x44, 0x89, 0xa4, 0x27, 0x0b, 0xb3, 0x0d, 0x5b,
0x63, 0xf4, 0x9c, 0x05, 0x12, 0xfe, 0xd4, 0xb4
};

/* XTS data -4- AES256 */
unsigned char NIST_KEY_XTS_E4[] = {
0x97, 0x09, 0x8b, 0x46, 0x5a, 0x44, 0xca, 0x75,
0xe7, 0xa1, 0xc2, 0xdb, 0xfc, 0x40, 0xb7, 0xa6,
0x1a, 0x20, 0xe3, 0x2c, 0x6d, 0x9d, 0xbf, 0xda,
0x80, 0x72, 0x6f, 0xee, 0x10, 0x54, 0x1b, 0xab,
0x47, 0x54, 0x63, 0xca, 0x07, 0xc1, 0xc1, 0xe4,
0x49, 0x61, 0x73, 0x32, 0x14, 0x68, 0xd1, 0xab,
0x3f, 0xad, 0x8a, 0xd9, 0x1f, 0xcd, 0xc6, 0x2a,
0xbe, 0x07, 0xbf, 0xf8, 0xef, 0x96, 0x1b, 0x6b,
};

unsigned char NIST_TWEAK_XTS_E4[] = {
0x15, 0x60, 0x1e, 0x2e, 0x35, 0x85, 0x10, 0xa0,
0x9d, 0xdc, 0xa4, 0xea, 0x17, 0x51, 0xf4, 0x3c,
};

unsigned char NIST_EXPECTED_TWEAK_XTS_E4[] = {
0x15, 0x60, 0x1e, 0x2e, 0x35, 0x85, 0x10, 0xa0,
0x9d, 0xdc, 0xa4, 0xea, 0x17, 0x51, 0xf4, 0x3c,

150 libica Programmer's Reference

};

unsigned char NIST_TEST_DATA_XTS_E4[] = {
0xd1, 0x9c, 0xfb, 0x38, 0x3b, 0xaf, 0x87, 0x2e,
0x6f, 0x12, 0x16, 0x87, 0x45, 0x1d, 0xe1, 0x5c,

};

unsigned char NIST_TEST_RESULT_XTS_E4[] = {
0xeb, 0x22, 0x26, 0x9b, 0x14, 0x90, 0x50, 0x27,
0xdc, 0x73, 0xc4, 0xa4, 0x0f, 0x93, 0x80, 0x69,

};

/* XTS data -5- AES256 */
unsigned char NIST_KEY_XTS_E5[] = {
0xfb, 0xf0, 0x77, 0x6e, 0x7d, 0xbe, 0x49, 0x10,
0xfb, 0x0c, 0x12, 0x0f, 0x41, 0x85, 0x71, 0x21,
0x92, 0x6c, 0x05, 0x2f, 0xd6, 0x5a, 0x27, 0x8c,
0xd2, 0xf0, 0xd9, 0x8d, 0xa5, 0x4e, 0xdf, 0xd5,
0x08, 0x03, 0xa4, 0x2f, 0xbe, 0x6f, 0xd1, 0x33,
0x58, 0x49, 0x00, 0xe8, 0xdc, 0x7a, 0x11, 0x52,
0x39, 0x1f, 0x82, 0x2d, 0x76, 0xa7, 0x56, 0x68,
0xcf, 0xce, 0x7f, 0x8d, 0xde, 0x20, 0x3e, 0xc8,

};

unsigned char NIST_TWEAK_XTS_E5[] = {
0x39, 0x5b, 0x6a, 0xcf, 0x9a, 0xdc, 0xd2, 0x91,
0xc2, 0xc9, 0x48, 0x86, 0x36, 0x33, 0xaf, 0xf8,

};

unsigned char NIST_EXPECTED_TWEAK_XTS_E5[] = {
0x39, 0x5b, 0x6a, 0xcf, 0x9a, 0xdc, 0xd2, 0x91,
0xc2, 0xc9, 0x48, 0x86, 0x36, 0x33, 0xaf, 0xf8,

};

unsigned char NIST_TEST_DATA_XTS_E5[] = {
0x3e, 0x2e, 0x26, 0x9d, 0x78, 0x3a, 0x2b, 0x29,
0xe8, 0x73, 0xd6, 0x73, 0x47, 0x9f, 0x51, 0x16,
0x73, 0x4f, 0xe0, 0x3e, 0xe3, 0x29, 0x65, 0xed,
0xc4, 0x79, 0x35, 0xc0, 0xea, 0x99, 0xa0, 0x64,
0xbd, 0x44, 0x4b, 0xec, 0x12, 0x5b, 0x2c, 0x78,
0x9d, 0xb9, 0xde, 0x6d, 0x18, 0x35, 0x92, 0x05,
0x3b, 0x48, 0xa8, 0x77, 0xa9, 0x5a, 0xc2, 0x55,
0x9c, 0x3d, 0xdf, 0xc7, 0xb4, 0xdb, 0x99, 0x07,

};

unsigned char NIST_TEST_RESULT_XTS_E5[] = {
0x4c, 0x70, 0xbd, 0xbb, 0x77, 0x30, 0x2b, 0x7f,
0x1f, 0xdd, 0xca, 0x50, 0xdc, 0x70, 0x73, 0x1e,
0x00, 0x8a, 0x26, 0x55, 0xd2, 0x2a, 0xd0, 0x20,
0x0c, 0x11, 0x1f, 0xd3, 0x2a, 0x67, 0x5a, 0x7e,
0x09, 0x97, 0x11, 0x43, 0x6f, 0x98, 0xd2, 0x1c,
0x72, 0x77, 0x2e, 0x0d, 0xd7, 0x67, 0x2f, 0xf5,
0xfd, 0x00, 0xdd, 0xcb, 0xe1, 0x1e, 0xb9, 0x7e,
0x69, 0x87, 0x83, 0xbf, 0xa4, 0x05, 0x46, 0xe3,

};

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);

Chapter 7. Examples 151

h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}

}
printf("\n");
}

void dump_xts_data(unsigned char *tweak, unsigned int tweak_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("TWEAK \n");
dump_array(tweak, tweak_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);
}

void get_sizes(unsigned int *data_length, unsigned int *tweak_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_XTS_E1);
*tweak_length = sizeof(NIST_TWEAK_XTS_E1);
*key_length = sizeof(NIST_KEY_XTS_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_XTS_E2);
*tweak_length = sizeof(NIST_TWEAK_XTS_E2);
*key_length = sizeof(NIST_KEY_XTS_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_XTS_E3);
*tweak_length = sizeof(NIST_TWEAK_XTS_E3);
*key_length = sizeof(NIST_KEY_XTS_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_XTS_E4);
*tweak_length = sizeof(NIST_TWEAK_XTS_E4);
*key_length = sizeof(NIST_KEY_XTS_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_XTS_E5);
*tweak_length = sizeof(NIST_TWEAK_XTS_E5);
*key_length = sizeof(NIST_KEY_XTS_E5);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *tweak, unsigned char *expected_tweak,
unsigned int tweak_length,
unsigned char *key, unsigned int key_length,
unsigned int iteration)

{
switch (iteration) {

152 libica Programmer's Reference

case 1:
memcpy(data, NIST_TEST_DATA_XTS_E1, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E1, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E1, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E1,

tweak_length);
memcpy(key, NIST_KEY_XTS_E1, key_length);
break;
case 2:
memcpy(data, NIST_TEST_DATA_XTS_E2, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E2, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E2, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E2,

tweak_length);
memcpy(key, NIST_KEY_XTS_E2, key_length);
break;
case 3:
memcpy(data, NIST_TEST_DATA_XTS_E3, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E3, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E3, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E3,

tweak_length);
memcpy(key, NIST_KEY_XTS_E3, key_length);
break;
case 4:
memcpy(data, NIST_TEST_DATA_XTS_E4, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E4, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E4, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E4,

tweak_length);
memcpy(key, NIST_KEY_XTS_E4, key_length);
break;
case 5:
memcpy(data, NIST_TEST_DATA_XTS_E5, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E5, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E5, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E5,

tweak_length);
memcpy(key, NIST_KEY_XTS_E5, key_length);
break;

}

}

int kat_aes_xts(int iteration, int silent)
{
unsigned int data_length;
unsigned int tweak_length;
unsigned int key_length;

get_sizes(&data_length, &tweak_length, &key_length, iteration);

unsigned char tweak[tweak_length];
unsigned char tmp_tweak[tweak_length];
unsigned char expected_tweak[tweak_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_test_data(input_data, data_length, result, tweak, expected_tweak,
tweak_length, key, key_length, iteration);

