
Linux on System z

libica Programmer's Reference
Version 2.2.0

SC34-2602-02

���

Linux on System z

libica Programmer's Reference
Version 2.2.0

SC34-2602-02

���

Note

Before using this document, be sure to read the information in “Notices” on page 177.

This edition applies to version 2.2.0 of libica and to all subsequent releases and modifications until otherwise
indicated in new editions. This edition replaces SC34-2602-01.

© Copyright IBM Corporation 2009, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Summary of changes v
Updates for libica Version 2.2.0 v
Updates for libica Version 2.1.0 v

About this document vii
How this document is organized vii
Who should read this document vii

Assumptions vii
Distribution independence viii
Conventions used in this book. viii

Terminology viii
Highlighting. viii

Other Linux on System z publications. ix
Finding IBM books ix

Chapter 1. General information about
libica 1
libica examples 1

Chapter 2. Installing and using libica
Version 2.2.0. 3
Installing libica Version 2.2.0 3
Using libica Version 2.2.0 3
libica Version 1, Version 2, Version 2.1.0, and Version
2.2.0 coexistence 3

Chapter 3. libica Version 2.2.0
Application Programming Interfaces
(APIs). 5
Open and close adapter functions 7

ica_open_adapter 8
ica_close_adapter 9

Secure hash operations 10
ica_sha1 11
ica_sha224 12
ica_sha256 14
ica_sha384 15
ica_sha512 17

Pseudo random number generation function . . . 18
ica_random_number_generate 19

RSA key generation functions 20
ica_rsa_key_generate_mod_expo 21
ica_rsa_key_generate_crt 22

RSA encrypt and decrypt operations 23
ica_rsa_mod_expo 24
ica_rsa_crt 25

DES functions 26
ica_des_cbc 27
ica_des_cbc_cs 28
ica_des_cfb 30
ica_des_cmac 31
ica_des_cmac_intermediate 32
ica_des_cmac_last 33
ica_des_ctr. 35

ica_des_ctrlist. 37
ica_des_ecb 39
ica_des_ofb 40
Compatibility with earlier versions 41

TDES/3DES functions 42
ica_3des_cbc 43
ica_3des_cbc_cs 44
ica_3des_cfb 46
ica_3des_cmac 47
ica_3des_cmac_intermediate 48
ica_3des_cmac_last 49
ica_3des_ctr 51
ica_3des_ctrlist 53
ica_3des_ecb 55
ica_3des_ofb 56
Compatibility with earlier versions 57

AES functions 58
ica_aes_cbc 59
ica_aes_cbc_cs 60
ica_aes_ccm 62
ica_aes_cfb 64
ica_aes_cmac 66
ica_aes_cmac_intermediate 68
ica_aes_cmac_last 69
ica_aes_ctr 71
ica_aes_ctrlist 73
ica_aes_ecb 75
ica_aes_gcm 76
ica_aes_ofb 78
ica_aes_xts. 79
Compatibility with earlier versions 81

Information retrieval function 82
ica_get_version 83

Chapter 4. libica defines, typedefs,
structs, and return codes. 85
Defines 85
Typedefs 85
Structs 86
Return codes 87

Chapter 5. libica tools 89
icainfo - Show available libica functions 90
icastats - Show use of libica functions 92

Chapter 6. Examples 93
DES with ECB mode example 94
SHA-256 example 97
Pseudo random number generation example . . . 103
Key generation example 105
RSA example 112
DES with CTR mode example 117
Triple DES with CBC mode example 120
AES with CFB mode example 123
AES with CTR mode example 136

© Copyright IBM Corp. 2009, 2012 iii

||

||
||
||

||

||
||
||

||
||

||
||

||

||
||
||

AES with OFB mode example 146
AES with XTS mode example 155
CMAC example 165
Makefile example 169
Common Public License - V1.0 170

Accessibility 175
Documentation accessibility 175
IBM and accessibility 175

Notices 177
Trademarks 179

Glossary 181

Index 183

iv libica Programmer's Reference

Summary of changes

This revision reflects changes to the Development stream for libica Version 2.2.0.

Updates for libica Version 2.2.0
This revision reflects changes related to Version 2.2.0 of libica.

New information

v New APIs have been added. For details, see Chapter 3, “libica Version 2.2.0
Application Programming Interfaces (APIs),” on page 5.
– ica_3des_cbc_cs
– ica_3des_cmac
– ica_3des_cmac_intermediate
– ica_3des_cmac_last
– ica_aes_cbc_cs
– ica_aes_ccm
– ica_aes_cmac_intermediate
– ica_aes_cmac_last
– ica_aes_gcm
– ica_des_cbc_cs
– ica_des_cmac
– ica_des_cmac_intermediate
– ica_des_cmac_last

v New commands have been added. See Chapter 5, “libica tools,” on page 89.

Changed information

v Minor changes and corrections have been made to some of the APIs.

This revision also includes maintenance and editorial changes.

Deleted information

v Some obsolete examples have been removed.

Updates for libica Version 2.1.0
This revision reflects changes related to Version 2.1.0 of libica.

New information

v Support for IBM® zEnterprise™ 196 has been added.
v New APIs have been added. See Chapter 3, “libica Version 2.2.0 Application

Programming Interfaces (APIs),” on page 5.
v New examples have been added. See Chapter 6, “Examples,” on page 93.
v New defines and structs have been added. See Chapter 4, “libica defines,

typedefs, structs, and return codes,” on page 85.

Changed information

© Copyright IBM Corporation © IBM 2009, 2012 v

v The example makefile has been updated. See “Makefile example” on page 169.

This revision also includes maintenance and editorial changes.

Deleted information

v The following functions are deprecated in libica Version 2.1.0, and no longer
documented in this book. They are, however, still available in this version of
libica. For documentation on these functions, see the Version 2.0 libica
Programmer's Reference.
– ica_des_encrypt
– ica_des_decrypt
– ica_3des_encrypt
– ica_3des_decrypt
– ica_aes_encrypt
– ica_aes_decrypt

vi libica Programmer's Reference

About this document

This document describes how to install and use Version 2.2.0 of the Library for
IBM Cryptographic Architecture (libica). libica Version 2.2.0 is a library of
cryptographic functions used to write cryptographic applications on IBM System
z®, both with and without cryptographic hardware.

Unless stated otherwise, the tools described in this book are available for the 64-bit
architecture and 31-bit architectures with version 2.6 or higher of the Linux kernel.

You can find the latest version of this document on the developerWorks® website
at:
http://www.ibm.com/developerworks/linux/linux390/development_documentation.html

How this document is organized
Chapter 1, “General information about libica,” on page 1 has general information
about libica Version 2.2.0.

Chapter 2, “Installing and using libica Version 2.2.0,” on page 3 contains
installation and set up instructions, and coexistence information for libica Version
2.2.0.

Chapter 3, “libica Version 2.2.0 Application Programming Interfaces (APIs),” on
page 5 describes the libica Version 2.2.0 APIs.

Chapter 4, “libica defines, typedefs, structs, and return codes,” on page 85 lists the
defines, typedefs, structs, and return codes for libica Version 2.2.0.

Chapter 5, “libica tools,” on page 89 contains tools to investigate the capabilities of
your cryptographic hardware and how these capabilities are used by applications
that use libica.

Chapter 6, “Examples,” on page 93 is a set of programming examples that use the
libica Version 2.2.0 APIs.

Who should read this document
This document is intended for C programmers that want to access IBM System z
hardware support for cryptographic methods. In particular, this document
addresses programmers who write hardware-specific plug-ins for cryptographic
libraries such as openssl and OpenCryptoki.

Assumptions
The following general assumptions are made about your background knowledge:
v You have an understanding of basic computer architecture, operating systems,

and programs.
v You have an understanding of Linux and IBM System z terminology.
v You have knowledge about cryptographic applications and solution design, as

well as the required cryptographic functions and algorithms.

© Copyright IBM Corp. 2009, 2012 vii

|
|
|
|

|
|

|
|
|

http://www.ibm.com/developerworks/linux/linux390/development_documentation.html

Distribution independence
This book does not provide information that is specific to a particular Linux
distribution. The tools it describes are distribution independent.

Conventions used in this book
This section informs you on the styles, highlighting, and assumptions used
throughout the book.

Terminology
In this book, the term booting is used for running boot loader code that loads the
Linux operating system. IPL is used for issuing an IPL command or to load
boot-loader code.

In this book, the term Required hardware support refers to specific processor
instructions that must be available on the processor in order for the function to
benefit from hardware support. Functions will fail on systems that do not provide
the required hardware support, unless a software fallback is available as indicated
in Table 2 on page 5. An example is that the ica_des_cbc function has KMC-DEA
listed under Required hardware support. This function cannot benefit from
hardware support unless the processor has the KMC-DEA instruction. However,
ica_des_cbc will work on all processors because according to Table 2 on page 5
there is a software fallback for this function.

For more information, see:
v The z/Architecture® Principles of Operation, SA22-7832-06
v the IBM Redbooks® publication System z Cryptographic Services and z/OS® PKI

Services, SG24-7470-00

IBM systems mentioned in this book have both long names and short names. They
correspond as follows:

Table 1. IBM systems

Long name Short name

IBM eServer™ zSeries® 990 z990

IBM System z9® z9

IBM System z10® z10™

IBM System z196 z196

Highlighting
This book uses the following highlighting styles:
v Paths and URLs are highlighted in monospace.
v Variables are highlighted in italics.
v Commands in text are highlighted in bold.
v Input and output as normally seen on a computer screen is shown

within a screen frame.
Prompts are shown as number signs:
#

viii libica Programmer's Reference

Other Linux on System z publications
Current versions of the Linux on System z publications can be found at:
www.ibm.com/developerworks/linux/linux390/documentation_dev.html

v Device Drivers, Features, and Commands, SC33-8411

v Using the Dump Tools, SC33-8412

v How to use FC-attached SCSI devices with Linux on System z, SC33-8413

v How to Improve Performance with PAV, SC33-8414

v How to use Execute-in-Place Technology with Linux on z/VM®, SC34-2594

v How to Set up a Terminal Server Environment on z/VM, SC34-2596

v Kernel Messages

v libica Programmer’s Reference, SC34-2602

Finding IBM books
The PDF version of this book contains URL links to much of the referenced
literature.

For some of the referenced IBM books, links have been omitted to avoid pointing
to a particular edition of a book. You can locate the latest versions of the
referenced IBM books through the IBM Publications Center at:
http://www.ibm.com/shop/publications/order

About this document ix

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/shop/publications/order

x libica Programmer's Reference

Chapter 1. General information about libica

The libica library provides hardware support for cryptographic functions. The
cryptographic adapters are used for asymmetric encryption and decryption. The
CPACF instructions are used for symmetric encryption and decryption, pseudo
random number generation, message authentication, and Secure Hashing. For
some of these functions, if the hardware is not available or has failed, libica uses
the low-level cryptographic functions of OpenSSL, if available.

This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org). This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com).

The libica library is part of the openCryptoki project in SourceForge. It is primarily
used by OpenSSL through the IBM OpenSSL CA engine or by OpenCryptoki
through the ica_s390 token. A higher level of security can be achieved by using it
through the PKCS11 API implemented by OpenCryptoki.

The libica library works only on IBM System z hardware.

IBM reserves the right to change or modify this API at any time. However, an
effort is made to keep the API compatible with later versions within a major
release.

The icastats command, described in Linux on System z: Device Driver, Features, and
Commands, is used to obtain statistics about cryptographic processes. The icastats
command shows whether libica is using cryptographic hardware or software
fallback for each specific libica function.

libica examples
There is a list of sample programs in the libica source for each API, as well as
instructions about how to use the functions. You can find the open source version
of libica at:
http://sourceforge.net/projects/opencryptoki

Sample programs area also in Chapter 6, “Examples,” on page 93.

© Copyright IBM Corporation © IBM 2009, 2012 1

http://www.openssl.org/
http://sourceforge.net/projects/opencryptoki

2 libica Programmer's Reference

Chapter 2. Installing and using libica Version 2.2.0

Installing libica Version 2.2.0
You can obtain the libica Version 2.2.0 library from the SourceForge website at:
http://sourceforge.net/projects/opencryptoki

Follow the installation instructions on this website to download the libica Version
2.2.0 package. This package has a file named INSTALL that contains installation
instructions.

Using libica Version 2.2.0
The function prototypes are provided in the header file, include/ica_api.h.
Applications using these functions must link libica and libcrypto. The libcrypto
library is available from the OpenSSL package. You must have OpenSSL in order to
run libica Version 2.2.0 programs.

libica Version 1, Version 2, Version 2.1.0, and Version 2.2.0 coexistence
Some of the libica Version 1 APIs are available in libica Version 2, libica Version
2.1.0, and libica Version 2.2.0. Some of them, such as those APIs that work with an
environment other than Linux on IBM System z, were removed and are not present
in libica Version 2 or later versions. If your application program has calls to libica
Version 1 APIs, check to see whether these APIs are in libica Version 2.2.0. If they
are, these API calls should still work. However, we suggest that you convert your
application to use the equivalent libica Version 2.2.0 functions. See Chapter 3,
“libica Version 2.2.0 Application Programming Interfaces (APIs),” on page 5.

libica key generation is restricted to the limits imposed by the OpenSSL
implementation. Thus, the value of a public exponent passed to libica cannot be
greater than the maximum value that would fit in an unsigned long integer.

© Copyright IBM Corporation © IBM 2009, 2012 3

|
|
|
|
|
|
|
|

http://sourceforge.net/projects/opencryptoki

4 libica Programmer's Reference

Chapter 3. libica Version 2.2.0 Application Programming
Interfaces (APIs)

Table 2 lists the APIs for libica Version 2.2.0.

Table 2. libica Version 2.2.0 APIs

Function libica Version 2.2.0 API name

Key
length in

bits

Supported on CPACF
function

Software
fallbackz9 z10 z196

Open and close adapter functions

Open adapter handle “ica_open_adapter” on page 8 N/A Yes Yes Yes No N/A

Close adapter handle “ica_close_adapter” on page 9 N/A Yes Yes Yes No N/A

Secure hash operations

Secure hash using the
SHA-1 algorithm.

“ica_sha1” on page 11 N/A Yes Yes Yes Yes Yes

Secure hash using the
SHA-224 algorithm.

“ica_sha224” on page 12 N/A No Yes Yes Yes Yes

Secure hash using the
SHA-256 algorithm.

“ica_sha256” on page 14 N/A Yes Yes Yes Yes Yes

Secure hash using the
SHA-384 algorithm.

“ica_sha384” on page 15 N/A No Yes Yes Yes Yes

Secure hash using the
SHA-512 algorithm.

“ica_sha512” on page 17 N/A No Yes Yes Yes Yes

Random number generation

Generate a pseudo
random number.

“ica_random_number_generate”
on page 19

N/A Yes Yes Yes Yes Yes

RSA key generation functions

Generate RSA keys in
modulus/exponent
format.

“ica_rsa_key_generate_mod_expo”
on page 21

N/A Yes Yes Yes No Software
only

Generate RSA keys in
CRT format.

“ica_rsa_key_generate_crt” on
page 22

N/A Yes Yes Yes No Software
only

RSA encryption and decryption operations

RSA encryption and
decryption operation
using a key in
modulus/exponent
format.

“ica_rsa_mod_expo” on page 24 Depending
on

supported
key size of

Crypto
Express
feature

Yes Yes Yes No Key length
maximum

4 K bits

RSA encryption and
decryption operation
using a key in
Chinese-Remainder
Theorem (CRT) format.

“ica_rsa_crt” on page 25 Depending
on

supported
key size of

Crypto
Express
feature

Yes Yes Yes No Key length
maximum

4 K bits

DES functions

© Copyright IBM Corporation © IBM 2009, 2012 5

Table 2. libica Version 2.2.0 APIs (continued)

Function libica Version 2.2.0 API name

Key
length in

bits

Supported on CPACF
function

Software
fallbackz9 z10 z196

DES with Cipher Block
Chaining mode

“ica_des_cbc” on page 27 56 Yes Yes Yes Yes Yes

DES with CBC-Cipher
text stealing mode

“ica_des_cbc_cs” on page 28 56 Yes Yes Yes Yes Yes

DES with Cipher
Feedback mode

“ica_des_cfb” on page 30 56 No No Yes Yes No

DES with CMAC mode “ica_des_cmac” on page 31 56 No No Yes Yes No

DES with CMAC mode
process intermediate
chunks

“ica_des_cmac_intermediate” on
page 32

56 No No Yes Yes No

DES with CMAC mode
process last chunk

“ica_des_cmac_last” on page 33 56 No No Yes Yes No

DES with Counter mode “ica_des_ctr” on page 35 56 No No Yes Yes No

DES with Counter mode,
using a list of counters

“ica_des_ctrlist” on page 37 56 No No Yes Yes No

DES with Electronic
Codebook mode.

“ica_des_ecb” on page 39 56 Yes Yes Yes Yes Yes

DES with Output
Feedback mode

“ica_des_ofb” on page 40 56 No No Yes Yes No

TDES/3DES functions

TDES with Cipher Block
Chaining mode

“ica_3des_cbc” on page 43 168 Yes Yes Yes Yes Yes

TDES with CBC-Cipher
text Stealing mode

“ica_3des_cbc_cs” on page 44 168 Yes Yes Yes Yes Yes

TDES with Cipher
Feedback mode

“ica_3des_cfb” on page 46 168 No No Yes Yes No

TDES with CMAC mode “ica_3des_cmac” on page 47 168 No No Yes Yes No

TDES with CMAC mode
process intermediate
chunks

“ica_3des_cmac_intermediate” on
page 48

168 No No Yes Yes No

TDES with CMAC mode
process last chunk

“ica_3des_cmac_last” on page 49 168 No No Yes Yes No

TDES with Counter mode “ica_3des_ctr” on page 51 168 No No Yes Yes No

TDES with Counter
mode, using a list of
counters

“ica_3des_ctrlist” on page 53 168 No No Yes Yes No

TDES with Electronic
Codebook mode

“ica_3des_ecb” on page 55 168 Yes Yes Yes Yes Yes

TDES with Output
Feedback mode

“ica_3des_ofb” on page 56 168 No No Yes Yes No

AES functions

AES with Cipher Block
Chaining mode.

“ica_aes_cbc” on page 59 128, 192,
256

Yes Yes Yes Yes Yes

AES with CBC-Cipher
text stealing mode.

“ica_aes_cbc_cs” on page 60 128, 192,
256

Yes Yes Yes Yes Yes

6 libica Programmer's Reference

|
|
|||||||

||||||||

|
|
|

|
|
||||||

|
|
|||||||

|
|
|||||||

||||||||

|
|
|

|
|
||||||

|
|
|||||||

|
|
||
|
|||||

Table 2. libica Version 2.2.0 APIs (continued)

Function libica Version 2.2.0 API name

Key
length in

bits

Supported on CPACF
function

Software
fallbackz9 z10 z196

AES with Counter with
Cipher Block Chaining -
Message Authentication
Code mode.

“ica_aes_ccm” on page 62 128, 192,
256

No No Yes Yes No

AES with Cipher
Feedback mode.

“ica_aes_cfb” on page 64 128, 192,
256

No No Yes Yes No

AES with CMAC mode “ica_aes_cmac” on page 66 128, 192,
256

No No Yes Yes No

AES with CMAC mode
process intermediate
chunks

“ica_aes_cmac_intermediate” on
page 68

128, 192,
256

No No Yes Yes No

AES with CMAC mode
process last chunk

“ica_aes_cmac_last” on page 69 128, 192,
256

No No Yes Yes No

AES with Counter mode. “ica_aes_ctr” on page 71 128, 192,
256

No No Yes Yes No

AES with Counter mode,
using a list of counters

“ica_aes_ctrlist” on page 73 128, 192,
256

No No Yes Yes No

AES with Electronic
Codebook mode.

“ica_aes_ecb” on page 75 128, 192,
256

Yes Yes Yes Yes Yes

AES with Galois /
Counter mode.

“ica_aes_gcm” on page 76 128, 192,
256

No No Yes Yes No

AES with Output
Feedback mode.

“ica_aes_ofb” on page 78 128, 192,
256

No No Yes Yes No

AES with XEX-based
Tweaked CodeBook mode
(TCB) with CipherText
Stealing (CTS).

“ica_aes_xts” on page 79 128, 256 No No Yes Yes No

Information retrieval functions

Return version
information for libica.

“ica_get_version” on page 83 N/A Yes Yes Yes No N/A

Open and close adapter functions
These functions open or close the crypto adapter. It is recommended to open the
crypto adapter before using any of the libica crypto functions, and to close it after
the last usage of the libica crypto functions. However, in this version of the libica
only the RSA-related functions ica_rsa_mod_expo and ica_rsa_crt require a valid
adapter handle as input. A pointer to the value DRIVER_NOT_LOADED indicates
an invalid adapter handle. The parameter ica_adapter_handle_t is a redefine of int.

These functions are included in: include/ica_api.h.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 7

|
|
|
|

||
|
|||||

|
|
|

|
|
|
|
|||||

|
|
||
|
|||||

|
|
||
|
|||||

ica_open_adapter
Purpose

Opens an adapter.

Format
unsigned int ica_open_adapter(ica_adapter_handle_t *adapter_handle);

Parameters

ica_adapter_handle_t *adapter_handle
Pointer to the file descriptor for the adapter or to DRIVER_NOT_LOADED if
opening the crypto adapter failed.

Opening an adapter succeeds if a cryptographic device is accessible for reading
and writing. By default, cryptographic access must be available with one of the
following path names: /udev/z90crypt, /dev/z90crypt, or /dev/zcrypt for the
adapter open request to succeed. If the environment variable
LIBICA_CRYPT_DEVICE is set to a valid path name of an accessible
cryptographic device, accessing the device with that path name takes
precedence over the default path names.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

8 libica Programmer's Reference

ica_close_adapter
Purpose

Closes an adapter.

Comments

This API closes a device handle.

Format
unsigned int ica_close_adapter(ica_adapter_handle_t adapter_handle);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 9

Secure hash operations
These functions are included in: include/ica_api.h.

These functions perform secure hash on input data using the chosen algorithm of
SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

SHA context structs contain information about how much of the actual work was
already performed. Also, it contains the part of the hash that is already produced.
For the user, it is only interesting in cases where the message is not hashed at
once, because the context is needed for further operations.

10 libica Programmer's Reference

ica_sha1
Purpose

Performs a secure hash operation on the input data using the SHA-1 algorithm.

Format
unsigned int ica_sha1(unsigned int message_part,

unsigned int input_length,
unsigned char *input_data,
sha_context_t *sha_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-1, or KLMD-SHA-1

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

unsigned int input_length
Length in bytes of the input data to be hashed using the SHA-1 algorithm.
This value must be greater than zero.

unsigned char *input_data
Pointer to the input data to be hashed.

sha_context_t *sha_context
Pointer to the SHA-1 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha1 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha1. Therefore, the application must not
modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 11

ica_sha224
Purpose

Performs a secure hash operation on the input data using the SHA-224 algorithm.

Format
unsigned int ica_sha224(unsigned int message_part,

unsigned int input_length,
unsigned char *input_data,
sha256_context_t *sha256_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-256, or KLMD-SHA-256

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

unsigned int input_length
Length in bytes of the input data to be hashed using the SHA-224 algorithm.
This value must be greater than zero.

unsigned char *input_data
Pointer to the input data to be hashed.

sha256_context_t *sha256_context
Pointer to the SHA-256 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha224 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha224. Therefore, the application must not
modify the contents of this structure in between chained calls.

Note: Due to the algorithm used by SHA-224, a SHA-256 context must be
used.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA224_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

12 libica Programmer's Reference

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 13

ica_sha256
Purpose

Performs a secure hash on the input data using the SHA-256 algorithm.

Format
unsigned int ica_sha256(unsigned int message_part,

unsigned int input_length,
unsigned char *input_data,
sha256_context_t *sha256_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-256, or KLMD-SHA-256

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

unsigned int input_length
Length in bytes of the input data to be hashed using the SHA-256 algorithm.
This value must be greater than zero.

unsigned char *input_data
Pointer to the input data to be hashed.

sha256_context_t *sha256_context
Pointer to the SHA-256 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha256 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha256. Therefore, the application must not
modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA256_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

14 libica Programmer's Reference

ica_sha384
Purpose

Performs a secure hash on the input data using the SHA-384 algorithm.

Format
unsigned int ica_sha384(unsigned int message_part,

uint64_t input_length,
unsigned char *input_data,
sha512_context_t *sha512_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-512, or KLMD-SHA-512

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

uint64_t input_length
Length in bytes of the input data to be hashed using the SHA-384 algorithm.
This value must be greater than zero.

unsigned char *input_data
Pointer to the input data to be hashed.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha384 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha384. Therefore, the application must not
modify the contents of this structure in between chained calls.

Note: Due to the algorithm used by SHA-384, a SHA-512 context must be
used.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA384_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 15

For return codes indicating exceptions, see “Return codes” on page 87.

16 libica Programmer's Reference

ica_sha512
Purpose

Performs a secure hash operation on input data using the SHA-512 algorithm.

Format
unsigned int ica_sha512(unsigned int message_part,

uint64_t input_length,
unsigned char *input_data,
sha512_context_t *sha512_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-512, or KLMD-SHA-512

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

uint64_t input_length
Length in bytes of the input data to be hashed using the SHA-512 algorithm.
This value must be greater than zero.

unsigned char *input_data
Pointer to the input data to be hashed.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha512 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha512. Therefore, the application must not
modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA512_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 17

Pseudo random number generation function
This function is included in: include/ica_api.h.

This function generates pseudo random data. Parameter *ouput_data is a pointer to
a buffer of byte length output_length. output_length number of bytes of pseudo
random data is placed in the buffer pointed to by output_data.

libica initialization tries to seed the CPACF random generator. To get the seed,
device /dev/hwrng is opened. Device /dev/hwrng provides true random data from
crypto adapters over the crypto device driver (module name z90crypt). If that fails,
the initialization mechanism uses device /dev/urandom. Within the initialization, a
byte counter s390_byte_count is set to 0. If the CPACF pseudo random generator is
available, after 4096 bytes of the pseudo random number are generated, the
random number generator is seeded again. If the CPACF pseudo random generator
is not available, random numbers are read from /dev/urandom.

18 libica Programmer's Reference

ica_random_number_generate
Purpose

Generates a pseudo random number.

Format
unsigned int ica_random_number_generate(unsigned int output_length,

unsigned char *output_data);

Required hardware support

KMC-PRNG

Parameters

unsigned int output_length
Length in bytes of the output_data buffer, and the length of the generated
pseudo random number.

unsigned char *output_data
Pointer to the buffer to receive the generated pseudo random number.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 19

RSA key generation functions
These functions are included in: include/ica_api.h.

These functions generate an RSA public/private key pair. These functions are
performed using software through OpenSSL. Hardware is not used.

20 libica Programmer's Reference

ica_rsa_key_generate_mod_expo
Purpose

Generates RSA keys in modulus/exponent format.

Comments

For specific information about some of these parameters, see the considerations in
“Structs” on page 86.

