
Linux on System z

How to use FC-attached SCSI devices with

Linux on System z

July 28, 2006

Linux Kernel 2.6

SC33-8291-00

���

Linux on System z

How to use FC-attached SCSI devices with

Linux on System z

July 28, 2006

Linux Kernel 2.6

SC33-8291-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 65.

First Edition (July 2006)

This edition applies to Linux kernel 2.6 and to all subsequent releases and modifications until otherwise indicated in

new editions.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . v

Who should read this document v

How this document is organized vi

Where to find more information vi

Supported hardware . vii

Chapter 1. Introducing SAN and FCP 1

The zfcp device driver . 2

Chapter 2. Using N_Port ID Virtualization 5

Chapter 3. Configuring FCP devices 7

Step 1: Configuring the IODF . 7

Step 2: Defining zones . 8

Step 3: LUN masking . 8

Step 4: Configuring the zfcp device driver 9

Chapter 4. Naming SCSI devices persistently using udev 11

Using udev and zfcp . 11

Persistent SCSI device naming 11

Chapter 5. Improving system availability using multipathing 15

Implementing multipathing with the multipath-tools 15

Configuring multipathing with the device-mapper and multipath-tools 16

Example of a multipath I/O configuration for IBM TotalStorage DS8000 16

Example of a multipath I/O configuration for IBM TotalStorage DS6000 17

Example of multipath I/O devices as physical volumes for LVM2 19

Chapter 6. Booting the system using SCSI IPL 23

Why SCSI IPL? . 23

Hardware requirements . 24

Software requirements . 24

SAN addressing . 24

SCSI IPL parameters . 25

SCSI disk installation and preparation 26

SCSI dump . 27

Example: IODF definition . 28

Example: SCSI IPL of an LPAR 28

Example: SCSI IPL of a z/VM guest 30

Further reading . 31

Chapter 7. Using SCSI tape and the IBMtape driver 33

Supported tapes and medium change devices 33

Supported zSeries server models and host bus adapters 33

Supported operating system environments 33

Chapter 8. Logging using the SCSI logging feature 35

Examples . 36

Chapter 9. Debugging using zfcp traces 41

Interpreting trace records . 42

Chapter 10. Hints and tips . 45

© Copyright IBM Corp. 2006 iii

Setting up TotalStorage DS8000 and DS6000 for FCP 45

Further information . 45

Troubleshooting NPIV . 46

Finding the right LUN with the SAN_disc tool 47

Disabling QIOASSIST (V=V) . 50

Switching QIOASSIST on or off for the entire z/VM guest 50

Switching QIOASSIST on or off for single zfcp subchannels 51

Appendix. Traces . 53

SCSI trace . 53

HBA trace . 57

SAN trace . 61

Notices . 65

Trademarks . 66

Glossary . 67

Index . 69

iv How to use FC-attached SCSI devices - July 2006

About this document

This document describes the SCSI-over-Fibre Channel device driver (for

convenience called zfcp device driver in this book) and related system tools

provided by Linux® on System z with the kernel 2.6. The information provided in

this document extends the information already available in Device Drivers,

Features, and Commands, SC33-8289, for Linux Kernel 2.6 - October 2005 stream

and Device Drivers, Features, and Commands, SC33-8281 for Linux Kernel 2.6 -

April 2004 stream.

Unless stated otherwise, the zfcp device driver and related system tools described

in this document are available for the System z, including System z9™ and zSeries®

64-bit and 31-bit architectures, and for the S/390® 31-bit architecture with version

2.6 of the Linux kernel.

In this document, System z is taken to include System z9, zSeries in 64- and 31-bit

mode, as well S/390 in 31-bit mode.

Information provided in this document applies to Linux in general and does not

cover distribution specific topics. For information specific to the zfcp driver and

system tools available in your Linux distribution refer to the documentation provided

by your Linux distributor.

You can find the latest version of this document on developerWorks® at:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

Who should read this document

This document is intended for Linux administrators and system programmers in

charge of a virtual Linux server farm that runs under z/VM® or natively.

Any zfcp messages logged, for example messages found in /var/log/messages, are

alerts which usually require subsequent intervention by administrators. The new

traces described here provide additional information.