Chapter 7. Examples 153

memcpy(tmp_tweak, tweak, tweak_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, tweak length = %i,",

key_length, data_length, tweak_length);

rc = ica_aes_xts(input_data, encrypt, data_length,
key, key+(key_length/2), (key_length/2),
tmp_tweak, 1);

if (rc) {
printf("ica_aes_xts encrypt failed with rc = %i\n", rc);
dump_xts_data(tweak, tweak_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_xts_data(tweak, tweak_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;

}

if (memcmp(expected_tweak, tmp_tweak, tweak_length)) {
printf("Update of TWEAK does not match the expected TWEAK!\n");
printf("Expected TWEAK:\n");
dump_array(expected_tweak, tweak_length);
printf("Updated TWEAK:\n");
dump_array(tmp_tweak, tweak_length);
printf("Original TWEAK:\n");
dump_array(tweak, tweak_length);
rc++;

}
if (rc) {
printf("AES XTS test exited after encryption\n");
return rc;

}

memcpy(tmp_tweak, tweak, tweak_length);
rc = ica_aes_xts(encrypt, decrypt, data_length,

key, key+(key_length/2), (key_length/2),
tmp_tweak, 0);

if (rc) {
printf("ica_aes_xts decrypt failed with rc = %i\n", rc);
dump_xts_data(tweak, tweak_length, key, key_length, encrypt,

data_length, decrypt);
return rc;

}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_xts_data(tweak, tweak_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");

154 libica Programmer's Reference

dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;

}

int random_aes_xts(int iteration, int silent, unsigned int data_length)
{
int i;
int rc = 0;
unsigned int iv_length = sizeof(ica_aes_vector_t);
unsigned int key_length = AES_KEY_LEN128 * 2;
unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

for (i = 1; i <= 2; i++) {

unsigned char key[key_length];

memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);
printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

rc = ica_aes_xts(input_data, encrypt, data_length,
key, key+(key_length/2), (key_length/2),
tmp_iv, 1);

if (rc) {
printf("ica_aes_xts encrypt failed with rc = %i\n", rc);
dump_xts_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");

Chapter 7. Examples 155

dump_xts_data(iv, iv_length, key, key_length, input_data,
data_length, encrypt);

}

if (rc) {
printf("AES XTS test exited after encryption\n");
return rc;

}

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_xts(encrypt, decrypt, data_length,
key, key+(key_length/2), (key_length/2),
tmp_iv, 0);

if (rc) {
printf("ica_aes_xts decrypt failed with rc = %i\n", rc);
dump_xts_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;

}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_xts_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
return rc;

}
key_length = AES_KEY_LEN256 * 2;
}

return rc;
}

int main(int argc, char **argv)
{
unsigned int silent = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
unsigned int data_length = sizeof(ica_aes_vector_t);
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_xts(iteration, silent);
if (rc) {
printf("kat_aes_xts failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_xts finished successfuly\n");

}
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
int silent = 1;
rc = random_aes_xts(iteration, silent, data_length);
if (rc) {

156 libica Programmer's Reference

printf("random_aes_xts failed with rc = %i\n", rc);
error_count++;
goto out;
} else
printf("random_aes_xts finished successfuly\n");
data_length += sizeof(ica_aes_vector_t) / 2;
}

out:
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

CMAC example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ica_api.h"

#define BYTE 8

#define NUM_TESTS 12

unsigned int key_length[12] = {16, 16, 16, 16, 24, 24, 24, 24, 32, 32, 32,
32};

unsigned char key[12][32] = {{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,

Chapter 7. Examples 157

0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4}
};

unsigned char last_block[3][16] = {{
0x7d, 0xf7, 0x6b, 0x0c, 0x1a, 0xb8, 0x99, 0xb3, 0x3e, 0x42, 0xf0,
0x47, 0xb9, 0x1b, 0x54, 0x6f},{
0x22, 0x45, 0x2d, 0x8e, 0x49, 0xa8, 0xa5, 0x93, 0x9f, 0x73, 0x21,
0xce, 0xea, 0x6d, 0x51, 0x4b},{
0xe5, 0x68, 0xf6, 0x81, 0x94, 0xcf, 0x76, 0xd6, 0x17, 0x4d, 0x4c,
0xc0, 0x43, 0x10, 0xa8, 0x54}
};

unsigned long mlen[12] = { 0, 16, 40, 64, 0,16, 40, 64, 0, 16, 40, 64};
unsigned char message[12][512] = {{
0x00},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10},{
0x00},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10},{
0x00},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10}
};

unsigned char expected_cmac[12][16] = {{
0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28, 0x7f, 0xa3, 0x7d,
0x12, 0x9b, 0x75, 0x67, 0x46},{
0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44, 0xf7, 0x9b, 0xdd,
0x9d, 0xd0, 0x4a, 0x28, 0x7c},{
0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30, 0x30, 0xca, 0x32,
0x61, 0x14, 0x97, 0xc8, 0x27},{
0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92, 0xfc, 0x49, 0x74,

158 libica Programmer's Reference

0x17, 0x79, 0x36, 0x3c, 0xfe},{
0xd1, 0x7d, 0xdf, 0x46, 0xad, 0xaa, 0xcd, 0xe5, 0x31, 0xca, 0xc4,
0x83, 0xde, 0x7a, 0x93, 0x67},{
0x9e, 0x99, 0xa7, 0xbf, 0x31, 0xe7, 0x10, 0x90, 0x06, 0x62, 0xf6,
0x5e, 0x61, 0x7c, 0x51, 0x84},{
0x8a, 0x1d, 0xe5, 0xbe, 0x2e, 0xb3, 0x1a, 0xad, 0x08, 0x9a, 0x82,
0xe6, 0xee, 0x90, 0x8b, 0x0e},{
0xa1, 0xd5, 0xdf, 0x0e, 0xed, 0x79, 0x0f, 0x79, 0x4d, 0x77, 0x58,
0x96, 0x59, 0xf3, 0x9a, 0x11},{
0x02, 0x89, 0x62, 0xf6, 0x1b, 0x7b, 0xf8, 0x9e, 0xfc, 0x6b, 0x55,
0x1f, 0x46, 0x67, 0xd9, 0x83},{
0x28, 0xa7, 0x02, 0x3f, 0x45, 0x2e, 0x8f, 0x82, 0xbd, 0x4b, 0xf2,
0x8d, 0x8c, 0x37, 0xc3, 0x5c},{
0xaa, 0xf3, 0xd8, 0xf1, 0xde, 0x56, 0x40, 0xc2, 0x32, 0xf5, 0xb1,
0x69, 0xb9, 0xc9, 0x11, 0xe6},{
0xe1, 0x99, 0x21, 0x90, 0x54, 0x9f, 0x6e, 0xd5, 0x69, 0x6a, 0x2c,
0x05, 0x6c, 0x31, 0x54, 0x10}
};

unsigned int i = 0;

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1, trunc = 0;
int maxsize = 2000;

puts("Dump:");

if (size > maxsize) {
trunc = size - maxsize;
size = maxsize;
}
h = ptr;
ptr_end = ptr + size;
while (h < ptr_end) {
printf("0x%02x ", *h);
h++;
if (i == 16) {
if (h != ptr_end)
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");
if (trunc > 0)
printf("... %d bytes not printed\n", trunc);
}
unsigned char *cmac;
unsigned int cmac_length = 16;

int api_cmac_test(void)
{
printf("Test of CMAC api\n");
int rc = 0;
for (i = 0 ; i < NUM_TESTS; i++) {
if (!(cmac = malloc(cmac_length)))
return EINVAL;
memset(cmac, 0, cmac_length);
rc = (ica_aes_cmac(message[i], mlen[i],

cmac, cmac_length,
key[i], key_length[i],
ICA_ENCRYPT));

if (rc) {

Chapter 7. Examples 159

printf("ica_aes_cmac generate failed with errno %d (0x%x)."
"\n",rc,rc);
return rc;
}
if (memcmp(cmac, expected_cmac[i], cmac_length) != 0) {
printf("This does NOT match the known result. "
"Testcase %i failed\n",i);
printf("\nOutput MAC for test %d:\n", i);
dump_array((unsigned char *)cmac, cmac_length);
printf("\nExpected MAC for test %d:\n", i);
dump_array((unsigned char *)expected_cmac[i], 16);
free(cmac);
return 1;
}
printf("Expected MAC has been generated.\n");
rc = (ica_aes_cmac(message[i], mlen[i],

cmac, cmac_length,
key[i], key_length[i],
ICA_DECRYPT));

if (rc) {
printf("ica_aes_cmac verify failed with errno %d (0x%x).\n",
rc, rc);
free(cmac);
return rc;
}
free(cmac);
if (! rc)
printf("MAC was successful verified. testcase %i "
"succeeded\n",i);

else {
printf("MAC verification failed for testcase %i "
"with RC=%i\n",i,rc);
return rc;
}
}
return 0;
}

int main(int argc, char **argv)
{
int rc = 0;

rc = api_cmac_test();
if (rc) {
printf("api_cmac_test failed with rc = %i\n", rc);
return rc;
}
printf("api_cmac_test was succesful\n");
return 0;
}

openCryptoki code samples
This section provides coding samples in C for dynamic library calls as well as for
direct access with static shared linked libraries.
v “Dynamic library call” on page 161
v “Shared linked library” on page 161

Coding samples (C)
To develop an application that uses openCryptoki, you need to access the library.