Format
unsigned int ica_rsa_key_generate_mod_expo(ica_adapter_handle_t adapter_handle,

unsigned int modulus_bit_length,
ica_rsa_key_mod_expo_t *public_key,
ica_rsa_key_mod_expo_t *private_key);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned int modulus_bit_length
Length in bits of the modulus. This value should comply with the length of the
keys (in bytes), according to this calculation:
key_length = (modulus_bits + 7) / 8

ica_rsa_key_mod_expo_t *public_key
Pointer to where the generated public key is to be placed. If the exponent
element in the public key is not set, it is randomly generated. A poorly chosen
exponent could result in the program looping endlessly. Common public
exponents are 3 and 65537.

ica_rsa_key_mod_expo_t *private_key
Pointer to where the generated private key in modulus/exponent format is to
be placed. The length of both the private and public keys should be set in
bytes. This value should comply with the length of the keys (in bytes),
according to this calculation:
key_length = (modulus_bits + 7) / 8

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 21

ica_rsa_key_generate_crt
Purpose

Generates RSA keys in Chinese-Remainder Theorem (CRT) format.

Comments

For specific information about some of these parameters, see the considerations in
“Structs” on page 86.

Format
unsigned int ica_rsa_key_generate_crt(ica_adapter_handle_t adapter_handle,

unsigned int modulus_bit_length,
ica_rsa_key_mod_expo_t *public_key,
ica_rsa_key_crt_t *private_key);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned int modulus_bit_length
Length in bits of the modulus part of the key. This value should comply with
the length of the keys (in bytes), according to this calculation:
key_length = (modulus_bits + 7) / 8

ica_rsa_key_mod_expo_t *public_key
Pointer to where the generated public key is to be placed. If the exponent
element in the public key is not set, it is randomly generated. A poorly chosen
exponent can result in the program looping endlessly. Common public
exponents are 3 and 65537.

ica_rsa_key_crt_t *private_key
Pointer to where the generated private key in CRT format is to be placed.
Length of both private and public keys should be set in bytes. This value
should comply with the length of the keys (in bytes), according to this
calculation
key_length = (modulus_bits + 7) / 8

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

22 libica Programmer's Reference

RSA encrypt and decrypt operations
These functions are included in: include/ica_api.h.

These functions perform a modulus/exponent operation using an RSA key whose
type is either ica_rsa_key_mod_expo_t or ica_rsa_key_crt_t.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 23

ica_rsa_mod_expo
Purpose

Performs an RSA encryption or decryption operation using a key in
modulus/exponent format.

Comments

Make sure that your message is padded before using this function.

Format
unsigned int ica_rsa_mod_expo(ica_adapter_handle_t adapter_handle,

unsigned char *input_data,
ica_rsa_key_mod_expo_t *rsa_key,
unsigned char *output_data);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned char *input_data
Pointer to the input data to be encrypted or decrypted. This data must be in
big endian format. Make sure that the input data is not longer than the bit
length of the key. The byte length for the input data and the key must be the
same. Right align the input data inside the data block.

ica_rsa_key_mod_expo_t *rsa_key
Pointer to the key to be used, in modulus/exponent format.

unsigned char *output_data
Pointer to the location where the output results are to be placed. This buffer
has to be at least the same size as input_data and therefore at least the same
size as the size of the modulus.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

24 libica Programmer's Reference

ica_rsa_crt
Purpose

Performs an RSA encryption or decryption operation using a key in CRT format.

Comments

Make sure that your message is padded before using this function.

Format
unsigned int ica_rsa_crt(ica_adapter_handle_t adapter_handle,

unsigned char *input_data,
ica_rsa_key_crt_t *rsa_key,
unsigned char *output_data);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned char *input_data
Pointer to the input data to be encrypted or decrypted. This data must be in
big endian format. Make sure that the input data is not longer than the bit
length of the key. The byte length for the input data and the key must be the
same. Right align the input data inside the data block.

ica_rsa_key_crt_t *rsa_key
Pointer to the key to be used, in CRT format.

unsigned char *output_data
Pointer to the location where the output results are to be placed. This buffer
must be as large as the input_data, and as large as the length of the modulus
specified in rsa_key.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 25

DES functions
These functions are included in: include/ica_api.h.

These functions perform encryption and decryption and computation or
verification of message authentication codes using a DES (DEA) key. A DES key
has a size of 8 bytes. Each byte of a DES key contains one parity bit, such that each
64-bit DES key contains only 56 security-relevant bits. The cipher block size for
DES is 8 bytes.

To securely apply DES encryption to messages that are longer than the cipher
block size, modes of operation can be used to chain multiple encryption,
decryption, or authentication operations. Most modes of operation require an
initialization vector as additional input. As long as the messages are encrypted or
decrypted using such a mode of operation, and have a size that is a multiple of a
particular block size (mostly the cipher block size), the functions encrypting or
decrypting according to a mode of operation also compute an output vector. This
output vector can be used as the initialization vector of a chained encryption or
decryption operation in the same mode with the same block size and the same key.

When decrypting a cipher text, these values used for the decryption function must
match the corresponding settings of the encryption function that transformed the
plain text into the cipher text:
v The mode of operation
v The key
v The initialization vector (if applicable)
v For the ica_des_cfb function, the lcfb parameter

26 libica Programmer's Reference

ica_des_cbc
Purpose

Encrypt or decrypt data with a DES key using Cipher Block Chaining (CBC) mode,
as described in NIST Special Publication 800-38A Chapter 6.2.

Format
unsigned int ica_des_cbc(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMC-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. This buffer must be
at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(a multiple of 8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (8
bytes for DES). This vector is overwritten by this function. The result value in
iv can be used as the initialization vector for a chained ica_des_cbc or
ica_des_cbc_cs call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 27

|

|

|
|
|
|

ica_des_cbc_cs
Purpose

Encrypt or decrypt data with a DES key using Cipher Block Chaining with
Ciphertext Stealing (CBC-CS) mode, as described in NIST Special Publication
800-38A, Chapter 6.2 and the Addendum to NIST Special Publication 800-38A on
"Recommendation for Block Cipher Modes of Operation: Three Variants of
Ciphertext Stealing for CBC Mode".

ica_des_cbc_cs can be used to encrypt or decrypt the last chunk of a message
consisting of multiple chunks, where all chunks except the last one are encrypted
or decrypted by chained calls to ica_des_cbc. To do this, the resulting iv of the last
call to ica_des_cbc is fed into the iv of the ica_des_cbc_cs call, provided that the
chunk is greater than the cipher block size (8 bytes for DES).

Format
unsigned int ica_des_cbc_cs(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction,
unsigned int variant);

Required hardware support

KMC-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as the data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. This buffer must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be greater than or equal to the cipher
block size (8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes.
This vector is overwritten during the function. For variant equal to 1 or variant
equal to 2, the result value in iv can be used as the initialization vector for a
chained ica_des_cbc or ica_des_cbc_cs call with the same key, if data_length is
a multiple of the cipher block size.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

unsigned int variant

28 libica Programmer's Reference

|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|

|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
||
||

|
|

1 Use variant CBC-CS1 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always keep last two
blocks in order.

2 Use variant CBC-CS2 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: switch order of the last two
blocks if data_length is not a multiple of the cipher block size (a
multiple of 8 bytes for DES).

3 Use variant CBC-CS3 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always switch order of the
last two blocks.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 29

||
|
|
||
|
|
|
||
|
|

|
||

|

ica_des_cfb
Purpose

Encrypt or decrypt data with a DES key using Cipher Feedback (CFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.3.

Format
unsigned int ica_des_cfb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int lcfb,
unsigned int direction);

Required hardware support

KMF-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as the data_length parameter.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as the
data_length parameter.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size bytes (8 bytes for
DES). This vector is overwritten during the function. The result value in iv can
be used as the initialization vector for a chained ica_des_cfb call with the same
key, if data_length in the preceding call is a multiple of the lcfb parameter.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal
to 1 and less than or equal to the cipher block size (8 bytes for DES).

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

30 libica Programmer's Reference

|

|

ica_des_cmac
Purpose

Authenticate data or verify the authenticity of data with a DES key using the Block
Cipher Based Message Authentication Code (CMAC) mode, as described in NIST
Special Publication 800-38B. ica_des_cmac can be used to authenticate or verify the
authenticity of a complete message.

Format
unsigned int ica_des_cmac(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int direction);

Required hardware support
KMAC-DEA
PCC-Compute-Last_block-CMAC-Using-DEA

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message to be authenticated or of which the
authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac, which is less than or
equal to the cipher block size (8 bytes for DES). It is recommended to use a
mac_length of 8.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 31

|

|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
||
||

|
||
|
|
|

|

ica_des_cmac_intermediate
Purpose

Authenticate data or verify the authenticity of data with a DES key using the Block
Cipher Based Message Authentication Code (CMAC) mode, as described in NIST
Special Publication 800-38B. ica_des_cmac_intermediate and ica_des_cmac_last can
be used when the message to be authenticated or to be verified using CMAC is
supplied in multiple chunks. ica_des_cmac_intermediate is used to process all but
the last chunk. All message chunks to be processed by ica_des_cmac_intermediate
must have a size that is a multiple of the cipher block size (8 bytes for DES).

Note that ica_des_cmac_intermediate has no direction argument. This function can
be used during authentication and during authenticity verification.

Format
unsigned int ica_des_cmac_intermediate(const unsigned char *message,

unsigned long message_length,
const unsigned char *key,
unsigned char *iv);

Required hardware support

KMAC-DEA

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a non-final part of a message to be authenticated, or
of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple
of the cipher block size.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size bytes (8 bytes for
DES). For the first message part, this parameter must be set to a string of
zeros. For processing the n-th message part, this parameter must be the
resulting iv value of the ica_des_cmac_intermediate function applied to the
(n-1)-th message part. This vector is overwritten during the function. The result
value in iv can be used as the initialization vector for a chained call to
ica_des_cmac_initermediate, or to ica_des_cmac_last with the same key.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

32 libica Programmer's Reference

|

|

|
|
|
|
|
|
|

|
|

|

|
|
|
|

|

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
||

|

ica_des_cmac_last
Purpose

Authenticate data or verify the authenticity of data with a DES key using the Block
Cipher Based Message Authentication Code (CMAC) mode, as described in NIST
Special Publication 800-38B. ica_des_cmac_last can be used to authenticate or
verify the authenticity of a complete message or of the final part of a message for
which all preceding parts were processed with ica_des_cmac_intermediate.

Format
unsigned int ica_des_cmac_last(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support
KMAC-DEA
PCC-Compute-Last_block-CMAC-Using-DEA

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message or the final part of a message, to be
either authenticated or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code that is verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac that is less than or
equal to the cipher block size (8 bytes for DES). It is recommended to use a
mac_length of 8.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If
iv is NULL, message is assumed to be the complete message to be processed.
Otherwise, message is the final part of a composite message to be processed
and iv contains the output vector resulting from processing all previous parts
with chained calls to ica_des_cmac_intermediate (the value returned in iv of
the ica_des_cmac_intermediate call applied to the penultimate message part).

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 33

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
||
||

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 87.

34 libica Programmer's Reference

|
||
|
|
|

|

ica_des_ctr
Purpose

Encrypt or decrypt data with a DES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A Chapter 6.5. With the counter mode, each
message block of the same size as the cipher block (8 bytes for DES) is combined
with a counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block,
subsequent counter values to be combined with subsequent message blocks are
derived from preceding counter values by an increment function. The increment
function used in ica_des_ctr is an arithmetic increment without carry on the M
least significant bytes in the counter, where M is a parameter to ica_des_ctr.

Format
unsigned int ica_des_ctr(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *ctr,
unsigned int ctr_width,
unsigned int direction);

Required hardware support

KMCTR-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block
in bytes. ctr contains an initialization value for a counter function, and it is
replaced by a new value. That new value can be used as the initialization
value for a counter function in a chained ica_des_ctr call with the same key, if
the data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 1 and the cipher block size. This value is used by the
counter increment function, which increments a counter value by incrementing
without carry the least significant M bytes of the counter value.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 35

|

|

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

36 libica Programmer's Reference

ica_des_ctrlist
Purpose

Encrypt or decrypt data with a DES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A ,Chapter 6.5. With the counter mode, each
message block of the same size as the cipher block is combined with a counter
value of the same size during encryption and decryption.

The ica_des_ctrlist function assumes that a list n of precomputed counter values is
provided, where n is the smallest integer that is less than or equal to the message
size divided by the cipher block size. This function is used to optimally utilize IBM
System z hardware support for non-standard counter functions.

Format
unsigned int ica_des_ctrlist(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
const unsigned char *ctrlist,
unsigned int direction);

Required hardware support

KMCTR-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

Calls to ica_des_ctrlist with the same key can be chained if:
v With the possible exception of the last call in the chain the data_length used

is a multiple of the cipher block size.
v The ctrlist argument of each chained call contains a list of counters that

follows the counters used in the preceding call.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

const unsigned char *ctrlist
Pointer to a readable buffer of a size greater than or equal to data_length, and a
multiple of the cipher block size (8 bytes for DES). ctrlist should contain a list
of precomputed counter values, each of the same size as the cipher block.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 37

|

|
|
|
|
|

|

|

For return codes indicating exceptions, see “Return codes” on page 87.

38 libica Programmer's Reference

ica_des_ecb
Purpose

Encrypt or decrypt data with a DES key using Electronic Cook Book (ECB) mode,
as described in NIST Special Publication 800-38A Chapter 6.1.

Format
unsigned int ica_des_ecb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int direction);

Required hardware support

KM-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writeable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 39

|

|

ica_des_ofb
Purpose

Encrypt or decrypt data with a DES key using Output Feedback (OFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.4.

Format
unsigned int ica_des_ofb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMO-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that contains the resulting encrypted or decrypted
message. The size of this buffer must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes (8 bytes for DES). This vector is overwritten during the function. If
data_length is a multiple of the cipher block size (8 bytes for DES), the result
value in iv can be used as the initialization vector for a chained ica_des_ofb
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

40 libica Programmer's Reference

|

|

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following DES
interfaces remain supported:
unsigned int ica_des_encrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_single_t *des_key,
unsigned char *output_data);

unsigned int ica_des_decrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_single_t *des_key,
unsigned char *output_data);

Table 3 shows libica Version 2.0 DES functions calls, and their corresponding libica
Version 2.2.0 DES function calls.

Table 3. Compatibility of libica Version 2.0 DES functions calls to libica Version 2.2.0 DES function calls

Calling this libica Version 2.0 DES function Corresponds to calling this libica Version 2.2.0 DES
function

ica_des_encrypt(MODE_ECB, data_length,in_data,NULL,
key, out_data);

ica_des_ecb(in_data,out_data,(long)data_length,
key,1);

ica_des_encrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,iv,1);

ica_des_decrypt(MODE_ECB,data_length,in_data,NULL,
key,out_data);

ica_des_ecb(in_data,out_data,(long)data_length,
key,0);

ica_des_decrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,iv,0);

The functions ica_des_encrypt and ica_des_decrypt remain supported, but their
use is discouraged in favor of ica_des_ecb and ica_des_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference
Version 2.0.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 41

TDES/3DES functions
These functions are included in: include/ica_api.h.

These functions perform encryption and decryption or computation and
verification of message authentication codes using a triple-DES (3DES, TDES or
TDEA) key. A 3DES key consists of a concatenation of three DES keys, each of
which has a size of 8 bytes. Note that each byte of a DES key contains one parity
bit, such that each 64-bit DES key contains only 56 security-relevant bits. The
cipher block size for 3DES is 8 bytes.

3DES is known in two variants: a two key variant and a three key variant. This
library implements only the three key variant. The two key variant can be derived
from functions for the three key variant by using the same key as the first and
third key.

To securely apply 3DES encryption to messages that are longer than the cipher
block size, modes of operation can be used to chain multiple encryption,
decryption, or authentication operations. Most modes of operation require an
initialization vector as additional input. As long as the messages are encrypted or
decrypted using such a mode of operation and have a size that is a multiple of a
particular block size (mostly the cipher block size), the functions encrypting or
decryption according to that mode of operation also compute an output vector that
can be used as the initialization vector of a chained encryption or decryption
operation in the same mode with the same block size and the same key.

Note that when decrypting a cipher text, the mode of operation, the key, the
initialization vector (if applicable), and for ica_3des_cfb the lcfb value used for the
decryption function must match the corresponding settings of the encryption
function that was used to transform the plain text into the cipher text.

42 libica Programmer's Reference

ica_3des_cbc
Purpose

Encrypt or decrypt data with an 3DES key using Cipher Block Chaining (CBC)
mode, as described in NIST Special Publication 800-38A Chapter 6.2.

Format
unsigned int ica_3des_cbc(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMC-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes.
This vector is overwritten during the function. The result value in iv can be
used as the initialization vector for a chained ica_3des_cbc or ica_3des_cbc_cs
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 43

|

|

|
|
|
|

ica_3des_cbc_cs
Purpose

Encrypt or decrypt data with a 3DES key using Cipher Block Chaining with
Ciphertext Stealing (CBC-CS) mode, as described in NIST Special Publication
800-38A Chapter 6.2 and the Addendum to NIST Special Publication 800-38A on
"Recommendation for Block Cipher Modes of Operation: Three Variants of
Ciphertext Stealing for CBC Mode".

ica_3des_cbc_cs can be used to encrypt or decrypt the last chunk of a message
consisting of multiple chunks, where all chinks except the last one are encrypted or
decrypted by chained calls to ica_3des_cbc. To do this, the resulting iv of the last
call to ica_3des_cbc is fed into the iv of the ica_3des_cbc_cs call, provided that the
chunk is greater than the cipher block size (8 bytes for 3DES).

Format
unsigned int ica_3des_cbc_cs(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction,
unsigned int variant);

Required hardware support

KMC-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be greater than or equal to the cipher
block size (8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes. This vector is overwritten during the function. For variant equal to 1 or
variant equal to 2, the result value in iv can be used as the initialization vector
for a chained ica_3des_cbc or ica_3des_cbc_cs call with the same key, if
data_length is a multiple of the cipher block size.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

unsigned int variant

44 libica Programmer's Reference

|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|

|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
||
||

|
|

1 Use variant CBC-CS1 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always keep last two
blocks in order.

2 Use variant CBC-CS2 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: switch order of the last two
blocks if data_length is not a multiple of the cipher block size (a
multiple of 8 bytes for 3DES).

3 Use variant CBC-CS3 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always switch order of the
last two blocks.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 45

||
|
|
||
|
|
|
||
|
|

|
||

|

ica_3des_cfb
Purpose

Encrypt or decrypt data with a 3DES key using Cipher Feedback (CFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.3.

Format
unsigned int ica_3des_cfb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int lcfb,
unsigned int direction);

Required hardware support

KMF-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (8
bytes for 3DES). This vector is overwritten during the function. The result
value in iv can be used as the initialization vector for a chained ica_3des_cfb
call with the same key, if the data_length in the preceding call is a multiple of
lcfb.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal
to 1 and less than or equal to the cipher block size (8 bytes for 3DES).

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

46 libica Programmer's Reference

|

|

ica_3des_cmac
Purpose

Authenticate data or verify the authenticity of data with an 3DES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_3des_cmac can be used to authenticate or
verify the authenticity of a complete message.

Format
unsigned int ica_3des_cmac(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int direction);

Required hardware support
KMAC-TDEA-192
PCC-Compute-Last_block-CMAC-Using-TDEA-192

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message to be authenticated, or of which the
authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac, which is less than or
equal to the cipher block size (8 bytes for 3DES). It is recommended to use a
mac_length of 8.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 47

|

|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
||
||

|
||
|
|
|

|

ica_3des_cmac_intermediate
Purpose

Authenticate data or verify the authenticity of data with an 3DES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_3des_cmac_intermediate and
ica_3des_cmac_last can be used when the message to be authenticated or to be
verified using CMAC is supplied in multiple chunks. ica_3des_cmac_intermediate
is used to process all but the last chunk. All message chunks to be processed by
ica_3des_cmac_intermediate must have a size that is a multiple of the cipher block
size (a multiple of 8 bytes for 3DES).

Note that ica_3des_cmac_intermediate has no direction argument. This function
can be used during authentication and during authenticity verification.

Format
unsigned int ica_3des_cmac_intermediate(const unsigned char *message,

unsigned long message_length,
const unsigned char *key,
unsigned char *iv);

Required hardware support

KMAC-TDEA-192

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a non-final part of a message to be authenticated, or
of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple
of the cipher block size.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of size cipher block size (8 bytes for
3DES). For the first message part, this parameter must be set to a string of
zeros. For processing the n-th message part, this parameter must be the
resulting iv value of the ica_3des_cmac_intermediate applied to the (n-1)-th
message part. This vector is overwritten during the function. The result value
in iv can be used as the initialization vector for a chained call to
ica_3des_cmac_initermediate or to ica_3des_cmac_last with the same key.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

48 libica Programmer's Reference

|

|

|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
||

|

ica_3des_cmac_last
Purpose

Authenticate data or verify the authenticity of data with an 3DES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_3des_cmac_last can be used to authenticate
or verify the authenticity of a complete message or of the final part of a message,
for which all preceding parts were processed with ica_3des_cmac_intermediate.

Format
unsigned int ica_3des_cmac_last(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support
KMAC-TDEA,-192
PCC-Compute-Last_block-CMAC-Using-TDEA-192

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. It contains a message or the final part of a message to be authenticated,
or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code that is to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes that is less
than or equal to the cipher block size (8 bytes for 3DES). It is recommended to
use a mac_length of 8.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If
iv is NULL, message is assumed to be the complete message to be processed.
Otherwise, message is the final part of a composite message to be processed
and iv contains the output vector resulting from processing all previous parts
with chained calls to ica_des_cmac_intermediate (the value returned in iv of
the ica_des_cmac_intermediate call applied to the penultimate message part.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 49

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
||
||

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 87.

50 libica Programmer's Reference

|
||
|
|
|

|

ica_3des_ctr
Purpose

Encrypt or decrypt data with a triple-length DES key using Counter (CTR) mode,
as described in NIST Special Publication 800-38A Chapter 6.5. With the counter
mode, each message block of size cipher block size (8 bytes for 3DES) is combined
with a counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block,
subsequent counter values to be combined with subsequent message blocks are
derived from preceding counter values by an increment function. The increment
function used in ica_3des_ctr is an arithmetic increment without carry on the M
least significant bytes in the counter, where M is a parameter to ica_3des_ctr.

Format
unsigned int ica_3des_ctr(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *ctr,
unsigned int ctr_width,
unsigned int direction);

Required hardware support

KMCTR-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block
in bytes. ctr contains an initialization value for a counter function that is
replaced by a new value. The new value can be used as an initialization value
for a counter function in a chained ica_3des_ctr call with the same key, if the
data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 1 and the cipher block size. The value is used by the
counter increment function, which increments a counter value by incrementing
without carry the least significant M bytes of the counter value.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 51

|

|

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

52 libica Programmer's Reference

ica_3des_ctrlist
Purpose

Encrypt or decrypt data with an 3DES key using Counter (CTR) mode, as
described in NIST Special Publication 800-38A ,Chapter 6.5. With the counter
mode, each message block of the same size as the cipher block is combined with a
counter value of the same size during encryption and decryption.

The ica_3des_ctrlist function assumes that a list n of precomputed counter values
is provided where n is the smallest integer that is less than or equal to the message
size divided by the cipher block size. This function is used to optimally utilize IBM
System z hardware support for non-standard counter functions.

Format
unsigned int ica_3des_ctrlist(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
const unsigned char *ctrlist,
unsigned int direction);

Required hardware support

KMCTR-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

Calls to ica_3des_ctrlist with the same key can be chained if:
v With the possible exception of the last call in the chain the data_length used

is a multiple of the cipher block size.
v The ctrlist argument of each chained call contains a list of counters that

follows the counters used in the preceding call.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

const unsigned char *ctrlist
Pointer to a readable buffer that is both of size greater than or equal to
data_length, and a multiple of the cipher block size (8 bytes for 3DES). ctrlist
should contain a list of precomputed counter values, each of the same size as
the cipher block.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 53

|

|
|
|
|
|

|

|

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

54 libica Programmer's Reference

ica_3des_ecb
Purpose

Encrypt or decrypt data with an 3DES key using Electronic Cook Book (ECB)
mode, as described in NIST Special Publication 800-38A Chapter 6.1.

Format
unsigned int ica_3des_ecb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int direction);

Required hardware support

KM-DEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writeable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 55

|

|

ica_3des_ofb
Purpose

Encrypt or decrypt data with an 3DES key using Output Feedback (OFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.4.

Format
unsigned int ica_3des_ofb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMO-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that contains the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes (8 bytes for 3DES). This vector is overwritten during the function. If
data_length is a multiple of the cipher block size (a multiple of 8 for 3DES), the
result value in iv can be used as the initialization vector for a chained
ica_3des_ofb call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

56 libica Programmer's Reference

|

|

|
|
|
|
|

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following 3DES
interfaces remain supported:
unsigned int ica_3des_encrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_triple_t *des_key,
unsigned char *output_data);

unsigned int ica_3des_decrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_triple_t *des_key,
unsigned char *output_data);

Table 4 shows libica Version 2.0 TDES functions calls, and their corresponding
libica Version 2.2.0 TDES function calls.

Table 4. Compatibility of libica Version 2.0 TDES functions calls to libica Version 2.2.0 TDES function calls

Calling this libica Version 2.0 TDES function Corresponds to calling this libica Version 2.2.0 TDES
function

ica_3des_encrypt(MODE_ECB, data_length,in_data,NULL,
key, out_data);

ica_3des_ecb(in_data,out_data,(long)data_length,
key,1);

ica_3des_encrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_3des_cbc(in_data,out_data,(long)data_length,
key,iv,1);

ica_3des_decrypt(MODE_ECB,data_length,in_data,NULL,
key,out_data);

ica_3des_ecb(in_data,out_data,(long)data_length,
key,0);

ica_3des_decrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_3des_cbc(in_data,out_data,(long)data_length,,
key,iv,0);

The functions ica_3des_encrypt and ica_3des_decrypt remain supported, but their
use is discouraged in favor of ica_3des_ecb and ica_3des_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference
Version 2.0.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 57

|

AES functions
These functions are included in: include/ica_api.h.

These functions perform encryption and decryption or computation or verification
of message authentication codes using an AES key. Supported key lengths are 16,
24 or 32 bytes for AES-128, AES-192 and AES-256 respectively. The cipher block
size for AES is 16 bytes.

To securely apply AES encryption to messages that are longer than the cipher
block size, modes of operation can be used to chain multiple encryption,
decryption, or authentication operations. Most modes of operation require an
initialization vector as additional input.

As long as the messages are encrypted or decrypted using such a mode of
operation, have a size that is a multiple of a particular block size (mostly the
cipher block size), the functions encrypting or decryption according to a mode of
operation also compute an output vector. The output vector can be used as the
initialization vector of a chained encryption or decryption operation in the same
mode with the same block size and the same key.

Note that when decrypting a cipher text the mode of operation, the key, the
initialization vector (if applicable), and for ica_aes_cfb the lcfb value used for the
decryption function must match the corresponding settings of the encryption
function that transformed the plain text into the cipher text.