The zfcp traces can be used to advantage by:

v Service personnel who investigate problems

v System administrators with an intermediate or advanced level of FCP experience

who want to understand what is going on underneath the surface of zfcp

v SCSI device driver developers

v Hardware developers and testers

Note

This document is intended for expert users. Be sure you understand the

implications of running traces and debug tools before you attempt to perform

the tasks described in this document.

© Copyright IBM Corp. 2006 v

http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26cdd01.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26cdd01.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26bdd02.pdf
http://www.ibm.com/developerworks/linux/linux390/howto.html

How this document is organized

The scope of this document is on how to configure, operate and troubleshoot Linux

on System z attached to a SAN environment. The following topics are discussed in

this document:

Chapter 1, “Introducing SAN and FCP,” on page 1 presents a general description of

FCP and SAN. It gives you a general description of the zfcp device driver and how

to configure the device driver.

Chapter 2, “Using N_Port ID Virtualization,” on page 5 introduces N_Port

virtualization as it is available on System z9, and how to use it for improved access

control and simplified system administration.

Chapter 3, “Configuring FCP devices,” on page 7 discusses the concepts of IODF,

zoning, LUN masking, and how to configure the zfcp driver.

Chapter 4, “Naming SCSI devices persistently using udev,” on page 11 explains

how udev can help you with persistent naming of SCSI devices.

Chapter 5, “Improving system availability using multipathing,” on page 15 describes

options and recommendations to improve system availability by using multipath disk

setups.

Chapter 6, “Booting the system using SCSI IPL,” on page 23 introduces the ability

to IPL a zSeries operating system from an FCP-attached SCSI device.

Chapter 7, “Using SCSI tape and the IBMtape driver,” on page 33 describes the

device driver for IBM® tape drives (ibmtape)..

Chapter 8, “Logging using the SCSI logging feature,” on page 35 contains a

detailed description about the available log areas and recommended log level

settings for certain debugging tasks.

Chapter 9, “Debugging using zfcp traces,” on page 41 lists the different traces

available.

Chapter 10, “Hints and tips,” on page 45 offers help with common pitfalls, as well as

troubleshooting using different system facilities and tools.

Where to find more information

Books and papers:

v Device Drivers, Features, and Commands, SC33-8289 available on the

developerWorks Web site at:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

v Running Linux on IBM System z9 and zSeries under z/VM, SG24-6311, ISBN:

0738496405 available from

ibm.com/redbooks/

v Introducing N_Port Identifier Virtualization for IBM System z9, REDP-4125,

available at:

http://www.redbooks.ibm.com/abstracts/redp4125.html

Web resources:

vi How to use FC-attached SCSI devices - July 2006

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html
http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html
http://www.redbooks.ibm.com/abstracts/sg246311.html
http://www.redbooks.ibm.com/abstracts/sg246311.html
http://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/abstracts/redp4125.html
http://www.redbooks.ibm.com/redbooks.nsf/redpapers/

v IBM mainframe connectivity:

ibm.com/servers/eserver/zseries/connectivity/

The PDF version of this book contains URL links to much of the referenced

literature. For some of the referenced IBM books, links have been omitted to avoid

pointing to a particular edition of a book. You can locate the latest versions of the

referenced IBM books through the IBM Publications Center at:

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?

Note

For prerequisites and restrictions for the tools and device drivers described

here refer to the kernel 2.6 pages on developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_recommended.html

Supported hardware

Supported Fibre Channel adapters for IBM System z servers include:

v FICON®

v FICON Express

v FICON Express2

A list of supported Fibre Channel devices (switches, tape drives and libraries,

storage boxes) can be found at the following Web site:

IBM eServer™ I/O Connectivity on zSeries mainframe servers:

http://www.ibm.com/servers/eserver/zseries/connectivity/

Also see IBM zSeries support of Fibre Channel Protocol for SCSI and FCP

channels at:

http://www.ibm.com/servers/eserver/zseries/connectivity/fcp.html

To find out whether a combination of device, Linux distribution, and IBM eServer

zSeries is supported, see the individual interoperability matrix for each storage

device. The interoperability matrices are available at:

v IBM: Storage Systems: Storage Solutions for Tape, SAN, NAS, Disk:

http://www.ibm.com/servers/storage/

v IBM Disk Systems: Overview

http://www.ibm.com/servers/storage/disk/index.html

v IBM Tape Systems: Overview

http://www.ibm.com/servers/storage/tape/index.html

For example, the interoperability matrix for IBM TotalStorage® DS8000 can be found