There are two ways to access the library:
v Load shared objects using dynamic library calls (dlopen)

160 libica Programmer's Reference

v Link the library (statically) to your application during built time

For a list of supported mechanisms for the ICA token, refer to “Supported
mechanisms for the ICA token” on page 80.

Dynamic library call
View some openCryptoki code samples for a dynamic library call.

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <dlfcn.h>
#include <pkcs11types.h>

CK_RV init();
CK_RV cleanup();
CK_RV rc; /* return code */
void *dllPtr, (*symPtr)(); /* pointer to the ock library */
CK_FUNCTION_LIST_PTR FunctionPtr = NULL; /* pointer to function list */

int main(int argc, char *argv[]){
init(“/usr/lib64/opencryptoki/libopencryptoki.so”); /* opencryptoki initialization */
/* other opencryptoki commands.... */
cleanup(); /* cleanup/close shared library */
return 0;

}

CK_RV init(char *libPath){

dllPtr = dlopen(libPath, RTLD_NOW); /* open the PKCS11 library */
if (!dllPtr) {

printf("Error loading PKCS#11 library \n");
return errno;

}
symPtr = (void (*)())dlsym(dllPtr, "C_GetFunctionList"); /* Get ock function list */
if (!symPtr) {

printf("Error getting function list \n");
return errno;

}
symPtr(&FunctionPtr);
rc = FunctionPtr->C_Initialize(NULL); /* initialize opencryptoki/tokens) */
if (rc != CKR_OK) {
printf("Error initializing the opencryptoki library: 0x%X\n", rc);
cleanup();
}
printf("Opencryptoki initialized.\n");
return CKR_OK;

}

CK_RV cleanup(void) {
rc = FunctionPtr->C_Finalize(NULL);
if (dllPtr)

dlclose(dllPtr);
return rc;

}

To compile your sample code you need to provide the path of the source/include
files. Issue a command of the form:
gcc sample_dynamic.c -g -O0 -o sample_dynamic -I <include filepath>

The exact location of the include files depends on your Linux distribution.

Shared linked library
When you use your sample code with a static linked library you can access the
APIs directly.

At the compile time you need to specify the openCryptoki library:

Chapter 7. Examples 161

gcc sample_shared.c -g -O0 -o sample_shared /usr/lib64/opencryptoki/libopencryptoki.so
-I /usr/<include filepath>

The exact location of the include files depend on your Linux distribution.

The following code samples that interact with the openCryptoki API are based on
the shared linked openCryptoki library.

Base procedures:

View some openCryptoki code samples for base procedures, such as main
program, initialization, slot and token, mechanism, and finalize information.

The following code sample provides an insight into how to deal with the
openCryptoki API's. After describing some basic functions such as initialization,
session and login handling, the sample shows how to retrieve data, such as get slot
and token information and also detailed mechanism information. It also provides
an introduction about how to create key objects and process symmetric
encryption/decryption (DES). The last section shows RSA key generation with RSA
encrypt and decrypt operations.

162 libica Programmer's Reference

Main program

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <dlfcn.h>
#include <pkcs11types.h>
#include <defs.h>

K_SLOT_ID slotID;
CK_SLOT_ID_PTR pSlotList = NULL;
CK_ULONG slotCount, ulCount, rsaLen = 2048, msgLen = 8, cipherLen = 8, c;
CK_FLAGS rw_sessionFlags = CKF_RW_SESSION | CKF_SERIAL_SESSION;
CK_SESSION_HANDLE hSession;
CK_MECHANISM_TYPE_PTR pMechList = NULL;
CK_BYTE keyValue[] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef};
CK_BYTE msg[] = {’T’, ’h’, ’e’, ’ ’, ’b’, ’i’, ’r’, ’d’};
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;

/* <insert helper functions (provided below) here> */

int main(int argc, char *argv[]) {
init();
getSlotList(pSlotList, &slotCount); // get the number of slots
pSlotList = malloc(slotCount * sizeof(CK_SLOT_ID)); // allocate memory
getSlotList(pSlotList, &slotCount); // retrieve slot list
slotID = *pSlotList; // first slot provide ica-token
getSlotInfo(slotID);
getTokenInfo(slotID);
getMechanismList(slotID, pMechList, &ulCount); // retrieve number of mech’s
pMechList = malloc(ulCount * sizeof(CK_MECHANISM_TYPE)); // allocate memory
getMechanismList(slotID, pMechList, &ulCount); // retrieve mechanism list
getMechanismInfo(slotID, CKM_DES3_ECB); // get mechanism information
openSession(slotID, rw_sessionFlags, &hSession);
loginSession(CKU_USER, "01234567", 8, hSession);
createKeyObject(hSession, keyValue);
CK_BYTE_PTR pCipherText = malloc(DES_BLOCK_SIZE*sizeof(CK_BYTE));
DESencrypt(hSession, (CK_BYTE_PTR)&msg, msgLen, pCipherText, &cipherLen);
DESdecrypt(hSession, pCipherText, cipherLen, (CK_BYTE_PTR)&msg, &msgLen);
generateRSAKeyPair(hSession, rsaLen, &hPublicKey, &hPrivateKey);
CK_BYTE_PTR pEncryptText = malloc(rsaLen*sizeof(CK_BYTE));
CK_BYTE_PTR pClearText = malloc(rsaLen*sizeof(CK_BYTE));
RSAencrypt(hSession, hPublicKey, (CK_BYTE_PTR)&msg, msgLen, pEncryptText, &rsaLen);
RSAdecrypt(hSession, hPrivateKey, pEncryptText, rsaLen, pClearText, &rsaLen);
logoutSession(hSession); closeSession(hSession);
finalize();
return 0;
}

C_Initialize:

CK_RV init(void){
CK_RV rc;
rc = C_Initialize(NULL);
if (rc != CKR_OK) {

printf("Error initializing the opencryptoki library: 0x%X\n", rc);
}
return CKR_OK;

}

Chapter 7. Examples 163

C_GetSlotList:

CK_RV getSlotList(CK_SLOT_ID_PTR pSlotList, CK_ULONG_PTR pSlotCount){
CK_RV rc;
rc = C_GetSlotList(TRUE, pSlotList, pSlotCount);
if (rc != CKR_OK) {

printf("Error getting number of slots: %x \n", rc);
return rc;

}
return CKR_OK;

}

C_GetSlotInfo:

CK_RV getSlotInfo(CK_SLOT_ID slotID){
CK_RV rc;
CK_SLOT_INFO slotInfo;

rc = C_GetSlotInfo(slotID, &slotInfo);
if (rc != CKR_OK) {

printf("Error getting slot information: %x \n", rc);
return rc;

}
printf("Slot %d Information:\n", slotID);
printf(" Description: %.64s\n", slotInfo.slotDescription);
printf(" Manufacturer: %.32s\n", slotInfo.manufacturerID);
printf(" Flags: 0x%X\n", slotInfo.flags);
if ((slotInfo.flags & CKF_TOKEN_PRESENT) == CKF_TOKEN_PRESENT) {

printf("Token Present!\n");
}
if ((slotInfo.flags & CKF_REMOVABLE_DEVICE) ==

CKF_REMOVABLE_DEVICE) {
printf("Removable Device!\n");

}
if ((slotInfo.flags & CKF_HW_SLOT) == CKF_HW_SLOT){

printf("Hardware support!\n");
}
else { printf("Software support!\n");}
printf(" Hardware Version: %d.%d\n",

slotInfo.hardwareVersion.major,
slotInfo.hardwareVersion.minor);

printf(" Firmware Version: %d.%d\n",
slotInfo.firmwareVersion.major,
slotInfo.firmwareVersion.minor);

return CKR_OK;
}

164 libica Programmer's Reference

C_GetTokenInfo:

CK_RV getTokenInfo(CK_SLOT_ID slotID){
CK_RV rc;
CK_TOKEN_INFO tokInfo;
rc = C_GetTokenInfo(slotID, &tokinfo);
if (rc != CKR_OK) {

printf("Error getting token info: 0x%X\n", rc); return rc;
}
printf("Token #%d Info:\n", slotID);
printf(" Label: %.32s\n", (&tokinfo)->label);
printf(" Manufacturer: %.32s\n", (&tokinfo)->manufacturerID);
printf(" Model: %.16s\n", (&tokinfo)->model);
printf(" Serial Number: %.16s\n", (&tokinfo)->serialNumber);
printf(" Flags: 0x%X\n", (&tokinfo)->flags);
if (((&tokinfo)->flags & CKF_RNG)== CKF_RNG)

printf(" |_ token has random generator\n");
if (((&tokinfo)->flags & CKF_WRITE_PROTECTED)== CKF_WRITE_PROTECTED)

printf(" |_ write protected token\n");
if (((&tokinfo)->flags & CKF_LOGIN_REQUIRED)== CKF_LOGIN_REQUIRED)

printf(" |_ Login required\n");
if (((&tokinfo)->flags & CKF_USER_PIN_INITIALIZED)== CKF_USER_PIN_INITIALIZED)

printf(" |_ User Pin initialized\n");
if (((&tokinfo)->flags & CKF_RESTORE_KEY_NOT_NEEDED)== CKF_RESTORE_KEY_NOT_NEEDED)

printf(" |_ Restore Keys not needed\n");
if (((&tokinfo)->flags & CKF_CLOCK_ON_TOKEN)== CKF_CLOCK_ON_TOKEN)

printf(" |_ Token has hardware clock\n");
if(((&tokinfo)->flags & CKF_PROTECTED_AUTHENTICATION_PATH)==CKF_PROTECTED_AUTHENTICATION_PATH)

printf(" |_ Token has protected configuration path\n");
if (((&tokinfo)->flags & CKF_DUAL_CRYPTO_OPERATIONS)== CKF_DUAL_CRYPTO_OPERATIONS)

printf(" |_ Token supports dual crypto operations\n");
if (((&tokinfo)->flags & CKF_TOKEN_INITIALIZED) == CKF_TOKEN_INITIALIZED)

printf(" |_ Token initialized\n");
if (((&tokinfo)->flags & CKF_SECONDARY_AUTHENTICATION) == CKF_SECONDARY_AUTHENTICATION)

printf(" |_ Token supports secondary authentication\n");
if (((&tokinfo)->flags & CKF_USER_PIN_COUNT_LOW) == CKF_USER_PIN_COUNT_LOW)

printf(" |_ at least one wrong user PIN submitted since last successful authentication\n");
if (((&tokinfo)->flags & CKF_USER_PIN_FINAL_TRY) == CKF_USER_PIN_FINAL_TRY)

printf(" |_ one last try before user PIN become locked\n");
if (((&tokinfo)->flags & CKF_USER_PIN_LOCKED) == CKF_USER_PIN_LOCKED)

printf(" |_ user PIN locked!!!\n");
if (((&tokinfo)->flags & CKF_USER_PIN_TO_BE_CHANGED) == CKF_USER_PIN_TO_BE_CHANGED)

printf(" |_ still default user PIN configured, PIN change recommended.\n");
if (((&tokinfo)->flags & CKF_SO_PIN_COUNT_LOW) == CKF_SO_PIN_COUNT_LOW)

printf(" |_ at least one wrong SO PIN submitted since last successful authentication\n");
if (((&tokinfo)->flags & CKF_SO_PIN_FINAL_TRY) == CKF_SO_PIN_FINAL_TRY)

printf(" |_ one last try before SO PIN become locked\n");
if (((&tokinfo)->flags & CKF_SO_PIN_LOCKED) == CKF_SO_PIN_LOCKED)

printf(" |_ SO PIN locked!!!\n");
if (((&tokinfo)->flags & CKF_SO_PIN_TO_BE_CHANGED) == CKF_SO_PIN_TO_BE_CHANGED)

printf(" |_ still default SO PIN configured, PIN change recommended.\n");
printf(" Sessions: %d/%d\n", (&tokinfo)->ulSessionCount, (&tokinfo)->ulMaxSessionCount);
printf(" R/W Sessions: %d/%d\n", (&tokinfo)->ulRwSessionCount, (&tokinfo)->ulMaxRwSessionCount);
printf(" PIN Length: %d-%d\n", (&tokinfo)->ulMinPinLen, (&tokinfo)->ulMaxPinLen);
printf(" Public Memory: 0x%X/0x%X\n", (&tokinfo)->ulFreePublicMemory, (&tokinfo)->ulTotalPublicMemory);
printf(" Private Memory: 0x%X/0x%X\n",(&tokinfo)->ulFreePrivateMemory, (&tokinfo)->ulTotalPrivateMemory);
printf(" Hardware Version: %d.%d\n", (&tokinfo)->hardwareVersion.major, (&tokinfo)->hardwareVersion.minor);
printf(" Firmware Version: %d.%d\n", (&tokinfo)->firmwareVersion.major, (&tokinfo)->firmwareVersion.minor);
printf(" Time: %.16s\n", (&tokinfo)->utcTime);

return CKR_OK;
}

C_GetMechanismList:

CK_RV getMechanismList(CK_SLOT_ID slotID, CK_MECHANISM_TYPE_PTR
pMechList, CK_ULONG_PTR pulCount) {

CK_RV rc;
rc = C_GetMechanismList(slotID, pMechList, pulCount);
if (rc != CKR_OK) {

printf("Error retrieve mechanism list: %x\n", rc);
return rc;
}

return CKR_OK;
}

Chapter 7. Examples 165

C_GetMechanismInfo:

CK_RV getMechanismInfo(CK_SLOT_ID slotID, CK_MECHANISM_TYPE type){
CK_RV rc;
CK_MECHANISM_INFO mechInfo;

rc = C_GetMechanismInfo(slotID, type, &mechinfo);
if (rc != CKR_OK) {

printf("Error in mechanism info: %x\n", rc);
return rc;

}
printf("MinKeySize: %d\n", (&mechinfo)->ulMinKeySize);
printf("MaxKeySize: %d\n", (&mechinfo)->ulMaxKeySize);
printf("Flags: %d\n", (&mechinfo)->flags);
return CKR_OK;

}

C_Finalize:

CK_RV finalize(void) {
CK_RV rc;
rc = C_Finalize(NULL);
if (rc != CKR_OK) {

printf("Error during finalize: %x\n", rc);
return rc;

}
return CKR_OK;

}

Session and login:

View some openCryptoki session and login code samples.

C_OpenSession:

CK_RV openSession(CK_SLOT_ID slotID, CK_FLAGS sFlags,
CK_SESSION_HANDLE_PTR phSession) {

CK_RV rc;
rc = C_OpenSession(slotID, sFlags, NULL, NULL, phSession);
if (rc != CKR_OK) {

printf("Error opening session: %x\n", rc); return rc;
}
printf("Open session successful.\n");
return CKR_OK;

}

C_Login:

CK_RV loginSession(CK_USER_TYPE userType, CK_CHAR_PTR pPin, CK_ULONG ulPinLen,
CK_SESSION_HANDLE hSession) {

CK_RV rc;
rc = C_Login(hSession, userType, pPin, ulPinLen);
if (rc != CKR_OK) {

printf("Error login session: %x\n", rc); return rc;
}
printf("Login session successful.\n");
return CKR_OK;

}

166 libica Programmer's Reference

C_Logout:

CK_RV logoutSession(CK_SESSION_HANDLE hSession) {
CK_RV rc;

rc = C_Logout(hSession);
if (rc != CKR_OK) {

printf("Error logout session: %x\n", rc); return rc;
}
printf("Logout session successful.\n");
return CKR_OK;

}

C_CloseSession:

CK_RV closeSession(CK_SESSION_HANDLE hSession) {
CK_RV rc;

rc = C_CloseSession(hSession);
if (rc != CKR_OK) {

printf("Error closing session: 0x%X\n", rc); return rc;
}
printf("Close session successful.\n");
return CKR_OK;

}

Object handling:

View some openCryptoki object handling code samples.