58 libica Programmer's Reference

ica_aes_cbc
Purpose

Encrypt or decrypt data with an AES key using Cipher Block Chaining (CBC)
mode, as described in NIST Special Publication 800-38A Chapter 6.2.

Format
unsigned int ica_aes_cbc(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMC-AES-128, KMC-AES-192, or KMC-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(a multiple of 16 for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for
AES-128, AES-192, and AES-256 respectively. Therefore, you can use the
definitions: AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes. This vector is overwritten during the function. The result value in iv can
be used as the initialization vector for a chained ica_aes_cbc or ica_aes_cbc_cs
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 59

|

|

ica_aes_cbc_cs
Purpose

Encrypt or decrypt data with an AES key using Cipher Block Chaining with
Ciphertext Stealing (CBC-CS) mode, as described in NIST Special Publication
800-38A Chapter 6.2, and the Addendum to NIST Special Publication 800-38A on
"Recommendation for Block Cipher Modes of Operation: Three Variants of
Ciphertext Stealing for CBC Mode".

ica_aes_cbc_cs can be used to encrypt or decrypt the last chunk of a message
consisting of multiple chunks, where all chunks except the last one are encrypted
or decrypted by chained calls to ica_aes_cbc. To do this, the resulting iv of the last
call to ica_aes_cbc is fed into the iv of the ica_aes_cbc_cs call, provided that the
chunk is greater than the cipher block size (greater than 16 bytes for AES).

Format
unsigned int ica_aes_cbc_cs(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction,
unsigned int variant);

Required hardware support

KMC-AES-128, KMC-AES-192 or KMC-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be greater than or equal to the cipher
block size (16 bytes for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for
AES-128, AES-192, and AES-256 respectively. . Therefore, you can use the
definitions: AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes.
This vector is overwritten during the function. For variant equal to 1 or variant
equal to 2, the result value in iv can be used as the initialization vector for a
chained ica_aes_cbc or ica_aes_cbc_cs call with the same key, if data_length is a
multiple of the cipher block size.

60 libica Programmer's Reference

|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|

|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

unsigned int variant
1 Use variant CBC-CS1 of the Addendum to NIST Special Publication

800-38A to encrypt or decrypt the message: always keep last two
blocks in order.

2 Use variant CBC-CS2 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: switch order of the last two
blocks if data_length is not a multiple of the cipher block size (a
multiple of 16 bytes for AES).

3 Use variant CBC-CS3 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always switch order of the
last two blocks.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 61

|
||
||

|
||
|
|
||
|
|
|
||
|
|

|
||

|

ica_aes_ccm
Purpose

Encrypt and authenticate or decrypt data and check authenticity of data with an
AES key using Counter with Cipher Block Chaining Message Authentication Code
(CCM) mode, as described in NIST Special Publication 800-38C. Formatting and
counter functions are implemented according to NIST 800-38C Appendix A.

Format
unsigned int ica_aes_ccm(unsigned char *payload,

unsigned long payload_length,
unsigned char *ciphertext_n_mac,
unsigned int mac_length,
const unsigned char *assoc_data,
unsigned long assoc_data_length,
const unsigned char *nonce,
unsigned int nonce_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support
KMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256
KMAC-AES-128, KMAC-AES-192, or KMAC-AES-256

Parameters

unsigned char *payload
Pointer to a buffer of size greater than or equal to payload_length bytes. If
direction is equal to 1, the payload buffer must be readable and contain a
payload message of size payload_length to be encrypted. If direction is equal to
0, the payload buffer must be writable. If the authentication verification
succeeds, the decrypted message in the most significant payload_length bytes of
ciphertext_n_mac is written to this buffer. Otherwise, the contents of this buffer
is undefined.

unsigned long payload_length
Length in bytes of the message to be encrypted or decrypted. This value can be
0 unless assoc_data_length is equal to 0.

unsigned char *ciphertext_n_mac
Pointer to a buffer of size greater than or equal to payload_length plus
mac_length bytes. If direction is equal to 1, the buffer must be writable and the
encrypted message from payload followed by the message authentication code
for the nonce, the payload, and associated data are written to that buffer. If
direction is equal to 0, then the buffer is readable and contains an encrypted
message of length payload_length followed by a message authentication code of
length mac_length.

unsigned int mac_length
Length in bytes of the message authentication code. Valid values are: 4, 6, 8,
10, 12, and 16.

const unsigned char *assoc_data
Pointer to a readable buffer of size greater than or equal to assoc_data_length
bytes. The associated data in the most significant assoc_data_length bytes is
subject to the authentication code computation, but is not encrypted.

62 libica Programmer's Reference

|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

unsigned long assoc_data_length
Length of the associated data in assoc_data. This value can be 0 unless
payload_length is equal to 0.

const unsigned char *nonce
Pointer to readable buffer of size greater than or equal to nonce_length bytes,
which contains a nonce (number used once) of size nonce_length bytes.

unsigned int nonce_length
Length of the nonce in bytes. Valid values are greater than 6 and less than 14.

const unsigned char *key
Specifies a pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192 and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 63

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
||
||

|
||
|
|
|

|

ica_aes_cfb
Purpose

Encrypt or decrypt data with an AES key using Cipher Feedback (CFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.3.

Format
unsigned int ica_aes_cfb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int lcfb,
unsigned int direction);

Required hardware support

KMF-AES-128, KMF-AES-192, or KMF-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for
AES-128, AES-192, and AES-256 respectively. Therefore, you can use the
definitions: AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes (16 bytes for AES). This vector is overwritten during the function. The
result value in iv can be used as the initialization vector for a chained
ica_aes_cfb call with the same key, if the data_length in the preceding call is a
multiple of lcfb.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal
to 1 and less than or equal to the cipher block size (16 bytes for AES).

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

64 libica Programmer's Reference

|

|

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 65

ica_aes_cmac
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_aes_cmac can be used to authenticate or
verify the authenticity of a complete message.

Format
unsigned int ica_aes_cmac(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support
KMAC-AES-128, KMAC-AES-192 or KMAC-AES-256
PCC-Compute-Last_block-CMAC-Using-AES-128, PCC-Compute-Last_block-
CMAC-Using-AES-192, or PCC-Compute-Last_block-CMAC-Using-AES-256

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message to be authenticated, or of which the
authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to this buffer. If
direction is equal to 0, this buffer must be readable and contain a message
authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes, which is less
than or equal to the cipher block size (16 bytes for AES). It is recommended to
use values greater than or equal to 8.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success

66 libica Programmer's Reference

|

|

EFAULT
If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 67

ica_aes_cmac_intermediate
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_aes_cmac_intermediate and
ica_aes_cmac_last can be used when the message to be authenticated or to be
verified using CMAC is supplied in multiple chunks. ica_aes_cmac_intermediate is
used to process all but the last chunk. All message chunks to be processed by
ica_aes_cmac_intermediate must have a size that is a multiple of the cipher block
size (a multiple of 16 bytes for AES).

Note that ica_aes_cmac_intermediate has no direction argument. This function can
be used during authentication and during authenticity verification.

Format
unsigned int ica_aes_cmac_intermediate(const unsigned char *message,

unsigned long message_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv);

Required hardware support

KMAC-AES-128, KMAC-AES-192, or KMAC-AES-256

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a non-final part of a message, to be authenticated or
of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple
of the cipher block size.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (16
bytes for AES). For the first message part, this parameter must be set to a
string of zeros. For processing the n-th message part, this parameter must be
the resulting iv value of the ica_aes_cmac_intermediate function applied to the
(n-1)-th message part. This vector is overwritten during the function. The result
value in iv can be used as the initialization vector for a chained call to
ica_aes_cmac_initermediate or to ica_aes_cmac_last with the same key.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

68 libica Programmer's Reference

|

|

|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
||

|

ica_aes_cmac_last
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_aes_cmac_last can be used to authenticate or
verify the authenticity of a complete message, or of the final part of a message for
which all preceding parts were processed with ica_aes_cmac_intermediate.

Format
unsigned int ica_aes_cmac_last(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support
KMAC-AES-128, KMAC-AES-192 or KMAC-AES-256
PCC-Compute-Last_block-CMAC-Using-AES-128, PCC-Compute-Last_block-
CMAC-Using-AES-192, or PCC-Compute-Last_block-CMAC-Using-AES-256

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message or the final part of a message to be
authenticated, or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code that is verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes, which is less
than or equal to the cipher block size (16 bytes for AES). It is recommended to
use values greater than or equal to 8.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If
iv is NULL, message is assumed to be the complete message to be processed.
Otherwise, message is the final part of a composite message to be processed,
and iv contains the output vector resulting from processing all previous parts

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 69

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

with chained calls to ica_aes_cmac_intermediate (the value returned in iv of
the ica_aes_cmac_intermediate call applied to the penultimate message part).

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 87.

70 libica Programmer's Reference

|
|

|
||
||

|
||
|
|
|

|

ica_aes_ctr
Purpose

Encrypt or decrypt data with an AES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A Chapter 6.5. With the counter mode, each
message block of size cipher block size (16 bytes for AES) is combined with a
counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block,
subsequent counter values to be combined with subsequent message blocks are
derived from preceding counter values by an increment function. The increment
function used in ica_aes_ctr is an arithmetic increment without carry on the M
least significant bytes in the counter where M is a parameter to ica_aes_ctr.

Format
unsigned int ica_aes_ctr(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *ctr,
unsigned int ctr_width,
unsigned int direction);

Required hardware support

KMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block
in bytes. ctr contains an initialization value for a counter function, and it is
replaced by a new value. That new value can be used as an initialization value
for a counter function in a chained ica_aes_ctr call with the same key, if the
data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 1 and the cipher block size. The value is used by the

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 71

|

|

counter increment function, which increments a counter value by incrementing
without carry the least significant M bytes of the counter value.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

72 libica Programmer's Reference

ica_aes_ctrlist
Purpose

Encrypt or decrypt data with an AES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A ,Chapter 6.5. With the counter mode, each
message block of the same size as the cipher block in bytes is combined with a
counter value of the same size during encryption and decryption.

The ica_aes_ctrlist function assumes that a list n of precomputed counter values is
provided, where n is the smallest integer that is less than or equal to the message
size divided by the cipher block size. This function optimally uses IBM System z
hardware support for non-standard counter functions.

Format
unsigned int ica_aes_ctrlist(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
const unsigned char *ctrlist,
unsigned int direction);

Required hardware support

KMCTR-DEAKMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

Calls to ica_aes_ctrlist with the same key can be chained if:
v With the possible exception of the last call in the chain the data_length used

is a multiple of the cipher block size.
v The ctrlist argument of each chained call contains a list of counters that

follows the counters used in the preceding call.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

const unsigned char *ctrlist
Pointer to a readable buffer that is both of a size greater than or equal to
data_length, and a multiple of the cipher block size (16 bytes for AES). ctrlist
should contain a list of precomputed counter values, each of the same size as
the cipher block.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 73

|

|
|
|
|
|

|

|

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

74 libica Programmer's Reference

ica_aes_ecb
Purpose

Encrypt or decrypt data with an AES key using Electronic Cook Book (ECB) mode,
as described in NIST Special Publication 800-38A Chapter 6.1.

Format
unsigned int ica_aes_ecb(const unsigned char *in_data,

unsigned char *output,
unsigned int data_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support

KM-AES-128, KM-AES-192, or KM-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(a multiple of 16 for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 75

|

|

ica_aes_gcm
Purpose

Encrypt data and authenticate data or decrypt data and check authenticity of data
with an AES key using the Galois/Counter (GCM) mode, as described in NIST
Special Publication 800-38D. If no message needs to be encrypted or decrypted and
only authentication or authentication checks are requested, then this method
implements the GMAC mode.

Format
unsigned int ica_aes_gcm(unsigned char *plaintext,

unsigned long plaintext_length,
unsigned char *ciphertext,
const unsigned char *iv,
unsigned int iv_length,
const unsigned char *aad,
unsigned long aad_length,
unsigned char *tag,
unsigned int tag_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support
KM-AES-128, KM-AES-192 or KM-AES-256
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

Parameters

unsigned char *plaintext
Pointer to a buffer of size greater than or equal to plaintext_length bytes. If
direction is equal to 1, the plaintext buffer must be readable and contain a
payload message of size plaintext_length to be encrypted. If direction is equal to
0, the plaintext buffer must be writable and if the authentication verification
succeeds, the decrypted message in the most significant plaintext_length bytes
of ciphertext is written to the buffer. Otherwise, the contents of the buffer are
undefined.

unsigned long plaintext_length
Length in bytes of the message to be encrypted or decrypted. This value can be
0 unless aad_length is equal to 0. The value must be greater than or equal to 0
and less than (2**36) - 32.

unsigned char *ciphertext
Pointer to a buffer of size greater than or equal to plaintext_length bytes. If
direction is equal to 1, then this buffer must be writable and the encrypted
message from plaintext is written to that buffer. If direction is equal to 0, then
this buffer is readable and contains an encrypted message of length
plaintext_length.

const unsigned char *iv
Pointer to a readable buffer of size greater than or equal to iv_length bytes,
which contains an initialization vector of size iv_length.

unsigned int iv_length
Length in bytes of the initialization vector in iv. The value must be greater
than 0 and less than 2**61. A length of 12 is recommended.

76 libica Programmer's Reference

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

const unsigned char *aad
Pointer to a readable buffer of size greater than or equal to aad_length bytes.
The additional authenticated data in the most significant aad_length bytes is
subject to the message authentication code computation, but is not encrypted.

unsigned int aad_length
Length in bytes of the additional authenticated data in aad. The value must be
greater than or equal to 0 and less than 2**61.

unsigned char *tag
Pointer to a buffer of size greater than or equal to tag_length bytes. If direction
is equal to 1, this buffer must be writable, and a message authentication code
for the additional authenticated data in aad and the plain text in plaintext of
size tag_length bytes is written to this buffer. If direction is equal to 0, this buffer
must be readable and contain a message authentication code to be verified
against the additional authenticated data in aad and the decrypted cipher text
from ciphertext.

unsigned int tag_length
Length in bytes of the message authentication code tag in bytes. Valid values
are: 4, 8, 12, 13, 14, 15, and 16.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Verify message authentication code and decrypt encrypted payload.
1 Encrypt payload and compute message authentication code for the

additional authenticated data and the payload.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 77

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
||
||
|

|
||
|
|
|

|

ica_aes_ofb
Purpose

Encrypt or decrypt data with an AES key using Output Feedback (OFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.4.

Format
unsigned int ica_aes_ofb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMO-AES-128, KMO-AES-192, or KMO-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that to contain the resulting encrypted or
decrypted message. The size of this buffer in bytes must be at least as large as
data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block, in
bytes (16 bytes for AES). This vector is overwritten during the function. If
data_length is a multiple of the cipher block size (16 bytes for AES), the result
value in iv can be used as the initialization vector for a chained ica_aes_ofb
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

78 libica Programmer's Reference

|

|

ica_aes_xts
Purpose

Encrypt or decrypt data with an AES key using the XEX Tweakable Bloc Cipher
with Ciphertext Stealing (XTS) mode, as described in NIST Special Publication
800-38E and IEEE standard 1619-2007.

Format
unsigned int ica_aes_xts(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key1,
const unsigned char *key2,
unsigned int key_length,
unsigned char *tweak,
unsigned int direction);

Required hardware support
KM-XTS-AES-128, or KM-XTS-AES-256
PCC-Compute-XTS-Parameter-Using-AES-128, or PCC-Compute-XTS-Parameter-
Using-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. The minimal value of data_length is 16.

const unsigned char *key1
Pointer to a buffer containing a valid AES key. key1 is used for the actual
encryption of the message buffer, combined with some vector computed from
the tweak value (Key1 in IEEE Std 1619-2007).

const unsigned char *key2
Pointer to a buffer containing a valid AES key key2 is used to encrypt the
tweak (Key2 in IEEE Std 1619-2007).

unsigned int key_length
The length in bytes of the AES key. XTS supported AES key sizes are 16 and
32, for AES-128 and AES-256 respectively. Therefore, you can use:

2 * AES_KEY_LEN128 and 2 * AES_KEY_LEN256.

unsigned char *tweak
Pointer to a valid 16-byte tweak value (as in IEEE standard 1619-2007). This
tweak is overwritten during the function. If data_length is a multiple of the
cipher block size (a multiple of 16 for AES), the result value in tweak can be
used as the tweak value for a chained ica_aes_xts call with the same key pair.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 79

|

|

|

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

80 libica Programmer's Reference

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following AES
interfaces remain supported:
unsigned int ica_aes_encrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_aes_vector_t *iv, unsigned int key_length, unsigned char *aes_key,
unsigned char *output_data);

unsigned int ica_aes_decrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_aes_vector_t *iv, unsigned int key_length, unsigned char *aes_key,
unsigned char *output_data);

Table 5 shows libica Version 2.0 AES functions calls, and their corresponding libica
Version 2.2.0 AES function calls.

Table 5. Compatibility of libica Version 2.0 AES functions calls to libica Version 2.2.0 AES function calls

Calling this libica Version 2.0 AES function Corresponds to calling this libica Version 2.2.0 AES
function

ica_aes_encrypt(MODE_ECB, data_length,in_data,NULL,
key_length,key,out_data);

ica_aes_ecb(in_data,out_data,(long)data_length,
key,key_length,1);

ica_aes_encrypt(MODE_CBC,data_length,in_data,iv,
key_length,key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,key_length,iv,1);

ica_aes_decrypt(MODE_ECB,data_length,in_data,NULL,
key_length,key,out_data);

ica_aes_ecb(in_data,out_data,(long)data_length,
key,key_length,0);

ica_aes_decrypt(MODE_CBC,data_length,in_data,iv,
key_length,key,out_data);

ica_aes_cbc(in_data,out_data,(long)data_length,
key,key_length,iv,0);

The functions ica_aes_encrypt and ica_aes_decrypt remain supported, but their
use is discouraged in favor of ica_aes_ecb and ica_aes_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference
Version 2.0.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 81

Information retrieval function
This function is included in: include/ica_api.h.

This function return information about the libica version.

82 libica Programmer's Reference

ica_get_version
Purpose

Return libica version information.

Format
unsigned int ica_get_version(libica_version_info *version_info);

Parameters

libica_version_info *version_info
Pointer to a libica_version_info structure. The structure is filled with the current
libica version information.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 87.

Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs) 83

84 libica Programmer's Reference

Chapter 4. libica defines, typedefs, structs, and return codes

These defines, typedefs, structs, and return codes are used when programming
with the libica Version 2.2.0 APIs in Chapter 3, “libica Version 2.2.0 Application
Programming Interfaces (APIs),” on page 5. To use them, include ica_api.h in
your programs.

Defines
These defines are new with libica Version 2.2.0 or were changed from libica Version
1 or libica Version 2. Use these defines instead of the equivalent libica Version 1
defines. There is no difference in their values.
#define ica_adapter_handle_t int

#define SHA_HASH_LENGTH 20

#define SHA1_HASH_LENGTH SHA_HASH_LENGTH

#define SHA224_HASH_LENGTH 28

#define SHA256_HASH_LENGTH 32

#define SHA384_HASH_LENGTH 48

#define SHA512_HASH_LENGTH 64

#define ica_aes_key_t ica_key_t

#define ICA_ENCRYPT 1

#define ICA_DECRYPT 0

Typedefs
These typedefs are available to ensure compatibility with libica Version 1 types.
typedef ica_des_vector_t ICA_DES_VECTOR;

typedef ica_des_key_single_t ICA_KEY_DES_SINGLE;

typedef ica_des_key_triple_t ICA_KEY_DES_TRIPLE;

typedef ica_aes_vector_t ICA_AES_VECTOR;

typedef ica_aes_key_single_t ICA_KEY_AES_SINGLE;

typedef ica_aes_key_len_128_t ICA_KEY_AES_LEN128;

typedef ica_aes_key_len_192_t ICA_KEY_AES_LEN192;

typedef ica_aes_key_len_256_t ICA_KEY_AES_LEN256;

typedef sha_context_t SHA_CONTEXT;

typedef sha256_context_t SHA256_CONTEXT;

typedef sha512_context_t SHA512_CONTEXT;

typedef unsigned char ica_des_vector_t[8];

typedef unsigned char ica_des_key_single_t[8];

typedef unsigned char ica_key_t[8];

typedef unsigned char ica_aes_vector_t[16];

typedef unsigned char ica_aes_key_single_t[8];

typedef unsigned char ica_aes_key_len_128_t[16];

typedef unsigned char ica_aes_key_len_192_t[24];

typedef unsigned char ica_aes_key_len_256_t[32];

© Copyright IBM Corporation © IBM 2009, 2012 85

Structs
These structs are used in the API of libica Version 2.2.0. For the definitions of older
functions, see previous versions of this book. The older functions are no longer
recommended for use, but they are supported.
typedef struct {
unsigned int key_length;
unsigned char* modulus;
unsigned char* exponent;
} ica_rsa_key_mod_expo_t;

typedef struct {
unsigned int key_length;
unsigned char* p;
unsigned char* q;
unsigned char* dp;
unsigned char* dq;
unsigned char* qInverse;
} ica_rsa_key_crt_t;

Take note of these considerations:
v The buffers pointed to by members of type unsigned char * must be manually

allocated and deallocated by the user.
v Key parts must always be right-aligned in their fields.
v All buffers pointed to by members modulus and exponent in struct

ica_rsa_key_mod_expo_t must be of length key_length.
v All buffers pointed to by members p, q, dp, dq, and qInverse in struct

ica_rsa_key_crt_t must be of size key_length / 2 or larger.
v In the struct ica_rsa_key_crt_t, the buffers p, dp, and qInverse must contain 8 bytes

of zero padding in front of the actual values.
v If an exponent is set in struct ica_rsa_key_mod_expo_t as part of a public key for

key generation, be aware that due to a restriction in OpenSSL, the public
exponent cannot be larger than a size of unsigned long. Therefore, you must
have zeros left padded in the buffer pointed to by exponent in the struct
ica_rsa_key_mod_expo_t struct. Be aware that this buffer also must be of size
key_length.

v This key_length value should be calculated from the length of the modulus in
bits, according to this calculation:
key_length = (modulus_bits + 7) / 8

typedef struct {
uint64_t runningLength;
unsigned char shaHash[LENGTH_SHA_HASH];

} sha_context_t;

typedef struct {
uint64_t runningLength;
unsigned char sha256Hash[LENGTH_SHA256_HASH];

} sha256_context_t;

typedef struct {
uint64_t runningLengthHigh;
uint64_t runningLengthLow;
unsigned char sha512Hash[LENGTH_SHA512_HASH];

} sha512_context_t;

typedef struct {
unsigned int major_version;
unsigned int minor_version;
unsigned int fixpack_version;

} libica_version_info;

86 libica Programmer's Reference

Return codes
The libica Version 2 and libica Version 2.2.0 functions use these standard Linux
return codes:
0 Success
EFAULT

The message authentication failed.
EINVAL

Incorrect parameter
EIO I/O error
EPERM

Operation not permitted by Hardware (CPACF).
ENODEV

No such device
ENOMEM

Not enough memory
errno When libica calls open, close, begin_sigill_section, or OpenSSL function

RSA_generate_key, the error codes of these programs are returned.

Chapter 4. libica defines, typedefs, structs, and return codes 87

88 libica Programmer's Reference

Chapter 5. libica tools

The libica package includes tools to investigate the capabilities of your
cryptographic hardware and how these capabilities are used by applications that
use libica.

© Copyright IBM Corporation © IBM 2009, 2012 89

|

|

|
|
|

|

icainfo - Show available libica functions
Purpose

Use this command to find out which libica functions are available on your Linux
system.

Format

icainfo syntax

�� icainfo
-q
-v
-h

��

Where:

-q or --quiet
Suppresses an explanatory introduction to the list of functions in the command
output.

-v or --version
Displays the version number of icainfo, then exits.

-h or --help
Displays help information for the command.

Examples
1. To show which libica functions are available on your Linux system enter:

icainfo

The following CP Assist for Cryptographic Function (CPACF) operations are
supported by libica on this system:
SHA-1: yes
SHA-256: yes
SHA-512: yes
DES: yes
TDES-128: yes
TDES-192: yes
AES-128: yes
AES-192: yes
AES-256: yes
PRNG: yes
CCM-AES-128: yes
CMAC-AES-128: yes
CMAC-AES-192: yes
CMAC-AES-256: yes

2. To list the libica functions without the introduction enter:
icainfo -q
SHA-1: yes
SHA-256: yes
SHA-512: yes
DES: yes
TDES-128: yes
TDES-192: yes
AES-128: yes

90 libica Programmer's Reference

|
|

|

|
|

|
|

|

|||||||||||||||||||

|
||

|

|
|
|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

AES-192: yes
AES-256: yes
PRNG: yes
CCM-AES-128: yes
CMAC-AES-128: yes
CMAC-AES-192: yes
CMAC-AES-256: yes

Chapter 5. libica tools 91

|
|
|
|
|
|
|

|

icastats - Show use of libica functions
Purpose

Use this command to find out whether libica uses hardware acceleration features
or works with software fallbacks. The command also shows which specific
functions of libica are used.

Format

icastats syntax

�� icastats
-r
-v
-h

��

Where:

-r or --reset
Sets the function counters to zero.

-v or --version
Displays the version number of icastats, then exits.

-h or --help
Displays help information for the command.

Examples

To display the current use of libica functions issue:
icastats

function | # hardware | # software
----------+------------+------------

SHA-1 | 0 | 0
SHA-224 | 0 | 0
SHA-256 | 0 | 0
SHA-384 | 0 | 0
SHA-512 | 0 | 0
RANDOM | 1 | 0

MOD EXPO | 0 | 0
RSA CRT | 0 | 0
DES ENC | 0 | 0
DES DEC | 0 | 0
3DES ENC | 0 | 0
3DES DEC | 0 | 0
AES ENC | 0 | 0
AES DEC | 0 | 0
CMAC GEN | 0 | 0
CMAC VER | 0 | 0
CCM ENC | 0 | 0
CCM DEC | 0 | 0
CCM AUTH | 0 | 0
GCM ENC | 0 | 0
GCM DEC | 0 | 0
GCM AUTH | 0 | 0

92 libica Programmer's Reference

|
|

|

|
|
|

|
|

|

|||||||||||||||||||

|
||

|

|
|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Chapter 6. Examples

These sample program segments illustrate the libica Version 2.2.0 APIs. These
sample programs are from the libica Version 2.2.0 RPM, and they were enhanced to
use the libica Version 2.2.0 APIs.

These examples are released under the Common Public License - V1.0, which is
stated in full at the end of this chapter. See “Common Public License - V1.0” on
page 170.

Table 6 lists the examples for libica, and the makefile used to create the library.

Table 6. libica examples

Description Location

DES with ECB mode example “DES with ECB mode example” on page 94

SHA-256 example “SHA-256 example” on page 97

Pseudo random number generation example “Pseudo random number generation example” on page
103

Key generation example “Key generation example” on page 105

RSA example “RSA example” on page 112

DES with CTR mode example “DES with CTR mode example” on page 117

Triple DES with CBC mode example “Triple DES with CBC mode example” on page 120

AES with CFB mode example “AES with CFB mode example” on page 123

AES with CTR mode example “AES with CTR mode example” on page 136

AES with OFB mode example “AES with OFB mode example” on page 146

AES with XTS mode example “AES with XTS mode example” on page 155

CMAC example “CMAC example” on page 165

Makefile example “Makefile example” on page 169

© Copyright IBM Corp. 2009, 2012 93

|

DES with ECB mode example
This program prints the version of libica and then encrypts the contents of a
character array (plain_data[]) using DES in ECE mode and a key stored in another
character array (des_key[]). The program then decrypts the result and prints it as a
string. Intermediate results are written as hex dumps.