at IBM DS8000 series: Interoperability matrix - IBM TotalStorage Disk Storage

Systems:

http://www.ibm.com/servers/storage/disk/ds8000/interop.html

About this document vii

http://www.ibm.com/servers/eserver/zseries/connectivity/
http://www.ibm.com/developerworks/linux/linux390/october2005_recommended.shtml

viii How to use FC-attached SCSI devices - July 2006

Chapter 1. Introducing SAN and FCP

Storage area networks (SANs) are specialized networks dedicated to the transport

of mass storage data. SANs are typically used to connect large servers in

enterprise environments with storage systems and tape libraries. These specialized

networks provide reliable and fast data paths between the servers and their storage

devices. Major advantages of a SAN include:

v Consolidating storage devices

v Physically separating storage devices from the servers

v Sharing storage devices among different servers

A typical SAN consists of the following components:

v Servers

v Storage devices

v Switches

Today the most common SAN technology used is the Fibre Channel Protocol

(FCP). Within this technology the traditional SCSI protocol is used to address and

transfer raw data blocks between the servers and the storage devices. This is in

contrast to other storage communication protocols like the Common Internet File

System (CIFS) or the Network File System (NFS) which operate on file level.

Figure 1 shows how the zfcp device driver allows you to connect Linux on z9 and

zSeries to a SAN using FCP. For more details on the zfcp device driver, see “The

zfcp device driver” on page 2.

 Each server is equipped with at least one host bus adapter (HBA) which provides

the physical connection to the SAN. In most environments there are multiple HBAs

installed per server to increase the I/O bandwidth and improve data availability. For

System z any supported FCP adapter, such as FICON Express and FICON Express

2, can be used for this purpose. In addition, a single FICON Express or FICON

Express 2 adapter can be shared among multiple operating system images.

Storage devices used in SANs are disk storage systems and tape libraries. A disk

storage system comprises multiple hard drives combined into one or more RAID

arrays and a controller communicating through one or more HBAs with the SAN.

The usage of RAID arrays and multiple HBAs increases the I/O bandwidth and

improves data availability. The RAID arrays are used to store the user data and the

controller is responsible for providing functions such as I/O processing, data

caching, and system management. The storage available on the RAID arrays is

usually divided into smaller pieces that are then accessible as a single, logical

storage device, a so called logical unit number (LUN), from the SAN.

Figure 1. SAN connected to mainframe through FCP

© Copyright IBM Corp. 2006 1

Fibre Channel switches connect multiple servers with their storage devices to form

a fiber channel fabric. A fiber channel fabric is a network of Fibre Channel devices

that allows communication and provides functions such a device lookup or access

control. To address a physical Fibre Channel port within a Fibre Channel fabric

each port is assigned a unique identifier called worldwide port name (WWPN).

The zfcp device driver

The zfcp device driver supports SCSI-over-Fibre Channel host bus adapters for

Linux on mainframes. It is the backend for a driver and software stack that includes

other parts of the Linux SCSI stack as well as block request and multipathing

functions, filesystems, and SCSI applications. Figure 2. shows how the zfcp device

driver fits into Linux and the SCSI stack.

 The zfcp device driver is discussed in detail in Device Drivers, Features, and

Commands, SC33-8289.

The zfcp device driver provides access to a useful interface for SAN administration,

the HBA API and to the scan_disc tool.

In order to provide an application programming interface for the management of

Fibre Channel host bus adapters (HBA API) for zfcp, the following items are

required:

v A patch for the zfcp device driver, either included in your distribution or available

from developerWorks:

http://www.ibm.com/developerworks/linux/linux390/

Ensure that you download the patch for the correct stream.

v A kernel module zfcp_hbaapi that provides a kernel to user-space interface,

either included in your distribution or available from developerWorks.

v A package containing an implementation of HBA API for zfcp called libzfcphbaapi,

either included in your distribution or available from developerWorks.

Figure 2. The zfcp device driver is a low level SCSI device driver

2 How to use FC-attached SCSI devices - July 2006

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html
http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html
http://www.ibm.com/developerworks/linux/linux390/october2005_recommended.shtml

For configuration and installation information, see Device Drivers, Features, and

Commands, SC33-8289, the chapter on the SCSI-over-Fibre Channel device driver.