C_CreateObject:

CK_RV createKeyObject(CK_SESSION_HANDLE hSession, CK_BYTE keyValue[]) {
CK_RV rc;
CK_OBJECT_HANDLE hKey;
CK_BBOOL true = TRUE;
CK_BBOOL false = FALSE;

CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_ATTRIBUTE keyTempl[] = {

{CKA_CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_DECRYPT, &true, sizeof(true)},
{CKA_SIGN, &true, sizeof(true)},
{CKA_VERIFY, &true, sizeof(true)},
{CKA_TOKEN, &true, sizeof(true)}, // token object
{CKA_PRIVATE, &false, sizeof(false)}, // public object
{CKA_VALUE, keyValue, sizeof(keyValue)},
{CKA_LABEL, "Public_DES_Key", sizeof("Public_DES_Key")}

};
rc = C_CreateObject(hSession, keyTempl, sizeof (keyTempl)/sizeof (CK_ATTRIBUTE), &hKey);
if (rc != CKR_OK) {

printf("Error creating key object: 0x%X\n", rc); return rc;
}

}

Chapter 7. Examples 167

C_FindObjects:

CK_RV getKey(CK_CHAR_PTR label, int labelLen, CK_OBJECT_HANDLE_PTR hObject,
CK_SESSION_HANDLE hSession) {
CK_RV rc;
CK_ULONG ulMaxObjectCount = 1;
CK_ULONG ulObjectCount;
CK_ATTRIBUTE objectMask[] = { {CKA_LABEL, label, labelLen} };

rc = C_FindObjectsInit(hSession, objectMask, 1);
if (rc != CKR_OK) {

printf("Error FindObjectsInit: 0x%X\n", rc); return rc;
}

rc = C_FindObjects(hSession, hObject, ulMaxObjectCount, &ulObjectCount);
if (rc != CKR_OK) {

printf("Error FindObjects: 0x%X\n", rc); return rc;
}

rc = C_FindObjectsFinal(hSession);
if (rc != CKR_OK) {

printf("Error FindObjectsFinal: 0x%X\n", rc); return rc;
}

}

Cryptographic operations:

View some openCryptoki cryptographic operations code samples.

C_Encrypt (DES):

K_RV DESencrypt(CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
CK_BYTE_PTR pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {

CK_RV rc;
CK_MECHANISM myMechanism = {CKM_DES_ECB, NULL_PTR, 0};
CK_MECHANISM_PTR pMechanism = &myMechanism
CK_OBJECT_HANDLE hKey;

getKey("Public_DES_Key", sizeof("Public_DES_Key"), &hKey, hSession);
rc = C_EncryptInit(hSession, pMechanism, hKey);
if (rc != CKR_OK) {

printf("Error initializing encryption: 0x%X\n", rc);
return rc;

}

rc = C_Encrypt(hSession, pClearData, ulClearDataLen, pEncryptedData, pulEncryptedDataLen);
if (rc != CKR_OK) {

printf("Error during encryption: %x\n", rc);
return rc;

}
CK_BYTE_PTR tmp = pEncryptedData;
for (c=0; c<*pulEncryptedDataLen;c++, pEncryptedData++) {

printf("%X", *pEncryptedData);
}
printf("\n"); pEncryptedData = tmp;

return CKR_OK;
}

168 libica Programmer's Reference

C_Decrypt (DES):

CK_RV DESdecrypt(CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
CK_BYTE_PTR pClearData, CK_ULONG_PTR pulClearDataLen) {

CK_RV rc;
CK_MECHANISM myMechanism = {CKM_DES_ECB, NULL_PTR, 0};
CK_MECHANISM_PTR pMechanism = &myMechanism
CK_OBJECT_HANDLE hKey;

getKey("Public_DES_Key", sizeof("Public_DES_Key"), &hKey, hSession);

rc = C_DecryptInit(hSession, pMechanism, hKey);
if (rc != CKR_OK) {

printf("Error initializing decryption: 0x%X\n", rc);
return rc;

}

rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
pClearData, pulClearDataLen);

if (rc != CKR_OK) {
printf("Error during decryption: %x\n", rc);
return rc;

}
CK_BYTE_PTR tmp = pClearData;
for (c=0; c<*pulClearDataLen;c++,pClearData++) {

printf("%c", *pClearData);
}
printf("\n"); pClearData = tmp;

return CKR_OK;
}

Chapter 7. Examples 169

C_GenerateKeyPair (RSA):

CK_RV generateRSAKeyPair(CK_SESSION_HANDLE hSession, CK_ULONG keySize,
CK_OBJECT_HANDLE_PTR phPublicKey, CK_OBJECT_HANDLE_PTR phPrivateKey) {

CK_RV rc;
CK_BBOOL true = TRUE;
CK_BBOOL false = FALSE;

CK_OBJECT_CLASS keyClassPub = CKO_PUBLIC_KEY;
CK_OBJECT_CLASS keyClassPriv = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyTypeRSA = CKK_RSA;
CK_ULONG modulusBits = keySize;
CK_BYTE_PTR pModulus = malloc(sizeof(CK_BYTE)*modulusBits/8);
CK_BYTE publicExponent[] = {1, 0, 1};
CK_MECHANISM rsaKeyGenMech = {CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0};

CK_ATTRIBUTE publicKeyTemplate[] = {
{CKA_CLASS, &keyClassPub, sizeof(keyClassPub)},
{CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_PRIVATE, &true, sizeof(true)},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VERIFY, &true, sizeof(true)},
{CKA_WRAP, &true, sizeof(true)},
{CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
{CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)},
{CKA_LABEL, "My_Private_Token_RSA1024_PubKey",
sizeof("My_Private_Token_RSA1024_PubKey")},
{CKA_MODIFIABLE, &true, sizeof(true)},

};

CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA_CLASS, &keyClassPriv, sizeof(keyClassPriv)},
{CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
{CKA_EXTRACTABLE, &true, sizeof(true)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_PRIVATE, &true, sizeof(true)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DECRYPT, &true, sizeof(true)},
{CKA_SIGN, &true, sizeof(true)},
{CKA_UNWRAP, &true, sizeof(true)},
{CKA_LABEL, "My_Private_Token_RSA1024_PrivKey",
sizeof("My_Private_Token_RSA1024_PrivKey")},
{CKA_MODIFIABLE, &true, sizeof(true)},

};

rc = C_GenerateKeyPair(hSession, &rsaKeyGenMech , &publicKeyTemplate,
sizeof(publicKeyTemplate)/sizeof (CK_ATTRIBUTE), &privateKeyTemplate,
sizeof(privateKeyTemplate)/sizeof (CK_ATTRIBUTE), phPublicKey, phPrivateKey);
if (rc != CKR_OK) {

printf("Error generating RSA keys: %x\n", rc);
return rc;

}
}

170 libica Programmer's Reference

C_Encrypt (RSA):

CK_RV RSAencrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
CK_BYTE_PTR pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {

CK_RV rc;
CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};

rc = C_EncryptInit(hSession, rsaMechanism, hKey);
if (rc != CKR_OK) {

printf("Error initializing RSA encryption: %x\n", rc);
return rc;

}
rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
pEncryptedData, pulEncryptedDataLen);
if (rc != CKR_OK) {

printf("Error during RSA encryption: %x\n", rc);
return rc;

}
CK_BYTE_PTR tmp = pEncryptedData;
for (c=0; c<*pulEncryptedDataLen;c++,pEncryptedData++) {

printf("%X", *pEncryptedData);
}
printf("\n"); pEncryptedData = tmp;
return CKR_OK;
}

C_Decrypt (RSA):

CK_RV RSAdecrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
CK_BYTE_PTR pClearData, CK_ULONG_PTR pulClearDataLen) {

CK_RV rc;
CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};

rc = C_DecryptInit(hSession, rsaMechanism, hKey);
if (rc != CKR_OK) {

printf("Error initializing RSA decryption: %x\n", rc);
return rc;

}
rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
pClearData, pulClearDataLen);
if (rc != CKR_OK) {

printf("Error during RSA decryption: %x\n", rc);
return rc;

}
CK_BYTE_PTR tmp = pClearData;
for (c=0; c<*pulClearDataLen;c++,pClearData++) {

printf("%c", *pClearData);
}
printf("\n"); pClearData = tmp;
return CKR_OK;

}

For more information, refer to the current PKCS #11 standard/specification:
http://www.cryptsoft.com/pkcs11doc/

Makefile example
Specify include directory. Leave blank for default system location.
INCDIR =

Specify library directory. Leave blank for default system location.
LIBDIR =

Specify library.
LIBS = -lica

Chapter 7. Examples 171

http://www.cryptsoft.com/pkcs11doc/

TARGETS = example_des_ecb

all: $(TARGETS)

%: %.c
gcc $(INCDIR) $(LIBDIR) $(LIBS) -o $@ $^

clean:
rm -f $(TARGETS)

Common Public License - V1.0
Common Public License - V1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF
THE PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:
1. in the case of the initial Contributor, the initial code and
documentation distributed under this Agreement, and

2. in the case of each subsequent Contributor:
1. changes to the Program, and
2. additions to the Program;

where such changes and/or additions to the Program originate
from and are distributed by that particular Contributor. A
Contribution ’originates’ from a Contributor if it was added to
the Program by such Contributor itself or anyone acting on such
Contributor’s behalf. Contributions do not include additions to
the Program which: (i) are separate modules of software
distributed in conjunction with the Program under their own
license agreement, and (ii) are not derivative works of the
Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor
which are necessarily infringed by the use or sale of its Contribution
alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this
Agreement.