/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*
* Copyright IBM Corp. 2011
*
*/

#include <stdio.h>
#include <string.h>
#include <errno.h>

#include <ica_api.h>

#define DES_CIPHER_BLOCK_SIZE 8

/* Prints hex values to standard out. */
static void dump_data(unsigned char *data, unsigned long length);
/* Prints a description of the return value to standard out. */
static int handle_ica_error(int rc);

int main(char **argv, int argc)
{
int rc;
libica_version_info version;

/* This example uses a static key. In real life you would
* use your real DES key, which is negotiated between the
* encrypting and the decrypting entity.
*
* Note: DES key size is cipher block size (DES_CIPHER_BLOCK_SIZE)
*/
unsigned char des_key[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
};

/* This is the plain data, you want to encrypt. For the
* encryption mode, used in this example, it is necessary,
* that the length of the encrypted data is a multiple of
* cipher block size (DES_CIPHER_BLOCK_SIZE).
*/
unsigned char plain_data[] = {
0x55, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x6c, 0x69,
0x62, 0x69, 0x63, 0x61, 0x20, 0x69, 0x73, 0x20,
0x73, 0x6d, 0x61, 0x72, 0x74, 0x20, 0x61, 0x6e,
0x64, 0x20, 0x65, 0x61, 0x73, 0x79, 0x21, 0x00,
};

unsigned char cipher_data[sizeof(plain_data)];
unsigned char decrypt_data[sizeof(plain_data)];

/* Print out libica version.
*/
ica_get_version(&version);
printf("libica version %i.%i.%i\n\n",

version.major_version,
version.minor_version,
version.fixpack_version);

94 libica Programmer's Reference

/* Dump key and plain data to standard output, just for
* a visual control.
*/
printf("DES key:\n");
dump_data(des_key, DES_CIPHER_BLOCK_SIZE);
printf("plain data:\n");
dump_data(plain_data, sizeof(plain_data));

/* Encrypt plain data to cipher data, using libica API.
*/
rc = ica_des_ecb(plain_data, cipher_data, sizeof(plain_data),

des_key,
ICA_ENCRYPT);

/* Error handling (if necessary).
*/
if (rc)
return handle_ica_error(rc);

/* Dump encrypted data.
*/
printf("encrypted data:\n");
dump_data(cipher_data, sizeof(plain_data));

/* Decrypt cipher data to decrypted data, using libica API.
* Note: The same DES key must be used for encryption and decryption.
*/
rc = ica_des_ecb(cipher_data, decrypt_data, sizeof(plain_data),

des_key,
ICA_DECRYPT);

/* Error handling (if necessary).
*/
if (rc)
return handle_ica_error(rc);

/* Dump decrypted data.
* Note: Please compare output with the plain data, they are the same.
*/
printf("decrypted data:\n");
dump_data(decrypt_data, sizeof(plain_data));

/* Surprise... :-)
* Note: The following will only work in this example!
*/
printf("%s\n", decrypt_data);
}

static void dump_data(unsigned char *data, unsigned long length)
{
unsigned char *ptr;
int i;

for (ptr = data, i = 1; ptr < (data+length); ptr++, i++) {
printf("0x%02x ", *ptr);
if ((i % DES_CIPHER_BLOCK_SIZE) == 0)
printf("\n");

}
if (i % DES_CIPHER_BLOCK_SIZE)
printf("\n");

}

static int handle_ica_error(int rc)
{
switch (rc) {
case 0:
printf("OK\n");

Chapter 6. Examples 95

break;
case EINVAL:
printf("Incorrect parameter.\n");
break;
case EPERM:
printf("Operation not permitted by Hardware (CPACF).\n");
break;
case EIO:
printf("I/O error.\n");
break;
default:
printf("unknown error.\n");
}

return rc;
}

96 libica Programmer's Reference

SHA-256 example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2005, 2009, 2011 */
/* (C) COPYRIGHT International Business Machines Corp. 2005, 2009 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include "ica_api.h"

#define NUM_FIPS_TESTS 3

unsigned char FIPS_TEST_DATA[NUM_FIPS_TESTS][64] = {
// Test 0: "abc"
{ 0x61,0x62,0x63 },
// Test 1: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
{

0x61,0x62,0x63,0x64,0x62,0x63,0x64,0x65,0x63,0x64,0x65,0x66,0x64,0x65,0x66,0x67,
0x65,0x66,0x67,0x68,0x66,0x67,0x68,0x69,0x67,0x68,0x69,0x6a,0x68,0x69,0x6a,0x6b,
0x69,0x6a,0x6b,0x6c,0x6a,0x6b,0x6c,0x6d,0x6b,0x6c,0x6d,0x6e,0x6c,0x6d,0x6e,0x6f,
0x6d,0x6e,0x6f,0x70,0x6e,0x6f,0x70,0x71,

},
// Test 2: 1,000,000 ’a’ -- don’t actually use this... see the special case
// in the loop below.
{

0x61,
},

};

unsigned int FIPS_TEST_DATA_SIZE[NUM_FIPS_TESTS] = {
// Test 0: "abc"
3,
// Test 1: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
56,
// Test 2: 1,000,000 ’a’
1000000,

};

unsigned char FIPS_TEST_RESULT[NUM_FIPS_TESTS][LENGTH_SHA256_HASH] =
{

// Hash for test 0: "abc"
{

0xBA,0x78,0x16,0xBF,0x8F,0x01,0xCF,0xEA,0x41,0x41,0x40,0xDE,0x5D,0xAE,0x22,0x23,
0xB0,0x03,0x61,0xA3,0x96,0x17,0x7A,0x9C,0xB4,0x10,0xFF,0x61,0xF2,0x00,0x15,0xAD,

},
// Hash for test 1: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
{

0x24,0x8D,0x6A,0x61,0xD2,0x06,0x38,0xB8,0xE5,0xC0,0x26,0x93,0x0C,0x3E,0x60,0x39,
0xA3,0x3C,0xE4,0x59,0x64,0xFF,0x21,0x67,0xF6,0xEC,0xED,0xD4,0x19,0xDB,0x06,0xC1,

},
// Hash for test 2: 1,000,000 ’a’
{

0xCD,0xC7,0x6E,0x5C,0x99,0x14,0xFB,0x92,0x81,0xA1,0xC7,0xE2,0x84,0xD7,0x3E,0x67,
0xF1,0x80,0x9A,0x48,0xA4,0x97,0x20,0x0E,0x04,0x6D,0x39,0xCC,0xC7,0x11,0x2C,0xD0,

},
};

void dump_array(unsigned char *ptr, unsigned int size)
{

unsigned char *ptr_end;
unsigned char *h;

Chapter 6. Examples 97

int i = 1, trunc = 0;

if (size > 64) {
trunc = size - 64;
size = 64;

}
h = ptr;
ptr_end = ptr + size;
while (h < ptr_end) {

printf("0x%02x ", *h);
h++;
if (i == 8) {

if (h != ptr_end)
printf("\n");

i = 1;
} else {
++i;
}

}
printf("\n");
if (trunc > 0)

printf("... %d bytes not printed\n", trunc);
}

int old_api_sha256_test(void)
{

ICA_ADAPTER_HANDLE adapter_handle;
SHA256_CONTEXT Sha256Context;
int rc = 0, i = 0;
unsigned char input_data[1000000];
unsigned int output_hash_length = LENGTH_SHA256_HASH;
unsigned char output_hash[LENGTH_SHA256_HASH];

rc = icaOpenAdapter(0, &adapter_handle);
if (rc != 0) {

printf("icaOpenAdapter failed and returned %d (0x%x).\n", rc, rc);
if (rc == ENODEV)

printf("The usual cause of this on zSeries is that the CPACF instruction is not available.\n");
return 2;

}

for (i = 0; i < NUM_FIPS_TESTS; i++) {
// Test 2 is a special one, because we want to keep the size of the
// executable down, so we build it special, instead of using a static
if (i != 2)

memcpy(input_data, FIPS_TEST_DATA[i], FIPS_TEST_DATA_SIZE[i]);
else

memset(input_data, ’a’, FIPS_TEST_DATA_SIZE[i]);

printf("\nOriginal data for test %d:\n", i);
dump_array(input_data, FIPS_TEST_DATA_SIZE[i]);

rc = icaSha256(adapter_handle,
SHA_MSG_PART_ONLY,
FIPS_TEST_DATA_SIZE[i],
input_data,
LENGTH_SHA256_CONTEXT,
&Sha256Context,
&output_hash_length,
output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x).\n", rc, rc);
return 2;

}

98 libica Programmer's Reference

if (output_hash_length != LENGTH_SHA256_HASH) {
printf("icaSha256 returned an incorrect output data length, %u (0x%x).\n",

output_hash_length, output_hash_length);
return 2;

}

printf("\nOutput hash for test %d:\n", i);
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[i], LENGTH_SHA256_HASH) != 0) {

printf("This does NOT match the known result.\n");
} else {

printf("Yes, it’s what it should be.\n");
}

}

// This test is the same as test 2, except that we use the SHA256_CONTEXT and
// break it into calls of 1024 bytes each.
printf("\nOriginal data for test 2(chunks = 1024) is calls of 1024 ’a’s at a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {

unsigned int shaMessagePart;
memset(input_data, ’a’, 1024);

if (i == FIPS_TEST_DATA_SIZE[2])
shaMessagePart = SHA_MSG_PART_FIRST;

else if (i <= 1024)
shaMessagePart = SHA_MSG_PART_FINAL;

else
shaMessagePart = SHA_MSG_PART_MIDDLE;

rc = icaSha256(adapter_handle,
shaMessagePart,
(i < 1024) ? i : 1024,
input_data,
LENGTH_SHA256_CONTEXT,
&Sha256Context,
&output_hash_length,
output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x) on iteration %d.\n", rc, rc, i);
return 2;

}

i -= 1024;
}

if (output_hash_length != LENGTH_SHA256_HASH) {
printf("icaSha256 returned an incorrect output data length, %u (0x%x).\n",

output_hash_length, output_hash_length);
return 2;

}

printf("\nOutput hash for test 2(chunks = 1024):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0) {

printf("This does NOT match the known result.\n");
} else {

printf("Yes, it’s what it should be.\n");
}

// This test is the same as test 2, except that we use the SHA256_CONTEXT and
// break it into calls of 64 bytes each.
printf("\nOriginal data for test 2(chunks = 64) is calls of 64 ’a’s at a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {

unsigned int shaMessagePart;

Chapter 6. Examples 99

memset(input_data, ’a’, 64);

if (i == FIPS_TEST_DATA_SIZE[2])
shaMessagePart = SHA_MSG_PART_FIRST;

else if (i <= 64)
shaMessagePart = SHA_MSG_PART_FINAL;

else
shaMessagePart = SHA_MSG_PART_MIDDLE;

rc = icaSha256(adapter_handle,
shaMessagePart,
(i < 64) ? i : 64,
input_data,
LENGTH_SHA256_CONTEXT,
&Sha256Context,
&output_hash_length,
output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x) on iteration %d.\n", rc, rc, i);
return 2;

}

i -= 64;
}

if (output_hash_length != LENGTH_SHA256_HASH) {
printf("icaSha256 returned an incorrect output data length, %u (0x%x).\n",

output_hash_length, output_hash_length);
return 2;

}

printf("\nOutput hash for test 2(chunks = 64):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0) {

printf("This does NOT match the known result.\n");
} else {

printf("Yes, it’s what it should be.\n");
}

printf("\nAll SHA256 tests completed successfully\n");

icaCloseAdapter(adapter_handle);

return 0;
}

int new_api_sha256_test(void)
{
sha256_context_t sha256_context;
int rc = 0, i = 0;
unsigned char input_data[1000000];
unsigned int output_hash_length = LENGTH_SHA256_HASH;
unsigned char output_hash[LENGTH_SHA256_HASH];

for (i = 0; i < NUM_FIPS_TESTS; i++) {
// Test 2 is a special one, because we want to keep the size of the
// executable down, so we build it special, instead of using a static
if (i != 2)
memcpy(input_data, FIPS_TEST_DATA[i], FIPS_TEST_DATA_SIZE[i]);
else
memset(input_data, ’a’, FIPS_TEST_DATA_SIZE[i]);

printf("\nOriginal data for test %d:\n", i);
dump_array(input_data, FIPS_TEST_DATA_SIZE[i]);

rc = ica_sha256(SHA_MSG_PART_ONLY, FIPS_TEST_DATA_SIZE[i], input_data,

100 libica Programmer's Reference

&sha256_context, output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x).\n", rc, rc);
return rc;
}

printf("\nOutput hash for test %d:\n", i);
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[i], LENGTH_SHA256_HASH) != 0)
printf("This does NOT match the known result.\n");
else
printf("Yes, it’s what it should be.\n");

}

// This test is the same as test 2, except that we use the SHA256_CONTEXT and
// break it into calls of 1024 bytes each.
printf("\nOriginal data for test 2(chunks = 1024) is calls of 1024"

" ’a’s at a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {
unsigned int sha_message_part;
memset(input_data, ’a’, 1024);

if (i == FIPS_TEST_DATA_SIZE[2])
sha_message_part = SHA_MSG_PART_FIRST;
else if (i <= 1024)
sha_message_part = SHA_MSG_PART_FINAL;
else
sha_message_part = SHA_MSG_PART_MIDDLE;

rc = ica_sha256(sha_message_part, (i < 1024) ? i : 1024,
input_data, &sha256_context, output_hash);

if (rc != 0) {
printf("ica_sha256 failed with errno %d (0x%x) on"

" iteration %d.\n", rc, rc, i);
return rc;
}
i -= 1024;
}

printf("\nOutput hash for test 2(chunks = 1024):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0)
printf("This does NOT match the known result.\n");
else
printf("Yes, it’s what it should be.\n");

// This test is the same as test 2, except that we use the
// SHA256_CONTEXT and break it into calls of 64 bytes each.
printf("\nOriginal data for test 2(chunks = 64) is calls of 64 ’a’s at"

" a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {
unsigned int sha_message_part;
memset(input_data, ’a’, 64);

if (i == FIPS_TEST_DATA_SIZE[2])
sha_message_part = SHA_MSG_PART_FIRST;
else if (i <= 64)
sha_message_part = SHA_MSG_PART_FINAL;
else
sha_message_part = SHA_MSG_PART_MIDDLE;

rc = ica_sha256(sha_message_part, (i < 64) ? i : 64,
input_data, &sha256_context, output_hash);

Chapter 6. Examples 101

if (rc != 0) {
printf("ica_sha256 failed with errno %d (0x%x) on iteration"

" %d.\n", rc, rc, i);
return rc;
}
i -= 64;
}

printf("\nOutput hash for test 2(chunks = 64):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0)
printf("This does NOT match the known result.\n");
else
printf("Yes, it’s what it should be.\n");

printf("\nAll SHA256 tests completed successfully\n");

return 0;
}

int main(int argc, char **argv)
{
int rc = 0;
rc = old_api_sha256_test();
if (rc) {
printf("old_api_sha256_test: returned rc = %i\n", rc);
return rc;
}

rc = new_api_sha256_test();
if (rc) {
printf("new_api_sha256_test: returned rc = %i\n", rc);
return rc;
}

return rc;
}

102 libica Programmer's Reference

Pseudo random number generation example
This example uses the old (libica Version 1) API. Examples for using the new
(libica Version 2.2.0) API for random number generation are located in other
examples, such as the DES with CTR mode example.

/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include "ica_api.h"

unsigned char R[512];

extern int errno;

void dump_array(unsigned char *ptr, unsigned int size)
{

unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {

printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {

printf("\n");
i = 1;

} else {
++i;

}
}
printf("\n");

}

int main(int ac, char **av)
{

int rc;
ICA_ADAPTER_HANDLE adapter_handle;

rc = icaOpenAdapter(0, &adapter_handle);
if (rc != 0) {

printf("icaOpenAdapter failed and returned %d (0x%x).\n", rc, rc);
}

rc = icaRandomNumberGenerate(adapter_handle, sizeof R, R);
if (rc != 0) {

printf("icaRandomNumberGenerate failed and returned %d (0x%x).\n", rc, rc);
#ifdef __s390__

if (rc == ENODEV)
printf("The usual cause of this on zSeries is that the CPACF instruction is not available.\n");

#endif
}
else {

printf("\nHere it is:\n");
}

dump_array(R, sizeof R);

Chapter 6. Examples 103

if (!rc) {
printf("\nWell, does it look random?\n\n");

}

icaCloseAdapter(adapter_handle);

return 0;
}

104 libica Programmer's Reference

Key generation example
This example uses the various key generation APIs, as well as those to open and
close an adapter, and random number generation.

/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* (C) COPYRIGHT International Business Machines Corp. 2001, 2009 */
#include <sys/errno.h>
#include <fcntl.h>
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "ica_api.h"

#define KEY_BYTES ((key_bits + 7) / 8)
#define KEY_BYTES_MAX 256

extern int errno;

void dump_array(char *ptr, int size)
{
char *ptr_end;
char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");
}

int main(int argc, char **argv)
{
ICA_ADAPTER_HANDLE adapter_handle;
ICA_KEY_RSA_CRT crtkey;
ICA_KEY_RSA_MODEXPO wockey, wockey2;
unsigned char decrypted[KEY_BYTES_MAX], encrypted[KEY_BYTES_MAX],

original[KEY_BYTES_MAX];
int rc;
unsigned int length, length2;
unsigned int exponent_type = RSA_PUBLIC_FIXED, key_bits = 1024;

length = sizeof wockey;
length2 = sizeof wockey2;
bzero(&wockey, sizeof wockey);
bzero(&wockey2, sizeof wockey2);

rc = icaOpenAdapter(0, &adapter_handle);
if (rc != 0) {
printf("icaOpenAdapter failed and returned %d (0x%x).\n", rc,

rc);

Chapter 6. Examples 105

}
exponent_type = RSA_PUBLIC_FIXED;
printf("a fixed exponent . . .\n");
rc = icaRandomNumberGenerate(adapter_handle, KEY_BYTES,

wockey.keyRecord);
if (rc != 0) {

printf("icaRandomNumberGenerate failed and returned %d (0x%x)"
".\n", rc, rc);

return -1;
}
wockey.nLength = KEY_BYTES / 2;
wockey.expLength = sizeof(unsigned long);
wockey.expOffset = SZ_HEADER_MODEXPO;
wockey.keyRecord[wockey.expLength - 1] |= 1;
if (argc > 1) {
key_bits = atoi(argv[1]);
if (key_bits > KEY_BYTES_MAX * 8) {
printf("The maximum key length is %d bits.",

KEY_BYTES_MAX * 8);
exit(0);
}
wockey.modulusBitLength = key_bits;
printf("Using %u-bit keys and ", key_bits);
if (argc > 2) {
switch (argv[2][0]) {
case ’3’:
exponent_type = RSA_PUBLIC_3;
printf("exponent 3 . . .\n");
wockey.expLength = 1;
break;
case ’6’:
exponent_type = RSA_PUBLIC_65537;
printf("exponent 65537 . . .\n");
wockey.expLength = 3;
break;
case ’R’:
case ’r’:
exponent_type = RSA_PUBLIC_RANDOM;
printf("a random exponent . . .\n");
break;
default:
break;
}
}
}

rc = icaRandomNumberGenerate(adapter_handle, sizeof(original),
original);

if (rc != 0) {
printf("icaRandomNumberGenerate failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;
}
original[0] = 0;

rc = icaRsaKeyGenerateModExpo(adapter_handle, key_bits, exponent_type,
&length, &wockey, &length2, &wockey2);

if (rc != 0) {
printf("icaRsaKeyGenerateModExpo failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;
}

printf("Public key:\n");
dump_array((char *) wockey.keyRecord, 2 * KEY_BYTES);
printf("Private key:\n");
dump_array((char *) wockey2.keyRecord, 2 * KEY_BYTES);

106 libica Programmer's Reference

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
printf("encrypt \n");
rc = icaRsaModExpo(adapter_handle, KEY_BYTES, original, &wockey,

&length, encrypted);
if (rc != 0) {
printf("icaRsaModExpo failed and returned %d (0x%x).\n", rc, rc);
return rc;
}
bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
printf("decrypt \n");
rc = icaRsaModExpo(adapter_handle, KEY_BYTES, encrypted, &wockey2,

&length, decrypted);
if (rc != 0) {
printf("icaRsaModExpo failed and returned %d (0x%x).\n", rc,

rc);
return rc;
}

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext. Failure!\n");
icaCloseAdapter(adapter_handle);
return errno ? errno : -1;
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext."

"That can’t be good.\n");
return -1;
}
}
fflush(stdout);

length = sizeof wockey;
length2 = sizeof crtkey;
bzero(&wockey, sizeof wockey);
wockey.expLength = sizeof(unsigned long);
if (exponent_type == RSA_PUBLIC_FIXED) {
wockey.keyType = KEYTYPE_MODEXPO;
wockey.keyLength = sizeof wockey;
wockey.modulusBitLength = key_bits;
wockey.nLength = KEY_BYTES;
wockey.expOffset = SZ_HEADER_MODEXPO;
wockey.expLength = sizeof (unsigned long);
wockey.nOffset = KEY_BYTES + wockey.expOffset;
rc = icaRandomNumberGenerate(adapter_handle, KEY_BYTES,

wockey.keyRecord);
if (rc != 0) {
printf("icaRandomNumberGenerate failed and returned %d"

"(0x%x).\n", rc, rc);
return rc;
}
wockey.keyRecord[wockey.expLength - 1] |= 1;
}
rc = icaRsaKeyGenerateCrt(adapter_handle, key_bits, exponent_type,

&length, &wockey, &length2, &crtkey);
printf("wockey.modulusBitLength = %i, crtkey.modulusBitLength = %i"

" \n", wockey.modulusBitLength, crtkey.modulusBitLength);
if (rc != 0) {

Chapter 6. Examples 107

printf("icaRsaKeyGenerateCrt failed and returned %d (0x%x)"
".\n", rc, rc);

return rc;
}

printf("Public key:\n");
dump_array((char *) wockey.keyRecord, 2 * KEY_BYTES);
printf("Private key:\n");
dump_array((char *) crtkey.keyRecord, 5 * KEY_BYTES / 2 + 24);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
rc = icaRsaModExpo(adapter_handle, KEY_BYTES, original, &wockey,

&length, encrypted);
if (rc != 0)
printf("icaRsaModExpo failed and returned %d (0x%x).\n", rc, rc);

bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
rc = icaRsaCrt(adapter_handle, KEY_BYTES, encrypted, &crtkey, &length,

decrypted);
if (rc != 0)
printf("icaRsaCrt failed and returned %d (0x%x).\n", rc, rc);

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext. Failure!\n");
icaCloseAdapter(adapter_handle);
return errno ? errno : -1;
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext. That can’t be good.\n");
return -1;
}
}
fflush(stdout);

printf("TEST NEW API - MOD_EXPO\n");
rc = ica_close_adapter(adapter_handle);
printf("ica_close_adapter rc = %i\n", rc);

rc = ica_open_adapter(&adapter_handle);
if (rc)
printf("Adapter not open\n");
else
printf("Adapter open\n");

ica_rsa_key_mod_expo_t modexpo_public_key;
unsigned char modexpo_public_n[KEY_BYTES];
bzero(modexpo_public_n, KEY_BYTES);
unsigned char modexpo_public_e[KEY_BYTES];
bzero(modexpo_public_e, KEY_BYTES);
modexpo_public_key.modulus = modexpo_public_n;
modexpo_public_key.exponent = modexpo_public_e;
modexpo_public_key.key_length = KEY_BYTES;
if (exponent_type == RSA_PUBLIC_65537)
(unsigned long)((unsigned char *)modexpo_public_key.exponent +

modexpo_public_key.key_length -
sizeof(unsigned long)) = 65537;

if (exponent_type == RSA_PUBLIC_3)
(unsigned long)((unsigned char *)modexpo_public_key.exponent +

108 libica Programmer's Reference

modexpo_public_key.key_length -
sizeof(unsigned long)) = 3;

ica_rsa_key_mod_expo_t modexpo_private_key;
unsigned char modexpo_private_n[KEY_BYTES];
bzero(modexpo_private_n, KEY_BYTES);
unsigned char modexpo_private_e[KEY_BYTES];
bzero(modexpo_private_e, KEY_BYTES);
modexpo_private_key.modulus = modexpo_private_n;
modexpo_private_key.exponent = modexpo_private_e;
modexpo_private_key.key_length = KEY_BYTES;

rc = ica_rsa_key_generate_mod_expo(adapter_handle,
key_bits,
&modexpo_public_key,
&modexpo_private_key);

if (rc)
printf("ica_rsa_key_generate_mod_expo rc = %i\n",rc);

printf("Public key:\n");
dump_array((char *) (char *)modexpo_public_key.exponent, KEY_BYTES);
dump_array((char *) (char *)modexpo_public_key.modulus, KEY_BYTES);
printf("Private key:\n");
dump_array((char *) (char *)modexpo_private_key.exponent, KEY_BYTES);
dump_array((char *) (char *)modexpo_private_key.modulus, KEY_BYTES);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
printf("encrypt \n");
rc = ica_rsa_mod_expo(adapter_handle, original, &modexpo_public_key,

encrypted);

if (rc != 0) {
printf("ica_rsa_mod_expo failed and returned %d (0x%x).\n", rc,

rc);
return rc;
}
bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
printf("decrypt \n");
rc = ica_rsa_mod_expo(adapter_handle, encrypted, &modexpo_private_key,

decrypted);
if (rc != 0) {
printf("ica_rsa_mod_expo failed and returned %d (0x%x).\n", rc,

rc);
return rc;
}

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext. Failure!\n");
return -1;
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext. That can’t be good.\n");
return -1;
}
}
fflush(stdout);

printf("TEST NEW API - CRT\n");

Chapter 6. Examples 109

ica_rsa_key_mod_expo_t public_key;
ica_rsa_key_crt_t private_key;

unsigned char public_n[KEY_BYTES];
bzero(public_n, KEY_BYTES);
unsigned char public_e[KEY_BYTES];
bzero(public_e, KEY_BYTES);
public_key.modulus = public_n;
public_key.exponent = public_e;
public_key.key_length = KEY_BYTES;

unsigned char private_p[(key_bits + 7) / (8 * 2) + 8];
bzero(private_p, KEY_BYTES + 1);
unsigned char private_q[(key_bits + 7) / (8 * 2)];
bzero(private_q, KEY_BYTES);
unsigned char private_dp[(key_bits + 7) / (8 * 2) + 8];
bzero(private_dp, KEY_BYTES + 1);
unsigned char private_dq[(key_bits + 7) / (8 * 2)];
bzero(private_dq, KEY_BYTES);
unsigned char private_qInverse[(key_bits + 7) / (8 * 2) + 8];
bzero(private_qInverse, KEY_BYTES + 1);
private_key.p = private_p;
private_key.q = private_q;
private_key.dp = private_dp;
private_key.dq = private_dq;
private_key.qInverse = private_qInverse;
private_key.key_length = (key_bits + 7) / 8;

if (exponent_type == RSA_PUBLIC_65537)
(unsigned long)((unsigned char *)public_key.exponent +

public_key.key_length -
sizeof(unsigned long)) = 65537;

if (exponent_type == RSA_PUBLIC_3)
(unsigned long)((unsigned char *)public_key.exponent +

public_key.key_length -
sizeof(unsigned long)) = 3;

rc = ica_rsa_key_generate_crt(adapter_handle, key_bits, &public_key,
&private_key);

if (rc != 0) {
printf("ica_rsa_key_generate_crt failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;
}

printf("Public key:\n");
dump_array((char *) (char *)&public_key, 2 * KEY_BYTES);
printf("Private key:\n");
dump_array((char *) (char *)&private_key, 5 * KEY_BYTES / 2 + 24);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
rc = ica_rsa_mod_expo(adapter_handle, original, &public_key, encrypted);
if (rc != 0) {
printf("ica_rsa_mod_expo failed and returned %d (0x%x).\n",

rc, rc);
return rc;
}
bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
rc = ica_rsa_crt(adapter_handle, encrypted, &private_key, decrypted);
if (rc != 0) {
printf("icaRsaCrt failed and returned %d (0x%x).\n", rc, rc);
return rc;
}

printf("Original:\n");

110 libica Programmer's Reference

dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext."