Chapter 1. Introducing SAN and FCP 3

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html
http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html

4 How to use FC-attached SCSI devices - July 2006

Chapter 2. Using N_Port ID Virtualization

Before you begin: The zfcp device driver supports N_Port ID Virtualization as of

kernel version 2.6.14, code streams October 2005 and April 2004.

Devices attach to the SAN fabric by logging in to it. The device ports are called

target ports or also N_ports. Figure 3 shows an example of a mainframe with two

Linux images and three devices logged in to the SAN fabric.

 In the example, a mainframe is attached to the Fibre Channel fabric through one

HBA that is shared by the two Linux images. Consequently, both Linux images are

known to the SAN by the same shared WWPN. Thus, from the point of view of the

SAN, the Linux images become indistinguishable from each other. This is shown in

Figure 4

 N_Port ID Virtualization (NPIV) utilizes a recent extension to the International

Committee for Information Technology Standardization (INCITS) Fibre Channel

standard. This extension allows a Fibre Channel HBA to log in multiple times to a

Fibre Channel fabric using a single physical port (N_Port). (The previous

implementation of the standard required a single physical FCP channel for each

login.)

Each login uses a different unique port name, and the switch fabric assigns a

unique Fibre Channel N_Port identifier (N_Port ID) for each login. These virtualized

Fibre Channel N_Port IDs allow a physical Fibre Channel port to appear as

multiple, distinct ports, providing separate port identification and security zoning

within the fabric for each operating system image. The I/O transactions of each

Figure 3. Target ports in a SAN fabric

Figure 4. I/O traffic from two Linux instances are indistinguishable

© Copyright IBM Corp. 2006 5

operating system image are separately identified, managed, and transmitted, and

are processed as if each operating system image had its own unique physical

N_Port (see Figure 5).

 NPIV allows you to implement access control using security zoning. Returning to

our example in Figure 4 on page 5, without NPIV all storage devices are visible to

the Linux systems that share one HBA. With NPIV, you can define what storage

devices the different Linux instances should be able to access.

NPIV support can be configured on the SE per CHPID and LPAR for an FCP

adapter. The zfcp device driver supports NPIV error messages and adapter

attributes. For tips on troubleshooting NPIV, see Chapter 10, “Hints and tips,” on

page 45.

NPIV is exclusive to IBM System z9 and is applicable to all FICON features

supported on System z9 channel type FCP. For more details on configuring NPIV,

see Introducing N_Port Identifier Virtualization for IBM System z9, REDP-4125,

available at:

http://www.redbooks.ibm.com/abstracts/redp4125.html

Figure 5. NPIV allows initiators of I/O and their traffic to be distinguished in the SAN

6 How to use FC-attached SCSI devices - July 2006

http://www.redbooks.ibm.com/abstracts/redp4125.html
http://www.redbooks.ibm.com/redbooks.nsf/redpapers/

Chapter 3. Configuring FCP devices

Before you begin, ensure that:

v A Fibre Channel host adapter is plugged into the mainframe

v The Fibre Channel host adapter is connected to a Fibre Channel SAN through a

switched fabric connection (unless a point-to-point connection is used)

v The desired target device is connected to the same Fibre Channel SAN (or

through a point-to-point connection to the Fibre Channel host adapter).

To access a Fibre Channel-attached SCSI device follow these configuration steps:

1. Configure a Fibre Channel host adapter within the mainframe.

2. Configure zoning for the Fibre Channel host adapter to gain access to desired

target ports within a SAN.

3. Configure LUN masking for the Fibre Channel host adapter at the target device

to gain access to desired LUNs.

4. In Linux, configure target ports and LUNs of the SCSI device at the target port

for use of zfcp.

Note: If the Fibre Channel host adapter is directly attached to a target device

(point-to-point connection), step 2 is not needed.

The configuration steps are explained in more detail in the following sections.

Step 1: Configuring the IODF

This example shows how to configure two ports of a FICON or FICON Express

adapter card for FCP.