"Recipient" means anyone who receives the Program under this Agreement,
including all Contributors.

2. GRANT OF RIGHTS

1. Subject to the terms of this Agreement, each Contributor
hereby grants Recipient a non-exclusive, worldwide,
royalty-free copyright license to reproduce, prepare derivative
works of, publicly display, publicly perform, distribute and
sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor
hereby grants Recipient a non-exclusive, worldwide,
royalty-free patent license under Licensed Patents to make,
use, sell, offer to sell, import and otherwise transfer the
Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the
combination of the Contribution and the Program if, at the time

172 libica Programmer's Reference

the Contribution is added by the Contributor, such addition of
the Contribution causes such combination to be covered by the
Licensed Patents. The patent license shall not apply to any
other combinations which include the Contribution. No hardware
per se is licensed hereunder.

3. Recipient understands that although each Contributor grants
the licenses to its Contributions set forth herein, no
assurances are provided by any Contributor that the Program
does not infringe the patent or other intellectual property
rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity
based on infringement of intellectual property rights or
otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole
responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is
required to allow Recipient to distribute the Program, it is
Recipient’s responsibility to acquire that license before
distributing the Program.

4. Each Contributor represents that to its knowledge it has
sufficient copyright rights in its Contribution, if any, to
grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form
under its own license agreement, provided that:

1. it complies with the terms and conditions of this Agreement;
and

2. its license agreement:
1. effectively disclaims on behalf of all Contributors
all warranties and conditions, express and implied,
including warranties or conditions of title and
non-infringement, and implied warranties or conditions
of merchantability and fitness for a particular purpose;

2. effectively excludes on behalf of all Contributors
all liability for damages, including direct, indirect,
special, incidental and consequential damages, such as
lost profits;

3. states that any provisions which differ from this
Agreement are offered by that Contributor alone and not
by any other party; and

4. states that source code for the Program is available
from such Contributor, and informs licensees how to
obtain it in a reasonable manner on or through a medium
customarily used for software exchange.

When the Program is made available in source code form:
1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each
copy of the Program.

Contributors may not remove or alter any copyright notices
contained within the Program.

Each Contributor must identify itself as the originator of its
Contribution, if any, in a manner that reasonably allows
subsequent Recipients to identify the originator of the
Contribution.

Chapter 7. Examples 173

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities
with respect to end users, business partners and the like. While this
license is intended to facilitate the commercial use of the Program,
the Contributor who includes the Program in a commercial product
offering should do so in a manner which does not create potential
liability for other Contributors. Therefore, if a Contributor includes
the Program in a commercial product offering, such Contributor
("Commercial Contributor") hereby agrees to defend and indemnify every
other Contributor ("Indemnified Contributor") against any losses,
damages and costs (collectively "Losses") arising from claims, lawsuits
and other legal actions brought by a third party against the
Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of
the Program in a commercial product offering. The obligations in this
section do not apply to any claims or Losses relating to any actual or
alleged intellectual property infringement. In order to qualify, an
Indemnified Contributor must: a) promptly notify the Commercial
Contributor in writing of such claim, and b) allow the Commercial
Contributor to control, and cooperate with the Commercial Contributor
in, the defense and any related settlement negotiations. The
Indemnified Contributor may participate in any such claim at its own
expense.

For example, a Contributor might include the Program in a commercial
product offering, Product X. That Contributor is then a Commercial
Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance
claims and warranties are such Commercial Contributor’s responsibility
alone. Under this section, the Commercial Contributor would have to
defend claims against the other Contributors related to those
performance claims and warranties, and if a court requires any other
Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS
PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible
for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights
under this Agreement, including but not limited to the risks and costs
of program errors, compliance with applicable laws, damage to or loss
of data, programs or equipment, and unavailability or interruption of
operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR
ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING
WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

174 libica Programmer's Reference

If any provision of this Agreement is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this Agreement, and without further
action by the parties hereto, such provision shall be reformed to the
minimum extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with
respect to a patent applicable to software (including a cross-claim or
counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as
of the date such litigation is filed. In addition, if Recipient
institutes patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Program
itself (excluding combinations of the Program with other software or
hardware) infringes such Recipient’s patent(s), then such Recipient’s
rights granted under Section 2(b) shall terminate as of the date such
litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails
to comply with any of the material terms or conditions of this
Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient’s rights
under this Agreement terminate, Recipient agrees to cease use and
distribution of the Program as soon as reasonably practicable. However,
Recipient’s obligations under this Agreement and any licenses granted
by Recipient relating to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement,
but in order to avoid inconsistency the Agreement is copyrighted and
may only be modified in the following manner. The Agreement Steward
reserves the right to publish new versions (including revisions) of
this Agreement from time to time. No one other than the Agreement
Steward has the right to modify this Agreement. IBM is the initial
Agreement Steward. IBM may assign the responsibility to serve as the
Agreement Steward to a suitable separate entity. Each new version of
the Agreement will be given a distinguishing version number. The
Program (including Contributions) may always be distributed subject to
the version of the Agreement under which it was received. In addition,
after a new version of the Agreement is published, Contributor may
elect to distribute the Program (including its Contributions) under the
new version. Except as expressly stated in Sections 2(a) and 2(b)
above, Recipient receives no rights or licenses to the intellectual
property of any Contributor under this Agreement, whether expressly, by
implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the
intellectual property laws of the United States of America. No party to
this Agreement will bring a legal action under this Agreement more than
one year after the cause of action arose. Each party waives its rights
to a jury trial in any resulting litigation.

Chapter 7. Examples 175

176 libica Programmer's Reference

Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Documentation accessibility

The Linux on z Systems publications are in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when you use the PDF file and want to request a Web-based format for
this publication, use the Readers' Comments form in the back of this publication,
send an email to eservdoc@de.ibm.com, or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility at
www.ibm.com/able

© Copyright IBM Corp. 2009, 2016 177

http://www.ibm.com/able

178 libica Programmer's Reference

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

© Copyright IBM Corp. 2009, 2016 179

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems
Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

180 libica Programmer's Reference

http://www.ibm.com/legal/copytrade.shtml

Glossary
Advanced Encryption Standard (AES)

A data encryption technique that improved upon and officially replaced
the Data Encryption Standard (DES). AES is sometimes referred to as
Rijndael, which is the algorithm on which the standard is based.

asymmetric cryptography
Synonym for public key cryptography..

Central Processor Assist for Cryptographic Function (CPACF)
Hardware that provides support for symmetric ciphers and secure hash
algorithms (SHA) on every central processor. Hence the potential
encryption/decryption throughput scales with the number of central
processors in the system.

Chinese-Remainder Theorem (CRT)
A mathematical problem described by Sun Tsu Suan-Ching using the
remainder from a division operation.

Cipher Block Chaining (CBC)
A method of reducing repetitive patterns in cipher-text by performing an
exclusive-OR operation on each 8-byte block of data with the previously
encrypted 8-byte block before it is encrypted.

Cipher block length
The length of a block that can be encrypted or decrypted by a symmetric
cipher. Each symmetric cipher has a specific cipher block length.

clear key
Any type of encryption key not protected by encryption under another key.

CPACF instructions
Instruction set for the CPACF hardware. CPACF functions for DES, TDES
and SHA1 functions can be invoked by five new instructions as described
in z/Architecture Principles of Operation. As a group, these instructions are
known as the Message Security Assist (MSA).