"Failure!\n");
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext."

"That can’t be good.\n");
}
}
fflush(stdout);
ica_close_adapter(adapter_handle);
return 0;
}

Chapter 6. Examples 111

RSA example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2001, 2009, 2011 */

#include <fcntl.h>
#include <memory.h>
#include <sys/errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "ica_api.h"

unsigned char pubkey1024[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 };

unsigned char modulus1024[] =
{ 0xec, 0x51, 0xab, 0xa1, 0xf8, 0x40, 0x2c, 0x08,

0x2e, 0x24, 0x52, 0x2e, 0x3c, 0x51, 0x6d, 0x98,
0xad, 0xee, 0xc7, 0x7d, 0x00, 0xaf, 0xe1, 0xa8,
0x61, 0xda, 0x32, 0x97, 0xb4, 0x32, 0x97, 0xe3,
0x52, 0xda, 0x28, 0x45, 0x55, 0xc6, 0xb2, 0x46,
0x65, 0x1b, 0x02, 0xcb, 0xbe, 0xf4, 0x2c, 0x6b,
0x2a, 0x5f, 0xe1, 0xdf, 0xe9, 0xe3, 0xbc, 0x47,
0xb7, 0x38, 0xb5, 0xa2, 0x78, 0x9d, 0x15, 0xe2,
0x59, 0x81, 0x77, 0x6b, 0x6b, 0x2e, 0xa9, 0xdb,
0x13, 0x26, 0x9c, 0xca, 0x5e, 0x0a, 0x1f, 0x3c,
0x50, 0x9d, 0xd6, 0x79, 0x59, 0x99, 0x50, 0xe5,
0x68, 0x1a, 0x98, 0xca, 0x11, 0xce, 0x37, 0x63,
0x58, 0x22, 0x40, 0x19, 0x29, 0x72, 0x4c, 0x41,
0x89, 0x0b, 0x56, 0x9e, 0x3e, 0xd5, 0x6d, 0x75,
0x9e, 0x3f, 0x8a, 0x50, 0xf1, 0x0a, 0x59, 0x4a,
0xc3, 0x59, 0x4b, 0xf6, 0xbb, 0xc9, 0xa5, 0x93 };

unsigned char Bp[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0xa7, 0xcf, 0xa2, 0x18, 0x2c, 0xa9, 0xb4, 0xb9,
0xf5, 0x9e, 0xc9, 0x04, 0x16, 0xd9, 0xa6, 0x8b,
0x90, 0x4a, 0x19, 0x6d, 0x64, 0xb7, 0x17, 0x67,
0x53, 0xfa, 0x4e, 0x8d, 0xde, 0xa6, 0x94, 0x32,
0x5d, 0xcf, 0x58, 0x3e, 0x90, 0xbb, 0x30, 0x19,
0x96, 0x38, 0x95, 0xb6, 0xca, 0x2f, 0xfa, 0x22,
0x81, 0x65, 0x3b, 0x3c, 0x95, 0x9e, 0x79, 0x75,
0xe4, 0x93, 0x50, 0xf1, 0x88, 0x6b, 0xc1, 0x87 };

112 libica Programmer's Reference

unsigned char Bq[] =
{ 0xa0, 0x3a, 0x18, 0xa4, 0x1c, 0x3c, 0x49, 0x09,

0xd0, 0x84, 0x4a, 0x8c, 0x7c, 0xce, 0xdf, 0x9e,
0x90, 0x7d, 0xc4, 0xca, 0x7e, 0x2d, 0x3d, 0xbc,
0x09, 0x71, 0x79, 0xd0, 0xc0, 0xae, 0xa6, 0xc1,
0x9d, 0xf0, 0x16, 0xf0, 0x1f, 0x68, 0x9a, 0xc5,
0x2b, 0xf3, 0x5a, 0xfc, 0x2c, 0xf5, 0xa7, 0xec,
0xd9, 0xa2, 0xac, 0x49, 0xcc, 0x76, 0x9c, 0xd8,
0x4c, 0x59, 0x5e, 0x38, 0xd2, 0x85, 0xd3, 0x3b };

unsigned char Np[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0xfb, 0xb7, 0x73, 0x24, 0x42, 0xfe, 0x8f, 0x16,
0xf0, 0x6e, 0x2d, 0x86, 0x22, 0x46, 0x79, 0xd1,
0x58, 0x6f, 0x26, 0x24, 0x17, 0x12, 0xa3, 0x1a,
0xfd, 0xf7, 0x75, 0xd4, 0xcd, 0xf9, 0xde, 0x4b,
0x8c, 0xb7, 0x04, 0x5d, 0xd9, 0x18, 0xc8, 0x26,
0x61, 0x54, 0xe0, 0x92, 0x2f, 0x47, 0xf7, 0x33,
0xc2, 0x17, 0xd8, 0xda, 0xe0, 0x6d, 0xb6, 0x30,
0xd6, 0xdc, 0xf9, 0x6a, 0x4c, 0xa1, 0xa2, 0x4b };

unsigned char Nq[] =
{ 0xf0, 0x57, 0x24, 0xf6, 0x2a, 0x5a, 0x6d, 0x8e,

0xb8, 0xc6, 0x6f, 0xd2, 0xbb, 0x36, 0x4f, 0x6d,
0xd8, 0xbc, 0xa7, 0x2f, 0xbd, 0x43, 0xdc, 0x9a,
0x0e, 0x2a, 0x36, 0xb9, 0x21, 0x05, 0xfa, 0x22,
0x6c, 0xe8, 0x22, 0x68, 0x2f, 0x1c, 0xe8, 0x27,
0xc1, 0xed, 0x08, 0x7a, 0x43, 0x70, 0x7b, 0xe3,
0x46, 0x74, 0x02, 0x6e, 0xb2, 0xb1, 0xeb, 0x44,
0x72, 0x86, 0x0d, 0x55, 0x3b, 0xc8, 0xbc, 0xd9 };

unsigned char U[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x83, 0xf1, 0xca, 0x06, 0x58, 0x4a, 0x04, 0x5e,
0x96, 0xb5, 0x30, 0x32, 0x40, 0x36, 0x48, 0xb9,
0x02, 0x0c, 0xe3, 0x37, 0xb7, 0x51, 0xbc, 0x22,
0x26, 0x5d, 0x74, 0x03, 0x47, 0xd3, 0x33, 0x20,
0x8e, 0x75, 0x62, 0xf2, 0x9d, 0x4e, 0xc8, 0x7d,
0x5d, 0x8e, 0xb6, 0xd9, 0x69, 0x4a, 0x9a, 0xe1,
0x36, 0x6e, 0x1c, 0xbe, 0x8a, 0x14, 0xb1, 0x85,
0x39, 0x74, 0x7c, 0x25, 0xd8, 0xa4, 0x4f, 0xde };

unsigned char R[128];

unsigned char A[] =
{ 0x00, 0x02, 0x08, 0x68, 0x30, 0x9a, 0x32, 0x08,

0x57, 0xb0, 0x28, 0xaa, 0x76, 0x30, 0x3d, 0x84,
0x5f, 0x92, 0x0d, 0x8e, 0x34, 0xe0, 0xd5, 0xcc,
0x36, 0x97, 0xed, 0x00, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23,
0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33,
0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43,
0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b,
0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53,
0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b,
0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63 };

unsigned char Ciphertext[] =
{ 0xb2, 0xb2, 0x82, 0xd7, 0x2c, 0x6f, 0x53, 0x29,

Chapter 6. Examples 113

0xee, 0x4c, 0xd1, 0x77, 0xb7, 0x13, 0xf3, 0x1c,
0x51, 0x60, 0xd8, 0xa9, 0x4e, 0x52, 0x72, 0x43,
0x29, 0xfa, 0x51, 0xaa, 0xd8, 0xbc, 0x31, 0x21,
0xe0, 0xac, 0x9b, 0x4e, 0x0, 0x94, 0xac, 0x91,
0x7f, 0x1e, 0xfd, 0xfb, 0x1c, 0xfa, 0xa8, 0xe8,
0x56, 0x5a, 0x1, 0x17, 0xf1, 0x5f, 0x1, 0xba,
0xcd, 0x77, 0xa1, 0x8c, 0x74, 0x8a, 0xef, 0xfa,
0x64, 0x58, 0x79, 0x13, 0xaa, 0x54, 0x13, 0x2b,
0xaa, 0xe7, 0xc3, 0x50, 0x3b, 0x69, 0x3b, 0xb,
0x9a, 0xa9, 0x9d, 0x15, 0x8a, 0x6, 0x45, 0x71,
0x40, 0x7a, 0x80, 0x85, 0x4a, 0xbe, 0x68, 0x48,
0x6c, 0xe6, 0xdd, 0x96, 0xb0, 0xdc, 0xf4, 0x23,
0xa8, 0xea, 0x21, 0x9f, 0xbc, 0x6b, 0x15, 0xa4,
0x87, 0x6e, 0x93, 0x56, 0xae, 0xa7, 0x17, 0x4e,
0xd7, 0x14, 0xe4, 0x69, 0x4, 0xd5, 0x2e, 0x62 };

extern int errno;

void dump_array(unsigned char *ptr, unsigned int size)
{

unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {

printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {

printf("\n");
i = 1;

} else {
++i;

}
}
printf("\n");

}

int main()
{

ICA_ADAPTER_HANDLE adapter_handle;
ICA_KEY_RSA_CRT icakey;
ICA_KEY_RSA_MODEXPO wockey;
caddr_t key;
caddr_t my_result;
caddr_t my_result2;
/* icaRsaModExpo_t rsawoc; */
int i;
unsigned int length;

i = icaOpenAdapter(0, &adapter_handle);
if (i != 0) {

printf("icaOpenAdapter failed and returned %d (0x%x), errno=%d\n", i, i, errno);
return i;

}

/*
* encrypt with public key
*/

printf("modulus size = %ld\n", (long)sizeof(modulus1024));
bzero(&wockey, sizeof(wockey));
wockey.keyType = KEYTYPE_MODEXPO;
wockey.keyLength = sizeof(ICA_KEY_RSA_MODEXPO);
wockey.modulusBitLength = sizeof(modulus1024) * 8;

114 libica Programmer's Reference

wockey.nLength = sizeof(modulus1024);
wockey.expLength = sizeof(pubkey1024);

key = (caddr_t)wockey.keyRecord;

bcopy(&pubkey1024, key, sizeof(pubkey1024));
wockey.expOffset = key - (char *) &wockey;
key += sizeof(pubkey1024);
bcopy(&modulus1024, key, sizeof(modulus1024));
wockey.nOffset = key - (char *) &wockey;

my_result = (caddr_t) malloc(sizeof(A));
bzero(my_result, sizeof(A));
length = sizeof(A);

printf("wockey.modulusBitLength = %i\n", wockey.modulusBitLength);
if ((i = icaRsaModExpo(adapter_handle, sizeof(A), A,

&wockey, &length, (unsigned char *)my_result)) != 0) {
printf("icaRsaModExpo failed and returned %d (0x%x).\n", i, i);

}

printf("\n\n\n\n\n result of encrypt with public key\n");
dump_array((unsigned char *)my_result,sizeof(A));
printf("Ciphertext \n");
dump_array(Ciphertext,sizeof(A));
if (memcmp(my_result,Ciphertext,sizeof(A))){

printf("Ciphertext mismatch\n");
return 0;

} else {
printf("ENCRYPT WORKED\n");

}

bzero(&icakey, sizeof(icakey));

/* Card level CRT operation */
icakey.keyType = KEYTYPE_PKCSCRT;
icakey.keyLength = sizeof(ICA_KEY_RSA_CRT);
icakey.modulusBitLength = sizeof(modulus1024)*8;

my_result2 = (caddr_t)malloc(sizeof(A));
bzero(my_result2,sizeof(A));

key = (caddr_t)icakey.keyRecord;
/*
* Bp is copied into the key */
bcopy(Bp,key,sizeof(Bp));
icakey.dpLength = sizeof(Bp);
icakey.dpOffset = key - (char *)&icakey;
key += sizeof(Bp);
/*
* Bq is copied into the key */
bcopy(Bq,key,sizeof(Bq));
icakey.dqLength = sizeof(Bq);
icakey.dqOffset = key - (char *)&icakey;
key += sizeof(Bq);
/*
* Np is copied into the key */
bcopy(Np,key,sizeof(Np));
icakey.pLength = sizeof(Np);
icakey.pOffset = key - (char *)&icakey;
key += sizeof(Np);
/*
* Nq is copied into the key */
bcopy(Nq,key,sizeof(Nq));
icakey.qLength = sizeof(Nq);
icakey.qOffset = key - (char *)&icakey;

Chapter 6. Examples 115

key += sizeof(Nq);
/*
* U is copied into the key */
bcopy(U,key,sizeof(U));
icakey.qInvLength = sizeof(U);
icakey.qInvOffset = key - (char *)&icakey;
key += sizeof(U);

/* printf("size of Bp=%d\n",sizeof(Bp));
printf("size of Bq=%d\n",sizeof(Bq));
printf("size of Np=%d\n",sizeof(Np));
printf("size of Nq=%d\n",sizeof(Nq));
printf("size of U=%d\n",sizeof(U));
printf("size of R=%d\n",sizeof(R));

printf("icakey private Key record\n");
dump_array(&icakey,sizeof(ICA_KEY_RSA_CRT)); */

length = sizeof(Ciphertext);
icakey.modulusBitLength = length * 8;
icakey.keyLength = length;

if ((i = icaRsaCrt(adapter_handle, sizeof(Ciphertext), Ciphertext,
&icakey, &length, (unsigned char *)my_result2)) != 0) {

printf("icaRsaCrt failed and returned %d (0x%x).\n", i, i);
}

printf("Result of decrypt\n");
dump_array((unsigned char *)my_result2, sizeof(A));
printf("original data\n");
dump_array(A, sizeof(A));
if(memcmp(A,my_result2,sizeof(A)) != 0) {

printf("Results do not match. Failure!\n");
return -1;

} else {
printf("Results match!\n");

}

icaCloseAdapter(adapter_handle);

return 0;
}

116 libica Programmer's Reference

DES with CTR mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_RANDOM_TESTS 100

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");
}

void dump_ctr_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);
}

int random_des_ctr(int iteration, int silent, unsigned int data_length, unsigned int iv_length)
{
unsigned int key_length = sizeof(ica_des_key_single_t);
if (data_length % sizeof(ica_des_vector_t))
iv_length = sizeof(ica_des_vector_t);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];

Chapter 6. Examples 117

unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
rc = ica_random_number_generate(data_length, input_data);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}

rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}
memcpy(tmp_iv, iv, iv_length);

rc = ica_des_ctr(input_data, encrypt, data_length, key, tmp_iv,
32,1);

if (rc) {
printf("ica_des_ctr encrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
return rc;
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

memcpy(tmp_iv, iv, iv_length);
rc = ica_des_ctr(encrypt, decrypt, data_length, key, tmp_iv,

32, 0);
if (rc) {
printf("ica_des_ctr decrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int main(int argc, char **argv)

118 libica Programmer's Reference

{
unsigned int silent = 0;
unsigned int endless = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;
if (strstr(argv[1], "endless"))
endless = 1;

}
int rc = 0;
int error_count = 0;
int i = 0;
unsigned int data_length = sizeof(ica_des_key_single_t);
unsigned int iv_length = sizeof(ica_des_key_single_t);

if (endless) {
silent = 1;
while (1) {
printf("i = %i\n",i);
rc = random_des_ctr(i, silent, 320, 320);
if (rc) {
printf("kat_des_ctr failed with rc = %i\n",
rc);
return rc;
} else
printf("kat_des_ctr finished successfuly\n");
i++;
}
} else {
for (i = 1; i < NR_RANDOM_TESTS; i++) {
rc = random_des_ctr(i, silent, data_length, iv_length);

if (rc) {
printf("random_des_ctr failed with rc = %i\n",

rc);
error_count++;
} else
printf("random_des_ctr finished "
"successfuly\n");

if (!(data_length % sizeof(ica_des_key_single_t))) {
/* Always when the full block size is reached use a

* counter with the same size as the data */
rc = random_des_ctr(i, silent,
data_length, data_length);
if (rc) {

printf("random_des_ctr failed with "
"rc = %i\n", rc);

error_count++;
} else

printf("random_des_ctr finished "
"successfuly\n");

}
data_length++;
}
}

if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

Chapter 6. Examples 119

Triple DES with CBC mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_RANDOM_TESTS 10000

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");

}

void dump_cbc_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);

120 libica Programmer's Reference

if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;
}

int random_3des_cbc(int iteration, int silent, unsigned int data_length)
{
unsigned int iv_length = sizeof(ica_des_vector_t);
unsigned int key_length = sizeof(ica_des_key_triple_t);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

rc = ica_3des_cbc(input_data, encrypt, data_length, key, tmp_iv, 1);
if (rc) {
printf("ica_3des_cbc encrypt failed with rc = %i\n", rc);
dump_cbc_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_cbc_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (rc) {
printf("3DES CBC test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);

rc = ica_3des_cbc(encrypt, decrypt, data_length, key, tmp_iv,
0);

if (rc) {
printf("ica_3des_cbc decrypt failed with rc = %i\n", rc);
dump_cbc_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

Chapter 6. Examples 121

if (!silent && !rc) {
printf("Decrypt:\n");
dump_cbc_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int main(int argc, char **argv)
{
// Default mode is 0. ECB,CBC and CFQ tests will be performed.
unsigned int silent = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
unsigned int data_length = sizeof(ica_des_vector_t);
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
int silent = 1;
rc = random_3des_cbc(iteration, silent, data_length);
if (rc) {
printf("random_3des_cbc failed with rc = %i\n", rc);
error_count++;
goto out;
} else
printf("random_3des_cbc finished successfuly\n");
data_length += sizeof(ica_des_vector_t);
}

out:
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

122 libica Programmer's Reference

AES with CFB mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 12
#define NR_RANDOM_TESTS 1000

/* CFB128 data -1- AES128 */
unsigned char NIST_KEY_CFB_E1[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CFB_E1[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E1[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned char NIST_TEST_DATA_CFB_E1[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CFB_E1[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned int NIST_LCFB_E1 = 128 / 8;

/* CFB128 data -2- AES128 */
unsigned char NIST_KEY_CFB_E2[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CFB_E2[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned char NIST_EXPECTED_IV_CFB_E2[] = {
0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,
0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b,
};

unsigned char NIST_TEST_DATA_CFB_E2[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

Chapter 6. Examples 123

};

unsigned char NIST_TEST_RESULT_CFB_E2[] = {
0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,
0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b,

};

unsigned int NIST_LCFB_E2 = 128 / 8;

/* CFB8 data -3- AES128 */
unsigned char NIST_KEY_CFB_E3[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_CFB_E3[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_CFB_E3[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b,

};
unsigned char NIST_TEST_DATA_CFB_E3[] = {
0x6b,

};

unsigned char NIST_TEST_RESULT_CFB_E3[] = {
0x3b,

};
unsigned int NIST_LCFB_E3 = 8 / 8;

/* CFB8 data -4- AES128 */
unsigned char NIST_KEY_CFB_E4[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_CFB_E4[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b,

};

unsigned char NIST_EXPECTED_IV_CFB_E4[] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b, 0x79,

};
unsigned char NIST_TEST_DATA_CFB_E4[] = {
0xc1,

};

unsigned char NIST_TEST_RESULT_CFB_E4[] = {
0x79,

};

unsigned int NIST_LCFB_E4 = 8 / 8;

/* CFB 128 data -5- for AES192 */
unsigned char NIST_KEY_CFB_E5[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,

};

unsigned char NIST_IV_CFB_E5[] = {

124 libica Programmer's Reference

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E5[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

unsigned char NIST_TEST_DATA_CFB_E5[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CFB_E5[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

unsigned int NIST_LCFB_E5 = 128 / 8;

/* CFB 128 data -6- for AES192 */
unsigned char NIST_KEY_CFB_E6[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_CFB_E6[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

unsigned char NIST_EXPECTED_IV_CFB_E6[] = {
0x67, 0xce, 0x7f, 0x7f, 0x81, 0x17, 0x36, 0x21,
0x96, 0x1a, 0x2b, 0x70, 0x17, 0x1d, 0x3d, 0x7a,
};

unsigned char NIST_TEST_DATA_CFB_E6[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CFB_E6[] = {
0x67, 0xce, 0x7f, 0x7f, 0x81, 0x17, 0x36, 0x21,
0x96, 0x1a, 0x2b, 0x70, 0x17, 0x1d, 0x3d, 0x7a,
};

unsigned int NIST_LCFB_E6 = 128 / 8;

/* CFB 128 data -7- for AES192 */
unsigned char NIST_KEY_CFB_E7[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_CFB_E7[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E7[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd,
};

Chapter 6. Examples 125

unsigned char NIST_TEST_DATA_CFB_E7[] = {
0x6b,

};

unsigned char NIST_TEST_RESULT_CFB_E7[] = {
0xcd,

};

unsigned int NIST_LCFB_E7 = 8 / 8;

/* CFB 128 data -8- for AES192 */
unsigned char NIST_KEY_CFB_E8[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,

};

unsigned char NIST_IV_CFB_E8[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd,

};

unsigned char NIST_EXPECTED_IV_CFB_E8[] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd, 0xa2,

};

unsigned char NIST_TEST_DATA_CFB_E8[] = {
0xc1,

};

unsigned char NIST_TEST_RESULT_CFB_E8[] = {
0xa2,

};

unsigned int NIST_LCFB_E8 = 8 / 8;

/* CFB128 data -9- for AES256 */
unsigned char NIST_KEY_CFB_E9[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CFB_E9[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_CFB_E9[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

};

unsigned char NIST_TEST_DATA_CFB_E9[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_CFB_E9[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

};

126 libica Programmer's Reference

unsigned int NIST_LCFB_E9 = 128 / 8;

/* CFB128 data -10- for AES256 */
unsigned char NIST_KEY_CFB_E10[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E10[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,
};

unsigned char NIST_EXPECTED_IV_CFB_E10[] = {
0x39, 0xff, 0xed, 0x14, 0x3b, 0x28, 0xb1, 0xc8,
0x32, 0x11, 0x3c, 0x63, 0x31, 0xe5, 0x40, 0x7b,
};

unsigned char NIST_TEST_DATA_CFB_E10[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CFB_E10[] = {
0x39, 0xff, 0xed, 0x14, 0x3b, 0x28, 0xb1, 0xc8,
0x32, 0x11, 0x3c, 0x63, 0x31, 0xe5, 0x40, 0x7b,
};

unsigned int NIST_LCFB_E10 = 128 / 8;

/* CFB8 data -11- for AES256 */
unsigned char NIST_KEY_CFB_E11[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E11[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E11[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc,
};

unsigned char NIST_TEST_DATA_CFB_E11[] = {
0x6b,
};

unsigned char NIST_TEST_RESULT_CFB_E11[] = {
0xdc,
};

unsigned int NIST_LCFB_E11 = 8 / 8;

/* CFB8 data -12- for AES256 */
unsigned char NIST_KEY_CFB_E12[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

Chapter 6. Examples 127

unsigned char NIST_IV_CFB_E12[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc,

};

unsigned char NIST_EXPECTED_IV_CFB_E12[] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc, 0x1f,

};

unsigned char NIST_TEST_DATA_CFB_E12[] = {
0xc1,

};

unsigned char NIST_TEST_RESULT_CFB_E12[] = {
0x1f,

};

unsigned int NIST_LCFB_E12 = 8 / 8;

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");

}

void dump_cfb_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_CFB_E1);
*iv_length = sizeof(NIST_IV_CFB_E1);
*key_length = sizeof(NIST_KEY_CFB_E1);
break;

128 libica Programmer's Reference

case 2:
*data_length = sizeof(NIST_TEST_DATA_CFB_E2);
*iv_length = sizeof(NIST_IV_CFB_E2);
*key_length = sizeof(NIST_KEY_CFB_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_CFB_E3);
*iv_length = sizeof(NIST_IV_CFB_E3);
*key_length = sizeof(NIST_KEY_CFB_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_CFB_E4);
*iv_length = sizeof(NIST_IV_CFB_E4);
*key_length = sizeof(NIST_KEY_CFB_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_CFB_E5);
*iv_length = sizeof(NIST_IV_CFB_E5);
*key_length = sizeof(NIST_KEY_CFB_E5);
break;
case 6:
*data_length = sizeof(NIST_TEST_DATA_CFB_E6);
*iv_length = sizeof(NIST_IV_CFB_E6);
*key_length = sizeof(NIST_KEY_CFB_E6);
break;
case 7:
*data_length = sizeof(NIST_TEST_DATA_CFB_E7);
*iv_length = sizeof(NIST_IV_CFB_E7);
*key_length = sizeof(NIST_KEY_CFB_E7);
break;
case 8:
*data_length = sizeof(NIST_TEST_DATA_CFB_E8);
*iv_length = sizeof(NIST_IV_CFB_E8);
*key_length = sizeof(NIST_KEY_CFB_E8);
break;
case 9:
*data_length = sizeof(NIST_TEST_DATA_CFB_E9);
*iv_length = sizeof(NIST_IV_CFB_E9);
*key_length = sizeof(NIST_KEY_CFB_E9);
break;
case 10:
*data_length = sizeof(NIST_TEST_DATA_CFB_E10);
*iv_length = sizeof(NIST_IV_CFB_E10);
*key_length = sizeof(NIST_KEY_CFB_E10);
break;
case 11:
*data_length = sizeof(NIST_TEST_DATA_CFB_E11);
*iv_length = sizeof(NIST_IV_CFB_E11);
*key_length = sizeof(NIST_KEY_CFB_E11);
break;
case 12:
*data_length = sizeof(NIST_TEST_DATA_CFB_E12);
*iv_length = sizeof(NIST_IV_CFB_E12);
*key_length = sizeof(NIST_KEY_CFB_E12);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *iv, unsigned char *expected_iv,
unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned int *lcfb, unsigned int iteration)