1. Define two FCP CHPIDs. Both are given the number 50, one for channel

subsystem 0 and one for channel subsystem 1:

CHPID PATH=(CSS(0),50),SHARED, *

 PARTITION=((LP01,LP02,LP03,LP04,LP05,LP06,LP07,LP08,LP09*

 ,LP10,LP11,LP12,LP13,LP14,LP15),(=)),PCHID=160,TYPE=FCP

CHPID PATH=(CSS(1),50),SHARED, *

 PARTITION=((LP16,LP17,LP18,LP19,LP20,LP21,LP22,LP23,LP24*

 ,LP25,LP26,LP27,LP28,LP29,LP30),(=)),PCHID=161,TYPE=FCP

2. Assign FCP control unit 5402 to the new CHPIDs:

CNTLUNIT CUNUMBR=5402,PATH=((CSS(0),50),(CSS(1),50)),UNIT=FCP

3. Define several logical FCP adapters starting with device number 5400:

IODEVICE ADDRESS=(5400,002),CUNUMBR=(5402), *

 PARTITION=((CSS(0),LP01),(CSS(1),LP16)),UNIT=FCP

IODEVICE ADDRESS=(5402,002),CUNUMBR=(5402), *

 PARTITION=((CSS(0),LP02),(CSS(1),LP17)),UNIT=FCP

...

IODEVICE ADDRESS=(5460,144),CUNUMBR=(5402), *

 PARTITION=((CSS(0),LP15),(CSS(1),LP30)),UNIT=FCP

© Copyright IBM Corp. 2006 7

Step 2: Defining zones

There are different kinds of zones in a switch or fabric. In port zoning a zone is a

set of Fibre Channel ports where each Fibre Channel port is specified by the port

number at the switch or fabric to which it is connected. Port zoning allows devices

attached to particular ports on the switch to communicate only with devices

attached to other ports in the same zone. The switch keeps a table of ports that are

allowed to communicate with each other.

In WWN zoning a zone is a set of Fibre Channel ports where each Fibre Channel

port is specified by its worldwide name (WWN). WWN zoning allows a device to

communicate only with other devices whose WWNs are included in the same zone.

In both cases you need to ensure that the Fibre Channel host adapter and the

target port you want to access are members of the same zone. Otherwise it is

impossible to gain access to the target port.

 For further information on how to configure zoning for your setup, refer to the

documentation of your switch.

Step 3: LUN masking

The purpose of LUN masking is to control Linux instance access to the LUNs.

Within a storage device (for example, IBM DS8000) it is usually possible to

configure which Fibre Channel port can access a LUN. You must ensure that the

WWPN of the Fibre Channel host adapter is allowed to access the desired LUN.

Otherwise you might not be able to access the SCSI device. See also

“Troubleshooting NPIV” on page 46.

Figure 6. Zoning partitions storage resources.

8 How to use FC-attached SCSI devices - July 2006

For further information on how to configure LUN masking for your setup, refer to the

documentation of your storage device.

Step 4: Configuring the zfcp device driver

The zfcp device driver currently does not perform any port discovery or LUN

scanning to determine the ports and LUNs in the SAN. Every port and LUN in the

SAN that should be accessed via zfcp must be configured explicitly. Once a port

and a LUN are properly configured and the adapter is set online a new SCSI device

is registered at the SCSI stack.

Example:

v To set a zfcp adapter online, issue the following command:

chccwdev --online 0.0.0815

Setting device 0.0.0815 online

Done

The chccwdev command is part of s390-tools. For a description of the command

see Device Drivers, Features, and Commands, SC33-8289

v To configure a port, issue the following command:

cd /sys/bus/ccw/drivers/zfcp/0.0.0815

echo 0x500507630303c562 > port_add

v To configure a LUN, issue the following command:

cd /sys/bus/ccw/drivers/zfcp/0.0.0815

echo 0x4010403200000000 > 0x500507630303c562/unit_add

If the port and the LUN specify a disk in a storage subsystem you should now see

a new SCSI disk:

lsscsi

[0:0:0:0] disk IBM 2107900 .309 /dev/sda

lszfcp -D

0.0.0815/0x500507630303c562/0x4010403200000000 0:0:0:0

The lszfcp command is part of s390-tools. For a description of the command see

Device Drivers, Features, and Commands, SC33-8289

Figure 7. LUN masking where Linux A has access to two disks and Linux B has access to

three disks in a RAID array

Chapter 3. Configuring FCP devices 9

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html
http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html

Now the device /dev/sda can be used. In our example the disk can be formatted

and mounted. Examples:

v To format a SCSI disk, issue:

fdisk /dev/sda

...

v To generate a filesystem, issue:

mke2fs -j /dev/sda1

v To mount partition 1 of the SCSI disk, issue:

mount -t ext3 /dev/sda1 /mnt

10 How to use FC-attached SCSI devices - July 2006

Chapter 4. Naming SCSI devices persistently using udev

This chapter describes how to use udev with zfcp and persistent SCSI device

naming.