Crypto Express4S (CEX4S)
Successor to the Crypto Express3 feature. The PCIe adapter on a CEX4S
feature can be configured in three ways: Either as cryptographic accelerator
(CEX4A), or as CCA coprocessor (CEX4C) for secure key encrypted
transactions, or in EP11 coprocessor mode (CEX4P) for exploiting
Enterprise PKCS #11 functionality.

A CEX4P only supports secure key encrypted transactions.

electronic code book mode (ECB mode)
A method of enciphering and deciphering data in address spaces or data
spaces. Each 64-bit block of plain-text is separately enciphered and each
block of the cipher-text is separately deciphered.

libica Library for IBM Cryptographic Architecture.

master key (MK)
In computer security, the top-level key in a hierarchy of key-encrypting
keys.

MSA Message Security Assist. See CPACF instructions.

© Copyright IBM Corp. 2009, 2016 181

|
|
|
|

|

||

Mode of operation
A schema describing how to apply a symmetric cipher to encrypt or
decrypt a message that is longer than the cipher block length. The goal of
most modes of operation is to keep the security level of the cipher by
avoiding the situation where blocks that occur more than once will always
be translated to the same value. Some modes of operations allow handling
messages of arbitrary lengths.

modulus-exponent (Mod-Expo)
A type of exponentiation performed using a modulus.

public key cryptography
In computer security, cryptography in which a public key is used for
encryption and a private key is used for decryption. Synonymous with
asymmetric cryptography.

Rivest-Shamir-Adleman (RSA)
An algorithm used in public key cryptography. These are the surnames of
the three researchers responsible for creating this asymmetric or
public/private key algorithm.

Secure Hash Algorithm (SHA)
A standardized cryptographic hash function to compute a unique
(message) digest from a message in a way that is mathematically
impossible to reverse. Different data can possibly produce the same hash
value, but there is no way to use the hash value to determine the original
data.

secure key
A key that is encrypted under a master key. When using a secure key, it is
passed to a cryptographic coprocessor where the coprocessor decrypts the
key and performs the function. The secure key never appears in the clear
outside of the cryptographic coprocessor.

symmetric cryptogrphy
An encryption method that uses the same key for encryption and
decryption. Keys of symmetric ciphers are private keys.

zcrypt device driver
Kernel device driver to access Crypto Express adapters. Formerly, a
monolithic module called z90crypt. Today, it consists of multiple modules
that are implicitly loaded when loading the ap main module of the device
driver.

182 libica Programmer's Reference

|
|
|

Index

Numerics
3DES 37

Cipher Based Message Authentication
Code (CMAC) 41

Cipher Based Message Authentication
Code (CMAC) intermediate 42

Cipher Based Message Authentication
Code (CMAC) last 43

Cipher Block Chaining (CBC) 38
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 39
Cipher Feedback (CFB) 40
Counter (CTR) mode 44
Counter (CTR) mode with list 45
Electronic Code Book (ECB) 46
Output Feedback (OFB) 47

A
accessibility 177
adapter

close 11
functions 10
open 10

AES 48
Cipher Based Message Authentication

Code (CMAC) 54
Cipher Based Message Authentication

Code (CMAC) last 56
Cipher Block Chaining (CBC) 49
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 50
Cipher Feedback (CFB) 53
Counter (CTR) mode 57
Counter (CTR) mode with list 58
Counter with CBC MAC (CCM) 51

single operation 60
streaming operation 62, 63, 65

Electronic Code Book (ECB) 59
Output Feedback (OFB) 66
XEX-based Tweaked CodeBook mode

with CipherText Stealing (XTS) 67
AES with CFB mode

examples 117
AES with CTR mode

examples 129
AES with OFB mode

examples 139
AES with XTS mode

examples 147
ap main module 2
API

ica_3des_cbc 38
ica_3des_cbc_cs 39
ica_3des_cfb 40
ica_3des_cmac 41
ica_3des_cmac_intermediate 42
ica_3des_cmac_last 43
ica_3des_ctr 44
ica_3des_ctrlist 45

API (continued)
ica_3des_ecb 46
ica_3des_ofb 47
ica_aes_cbc 49
ica_aes_cbc_cs 50
ica_aes_ccm 51
ica_aes_cfb 53
ica_aes_cmac 54
ica_aes_cmac_intermediate 55
ica_aes_cmac_last 56
ica_aes_ctr 57
ica_aes_ctrlist 58
ica_aes_ecb 59
ica_aes_gcm 60
ica_aes_gcm_initialize 62
ica_aes_gcm_intermediate 63
ica_aes_gcm_last 65
ica_aes_ofb 66
ica_aes_xts 67
ica_close_adapter 11
ica_des_cbc 27
ica_des_cbc_cs 27
ica_des_cfb 29
ica_des_cmac 30
ica_des_cmac_intermediate 31
ica_des_cmac_last 32
ica_des_ctr 33
ica_des_ctrlist 34
ica_des_ecb 35
ica_des_ofb 36
ica_drbg_generate 20
ica_drbg_health_test 21
ica_drbg_instantiate 19, 21
ica_drbg_reseed 20
ica_get_functionlist 69
ica_get_version 69
ica_open_adapter 10
ica_random_number_generate 18
ica_rsa_crt 25
ica_rsa_crt_key_check 24
ica_rsa_key_generate_crt 23
ica_rsa_key_generate_mod_expo 22
ica_rsa_mod_expo 25
ica_sha1 11
ica_sha224 12
ica_sha256 14
ica_sha384 15
ica_sha512 16
libica 7

available functions 87
available libraries in openCryptoki 76

C
C_CloseSession 166
C_CreateObject 167
C_Decrypt (DES) 168
C_Decrypt (RSA) 168
C_Encrypt (DES) 168
C_Encrypt (RSA) 168
C_FindObjects 167

C_GenerateKeyPair (RSA) 168
C_Login 166
C_Logout 166
C_OpenSession 166
chzcrypt 2
CMAC

examples 157
command line program

pkcsconf 72
command pkcsconf 76
commands

icainfo 87
Common Public License - V1.0 172
compatibility

of APIs from earlier libica versions 6
configuration file

sample for opencryptoki.conf 76
configuring

ICA token 78
configuring openCryptoki 75
constants 83
CPACF 2
cryptographic adapter

installing 2
cryptographic hardware support 2

D
define statements 2, 83
DES 26

Cipher Based Message Authentication
Code (CMAC) 30

Cipher Based Message Authentication
Code (CMAC) intermediate 31, 55

Cipher Based Message Authentication
Code (CMAC) last 32

Cipher Block Chaining (CBC) 27
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 27
Cipher Feedback (CFB) 29
Counter (CTR) mode 33
Counter (CTR) mode with list 34
Electronic Code Book (ECB) 35
Output Feedback (OFB) 36

DES with CTR mode
examples 111

DES with ECB mode
examples 91

deterministic random bit generator
DRBG v, 17
NIST compliant 17

distribution independence viii
DRBG

deterministic random bit generator v,
17

NIST compliant 17
dynamic library call 161

© Copyright IBM Corp. 2009, 2016 183

E
examples 91

AES with CFB mode 117
AES with CTR mode 129
AES with OFB mode 139
AES with XTS mode 147
CMAC 157
Common Public License - V1.0 172
DES with CTR mode 111
DES with ECB mode 91
key generation 100
makefile 171
pseudo random number 99
RSA 106
SHA-256 93
triple DES with CBC mode 114

G
Galois/Counter Mode

GCM 60
GCM

Galois/Counter Mode 60
glossary 181

H
hardware support

for cryptographic functions 2

I
ibopencryptoki.so 71
ICA token 78

configuring 78
status information 79

ica_3des_cbc 38
ica_3des_cbc_cs 39
ica_3des_cfb 40
ica_3des_cmac 41
ica_3des_cmac_intermediate 42
ica_3des_cmac_last 43
ica_3des_ctr 44
ica_3des_ctrlist 45
ica_3des_ecb 46
ica_3des_ofb 47
ica_aes_cbc 49
ica_aes_cbc_cs 50
ica_aes_ccm 51
ica_aes_cfb 53
ica_aes_cmac 54
ica_aes_cmac_intermediate 55
ica_aes_cmac_last 56
ica_aes_ctr 57
ica_aes_ctrlist 58
ica_aes_ecb 59
ica_aes_gcm

single operation 60
ica_aes_gcm_initialize

streaming operation 62
ica_aes_gcm_intermediate

streaming operation 63
ica_aes_gcm_last

streaming operation 65
ica_aes_ofb 66

ica_aes_xts 67
ica_close_adapter 10, 11
ica_des_cbc 27
ica_des_cbc_cs 27
ica_des_cfb 29
ica_des_cmac 30
ica_des_cmac_intermediate 31
ica_des_cmac_last 32
ica_des_ctr 33
ica_des_ctrlist 34
ica_des_ecb 35
ica_des_ofb 36
ica_drbg 17
ica_drbg_generate 20
ica_drbg_health_test 21
ica_drbg_instantiate 19, 21
ica_drbg_reseed 20
ica_get_functionlist 69
ica_get_version 69
ica_open_adapter 10
ica_random_number_generate 18
ica_rsa_crt 25
ica_rsa_crt_key_check 24
ica_rsa_key_generate_crt 23
ica_rsa_key_generate_mod_expo 22
ica_rsa_mod_expo 25
ica_sha1 11
ica_sha224 12
ica_sha256 14
ica_sha384 15
ica_sha512 16
icainfo command 87
icainfo utility 1
icastats utility 1, 88
icatoken 74
Information retrieval functions 69