{
switch (iteration) {

Chapter 6. Examples 129

case 1:
memcpy(data, NIST_TEST_DATA_CFB_E1, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E1, data_length);
memcpy(iv, NIST_IV_CFB_E1, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E1, iv_length);
memcpy(key, NIST_KEY_CFB_E1, key_length);
*lcfb = NIST_LCFB_E1;
break;
case 2:
memcpy(data, NIST_TEST_DATA_CFB_E2, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E2, data_length);
memcpy(iv, NIST_IV_CFB_E2, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E2, iv_length);
memcpy(key, NIST_KEY_CFB_E2, key_length);
*lcfb = NIST_LCFB_E2;
break;
case 3:
memcpy(data, NIST_TEST_DATA_CFB_E3, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E3, data_length);
memcpy(iv, NIST_IV_CFB_E3, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E3, iv_length);
memcpy(key, NIST_KEY_CFB_E3, key_length);
*lcfb = NIST_LCFB_E3;
break;
case 4:
memcpy(data, NIST_TEST_DATA_CFB_E4, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E4, data_length);
memcpy(iv, NIST_IV_CFB_E4, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E4, iv_length);
memcpy(key, NIST_KEY_CFB_E4, key_length);
*lcfb = NIST_LCFB_E4;
break;
case 5:
memcpy(data, NIST_TEST_DATA_CFB_E5, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E5, data_length);
memcpy(iv, NIST_IV_CFB_E5, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E5, iv_length);
memcpy(key, NIST_KEY_CFB_E5, key_length);
*lcfb = NIST_LCFB_E5;
break;
case 6:
memcpy(data, NIST_TEST_DATA_CFB_E6, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E6, data_length);
memcpy(iv, NIST_IV_CFB_E6, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E6, iv_length);
memcpy(key, NIST_KEY_CFB_E6, key_length);
*lcfb = NIST_LCFB_E6;
break;
case 7:
memcpy(data, NIST_TEST_DATA_CFB_E7, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E7, data_length);
memcpy(iv, NIST_IV_CFB_E7, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E7, iv_length);
memcpy(key, NIST_KEY_CFB_E7, key_length);
*lcfb = NIST_LCFB_E7;
break;
case 8:
memcpy(data, NIST_TEST_DATA_CFB_E8, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E8, data_length);
memcpy(iv, NIST_IV_CFB_E8, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E8, iv_length);
memcpy(key, NIST_KEY_CFB_E8, key_length);
*lcfb = NIST_LCFB_E8;
break;
case 9:
memcpy(data, NIST_TEST_DATA_CFB_E9, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E9, data_length);

130 libica Programmer's Reference

memcpy(iv, NIST_IV_CFB_E9, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E9, iv_length);
memcpy(key, NIST_KEY_CFB_E9, key_length);
*lcfb = NIST_LCFB_E9;
break;
case 10:
memcpy(data, NIST_TEST_DATA_CFB_E10, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E10, data_length);
memcpy(iv, NIST_IV_CFB_E10, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E10, iv_length);
memcpy(key, NIST_KEY_CFB_E10, key_length);
*lcfb = NIST_LCFB_E10;
break;
case 11:
memcpy(data, NIST_TEST_DATA_CFB_E11, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E11, data_length);
memcpy(iv, NIST_IV_CFB_E11, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E11, iv_length);
memcpy(key, NIST_KEY_CFB_E11, key_length);
*lcfb = NIST_LCFB_E11;
break;
case 12:
memcpy(data, NIST_TEST_DATA_CFB_E12, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E12, data_length);
memcpy(iv, NIST_IV_CFB_E12, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E12, iv_length);
memcpy(key, NIST_KEY_CFB_E12, key_length);
*lcfb = NIST_LCFB_E12;
break;

}

}

int kat_aes_cfb(int iteration, int silent)
{
unsigned int data_length;
unsigned int iv_length;
unsigned int key_length;

get_sizes(&data_length, &iv_length, &key_length, iteration);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char expected_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;
unsigned int lcfb;
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_test_data(input_data, data_length, result, iv, expected_iv,
iv_length, key, key_length, &lcfb, iteration);

memcpy(tmp_iv, iv, iv_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i,"

" lcfb = %i\n", key_length, data_length, iv_length, lcfb);

if (iteration == 3)
rc = ica_aes_cfb(input_data, encrypt, lcfb, key, key_length, tmp_iv,

lcfb, 1);

Chapter 6. Examples 131

else
rc = ica_aes_cfb(input_data, encrypt, data_length, key, key_length,

tmp_iv, lcfb, 1);
if (rc) {
printf("ica_aes_cfb encrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

if (memcmp(expected_iv, tmp_iv, iv_length)) {
printf("Update of IV does not match the expected IV!\n");
printf("Expected IV:\n");
dump_array(expected_iv, iv_length);
printf("Updated IV:\n");
dump_array(tmp_iv, iv_length);
printf("Original IV:\n");
dump_array(iv, iv_length);
rc++;
}
if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);
if (iteration == 3)
rc = ica_aes_cfb(encrypt, decrypt, lcfb, key, key_length, tmp_iv,

lcfb, 0);
else
rc = ica_aes_cfb(encrypt, decrypt, data_length, key, key_length,

tmp_iv, lcfb, 0);
if (rc) {
printf("ica_aes_cfb decrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}

132 libica Programmer's Reference

return rc;
}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;
}

int random_aes_cfb(int iteration, int silent, unsigned int data_length,
unsigned int lcfb)

{
unsigned int iv_length = sizeof(ica_aes_vector_t);
unsigned int key_length = AES_KEY_LEN128;

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
for (key_length = AES_KEY_LEN128; key_length <= AES_KEY_LEN256; key_length += 8) {
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i,"

" lcfb = %i\n", key_length, data_length, iv_length, lcfb);

rc = ica_aes_cfb(input_data, encrypt, data_length, key, key_length,
tmp_iv, lcfb, 1);

if (rc) {
printf("ica_aes_cfb encrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

Chapter 6. Examples 133

if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_cfb(encrypt, decrypt, data_length, key, key_length,
tmp_iv, lcfb, 0);

if (rc) {
printf("ica_aes_cfb decrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
}
return rc;

}

int main(int argc, char **argv)
{
unsigned int silent = 0;
unsigned int endless = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;
if (strstr(argv[1], "endless"))
endless = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_cfb(iteration, silent);
if (rc) {
printf("kat_aes_cfb failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_cfb finished successfuly\n");

}

unsigned int data_length = 1;
unsigned int lcfb = 1;
unsigned int j;
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
for (j = 1; j <= 3; j++) {
int silent = 1;
if (!(data_length % lcfb)) {
rc = random_aes_cfb(iteration, silent, data_length, lcfb);

134 libica Programmer's Reference

if (rc) {
printf("random_aes_cfb failed with rc = %i\n", rc);
error_count++;
} else
printf("random_aes_cfb finished successfuly\n");
}
switch (j) {
case 1:
lcfb = 1;
break;
case 2:
lcfb = 8;
break;
case 3:
lcfb = 16;
break;

}
}
if (data_length == 1)
data_length = 8;
else
data_length += 8;

}
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

Chapter 6. Examples 135

AES with CTR mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 7

/* CTR data - 1 for AES128 */
unsigned char NIST_KEY_CTR_E1[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_CTR_E1[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

};

unsigned char NIST_EXPECTED_IV_CTR_E1[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,

};

unsigned char NIST_TEST_DATA_CTR_E1[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_CTR_E1[] = {
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,

};

/* CTR data - 2 for AES128 */
unsigned char NIST_KEY_CTR_E2[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_CTR_E2[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

};

unsigned char NIST_EXPECTED_IV_CTR_E2[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,

};

unsigned char NIST_TEST_DATA_CTR_E2[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,

136 libica Programmer's Reference

0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
};

unsigned char NIST_TEST_RESULT_CTR_E2[] = {
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff,
0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e,
0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1,
0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee,
};

/* CTR data - 3 - for AES192 */
unsigned char NIST_KEY_CTR_E3[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E3[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E3[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
};

unsigned char NIST_TEST_DATA_CTR_E3[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CTR_E3[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
};

/* CTR data - 4 - for AES192 */
unsigned char NIST_KEY_CTR_E4[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E4[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
};

unsigned char NIST_EXPECTED_IV_CTR_E4[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
};

unsigned char NIST_TEST_DATA_CTR_E4[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

Chapter 6. Examples 137

unsigned char NIST_TEST_RESULT_CTR_E4[] = {
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,

};

/* CTR data 5 - for AES 256 */
unsigned char NIST_KEY_CTR_E5[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CTR_E5[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

};

unsigned char NIST_EXPECTED_IV_CTR_E5[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,

};

unsigned char NIST_TEST_DATA_CTR_E5[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,

};

unsigned char NIST_TEST_RESULT_CTR_E5[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6,

};

/* CTR data 6 - for AES 256.
* Data is != BLOCK_SIZE */

unsigned char NIST_KEY_CTR_E6[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CTR_E6[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

};

unsigned char NIST_EXPECTED_IV_CTR_E6[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,

};

unsigned char NIST_TEST_DATA_CTR_E6[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

138 libica Programmer's Reference

0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
};

unsigned char NIST_TEST_RESULT_CTR_E6[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
};

/* CTR data 7 - for AES 256
* Counter as big as the data. Therefore the counter
* should not be updated. Because it is already pre
* computed. */
unsigned char NIST_KEY_CTR_E7[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E7[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x02,
};

unsigned char NIST_EXPECTED_IV_CTR_E7[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x02,
};

unsigned char NIST_TEST_DATA_CTR_E7[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
};

unsigned char NIST_TEST_RESULT_CTR_E7[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,

Chapter 6. Examples 139

0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6,

};

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");

}

void dump_ctr_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_CTR_E1);
*iv_length = sizeof(NIST_IV_CTR_E1);
*key_length = sizeof(NIST_KEY_CTR_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_CTR_E2);
*iv_length = sizeof(NIST_IV_CTR_E2);
*key_length = sizeof(NIST_KEY_CTR_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_CTR_E3);
*iv_length = sizeof(NIST_IV_CTR_E3);
*key_length = sizeof(NIST_KEY_CTR_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_CTR_E4);
*iv_length = sizeof(NIST_IV_CTR_E4);
*key_length = sizeof(NIST_KEY_CTR_E4);
break;
case 5:

140 libica Programmer's Reference

*data_length = sizeof(NIST_TEST_DATA_CTR_E5);
*iv_length = sizeof(NIST_IV_CTR_E5);
*key_length = sizeof(NIST_KEY_CTR_E5);
break;
case 6:
*data_length = sizeof(NIST_TEST_DATA_CTR_E6);
*iv_length = sizeof(NIST_IV_CTR_E6);
*key_length = sizeof(NIST_KEY_CTR_E6);
break;
case 7:
*data_length = sizeof(NIST_TEST_DATA_CTR_E7);
*iv_length = sizeof(NIST_IV_CTR_E7);
*key_length = sizeof(NIST_KEY_CTR_E7);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *iv, unsigned char *expected_iv,
unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned int iteration)

{
switch (iteration) {
case 1:
memcpy(data, NIST_TEST_DATA_CTR_E1, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E1, data_length);
memcpy(iv, NIST_IV_CTR_E1, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E1, iv_length);
memcpy(key, NIST_KEY_CTR_E1, key_length);
break;
case 2:
memcpy(data, NIST_TEST_DATA_CTR_E2, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E2, data_length);
memcpy(iv, NIST_IV_CTR_E2, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E2, iv_length);
memcpy(key, NIST_KEY_CTR_E2, key_length);
break;
case 3:
memcpy(data, NIST_TEST_DATA_CTR_E3, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E3, data_length);
memcpy(iv, NIST_IV_CTR_E3, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E3, iv_length);
memcpy(key, NIST_KEY_CTR_E3, key_length);
break;
case 4:
memcpy(data, NIST_TEST_DATA_CTR_E4, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E4, data_length);
memcpy(iv, NIST_IV_CTR_E4, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E4, iv_length);
memcpy(key, NIST_KEY_CTR_E4, key_length);
break;
case 5:
memcpy(data, NIST_TEST_DATA_CTR_E5, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E5, data_length);
memcpy(iv, NIST_IV_CTR_E5, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E5, iv_length);
memcpy(key, NIST_KEY_CTR_E5, key_length);
break;
case 6:
memcpy(data, NIST_TEST_DATA_CTR_E6, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E6, data_length);
memcpy(iv, NIST_IV_CTR_E6, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E6, iv_length);
memcpy(key, NIST_KEY_CTR_E6, key_length);

Chapter 6. Examples 141

break;
case 7:
memcpy(data, NIST_TEST_DATA_CTR_E7, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E7, data_length);
memcpy(iv, NIST_IV_CTR_E7, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E7, iv_length);
memcpy(key, NIST_KEY_CTR_E7, key_length);
break;

}

}

int random_aes_ctr(int iteration, int silent, unsigned int data_length, unsigned int iv_length)
{
unsigned int key_length = AES_KEY_LEN256;
if (data_length % sizeof(ica_aes_vector_t))
iv_length = sizeof(ica_aes_vector_t);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
rc = ica_random_number_generate(data_length, input_data);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}

rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}
memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_ctr(input_data, encrypt, data_length, key, key_length,
tmp_iv, 32, 1);

if (rc) {
printf("ica_aes_ctr encrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
return rc;
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

memcpy(tmp_iv, iv, iv_length);
rc = ica_aes_ctr(encrypt, decrypt, data_length, key, key_length,

tmp_iv, 32, 0);
if (rc) {
printf("ica_aes_ctr decrypt failed with rc = %i\n", rc);

142 libica Programmer's Reference

dump_ctr_data(iv, iv_length, key, key_length, encrypt,
data_length, decrypt);

return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;
}

int kat_aes_ctr(int iteration, int silent)
{
unsigned int data_length;
unsigned int iv_length;
unsigned int key_length;

get_sizes(&data_length, &iv_length, &key_length, iteration);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char expected_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;

load_test_data(input_data, data_length, result, iv, expected_iv,
iv_length, key, key_length, iteration);

memcpy(tmp_iv, iv, iv_length);

if (iv_length == 16)
rc = ica_aes_ctr(input_data, encrypt, data_length, key, key_length,

tmp_iv, 32, 1);
else
rc = ica_aes_ctrlist(input_data, encrypt, data_length, key, key_length,

tmp_iv, 1);
if (rc) {
printf("ica_aes_ctr encrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

Chapter 6. Examples 143

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

if (memcmp(expected_iv, tmp_iv, iv_length)) {
printf("Update of IV does not match the expected IV!\n");
printf("Expected IV:\n");
dump_array(expected_iv, iv_length);
printf("Updated IV:\n");
dump_array(tmp_iv, iv_length);
printf("Original IV:\n");
dump_array(iv, iv_length);
rc++;
}
if (rc) {
printf("AES CTR test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);
rc = ica_aes_ctr(encrypt, decrypt, data_length, key, key_length,

tmp_iv, 32,0);
if (rc) {
printf("ica_aes_ctr decrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int main(int argc, char **argv)
{
// Default mode is 0. ECB,CBC and CFQ tests will be performed.
unsigned int silent = 0;
unsigned int endless = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;
if (strstr(argv[1], "endless"))
endless = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
if (!endless)

144 libica Programmer's Reference

for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_ctr(iteration, silent);
if (rc) {
printf("kat_aes_ctr failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_ctr finished successfuly\n");

}
int i = 0;
if (endless)
while (1) {
printf("i = %i\n",i);
silent = 1;
rc = random_aes_ctr(i, silent, 320, 320);
if (rc) {
printf("kat_aes_ctr failed with rc = %i\n", rc);
return rc;
} else
printf("kat_aes_ctr finished successfuly\n");
i++;
}

if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

Chapter 6. Examples 145

AES with OFB mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 6
#define NR_RANDOM_TESTS 10000

/* OFB data - 1 for AES128 */
unsigned char NIST_KEY_OFB_E1[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_OFB_E1[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_OFB_E1[] = {
0x50, 0xfe, 0x67, 0xcc, 0x99, 0x6d, 0x32, 0xb6,
0xda, 0x09, 0x37, 0xe9, 0x9b, 0xaf, 0xec, 0x60,

};

unsigned char NIST_TEST_DATA_OFB_E1[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_OFB_E1[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,

};

/* OFB data - 2 for AES128 */
unsigned char NIST_KEY_OFB_E2[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_OFB_E2[] = {
0x50, 0xfe, 0x67, 0xcc, 0x99, 0x6d, 0x32, 0xb6,
0xda, 0x09, 0x37, 0xe9, 0x9b, 0xaf, 0xec, 0x60,

};

unsigned char NIST_EXPECTED_IV_OFB_E2[] = {
0xd9, 0xa4, 0xda, 0xda, 0x08, 0x92, 0x23, 0x9f,
0x6b, 0x8b, 0x3d, 0x76, 0x80, 0xe1, 0x56, 0x74,

};

unsigned char NIST_TEST_DATA_OFB_E2[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

};

146 libica Programmer's Reference

unsigned char NIST_TEST_RESULT_OFB_E2[] = {
0x77, 0x89, 0x50, 0x8d, 0x16, 0x91, 0x8f, 0x03,
0xf5, 0x3c, 0x52, 0xda, 0xc5, 0x4e, 0xd8, 0x25,
};

/* OFB data - 3 - for AES192 */
unsigned char NIST_KEY_OFB_E3[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_OFB_E3[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_OFB_E3[] = {
0xa6, 0x09, 0xb3, 0x8d, 0xf3, 0xb1, 0x13, 0x3d,
0xdd, 0xff, 0x27, 0x18, 0xba, 0x09, 0x56, 0x5e,
};

unsigned char NIST_TEST_DATA_OFB_E3[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_OFB_E3[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

/* OFB data - 4 - for AES192 */
unsigned char NIST_KEY_OFB_E4[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_OFB_E4[] = {
0xa6, 0x09, 0xb3, 0x8d, 0xf3, 0xb1, 0x13, 0x3d,
0xdd, 0xff, 0x27, 0x18, 0xba, 0x09, 0x56, 0x5e,
};

unsigned char NIST_EXPECTED_IV_OFB_E4[] = {
0x52, 0xef, 0x01, 0xda, 0x52, 0x60, 0x2f, 0xe0,
0x97, 0x5f, 0x78, 0xac, 0x84, 0xbf, 0x8a, 0x50,
};

unsigned char NIST_TEST_DATA_OFB_E4[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_OFB_E4[] = {
0xfc, 0xc2, 0x8b, 0x8d, 0x4c, 0x63, 0x83, 0x7c,
0x09, 0xe8, 0x17, 0x00, 0xc1, 0x10, 0x04, 0x01,
};

/* OFB data 5 - for AES 256 */
unsigned char NIST_KEY_OFB_E5[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

Chapter 6. Examples 147

unsigned char NIST_IV_OFB_E5[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_OFB_E5[] = {
0xb7, 0xbf, 0x3a, 0x5d, 0xf4, 0x39, 0x89, 0xdd,
0x97, 0xf0, 0xfa, 0x97, 0xeb, 0xce, 0x2f, 0x4a,

};

unsigned char NIST_TEST_DATA_OFB_E5[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_OFB_E5[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

};

/* OFB data 6 - for AES 256 */
unsigned char NIST_KEY_OFB_E6[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_OFB_E6[] = {
0xb7, 0xbf, 0x3a, 0x5d, 0xf4, 0x39, 0x89, 0xdd,
0x97, 0xf0, 0xfa, 0x97, 0xeb, 0xce, 0x2f, 0x4a,

};

unsigned char NIST_EXPECTED_IV_OFB_E6[] = {
0xe1, 0xc6, 0x56, 0x30, 0x5e, 0xd1, 0xa7, 0xa6,
0x56, 0x38, 0x05, 0x74, 0x6f, 0xe0, 0x3e, 0xdc,

};

unsigned char NIST_TEST_DATA_OFB_E6[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

};

unsigned char NIST_TEST_RESULT_OFB_E6[] = {
0x4f, 0xeb, 0xdc, 0x67, 0x40, 0xd2, 0x0b, 0x3a,
0xc8, 0x8f, 0x6a, 0xd8, 0x2a, 0x4f, 0xb0, 0x8d,

};

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}

148 libica Programmer's Reference

printf("\n");
}

void dump_ofb_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);
}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_OFB_E1);
*iv_length = sizeof(NIST_IV_OFB_E1);
*key_length = sizeof(NIST_KEY_OFB_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_OFB_E2);
*iv_length = sizeof(NIST_IV_OFB_E2);
*key_length = sizeof(NIST_KEY_OFB_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_OFB_E3);
*iv_length = sizeof(NIST_IV_OFB_E3);
*key_length = sizeof(NIST_KEY_OFB_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_OFB_E4);
*iv_length = sizeof(NIST_IV_OFB_E4);
*key_length = sizeof(NIST_KEY_OFB_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_OFB_E5);
*iv_length = sizeof(NIST_IV_OFB_E5);
*key_length = sizeof(NIST_KEY_OFB_E5);
break;
case 6:
*data_length = sizeof(NIST_TEST_DATA_OFB_E6);
*iv_length = sizeof(NIST_IV_OFB_E6);
*key_length = sizeof(NIST_KEY_OFB_E6);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *iv, unsigned char *expected_iv,
unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned int iteration)

{
switch (iteration) {
case 1:
memcpy(data, NIST_TEST_DATA_OFB_E1, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E1, data_length);

Chapter 6. Examples 149

memcpy(iv, NIST_IV_OFB_E1, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E1, iv_length);
memcpy(key, NIST_KEY_OFB_E1, key_length);
break;
case 2:
memcpy(data, NIST_TEST_DATA_OFB_E2, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E2, data_length);
memcpy(iv, NIST_IV_OFB_E2, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E2, iv_length);
memcpy(key, NIST_KEY_OFB_E2, key_length);
break;
case 3:
memcpy(data, NIST_TEST_DATA_OFB_E3, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E3, data_length);
memcpy(iv, NIST_IV_OFB_E3, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E3, iv_length);
memcpy(key, NIST_KEY_OFB_E3, key_length);
break;
case 4:
memcpy(data, NIST_TEST_DATA_OFB_E4, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E4, data_length);
memcpy(iv, NIST_IV_OFB_E4, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E4, iv_length);
memcpy(key, NIST_KEY_OFB_E4, key_length);
break;
case 5:
memcpy(data, NIST_TEST_DATA_OFB_E5, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E5, data_length);
memcpy(iv, NIST_IV_OFB_E5, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E5, iv_length);
memcpy(key, NIST_KEY_OFB_E5, key_length);
break;
case 6:
memcpy(data, NIST_TEST_DATA_OFB_E6, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E6, data_length);
memcpy(iv, NIST_IV_OFB_E6, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E6, iv_length);
memcpy(key, NIST_KEY_OFB_E6, key_length);
break;

}

}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;

150 libica Programmer's Reference

}

int random_aes_ofb(int iteration, int silent, unsigned int data_length)
{
int i;
int rc = 0;
unsigned int iv_length = sizeof(ica_aes_vector_t);
unsigned int key_length = AES_KEY_LEN128;
unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
for (i = 0; i <= 2; i++) {

unsigned char key[key_length];

memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);
printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

rc = ica_aes_ofb(input_data, encrypt, data_length, key, key_length,
tmp_iv, 1);

if (rc) {
printf("ica_aes_ofb encrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_ofb(encrypt, decrypt, data_length, key, key_length,
tmp_iv, 0);

if (rc) {
printf("ica_aes_ofb decrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);

Chapter 6. Examples 151

printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
return rc;
}
key_length += 8;

}

return rc;
}

int kat_aes_ofb(int iteration, int silent)
{
unsigned int data_length;
unsigned int iv_length;
unsigned int key_length;

get_sizes(&data_length, &iv_length, &key_length, iteration);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char expected_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;

load_test_data(input_data, data_length, result, iv, expected_iv,
iv_length, key, key_length, iteration);

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_ofb(input_data, encrypt, data_length, key, key_length,
tmp_iv, 1);

if (rc) {
printf("ica_aes_ofb encrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

if (memcmp(expected_iv, tmp_iv, iv_length)) {
printf("Update of IV does not match the expected IV!\n");
printf("Expected IV:\n");
dump_array(expected_iv, iv_length);
printf("Updated IV:\n");
dump_array(tmp_iv, iv_length);
printf("Original IV:\n");

152 libica Programmer's Reference

dump_array(iv, iv_length);
rc++;
}
if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);
rc = ica_aes_ofb(encrypt, decrypt, data_length, key, key_length,

tmp_iv, 0);
if (rc) {
printf("ica_aes_ofb decrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;
}

int main(int argc, char **argv)
{
unsigned int silent = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
unsigned int data_length = sizeof(ica_aes_vector_t);
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_ofb(iteration, silent);
if (rc) {
printf("kat_aes_ofb failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_ofb finished successfuly\n");

}
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
int silent = 1;
rc = random_aes_ofb(iteration, silent, data_length);
if (rc) {
printf("random_aes_ofb failed with rc = %i\n", rc);
error_count++;
goto out;
} else
printf("random_aes_ofb finished successfuly\n");
data_length += sizeof(ica_aes_vector_t);
}

Chapter 6. Examples 153

out:
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

154 libica Programmer's Reference

AES with XTS mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 5
#define NR_RANDOM_TESTS 20000

/* XTS data -1- AES128 */
unsigned char NIST_KEY_XTS_E1[] = {
0x46, 0xe6, 0xed, 0x9e, 0xf4, 0x2d, 0xcd, 0xb3,
0xc8, 0x93, 0x09, 0x3c, 0x28, 0xe1, 0xfc, 0x0f,
0x91, 0xf5, 0xca, 0xa3, 0xb6, 0xe0, 0xbc, 0x5a,
0x14, 0xe7, 0x83, 0x21, 0x5c, 0x1d, 0x5b, 0x61,
};

unsigned char NIST_TWEAK_XTS_E1[] = {
0x72, 0xf3, 0xb0, 0x54, 0xcb, 0xdc, 0x2f, 0x9e,
0x3c, 0x5b, 0xc5, 0x51, 0xd4, 0x4d, 0xdb, 0xa0,
};

/* TWEAK should not be updated, so the exptected tweak is the same as the
* original TWEAK.
*/
unsigned char NIST_EXPECTED_TWEAK_XTS_E1[] = {
0x72, 0xf3, 0xb0, 0x54, 0xcb, 0xdc, 0x2f, 0x9e,
0x3c, 0x5b, 0xc5, 0x51, 0xd4, 0x4d, 0xdb, 0xa0,
};

unsigned char NIST_TEST_DATA_XTS_E1[] = {
0xe3, 0x77, 0x8d, 0x68, 0xe7, 0x30, 0xef, 0x94,
0x5b, 0x4a, 0xe3, 0xbc, 0x5b, 0x93, 0x6b, 0xdd,
};

unsigned char NIST_TEST_RESULT_XTS_E1[] = {
0x97, 0x40, 0x9f, 0x1f, 0x71, 0xae, 0x45, 0x21,
0xcb, 0x49, 0xa3, 0x29, 0x73, 0xde, 0x4d, 0x05,
};