Before you begin: The examples are created with udev version 063 running on a

Red Hat system with kernel 2.6.16.1.

In the early years, device management in Linux was quite rigid. The /dev directory

was filled with predefined device nodes. Devices were detected at boot time and

made accessible through these device nodes. As a result there was no easy way to

add devices at runtime and the /dev directory was filled with unused device nodes.

Recent Linux distributions use udev as the mechanism to handle devices that

appear or disappear at runtime and to provide a /dev directory that contains a

minimal set of device nodes for devices that are actually used. The udev utility uses

the /sys filesystem and the hotplug mechanism. Whenever a new device is

detected, the kernel creates the entries in the /sys filesystem and creates hotplug

events. Finally, the hotplug mechanism triggers udev, which uses a set of rules to

create the device node for the detected device.

An additional benefit of udev is the possibility to create persistent device names. In

contrast to the usual Linux device names, persistent names are independent of the

order in which the devices appear in the system. Based on a given unique property

a device can be recognized and will always be accessible under the same name in

/dev.

Using udev and zfcp

Assuming an example system with two FCP disks and udev, use the following

commands to make the disks accessible:

cd /sys/bus/ccw/drivers/zfcp/0.0.54ae/

echo 1 >online

echo 0x5005076300cb93cb > port_add

cd 0x5005076300cb93cb

echo 0x512e000000000000 > unit_add

echo 0x512f000000000000 > unit_add

No further steps are necessary to create the device files if udev is installed

correctly. The new device nodes /dev/sda and /dev/sdb are created automatically

and even the entries for the partitions on the disks, that is, /dev/sda1 will appear. If

the last two commands are executed in reversed order the naming of the disks will

also be reversed.

Persistent SCSI device naming

Persistent naming allows you to specify device names that are independent of the

order of device appearance. Devices will always have the same device name and

will appear under this name whenever they are accessible by the system. If a

distribution has no predefined naming scheme for specific devices, or if a

customized naming scheme is required, you can extend the set of rules for udev.

Examples are given in the following paragraphs.

© Copyright IBM Corp. 2006 11

To display all information about a disk that is available to udev, use the udevinfo

command:

udevinfo -a -p /sys/class/scsi_generic/sg0

The udevinfo command starts with the device the node belongs to and then walks

up the device chain. For every device found, it prints all possibly useful attributes in

the udev key format. Only attributes within one device section may be used

together in one rule, to match the device for which the node will be created.

device ’/sys/class/scsi_generic/sg0’ has major:minor 21:0

looking at class device ’/sys/class/scsi_generic/sg0’:

SUBSYSTEM=="scsi_generic"

SYSFS{dev}=="21:0"

follow the "device"-link to the physical device:

looking at the device chain at ’/sys/devices/css0/0.0.000e/0.0.54ae/host0/rport-0:0-0/target0:0:0/0:0:0:0’:

BUS=="scsi"

ID=="0:0:0:0"

DRIVER=="sd"

SYSFS{device_blocked}=="0"

SYSFS{fcp_lun}=="0x512e000000000000"

SYSFS{hba_id}=="0.0.54ae"

SYSFS{iocounterbits}=="32"

SYSFS{iodone_cnt}=="0x3a0"

SYSFS{ioerr_cnt}=="0x1"

SYSFS{iorequest_cnt}=="0x3a0"

SYSFS{model}=="2105F20 "

SYSFS{queue_depth}=="32"

SYSFS{queue_type}=="simple"

SYSFS{rev}==".693"

SYSFS{scsi_level}=="4"

SYSFS{state}=="running"

SYSFS{timeout}=="30"

SYSFS{type}=="0"

SYSFS{vendor}=="IBM "

SYSFS{wwpn}=="0x5005076300cb93cb"

...

In this case the wwpn and the fcp_lun, which we already used to set the device

online, are the only properties that identify a specific disk. Based on this information

an additional rule can be written.

Note: To avoid rules being overwritten in case of a udev update, keep additional

rules in an extra file (for example, /etc/udev/rules.d/10-local.rules).