K
key

CRT format 23
modulus/exponent 22

key generation
examples 100

L
libica

APIs 7
binary package 5
coexistance 6
constants 83
define statements 2, 83
examples 1, 91
function list 69
general information 1
installation 5
lszcrypt 2
return codes 86
source package 5
structs 84
typedefs 83
usage 5
using 6
version 69
zcrypt status information 2

Linux
distribution viii

log-in PIN 78
lszcrypt 2

M
makefile

examples 171
Message Security Assist

MSA 17, 21
MSA

Message Security Assist 17, 21
MSA2 17, 21
MSA5 17, 21

N
NIST compliant pseudo random

number 17
NIST SP800-90A specification 7

O
openCryptoki

base library 76
base procedures 162
binary package 74
C_CloseSession 166
C_CreateObject 167
C_Decrypt (DES) 168
C_Decrypt (RSA) 168
C_Encrypt (DES) 168
C_Encrypt (RSA) 168
C_FindObjects 167
C_GenerateKeyPair (RSA) 168
C_Login 166
C_Logout 166
C_OpenSession 166
coding samples 160
configuration file 76
configuring 75
crypto adapter 2
general information 71
installing 74
overview 71
SO PIN 78
source package 74
standard PIN 78
status information 79, 80
token library 76

openCryptoki library 71
opencryptoki.conf

configuration file 76

P
PIN 78
pk_config_data 76
PKCS #11

functions 74
PKCS #11 functions 74
PKCS #11 standard 71
pkcs11_startup 76
pkcsconf 72, 78

184 libica Programmer's Reference

pkcsconf -t 79, 80
pkcsconf -t command 76
pkcsconf command 76
pkcsslotd 71
pseudo random number 17

examples 99
NIST compliant 17

R
random number

generator functions 17
NIST compliant 17

return codes 86
RSA

examples 106

S
sample programs 1
secure hash 11
security officer (SO) 72
SHA-1 11
SHA-224 12
SHA-256 14

examples 93
SHA-384 15
SHA-512 16
shared linked library 161
single operation

ica_aes_gcm 60
slot entry 76
slot entry, defining 78
slot manager 71, 76

starting 76
slot token dynamic link libraries

(STDLLs) 71
SO

log-in PIN 78
standard user (User)

log-in PIN 78
starting the slot manager 76
status information 79, 80
STDLL 71
STDLLs 71
streaming operation

ica_aes_gcm_initialize 62
ica_aes_gcm_intermediate 63
ica_aes_gcm_last 65

structs 84
summary of changes

libica version 2.4 v
libica version 2.5 v
libica version 2.6 v

T
TDES 37

Cipher Based Message Authentication
Code (CMAC) 41

Cipher Based Message Authentication
Code (CMAC) intermediate 42

Cipher Based Message Authentication
Code (CMAC) last 43

Cipher Block Chaining (CBC) 38

TDES (continued)
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 39
Cipher Feedback (CFB) 40
Counter (CTR) mode 44
Counter (CTR) mode with list 45
Electronic Code Book (ECB) 46
Output Feedback (OFB) 47

token
initializing 78

triple DES 37
triple DES with CBC mode

examples 114
typedefs 83

U
User

log-in PIN 78
utilities

icastats 88

Z
z90crypt

alias name 2
zcrypt status information 2

Index 185

186 libica Programmer's Reference

Readers’ Comments — We'd Like to Hear from You

Linux on z Systems
libica Programmer's Reference
Version 2.6

Publication No. SC34-2602-07

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via email to: eservdoc@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2602-07

SC34-2602-07

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

SC34-2602-07

	Contents
	Summary of changes
	Updates for libica version 2.6
	Updates for libica version 2.5
	Updates for libica version 2.4

	About this document
	How this document is organized
	Who should read this document
	Distribution independence
	Other publications for Linux on z Systems

	Chapter 1. General information about libica
	libica examples
	z Systems cryptographic hardware support
	Check the prerequisites: cryptographic adapter and device driver
	Loading the Linux zcrypt device driver
	Checking the cryptographic adapter availability

	Chapter 2. Installing and using libica version 2.6
	Installing libica version 2.6 from the libica RPM
	Installing libica version 2.6 from the source package
	Using libica version 2.6
	libica version 1, version 2, version 2.1.0, and up to version 2.6 coexistence

	Chapter 3. libica version 2.6 application programming interfaces
	Open and close adapter functions
	ica_open_adapter
	ica_close_adapter

	Secure hash operations
	ica_sha1
	ica_sha224
	ica_sha256
	ica_sha384
	ica_sha512

	Pseudo random number generation functions
	ica_random_number_generate
	ica_drbg_instantiate
	ica_drbg_reseed
	ica_drbg_generate
	ica_drbg_uninstantiate
	ica_drbg_health_test

	RSA key generation functions
	ica_rsa_key_generate_mod_expo
	ica_rsa_key_generate_crt
	ica_rsa_crt_key_check

	RSA encrypt and decrypt operations
	ica_rsa_mod_expo
	ica_rsa_crt

	DES functions
	ica_des_cbc
	ica_des_cbc_cs
	ica_des_cfb
	ica_des_cmac
	ica_des_cmac_intermediate
	ica_des_cmac_last
	ica_des_ctr
	ica_des_ctrlist
	ica_des_ecb
	ica_des_ofb
	Compatibility with earlier versions

	TDES/3DES functions
	ica_3des_cbc
	ica_3des_cbc_cs
	ica_3des_cfb
	ica_3des_cmac
	ica_3des_cmac_intermediate
	ica_3des_cmac_last
	ica_3des_ctr
	ica_3des_ctrlist
	ica_3des_ecb
	ica_3des_ofb
	Compatibility with earlier versions

	AES functions
	ica_aes_cbc
	ica_aes_cbc_cs
	ica_aes_ccm
	ica_aes_cfb
	ica_aes_cmac
	ica_aes_cmac_intermediate
	ica_aes_cmac_last
	ica_aes_ctr
	ica_aes_ctrlist
	ica_aes_ecb
	ica_aes_gcm
	ica_aes_gcm_initialize
	ica_aes_gcm_intermediate
	ica_aes_gcm_last
	ica_aes_ofb
	ica_aes_xts
	Compatibility with earlier versions

	Information retrieval function
	ica_get_version
	ica_get_functionlist

	Chapter 4. Accessing libica functions through the PKCS #11 API (openCryptoki)
	openCryptoki overview
	Functions provided by openCryptoki with the ICA token
	Installing openCryptoki
	Installing from the RPM
	Installing from the source package

	Configuring openCryptoki
	Adjusting the openCryptoki configuration file
	Configuring the ICA token
	Initializing the token
	How to recognize the ICA token

	Using the ICA token
	Supported mechanisms for the ICA token

	Chapter 5. libica constants, type definitions, data structures, and return codes
	libica constants
	Type definitions
	Data structures
	Return codes

	Chapter 6. libica tools
	icainfo - Show available libica functions
	icastats - Show use of libica functions

	Chapter 7. Examples
	DES with ECB mode example
	SHA-256 example
	Pseudo random number generation example
	Key generation example
	RSA example
	DES with CTR mode example
	Triple DES with CBC mode example
	AES with CFB mode example
	AES with CTR mode example
	AES with OFB mode example
	AES with XTS mode example
	CMAC example
	openCryptoki code samples
	Coding samples (C)
	Dynamic library call
	Shared linked library

	Makefile example
	Common Public License - V1.0

	Accessibility
	Notices
	Trademarks

	Glossary
	Index
	Numerics
	A
	C
	D
	E
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	Z

	Readers’ Comments — We'd Like to Hear from You