/* XTS data -2- AES128 */
unsigned char NIST_KEY_XTS_E2[] = {
0x93, 0x56, 0xcd, 0xad, 0x25, 0x1a, 0xb6, 0x11,
0x14, 0xce, 0xc2, 0xc4, 0x4a, 0x60, 0x92, 0xdd,
0xe9, 0xf7, 0x46, 0xcc, 0x65, 0xae, 0x3b, 0xd4,
0x96, 0x68, 0x64, 0xaa, 0x36, 0x26, 0xd1, 0x88,
};

unsigned char NIST_TWEAK_XTS_E2[] = {
0x68, 0x88, 0x27, 0x83, 0x65, 0x24, 0x36, 0xc4,
0x85, 0x7a, 0x88, 0xc0, 0xc3, 0x73, 0x41, 0x7e,
};

unsigned char NIST_EXPECTED_TWEAK_XTS_E2[] = {
0x68, 0x88, 0x27, 0x83, 0x65, 0x24, 0x36, 0xc4,
0x85, 0x7a, 0x88, 0xc0, 0xc3, 0x73, 0x41, 0x7e,

Chapter 6. Examples 155

};

unsigned char NIST_TEST_DATA_XTS_E2[] = {
0xce, 0x17, 0x6b, 0xdd, 0xe3, 0x39, 0x50, 0x5b,
0xa1, 0x5d, 0xea, 0x36, 0xd2, 0x8c, 0xe8, 0x7d,

};

unsigned char NIST_TEST_RESULT_XTS_E2[] = {
0x22, 0xf5, 0xf9, 0x37, 0xdf, 0xb3, 0x9e, 0x5b,
0x74, 0x25, 0xed, 0x86, 0x3d, 0x31, 0x0b, 0xe1,

};

/* XTS data -3- AES128 */
unsigned char NIST_KEY_XTS_E3[] = {
0x63, 0xf3, 0x6e, 0x9c, 0x39, 0x7c, 0x65, 0x23,
0xc9, 0x9f, 0x16, 0x44, 0xec, 0xb1, 0xa5, 0xd9,
0xbc, 0x0f, 0x2f, 0x55, 0xfb, 0xe3, 0x24, 0x44,
0x4c, 0x39, 0x0f, 0xae, 0x75, 0x2a, 0xd4, 0xd7,

};

unsigned char NIST_TWEAK_XTS_E3[] = {
0xcd, 0xb1, 0xbd, 0x34, 0x86, 0xf3, 0x53, 0xcc,
0x16, 0x0a, 0x84, 0x0b, 0xea, 0xdf, 0x03, 0x29,

};

unsigned char NIST_EXPECTED_TWEAK_XTS_E3[] = {
0xcd, 0xb1, 0xbd, 0x34, 0x86, 0xf3, 0x53, 0xcc,
0x16, 0x0a, 0x84, 0x0b, 0xea, 0xdf, 0x03, 0x29,

};

unsigned char NIST_TEST_DATA_XTS_E3[] = {
0x9a, 0x01, 0x49, 0x88, 0x8b, 0xf7, 0x61, 0x60,
0xa8, 0x14, 0x28, 0xbc, 0x91, 0x40, 0xec, 0xcd,
0x26, 0xed, 0x18, 0x36, 0x8e, 0x24, 0xd4, 0x9b,
0x9c, 0xc5, 0x12, 0x92, 0x9a, 0x88, 0xad, 0x1e,
0x66, 0xc7, 0x63, 0xf4, 0xf5, 0x6b, 0x63, 0xbb,
0x9d, 0xd9, 0x50, 0x8c, 0x5d, 0x4d, 0xf4, 0x65,
0xad, 0x98, 0x82, 0x14, 0x82, 0xfc, 0x71, 0x94,
0xee, 0x23, 0x54, 0xa3, 0xfa, 0xdc, 0xe9, 0x23,
0x18, 0x54, 0x8e, 0x8c, 0xe9, 0x45, 0x20, 0x81,
0x60, 0x49, 0x7b, 0x93, 0x05, 0xd9, 0xab, 0x10,
0x91, 0xab, 0x41, 0xd1, 0xf0, 0x9a, 0x0c, 0x7b,
0xfa, 0xf9, 0xf9, 0x4f, 0xe7, 0xc8, 0xf1, 0xea,
0x96, 0x8f, 0x8f, 0x9a, 0x71, 0x3a, 0xca, 0xde,
0x18, 0xb6, 0x82, 0x32, 0x10, 0x6f, 0xfd, 0x6d,
0x42, 0x81, 0xe9, 0x9e, 0x11, 0xd6, 0xa4, 0x28,
0xb5, 0x16, 0x53, 0xc0, 0xc7, 0xdd, 0xe5, 0xa0,
0xf2, 0x73, 0xe7, 0x4f, 0xf0, 0x15, 0xce, 0x80,
0x27, 0x7d, 0x74, 0x30, 0xf5, 0xda, 0xea, 0x8f,
0x73, 0x40, 0x64, 0x5e, 0x0b, 0xec, 0x25, 0xf4,
0x04, 0x0f, 0xa1, 0x3c, 0x0b, 0x33, 0x06, 0x93,
0xb1, 0x00, 0x83, 0xa8, 0xb9, 0xbc, 0x10, 0x8f,
0xe6, 0x4f, 0x3a, 0x5b, 0x61, 0x3c, 0xbb, 0x56,
0x5a, 0xee, 0x2f, 0x09, 0xf5, 0xb2, 0x04, 0xae,
0xe1, 0x72, 0x28, 0xfe, 0x65, 0x31, 0xc7, 0x0c,
0x0e, 0xc9, 0x47, 0xd2, 0xa5, 0x14, 0x7b, 0x45,
0xc5, 0x1a, 0xc7, 0xdc, 0x8e, 0x85, 0x87, 0x03,
0x87, 0xeb, 0x8d, 0xb6, 0x25, 0x13, 0x68, 0x36,
0x8b, 0xf5, 0xf2, 0x46, 0xb2, 0x95, 0x7d, 0xaf,
0xf7, 0x02, 0xe3, 0x79, 0x02, 0x2e, 0x99, 0x16,
0x17, 0x49, 0xe6, 0xbe, 0x8e, 0xb7, 0x9d, 0x51,
0x97, 0x99, 0xaa, 0xe0, 0x7c, 0x18, 0x31, 0xbd,
0x0e, 0xe7, 0x25, 0x50, 0xb8, 0x53, 0x33, 0xab,
0x9e, 0x96, 0xa5, 0x33, 0xe2, 0x97, 0x25, 0xd7,
0x02, 0x3d, 0x82, 0x1a, 0xbe, 0x1c, 0xe3, 0xa7,
0x44, 0xbe, 0x02, 0xe0, 0x52, 0x56, 0x8f, 0x84,
0xe6, 0xe3, 0xf7, 0x44, 0x42, 0xbb, 0xa5, 0x0d,

156 libica Programmer's Reference

0x02, 0xad, 0x2d, 0x6c, 0xa5, 0x8a, 0x69, 0x1f,
0xd2, 0x43, 0x9a, 0xa3, 0xaf, 0x0c, 0x03, 0x3a,
0x68, 0xc4, 0x38, 0xb2, 0xd9, 0xa0, 0xa0, 0x1d,
0x78, 0xc4, 0xf8, 0x7c, 0x50, 0x9f, 0xea, 0x0a,
0x43, 0x5b, 0xe7, 0x1b, 0xa2, 0x37, 0x06, 0xd6,
0x08, 0x2d, 0xcb, 0xa6, 0x26, 0x25, 0x99, 0x9e,
0xce, 0x09, 0xdf, 0xb3, 0xfc, 0xbe, 0x08, 0xeb,
0xb6, 0xf2, 0x15, 0x1e, 0x2f, 0x12, 0xeb, 0xe8,
0xa5, 0xbf, 0x11, 0x62, 0xc2, 0x59, 0xf2, 0x02,
0xc1, 0xba, 0x47, 0x8b, 0x5f, 0x46, 0x8a, 0x28,
0x69, 0xf1, 0xe7, 0x6c, 0xf5, 0xed, 0x38, 0xde,
0x53, 0x86, 0x9a, 0xdc, 0x83, 0x70, 0x9e, 0x21,
0xb3, 0xf8, 0xdc, 0x13, 0xba, 0x3d, 0x6a, 0xa7,
0xf6, 0xb0, 0xcf, 0xb3, 0xe5, 0xa4, 0x3c, 0x23,
0x72, 0xe0, 0xee, 0x60, 0x99, 0x1c, 0xe1, 0xca,
0xd1, 0x22, 0xa3, 0x1d, 0x93, 0x97, 0xe3, 0x0b,
0x92, 0x1f, 0xd2, 0xf6, 0xee, 0x69, 0x6e, 0x68,
0x49, 0xae, 0xee, 0x29, 0xe2, 0xb4, 0x45, 0xc0,
0xfd, 0x9a, 0xde, 0x65, 0x56, 0xc3, 0xc0, 0x69,
0xc5, 0xd6, 0x05, 0x95, 0xab, 0xbd, 0xf5, 0xba,
0xe2, 0xcc, 0xc7, 0x9a, 0x49, 0x6e, 0x83, 0xcc,
0xab, 0x95, 0x74, 0x0e, 0xb8, 0xe4, 0xf2, 0x92,
0x5d, 0xbf, 0x72, 0x97, 0xa8, 0xc9, 0x92, 0x75,
0x6e, 0x62, 0x87, 0x0e, 0xdc, 0xe9, 0x8f, 0x6c,
0xba, 0x1a, 0xa0, 0xd5, 0xb8, 0x6f, 0x09, 0x21,
0x43, 0xb1, 0x6d, 0xa1, 0x44, 0x15, 0x47, 0xd1,
0xd4, 0x2b, 0x80, 0x06, 0xfa, 0xce, 0x69, 0x5b,
0x03, 0xfd, 0xfa, 0xe6, 0x45, 0xf9, 0x5b, 0xd6,
};

unsigned char NIST_TEST_RESULT_XTS_E3[] = {
0x0e, 0xee, 0xf2, 0x8c, 0xa1, 0x59, 0xb8, 0x05,
0xf5, 0xc2, 0x15, 0x61, 0x05, 0x51, 0x67, 0x8a,
0xb7, 0x72, 0xf2, 0x79, 0x37, 0x4f, 0xb1, 0x40,
0xab, 0x55, 0x07, 0x68, 0xdb, 0x42, 0xcf, 0x6c,
0xb7, 0x36, 0x37, 0x64, 0x19, 0x34, 0x19, 0x5f,
0xfc, 0x08, 0xcf, 0x5a, 0x91, 0x88, 0xb8, 0x2b,
0x84, 0x0a, 0x00, 0x7d, 0x52, 0x72, 0x39, 0xea,
0x3f, 0x0d, 0x7d, 0xd1, 0xf2, 0x51, 0x86, 0xec,
0xae, 0x30, 0x87, 0x7d, 0xad, 0xa7, 0x7f, 0x24,
0x3c, 0xdd, 0xb2, 0xc8, 0x8e, 0x99, 0x04, 0x82,
0x7d, 0x3e, 0x09, 0x82, 0xda, 0x0d, 0x13, 0x91,
0x1d, 0x0e, 0x2d, 0xbb, 0xbb, 0x2d, 0x01, 0x6c,
0xbe, 0x4d, 0x06, 0x76, 0xb1, 0x45, 0x9d, 0xa8,
0xc5, 0x3a, 0x91, 0x45, 0xe8, 0x3c, 0xf4, 0x2f,
0x30, 0x11, 0x2c, 0xa6, 0x5d, 0x77, 0xc8, 0x93,
0x4a, 0x26, 0xee, 0x00, 0x1f, 0x39, 0x0f, 0xfc,
0xc1, 0x87, 0x03, 0x66, 0x2a, 0x8f, 0x71, 0xf9,
0xda, 0x0e, 0x7b, 0x68, 0xb1, 0x04, 0x3c, 0x1c,
0xb5, 0x26, 0x08, 0xcf, 0x0e, 0x69, 0x51, 0x0d,
0x38, 0xc8, 0x0f, 0xa0, 0x0d, 0xe4, 0x3d, 0xef,
0x98, 0x4d, 0xff, 0x2f, 0x32, 0x4e, 0xcf, 0x39,
0x89, 0x44, 0x53, 0xd3, 0xe0, 0x1b, 0x3d, 0x7b,
0x3b, 0xc0, 0x57, 0x04, 0x9d, 0x19, 0x5c, 0x8e,
0xb9, 0x3f, 0xe4, 0xd9, 0x5a, 0x83, 0x00, 0xa5,
0xe6, 0x0a, 0x7c, 0x89, 0xe4, 0x0c, 0x69, 0x16,
0x79, 0xfb, 0xca, 0xfa, 0xd8, 0xeb, 0x41, 0x8f,
0x8d, 0x1f, 0xf7, 0xb9, 0x11, 0x75, 0xf8, 0xeb,
0x3c, 0x6f, 0xf2, 0x87, 0x2d, 0x32, 0xee, 0x4c,
0x57, 0x36, 0x9e, 0x61, 0xb6, 0x6d, 0x16, 0x6f,
0xd0, 0xa4, 0x34, 0x57, 0x47, 0x82, 0x75, 0xfe,
0x14, 0xbf, 0x34, 0x63, 0x8a, 0x9e, 0x4e, 0x1d,
0x25, 0xcc, 0x5a, 0x5f, 0x9e, 0x25, 0x7e, 0x61,
0x7a, 0xdc, 0xdd, 0xe6, 0x5e, 0x25, 0x57, 0x40,
0x53, 0x62, 0xc8, 0x91, 0xe6, 0x54, 0x6a, 0x6d,
0xee, 0xaa, 0x8f, 0xc0, 0x3b, 0x12, 0x2a, 0x55,
0x87, 0x4d, 0x33, 0xe0, 0xa7, 0x73, 0x52, 0x34,

Chapter 6. Examples 157

0x68, 0x32, 0x5e, 0xc2, 0x4d, 0x4f, 0xaf, 0xfb,
0x63, 0xc0, 0x52, 0xc8, 0x11, 0xa1, 0xc0, 0x22,
0xba, 0xfc, 0xcb, 0x97, 0x98, 0x8b, 0x7e, 0x45,
0x67, 0xb2, 0x47, 0xd4, 0x04, 0x4b, 0x05, 0x2f,
0xf7, 0x3f, 0x4c, 0x67, 0x1d, 0x27, 0xe0, 0x52,
0xe2, 0xeb, 0xc7, 0x2d, 0x00, 0x57, 0xcb, 0x21,
0x7c, 0x52, 0x59, 0xb6, 0x09, 0x50, 0xe3, 0xc8,
0xb3, 0xd9, 0xe3, 0xe7, 0x63, 0x0f, 0x9e, 0xcb,
0xe5, 0x48, 0xb9, 0xe3, 0x62, 0x20, 0xf3, 0x3c,
0x2b, 0x45, 0x68, 0x30, 0x7c, 0xd0, 0x37, 0x5b,
0xba, 0x13, 0x35, 0xe5, 0x8b, 0xfb, 0xcd, 0xe8,
0x5c, 0xc8, 0x4c, 0x9c, 0x9c, 0x1c, 0xe7, 0x4f,
0x44, 0xb2, 0x8e, 0xa1, 0xb6, 0x97, 0x30, 0x5b,
0xb6, 0xba, 0x3b, 0x46, 0x4e, 0x5a, 0xb7, 0x45,
0x01, 0x29, 0x3e, 0xf9, 0x15, 0x2c, 0x0f, 0x5d,
0x33, 0x07, 0xd2, 0x6a, 0x1f, 0x07, 0x41, 0xc5,
0xe5, 0x72, 0x1a, 0x71, 0x3d, 0x1b, 0x86, 0xc1,
0x80, 0x82, 0x11, 0xf5, 0x7a, 0xad, 0x09, 0xa9,
0x50, 0xb6, 0x86, 0x30, 0xaf, 0xce, 0x4f, 0x0a,
0xd9, 0xf3, 0x2e, 0x67, 0x69, 0xb5, 0xfe, 0x31,
0x92, 0x9c, 0x44, 0x6f, 0x7a, 0x33, 0x55, 0xf4,
0x58, 0x84, 0xc7, 0x48, 0xc9, 0x05, 0x54, 0x15,
0xe6, 0x37, 0xd9, 0xad, 0x87, 0xd9, 0x4c, 0x46,
0x57, 0xb1, 0xad, 0x03, 0x4c, 0xb1, 0x4d, 0x9a,
0x72, 0xea, 0x74, 0x5f, 0xe5, 0x2d, 0x7a, 0x71,
0x1b, 0xa4, 0x1c, 0xa0, 0x35, 0x85, 0x6a, 0x5a,
0x44, 0x89, 0xa4, 0x27, 0x0b, 0xb3, 0x0d, 0x5b,
0x63, 0xf4, 0x9c, 0x05, 0x12, 0xfe, 0xd4, 0xb4

};

/* XTS data -4- AES256 */
unsigned char NIST_KEY_XTS_E4[] = {
0x97, 0x09, 0x8b, 0x46, 0x5a, 0x44, 0xca, 0x75,
0xe7, 0xa1, 0xc2, 0xdb, 0xfc, 0x40, 0xb7, 0xa6,
0x1a, 0x20, 0xe3, 0x2c, 0x6d, 0x9d, 0xbf, 0xda,
0x80, 0x72, 0x6f, 0xee, 0x10, 0x54, 0x1b, 0xab,
0x47, 0x54, 0x63, 0xca, 0x07, 0xc1, 0xc1, 0xe4,
0x49, 0x61, 0x73, 0x32, 0x14, 0x68, 0xd1, 0xab,
0x3f, 0xad, 0x8a, 0xd9, 0x1f, 0xcd, 0xc6, 0x2a,
0xbe, 0x07, 0xbf, 0xf8, 0xef, 0x96, 0x1b, 0x6b,

};

unsigned char NIST_TWEAK_XTS_E4[] = {
0x15, 0x60, 0x1e, 0x2e, 0x35, 0x85, 0x10, 0xa0,
0x9d, 0xdc, 0xa4, 0xea, 0x17, 0x51, 0xf4, 0x3c,

};

unsigned char NIST_EXPECTED_TWEAK_XTS_E4[] = {
0x15, 0x60, 0x1e, 0x2e, 0x35, 0x85, 0x10, 0xa0,
0x9d, 0xdc, 0xa4, 0xea, 0x17, 0x51, 0xf4, 0x3c,

};

unsigned char NIST_TEST_DATA_XTS_E4[] = {
0xd1, 0x9c, 0xfb, 0x38, 0x3b, 0xaf, 0x87, 0x2e,
0x6f, 0x12, 0x16, 0x87, 0x45, 0x1d, 0xe1, 0x5c,

};

unsigned char NIST_TEST_RESULT_XTS_E4[] = {
0xeb, 0x22, 0x26, 0x9b, 0x14, 0x90, 0x50, 0x27,
0xdc, 0x73, 0xc4, 0xa4, 0x0f, 0x93, 0x80, 0x69,

};

/* XTS data -5- AES256 */
unsigned char NIST_KEY_XTS_E5[] = {
0xfb, 0xf0, 0x77, 0x6e, 0x7d, 0xbe, 0x49, 0x10,
0xfb, 0x0c, 0x12, 0x0f, 0x41, 0x85, 0x71, 0x21,

158 libica Programmer's Reference

0x92, 0x6c, 0x05, 0x2f, 0xd6, 0x5a, 0x27, 0x8c,
0xd2, 0xf0, 0xd9, 0x8d, 0xa5, 0x4e, 0xdf, 0xd5,
0x08, 0x03, 0xa4, 0x2f, 0xbe, 0x6f, 0xd1, 0x33,
0x58, 0x49, 0x00, 0xe8, 0xdc, 0x7a, 0x11, 0x52,
0x39, 0x1f, 0x82, 0x2d, 0x76, 0xa7, 0x56, 0x68,
0xcf, 0xce, 0x7f, 0x8d, 0xde, 0x20, 0x3e, 0xc8,
};

unsigned char NIST_TWEAK_XTS_E5[] = {
0x39, 0x5b, 0x6a, 0xcf, 0x9a, 0xdc, 0xd2, 0x91,
0xc2, 0xc9, 0x48, 0x86, 0x36, 0x33, 0xaf, 0xf8,
};

unsigned char NIST_EXPECTED_TWEAK_XTS_E5[] = {
0x39, 0x5b, 0x6a, 0xcf, 0x9a, 0xdc, 0xd2, 0x91,
0xc2, 0xc9, 0x48, 0x86, 0x36, 0x33, 0xaf, 0xf8,
};

unsigned char NIST_TEST_DATA_XTS_E5[] = {
0x3e, 0x2e, 0x26, 0x9d, 0x78, 0x3a, 0x2b, 0x29,
0xe8, 0x73, 0xd6, 0x73, 0x47, 0x9f, 0x51, 0x16,
0x73, 0x4f, 0xe0, 0x3e, 0xe3, 0x29, 0x65, 0xed,
0xc4, 0x79, 0x35, 0xc0, 0xea, 0x99, 0xa0, 0x64,
0xbd, 0x44, 0x4b, 0xec, 0x12, 0x5b, 0x2c, 0x78,
0x9d, 0xb9, 0xde, 0x6d, 0x18, 0x35, 0x92, 0x05,
0x3b, 0x48, 0xa8, 0x77, 0xa9, 0x5a, 0xc2, 0x55,
0x9c, 0x3d, 0xdf, 0xc7, 0xb4, 0xdb, 0x99, 0x07,
};

unsigned char NIST_TEST_RESULT_XTS_E5[] = {
0x4c, 0x70, 0xbd, 0xbb, 0x77, 0x30, 0x2b, 0x7f,
0x1f, 0xdd, 0xca, 0x50, 0xdc, 0x70, 0x73, 0x1e,
0x00, 0x8a, 0x26, 0x55, 0xd2, 0x2a, 0xd0, 0x20,
0x0c, 0x11, 0x1f, 0xd3, 0x2a, 0x67, 0x5a, 0x7e,
0x09, 0x97, 0x11, 0x43, 0x6f, 0x98, 0xd2, 0x1c,
0x72, 0x77, 0x2e, 0x0d, 0xd7, 0x67, 0x2f, 0xf5,
0xfd, 0x00, 0xdd, 0xcb, 0xe1, 0x1e, 0xb9, 0x7e,
0x69, 0x87, 0x83, 0xbf, 0xa4, 0x05, 0x46, 0xe3,
};

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");
}

void dump_xts_data(unsigned char *tweak, unsigned int tweak_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("TWEAK \n");

Chapter 6. Examples 159

dump_array(tweak, tweak_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

}

void get_sizes(unsigned int *data_length, unsigned int *tweak_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_XTS_E1);
*tweak_length = sizeof(NIST_TWEAK_XTS_E1);
*key_length = sizeof(NIST_KEY_XTS_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_XTS_E2);
*tweak_length = sizeof(NIST_TWEAK_XTS_E2);
*key_length = sizeof(NIST_KEY_XTS_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_XTS_E3);
*tweak_length = sizeof(NIST_TWEAK_XTS_E3);
*key_length = sizeof(NIST_KEY_XTS_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_XTS_E4);
*tweak_length = sizeof(NIST_TWEAK_XTS_E4);
*key_length = sizeof(NIST_KEY_XTS_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_XTS_E5);
*tweak_length = sizeof(NIST_TWEAK_XTS_E5);
*key_length = sizeof(NIST_KEY_XTS_E5);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *tweak, unsigned char *expected_tweak,
unsigned int tweak_length,
unsigned char *key, unsigned int key_length,
unsigned int iteration)

{
switch (iteration) {
case 1:
memcpy(data, NIST_TEST_DATA_XTS_E1, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E1, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E1, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E1,

tweak_length);
memcpy(key, NIST_KEY_XTS_E1, key_length);
break;
case 2:
memcpy(data, NIST_TEST_DATA_XTS_E2, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E2, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E2, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E2,

tweak_length);
memcpy(key, NIST_KEY_XTS_E2, key_length);
break;
case 3:

160 libica Programmer's Reference

memcpy(data, NIST_TEST_DATA_XTS_E3, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E3, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E3, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E3,

tweak_length);
memcpy(key, NIST_KEY_XTS_E3, key_length);
break;
case 4:
memcpy(data, NIST_TEST_DATA_XTS_E4, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E4, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E4, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E4,

tweak_length);
memcpy(key, NIST_KEY_XTS_E4, key_length);
break;
case 5:
memcpy(data, NIST_TEST_DATA_XTS_E5, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E5, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E5, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E5,

tweak_length);
memcpy(key, NIST_KEY_XTS_E5, key_length);
break;

}

}

int kat_aes_xts(int iteration, int silent)
{
unsigned int data_length;
unsigned int tweak_length;
unsigned int key_length;

get_sizes(&data_length, &tweak_length, &key_length, iteration);

unsigned char tweak[tweak_length];
unsigned char tmp_tweak[tweak_length];
unsigned char expected_tweak[tweak_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_test_data(input_data, data_length, result, tweak, expected_tweak,
tweak_length, key, key_length, iteration);

memcpy(tmp_tweak, tweak, tweak_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, tweak length = %i,",

key_length, data_length, tweak_length);

rc = ica_aes_xts(input_data, encrypt, data_length,
key, key+(key_length/2), (key_length/2),
tmp_tweak, 1);

if (rc) {
printf("ica_aes_xts encrypt failed with rc = %i\n", rc);
dump_xts_data(tweak, tweak_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_xts_data(tweak, tweak_length, key, key_length, input_data,

Chapter 6. Examples 161

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

if (memcmp(expected_tweak, tmp_tweak, tweak_length)) {
printf("Update of TWEAK does not match the expected TWEAK!\n");
printf("Expected TWEAK:\n");
dump_array(expected_tweak, tweak_length);
printf("Updated TWEAK:\n");
dump_array(tmp_tweak, tweak_length);
printf("Original TWEAK:\n");
dump_array(tweak, tweak_length);
rc++;
}
if (rc) {
printf("AES XTS test exited after encryption\n");
return rc;
}

memcpy(tmp_tweak, tweak, tweak_length);
rc = ica_aes_xts(encrypt, decrypt, data_length,

key, key+(key_length/2), (key_length/2),
tmp_tweak, 0);

if (rc) {
printf("ica_aes_xts decrypt failed with rc = %i\n", rc);
dump_xts_data(tweak, tweak_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_xts_data(tweak, tweak_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}

162 libica Programmer's Reference

rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;
}

int random_aes_xts(int iteration, int silent, unsigned int data_length)
{
int i;
int rc = 0;
unsigned int iv_length = sizeof(ica_aes_vector_t);
unsigned int key_length = AES_KEY_LEN128 * 2;
unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
for (i = 1; i <= 2; i++) {

unsigned char key[key_length];

memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);
printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

rc = ica_aes_xts(input_data, encrypt, data_length,
key, key+(key_length/2), (key_length/2),
tmp_iv, 1);

if (rc) {
printf("ica_aes_xts encrypt failed with rc = %i\n", rc);
dump_xts_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_xts_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (rc) {
printf("AES XTS test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_xts(encrypt, decrypt, data_length,
key, key+(key_length/2), (key_length/2),
tmp_iv, 0);

if (rc) {
printf("ica_aes_xts decrypt failed with rc = %i\n", rc);
dump_xts_data(iv, iv_length, key, key_length, encrypt,