For example, an additional rule to make this specific disk appear as

/dev/my_zfcp_disk is:

BUS="scsi", KERNEL="sd*", SYSFS{fcp_lun}=="0x512e000000000000", NAME="%k", SYMLINK="my_zfcp_disk%n"

Where:

%k refers to the kernel name for the device

%n is substituted by the number given by the kernel

A detailed description of the udev rules can be found on the udev man page.

The new rule will leave the original device names provided by the kernel intact and

add symbolic links with the new device names:

ll /dev/my_zfcp_disk*

lrwxrwxrwx 1 root root 3 Mar 14 16:14 /dev/my_zfcp_disk -> sda

lrwxrwxrwx 1 root root 4 Mar 14 16:14 /dev/my_zfcp_disk1 -> sda1

12 How to use FC-attached SCSI devices - July 2006

A more general rule that applies to all FCP disks and provides a generic persistent

name based on fcp_lun and WWPN can be written as:

KERNEL="sd*[a-z]", SYMLINK="scsi/%s{hba_id}-%s{wwpn}-%s{fcp_lun}/disk"

KERNEL="sd*[0-9]", SYMLINK="scsi/%s{hba_id}-%s{wwpn}-%s{fcp_lun}/part%n"

Where:

%s points to the information as it was given by the udevinfo command

With these rules, udev will create links similar to the following examples:

ll /dev/scsi/*/*

lrwxrwxrwx 1 root root 9 May 22 15:19

 /dev/scsi/0.0.54ae-0x5005076300cb93cb-0x512e000000000000/disk -> ../../sda

lrwxrwxrwx 1 root root 10 May 22 15:19

 /dev/scsi/0.0.54ae-0x5005076300cb93cb-0x512e000000000000/part1 -> ../../sda1

lrwxrwxrwx 1 root root 9 May 22 15:19

 /dev/scsi/0.0.54ae-0x5005076300cb93cb-0x512f000000000000/disk -> ../../sdb

lrwxrwxrwx 1 root root 10 May 22 15:19

 /dev/scsi/0.0.54ae-0x5005076300cb93cb-0x512f000000000000/part1 -> ../../sdb1

Chapter 4. Naming SCSI devices persistently using udev 13

14 How to use FC-attached SCSI devices - July 2006

Chapter 5. Improving system availability using multipathing

This chapter describes how to access, configure, and use FCP multipathing with

Linux kernel 2.6. The following topics are included:

v Using multipath-tools to implement multipathing

v Using the device-mapper and multipath-tools to configure multipathing

Before you begin, note that the examples were created using the following

tools:

v kernel 2.6.5-7.2

v multipath-tools-0.4.5-0.14

v device-mapper-1.01.01-1.6

v lvm2-2.01.14-3.6

Implementing multipathing with the multipath-tools

The multipath-tools project is an Open Source project that implements I/O

multipathing at the operating system level. The project delivers an architecture and

vendor-independent multipathing solution that is based on kernel components and

the following user-space tools:

v The kernel device-mapper module (dm_multipath)

v The hotplug kernel subsystem

v The device naming tool udev

v The user-space configuration tool multipath

v The user-space daemon multipathd

v The user-space configuration tool kpartx to create device maps from partition

tables

Redundant paths defined in Linux appear as separate SCSI devices, one for each

logical path (see Figure 8 on page 16). The device-mapper provides a single block

device for each logical unit (LU) and reroutes I/O over the available paths. You can

partition the device-mapper multipath I/O (MPIO) devices or use them as physical

volumes for LVM or software RAID.

You can use user-space components to set up the MPIO devices and automated

path retesting as follows:

v Use the multipath command to detect multiple paths to devices. It configures,

lists, and removes MPIO devices.

v Use the multipathd daemon to monitor paths. The daemon tests MPIO devices

for path failures and reactivates paths if they become available again.

Figure 8 on page 16 shows an example multipath setup with two HBAs each for the

mainframe and the storage subsystem.

© Copyright IBM Corp. 2006 15

Configuring multipathing with the device-mapper and multipath-tools

The multipath-tools package includes settings for known storage subsystems in a

default hardware table, and no additional configuration is required for these devices.

You can specify additional device definitions in /etc/multipath.conf. If the file is

present, its content overrides the defaults. You must include the parameters for the

storage subsystem used either in the default hardware table or in the configuration

file. There is no man page available for this file.

Within the multipath-tools package there is a template configuration, see

/usr/share/doc/packages/multipathtools/multipath.conf.annotated. This file

contains a list of all options with short descriptions.