Chapter 6. Examples 163

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_xts_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
return rc;
}
key_length = AES_KEY_LEN256 * 2;

}

return rc;
}

int main(int argc, char **argv)
{
unsigned int silent = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
unsigned int data_length = sizeof(ica_aes_vector_t);
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_xts(iteration, silent);
if (rc) {
printf("kat_aes_xts failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_xts finished successfuly\n");

}
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
int silent = 1;
rc = random_aes_xts(iteration, silent, data_length);
if (rc) {
printf("random_aes_xts failed with rc = %i\n", rc);
error_count++;
goto out;
} else
printf("random_aes_xts finished successfuly\n");
data_length += sizeof(ica_aes_vector_t) / 2;
}

out:
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

164 libica Programmer's Reference

CMAC example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ica_api.h"

#define BYTE 8

#define NUM_TESTS 12

unsigned int key_length[12] = {16, 16, 16, 16, 24, 24, 24, 24, 32, 32, 32,
32};

unsigned char key[12][32] = {{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4}
};

unsigned char last_block[3][16] = {{
0x7d, 0xf7, 0x6b, 0x0c, 0x1a, 0xb8, 0x99, 0xb3, 0x3e, 0x42, 0xf0,
0x47, 0xb9, 0x1b, 0x54, 0x6f},{
0x22, 0x45, 0x2d, 0x8e, 0x49, 0xa8, 0xa5, 0x93, 0x9f, 0x73, 0x21,
0xce, 0xea, 0x6d, 0x51, 0x4b},{
0xe5, 0x68, 0xf6, 0x81, 0x94, 0xcf, 0x76, 0xd6, 0x17, 0x4d, 0x4c,
0xc0, 0x43, 0x10, 0xa8, 0x54}
};

unsigned long mlen[12] = { 0, 16, 40, 64, 0,16, 40, 64, 0, 16, 40, 64};

Chapter 6. Examples 165

unsigned char message[12][512] = {{
0x00},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10},{
0x00},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10},{
0x00},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10}
};

unsigned char expected_cmac[12][16] = {{
0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28, 0x7f, 0xa3, 0x7d,
0x12, 0x9b, 0x75, 0x67, 0x46},{
0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44, 0xf7, 0x9b, 0xdd,
0x9d, 0xd0, 0x4a, 0x28, 0x7c},{
0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30, 0x30, 0xca, 0x32,
0x61, 0x14, 0x97, 0xc8, 0x27},{
0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92, 0xfc, 0x49, 0x74,
0x17, 0x79, 0x36, 0x3c, 0xfe},{
0xd1, 0x7d, 0xdf, 0x46, 0xad, 0xaa, 0xcd, 0xe5, 0x31, 0xca, 0xc4,
0x83, 0xde, 0x7a, 0x93, 0x67},{
0x9e, 0x99, 0xa7, 0xbf, 0x31, 0xe7, 0x10, 0x90, 0x06, 0x62, 0xf6,
0x5e, 0x61, 0x7c, 0x51, 0x84},{
0x8a, 0x1d, 0xe5, 0xbe, 0x2e, 0xb3, 0x1a, 0xad, 0x08, 0x9a, 0x82,
0xe6, 0xee, 0x90, 0x8b, 0x0e},{
0xa1, 0xd5, 0xdf, 0x0e, 0xed, 0x79, 0x0f, 0x79, 0x4d, 0x77, 0x58,
0x96, 0x59, 0xf3, 0x9a, 0x11},{
0x02, 0x89, 0x62, 0xf6, 0x1b, 0x7b, 0xf8, 0x9e, 0xfc, 0x6b, 0x55,
0x1f, 0x46, 0x67, 0xd9, 0x83},{
0x28, 0xa7, 0x02, 0x3f, 0x45, 0x2e, 0x8f, 0x82, 0xbd, 0x4b, 0xf2,
0x8d, 0x8c, 0x37, 0xc3, 0x5c},{
0xaa, 0xf3, 0xd8, 0xf1, 0xde, 0x56, 0x40, 0xc2, 0x32, 0xf5, 0xb1,
0x69, 0xb9, 0xc9, 0x11, 0xe6},{
0xe1, 0x99, 0x21, 0x90, 0x54, 0x9f, 0x6e, 0xd5, 0x69, 0x6a, 0x2c,
0x05, 0x6c, 0x31, 0x54, 0x10}

166 libica Programmer's Reference

};

unsigned int i = 0;

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1, trunc = 0;
int maxsize = 2000;

puts("Dump:");

if (size > maxsize) {
trunc = size - maxsize;
size = maxsize;
}
h = ptr;
ptr_end = ptr + size;
while (h < ptr_end) {
printf("0x%02x ", *h);
h++;
if (i == 16) {
if (h != ptr_end)
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");
if (trunc > 0)
printf("... %d bytes not printed\n", trunc);
}
unsigned char *cmac;
unsigned int cmac_length = 16;

int api_cmac_test(void)
{
printf("Test of CMAC api\n");
int rc = 0;
for (i = 0 ; i < NUM_TESTS; i++) {
if (!(cmac = malloc(cmac_length)))
return EINVAL;
memset(cmac, 0, cmac_length);
rc = (ica_aes_cmac(message[i], mlen[i],

cmac, cmac_length,
key[i], key_length[i],
ICA_ENCRYPT));

if (rc) {
printf("ica_aes_cmac generate failed with errno %d (0x%x)."
"\n",rc,rc);
return rc;
}
if (memcmp(cmac, expected_cmac[i], cmac_length) != 0) {
printf("This does NOT match the known result. "
"Testcase %i failed\n",i);
printf("\nOutput MAC for test %d:\n", i);
dump_array((unsigned char *)cmac, cmac_length);
printf("\nExpected MAC for test %d:\n", i);
dump_array((unsigned char *)expected_cmac[i], 16);
free(cmac);
return 1;
}
printf("Expected MAC has been generated.\n");
rc = (ica_aes_cmac(message[i], mlen[i],

cmac, cmac_length,

Chapter 6. Examples 167

key[i], key_length[i],
ICA_DECRYPT));

if (rc) {
printf("ica_aes_cmac verify failed with errno %d (0x%x).\n",
rc, rc);
free(cmac);
return rc;
}
free(cmac);
if (! rc)
printf("MAC was successful verified. testcase %i "
"succeeded\n",i);

else {
printf("MAC verification failed for testcase %i "
"with RC=%i\n",i,rc);
return rc;
}
}
return 0;
}

int main(int argc, char **argv)
{
int rc = 0;

rc = api_cmac_test();
if (rc) {
printf("api_cmac_test failed with rc = %i\n", rc);
return rc;
}
printf("api_cmac_test was succesful\n");
return 0;
}

168 libica Programmer's Reference

Makefile example
Specify include directory. Leave blank for default system location.
INCDIR =

Specify library directory. Leave blank for default system location.
LIBDIR =

Specify library.
LIBS = -lica

TARGETS = example_des_ecb

all: $(TARGETS)

%: %.c
gcc $(INCDIR) $(LIBDIR) $(LIBS) -o $@ $^

clean:
rm -f $(TARGETS)

Chapter 6. Examples 169

Common Public License - V1.0
Common Public License - V1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF
THE PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:
1. in the case of the initial Contributor, the initial code and
documentation distributed under this Agreement, and

2. in the case of each subsequent Contributor:
1. changes to the Program, and
2. additions to the Program;

where such changes and/or additions to the Program originate
from and are distributed by that particular Contributor. A
Contribution ’originates’ from a Contributor if it was added to
the Program by such Contributor itself or anyone acting on such
Contributor’s behalf. Contributions do not include additions to
the Program which: (i) are separate modules of software
distributed in conjunction with the Program under their own
license agreement, and (ii) are not derivative works of the
Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor
which are necessarily infringed by the use or sale of its Contribution
alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this
Agreement.

"Recipient" means anyone who receives the Program under this Agreement,
including all Contributors.

2. GRANT OF RIGHTS

1. Subject to the terms of this Agreement, each Contributor
hereby grants Recipient a non-exclusive, worldwide,
royalty-free copyright license to reproduce, prepare derivative
works of, publicly display, publicly perform, distribute and
sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor
hereby grants Recipient a non-exclusive, worldwide,
royalty-free patent license under Licensed Patents to make,
use, sell, offer to sell, import and otherwise transfer the
Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the
combination of the Contribution and the Program if, at the time
the Contribution is added by the Contributor, such addition of
the Contribution causes such combination to be covered by the
Licensed Patents. The patent license shall not apply to any
other combinations which include the Contribution. No hardware
per se is licensed hereunder.

3. Recipient understands that although each Contributor grants
the licenses to its Contributions set forth herein, no
assurances are provided by any Contributor that the Program
does not infringe the patent or other intellectual property

170 libica Programmer's Reference

rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity
based on infringement of intellectual property rights or
otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole
responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is
required to allow Recipient to distribute the Program, it is
Recipient’s responsibility to acquire that license before
distributing the Program.

4. Each Contributor represents that to its knowledge it has
sufficient copyright rights in its Contribution, if any, to
grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form
under its own license agreement, provided that:

1. it complies with the terms and conditions of this Agreement;
and

2. its license agreement:
1. effectively disclaims on behalf of all Contributors
all warranties and conditions, express and implied,
including warranties or conditions of title and
non-infringement, and implied warranties or conditions
of merchantability and fitness for a particular purpose;

2. effectively excludes on behalf of all Contributors
all liability for damages, including direct, indirect,
special, incidental and consequential damages, such as
lost profits;

3. states that any provisions which differ from this
Agreement are offered by that Contributor alone and not
by any other party; and

4. states that source code for the Program is available
from such Contributor, and informs licensees how to
obtain it in a reasonable manner on or through a medium
customarily used for software exchange.

When the Program is made available in source code form:
1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each
copy of the Program.

Contributors may not remove or alter any copyright notices
contained within the Program.

Each Contributor must identify itself as the originator of its
Contribution, if any, in a manner that reasonably allows
subsequent Recipients to identify the originator of the
Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities
with respect to end users, business partners and the like. While this
license is intended to facilitate the commercial use of the Program,
the Contributor who includes the Program in a commercial product
offering should do so in a manner which does not create potential
liability for other Contributors. Therefore, if a Contributor includes

Chapter 6. Examples 171

the Program in a commercial product offering, such Contributor
("Commercial Contributor") hereby agrees to defend and indemnify every
other Contributor ("Indemnified Contributor") against any losses,
damages and costs (collectively "Losses") arising from claims, lawsuits
and other legal actions brought by a third party against the
Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of
the Program in a commercial product offering. The obligations in this
section do not apply to any claims or Losses relating to any actual or
alleged intellectual property infringement. In order to qualify, an
Indemnified Contributor must: a) promptly notify the Commercial
Contributor in writing of such claim, and b) allow the Commercial
Contributor to control, and cooperate with the Commercial Contributor
in, the defense and any related settlement negotiations. The
Indemnified Contributor may participate in any such claim at its own
expense.

For example, a Contributor might include the Program in a commercial
product offering, Product X. That Contributor is then a Commercial
Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance
claims and warranties are such Commercial Contributor’s responsibility
alone. Under this section, the Commercial Contributor would have to
defend claims against the other Contributors related to those
performance claims and warranties, and if a court requires any other
Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS
PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible
for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights
under this Agreement, including but not limited to the risks and costs
of program errors, compliance with applicable laws, damage to or loss
of data, programs or equipment, and unavailability or interruption of
operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR
ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING
WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this Agreement, and without further
action by the parties hereto, such provision shall be reformed to the
minimum extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with
respect to a patent applicable to software (including a cross-claim or
counterclaim in a lawsuit), then any patent licenses granted by that

172 libica Programmer's Reference

Contributor to such Recipient under this Agreement shall terminate as
of the date such litigation is filed. In addition, if Recipient
institutes patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Program
itself (excluding combinations of the Program with other software or
hardware) infringes such Recipient’s patent(s), then such Recipient’s
rights granted under Section 2(b) shall terminate as of the date such
litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails
to comply with any of the material terms or conditions of this
Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient’s rights
under this Agreement terminate, Recipient agrees to cease use and
distribution of the Program as soon as reasonably practicable. However,
Recipient’s obligations under this Agreement and any licenses granted
by Recipient relating to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement,
but in order to avoid inconsistency the Agreement is copyrighted and
may only be modified in the following manner. The Agreement Steward
reserves the right to publish new versions (including revisions) of
this Agreement from time to time. No one other than the Agreement
Steward has the right to modify this Agreement. IBM is the initial
Agreement Steward. IBM may assign the responsibility to serve as the
Agreement Steward to a suitable separate entity. Each new version of
the Agreement will be given a distinguishing version number. The
Program (including Contributions) may always be distributed subject to
the version of the Agreement under which it was received. In addition,
after a new version of the Agreement is published, Contributor may
elect to distribute the Program (including its Contributions) under the
new version. Except as expressly stated in Sections 2(a) and 2(b)
above, Recipient receives no rights or licenses to the intellectual
property of any Contributor under this Agreement, whether expressly, by
implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the
intellectual property laws of the United States of America. No party to
this Agreement will bring a legal action under this Agreement more than
one year after the cause of action arose. Each party waives its rights
to a jury trial in any resulting litigation.

Chapter 6. Examples 173

174 libica Programmer's Reference

Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Documentation accessibility
The Linux on System z publications are in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when you use the PDF file and want to request a Web-based format for
this publication, use the Reader Comment Form in the back of this publication,
send an email to eservdoc@de.ibm.com, or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

IBM and accessibility
See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility at
www.ibm.com/able

© Copyright IBM Corporation © IBM 2009, 2012 175

http://www.ibm.com/able

176 libica Programmer's Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2009, 2012 177

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any
kind. IBM shall not be liable for any damages arising out of your use of the sample
programs.

178 libica Programmer's Reference

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems
Incorporated in the United States, and/or other countries.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries
in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 179

www.ibm.com/legal/copytrade.shtml

180 libica Programmer's Reference

Glossary
Central Processor Assist for Cryptographic Function (CPACF)

Hardware that provides support for symmetric ciphers and secure hash
algorithms (SHA) on every central processor. Hence the potential
encryption/decryption throughput scales with the number of central
processors in the system.

Chinese-Remainder Theorem (CRT)
A mathematical problem described by Sun Tsu Suan-Ching using the
remainder from a division operation.

Cipher Block Chaining (CBC)
A method of reducing repetitive patterns in ciphertext by performing an
exclusive-OR operation on each 8-byte block of data with the previously
encrypted 8-byte block before it is encrypted.

Cipher block length
The length of a block that can be encrypted or decrypted by a symmetric
cipher. Each symmetric cipher has a specific cipher block length.

CPACF instructions
Instruction set for the CPACF hardware.

Crypto Express2 (CEX2)
The two PCI-X adapters on a CEX2 feature can be configured in two ways:
Either as cryptographic Coprocessor (CEX2C) for secure key encrypted
transactions, or as cryptographic Accelerator (CEX2A) for Secure Sockets
Layer (SSL) acceleration. A CEX2A works only in clear key mode. Both
adapters can be of the same type, or you can configure one adapter as
CEX2A and the other as CEX2C.

Crypto Express3 (CEX3)
Successor to the Crypto Express2 feature. The two PCI-X adapters on a
CEX3 feature can be configured in two ways: Either as cryptographic
Coprocessor (CEX3C) for secure key encrypted transactions, or as
cryptographic Accelerator (CEX3A) for Secure Sockets Layer (SSL)
acceleration. A CEX3A works only in clear key mode. Both adapters can be
of the same type, or you can configure one adapter as CEX3A and the
other as CEX3C.

electronic code book mode (ECB mode)
A method of enciphering and deciphering data in address spaces or data
spaces. Each 64-bit block of plaintext is separately enciphered and each
block of the ciphertext is separately deciphered.

libica Library for IBM Cryptographic Architecture.

Mode of operation
A schema describing how to apply a symmetric cipher to encrypt or
decrypt a message that is longer than the cipher block length. The goal of
most modes of operation is to keep the security level of the cipher by
avoiding the situation where blocks that occur more than once will always
be translated to the same value. Some modes of operations allow handling
messages of arbitrary lengths.

modulus-exponent (Mod-Expo)
A type of exponentiation performed using a modulus.

© Copyright IBM Corporation © IBM 2009, 2012 181

Rivest-Shamir-Adleman (RSA)
An algorithm used in public key cryptography. These are the surnames of
the three researchers responsible for creating this asymmetric or
public/private key algorithm.

Secure Hash Algorithm (SHA)
An encryption method in which data is encrypted in a way that is
mathematically impossible to reverse. Different data can possibly produce
the same hash value, but there is no way to use the hash value to
determine the original data.

symmetric cipher
An encryption method that uses the same key for encryption and
decryption. Keys of symmetric ciphers are private keys.

z90crypt
Linux device driver for cryptographic adapters of IBM System z. The libica
Version 2, libica Version 2.1.0, and libica Version 2.2.0 libraries interact
directly with the z90crypt device driver.

182 libica Programmer's Reference

|
|
|

Index

Numerics
31-bit vii
3DES 42

Cipher Based Message Authentication
Code (CMAC) 47

Cipher Based Message Authentication
Code (CMAC) intermediate 48

Cipher Based Message Authentication
Code (CMAC) last 49

Cipher Block Chaining (CBC) 43
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 44
Cipher Feedback (CFB) 46
Counter (CTR) mode 51
Counter (CTR) mode with list 53
Electronic Code Book (ECB) 55
Output Feedback (OFB) 56

64-bit vii

A
about this document vii
accessibility 175
adapter

close 9
functions 7
open 8

AES 58
Cipher Based Message Authentication

Code (CMAC) 66
Cipher Based Message Authentication

Code (CMAC) last 69
Cipher Block Chaining (CBC) 59
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 60
Cipher Feedback (CFB) 64
Counter (CTR) mode 71
Counter (CTR) mode with list 73
Counter with CBC MAC (CCM) 62,

76
Electronic Code Book (ECB) 75
Output Feedback (OFB) 78
XEX-based Tweaked CodeBook mode

with CipherText Stealing (XTS) 79
AES with CFB mode

examples 123
AES with CTR mode

examples 136
AES with OFB mode

examples 146
AES with XTS mode

examples 155
API

ica_3des_cbc 43
ica_3des_cbc_cs 44
ica_3des_cfb 46
ica_3des_cmac 47
ica_3des_cmac_intermediate 48
ica_3des_cmac_last 49
ica_3des_ctr 51

API (continued)
ica_3des_ctrlist 53
ica_3des_ecb 55
ica_3des_ofb 56
ica_aes_cbc 59
ica_aes_cbc_cs 60
ica_aes_ccm 62
ica_aes_cfb 64
ica_aes_cmac 66
ica_aes_cmac_intermediate 68
ica_aes_cmac_last 69
ica_aes_ctr 71
ica_aes_ctrlist 73
ica_aes_ecb 75
ica_aes_gcm 76
ica_aes_ofb 78
ica_aes_xts 79
ica_close_adapter 9
ica_des_cbc 27
ica_des_cbc_cs 28
ica_des_cfb 30
ica_des_cmac 31
ica_des_cmac_intermediate 32
ica_des_cmac_last 33
ica_des_ctr 35
ica_des_ctrlist 37
ica_des_ecb 39
ica_des_ofb 40
ica_get_version 83
ica_open_adapter 8
ica_random_number_generate 19
ica_rsa_crt 25
ica_rsa_key_generate_crt 22
ica_rsa_key_generate_mod_expo 21
ica_rsa_mod_expo 24
ica_sha1 11
ica_sha224 12
ica_sha256 14
ica_sha384 15
ica_sha512 17
libica Version 2.2.0 5

assumptions vii
available functions 90

C
CMAC

examples 165
commands

icainfo 90
icastats 92

Common Public License - V1.0 170
conventions viii

D
defines 85
DES 26

Cipher Based Message Authentication
Code (CMAC) 31

DES (continued)
Cipher Based Message Authentication

Code (CMAC) intermediate 32, 68
Cipher Based Message Authentication

Code (CMAC) last 33
Cipher Block Chaining (CBC) 27
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 28
Cipher Feedback (CFB) 30
Counter (CTR) mode 35
Counter (CTR) mode with list 37
Electronic Code Book (ECB) 39
Output Feedback (OFB) 40

DES with CTR mode
examples 117

DES with ECB mode
examples 94

distribution independence viii

E
examples 93

AES with CFB mode 123
AES with CTR mode 136
AES with OFB mode 146
AES with XTS mode 155
CMAC 165
Common Public License - V1.0 170
DES with CTR mode 117
DES with ECB mode 94
key generation 105
makefile 169
pseudo random number 103
RSA 112
SHA-256 97
table 93
triple DES with CBC mode 120

G
glossary 181

H
highlighting viii
how this document is organized vii

I
IBM books ix
IBM systems viii
ica_3des_cbc 43
ica_3des_cbc_cs 44
ica_3des_cfb 46
ica_3des_cmac 47
ica_3des_cmac_intermediate 48
ica_3des_cmac_last 49
ica_3des_ctr 51
ica_3des_ctrlist 53

© Copyright IBM Corp. 2009, 2012 183

ica_3des_ecb 55
ica_3des_ofb 56
ica_aes_cbc 59
ica_aes_cbc_cs 60
ica_aes_ccm 62
ica_aes_cfb 64
ica_aes_cmac 66
ica_aes_cmac_intermediate 68
ica_aes_cmac_last 69
ica_aes_ctr 71
ica_aes_ctrlist 73
ica_aes_ecb 75
ica_aes_gccm 76
ica_aes_ofb 78
ica_aes_xts 79
ica_close_adapter 9
ica_des_cbc 27
ica_des_cbc_cs 28
ica_des_cfb 30
ica_des_cmac 31
ica_des_cmac_intermediate 32
ica_des_cmac_last 33
ica_des_ctr 35
ica_des_ctrlist 37
ica_des_ecb 39
ica_des_ofb 40
ica_get_version 83
ica_open_adapter 8
ica_random_number_generate 19
ica_rsa_crt 25
ica_rsa_key_generate_crt 22
ica_rsa_key_generate_mod_expo 21
ica_rsa_mod_expo 24
ica_sha1 11
ica_sha224 12
ica_sha256 14
ica_sha384 15
ica_sha512 17
icainfo command 90
icastats command 92
Information retrieval functions 82

K
key

CRT format 22
modulus/exponent 21

key generation
examples 105

L
libica

APIs 5
coexistance 3
defines 85
examples 1, 93
general information 1
installation 3
return codes 87
structs 86
typedefs 85
using 3
version 83

Linux
distribution viii

M
makefile

examples 169

N
notices 177

P
pseudo random number 18

examples 103

R
random number 18
return codes 87
RSA

examples 112

S
sample programs 1
secure hash 10
SHA-1 11
SHA-224 12
SHA-256 14

examples 97
SHA-384 15
SHA-512 17
structs 86
summary of changes v

T
TDES 42

Cipher Based Message Authentication
Code (CMAC) 47

Cipher Based Message Authentication
Code (CMAC) intermediate 48

Cipher Based Message Authentication
Code (CMAC) last 49

Cipher Block Chaining (CBC) 43
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 44
Cipher Feedback (CFB) 46
Counter (CTR) mode 51
Counter (CTR) mode with list 53
Electronic Code Book (ECB) 55
Output Feedback (OFB) 56

terminology viii
trademarks 179
triple DES 42
triple DES with CBC mode

examples 120
typedefs 85

W
who should read this document vii

184 libica Programmer's Reference

Readers’ Comments — We'd Like to Hear from You

Linux on System z
libica Programmer's Reference
Version 2.2.0

Publication No. SC34-2602-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via email to: eservdoc@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2602-02

SC34-2602-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Research & Development GmbH
Information Development
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-2602-02

	Contents
	Summary of changes
	Updates for libica Version 2.2.0
	Updates for libica Version 2.1.0

	About this document
	How this document is organized
	Who should read this document
	Assumptions

	Distribution independence
	Conventions used in this book
	Terminology
	Highlighting

	Other Linux on System z publications
	Finding IBM books

	Chapter 1. General information about libica
	libica examples

	Chapter 2. Installing and using libica Version 2.2.0
	Installing libica Version 2.2.0
	Using libica Version 2.2.0
	libica Version 1, Version 2, Version 2.1.0, and Version 2.2.0 coexistence

	Chapter 3. libica Version 2.2.0 Application Programming Interfaces (APIs)
	Open and close adapter functions
	ica_open_adapter
	ica_close_adapter

	Secure hash operations
	ica_sha1
	ica_sha224
	ica_sha256
	ica_sha384
	ica_sha512

	Pseudo random number generation function
	ica_random_number_generate

	RSA key generation functions
	ica_rsa_key_generate_mod_expo
	ica_rsa_key_generate_crt

	RSA encrypt and decrypt operations
	ica_rsa_mod_expo
	ica_rsa_crt

	DES functions
	ica_des_cbc
	ica_des_cbc_cs
	ica_des_cfb
	ica_des_cmac
	ica_des_cmac_intermediate
	ica_des_cmac_last
	ica_des_ctr
	ica_des_ctrlist
	ica_des_ecb
	ica_des_ofb
	Compatibility with earlier versions

	TDES/3DES functions
	ica_3des_cbc
	ica_3des_cbc_cs
	ica_3des_cfb
	ica_3des_cmac
	ica_3des_cmac_intermediate
	ica_3des_cmac_last
	ica_3des_ctr
	ica_3des_ctrlist
	ica_3des_ecb
	ica_3des_ofb
	Compatibility with earlier versions

	AES functions
	ica_aes_cbc
	ica_aes_cbc_cs
	ica_aes_ccm
	ica_aes_cfb
	ica_aes_cmac
	ica_aes_cmac_intermediate
	ica_aes_cmac_last
	ica_aes_ctr
	ica_aes_ctrlist
	ica_aes_ecb
	ica_aes_gcm
	ica_aes_ofb
	ica_aes_xts
	Compatibility with earlier versions

	Information retrieval function
	ica_get_version

	Chapter 4. libica defines, typedefs, structs, and return codes
	Defines
	Typedefs
	Structs
	Return codes

	Chapter 5. libica tools
	icainfo - Show available libica functions
	icastats - Show use of libica functions

	Chapter 6. Examples
	DES with ECB mode example
	SHA-256 example
	Pseudo random number generation example
	Key generation example
	RSA example
	DES with CTR mode example
	Triple DES with CBC mode example
	AES with CFB mode example
	AES with CTR mode example
	AES with OFB mode example
	AES with XTS mode example
	CMAC example
	Makefile example
	Common Public License - V1.0

	Accessibility
	Documentation accessibility
	IBM and accessibility

	Notices
	Trademarks

	Glossary
	Index
	Numerics
	A
	C
	D
	E
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	W

	Readers’ Comments — We'd Like to Hear from You