You can find more information about the MPIO at the following URL in the

Documentation section for the multipath-tools package:

http://christophe.varoqui.free.fr/

You can find more information about the kernel device-mapper components at:

http://sources.redhat.com/dm/

Example of a multipath I/O configuration for IBM TotalStorage DS8000

This example shows the special configuration for storage devices like IBM Total

Storage DS8000 with multibus as the path grouping policy.

1. Set the FCP channels online:

chccwdev -e 0.0.b415

Setting device 0.0.b415 online

Done

chccwdev -e 0.0.c415

Setting device 0.0.c415 online

Done

chccwdev -e 0.0.b515

Setting device 0.0.b515 online

Done

chccwdev -e 0.0.c515

Setting device 0.0.c515 online

Done

Figure 8. Multipathing with multipath-tools and device mapper

16 How to use FC-attached SCSI devices - July 2006

2. Configure the ports and devices:

echo 0x5005076304004671 >/sys/bus/ccw/drivers/zfcp/0.0.b415/port_add

echo 0x5005076304104671 >/sys/bus/ccw/drivers/zfcp/0.0.c415/port_add

echo 0x50050763041B4671 >/sys/bus/ccw/drivers/zfcp/0.0.b515/port_add

echo 0x50050763040B4671 >/sys/bus/ccw/drivers/zfcp/0.0.c515/port_add

echo 0x40b1400000000000 > /sys/bus/ccw/drivers/zfcp/0.0.b415/0x5005076304004671/unit_add

echo 0x40b1400000000000 > /sys/bus/ccw/drivers/zfcp/0.0.c415/0x5005076304104671/unit_add

echo 0x40b1400000000000 > /sys/bus/ccw/drivers/zfcp/0.0.b515/0x50050763041b4671/unit_add

echo 0x40b1400000000000 > /sys/bus/ccw/drivers/zfcp/0.0.c515/0x50050763040b4671/unit_add

3. Load the dm_multipath module:

modprobe dm_multipath

4. Use the multipath command to detect multiple paths to devices for failover or

performance reasons and coalesce them:

multipath

create: 36005076304ffc671000000000000b100

[size=5 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [prio=4]

_ 0:0:1:0 sda 8:0 [ready]

_ 1:0:1:0 sdb 8:16 [ready]

_ 2:0:1:0 sdc 8:32 [ready]

_ 3:0:1:0 sdd 8:48 [ready

Note that the priority only displays after calling multipath for the first time.

5. Start the multipathd daemon to run a proper working multipath environment:

/etc/init.d/multipathd start

6. Use the following command to display the resulting multipath configuration:

#multipath -l

36005076304ffc671000000000000b100

[size=5 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [active]

_ 0:0:1:0 sda 8:0 [active][ready]

_ 1:0:1:0 sdb 8:16 [active][ready]

_ 2:0:1:0 sdc 8:32 [active][ready]

_ 3:0:1:0 sdd 8:48 [active][ready]

Example of a multipath I/O configuration for IBM TotalStorage DS6000

The following example describes the configuration of one IBM TotalStorage DS6000

SCSI device attached through four different FCP channels.

The example shows the special configuration for storage devices with

group_by_prio as the path grouping policy. The Asymmetric Logical Unit Access

(ALUA) tool is used to get the priority for each device. The ALUA tool is part of the

multipath-tools.

1. Set the FCP channels online:

Chapter 5. Improving system availability using multipathing 17

chccwdev -e 0.0.b602

Setting device 0.0.b602 online

Done

chccwdev -e 0.0.b702

Setting device 0.0.b702 online

Done

chccwdev -e 0.0.c602

Setting device 0.0.c602 online

Done

chccwdev -e 0.0.c702

Setting device 0.0.c602 online

Done

2. Configure the ports and devices:

echo 0x500507630e07fca2 >/sys/bus/ccw/drivers/zfcp/0.0.b702/port_add

echo 0x500507630e07fca2 >/sys/bus/ccw/drivers/zfcp/0.0.c702/port_add

echo 0x500507630e87fca2 >/sys/bus/ccw/drivers/zfcp/0.0.c602/port_add

echo 0x500507630e87fca2 >/sys/bus/ccw/drivers/zfcp/0.0.b602/port_add

echo 0x4011402200000000 > /sys/bus/ccw/drivers/zfcp/0.0.b702/0x500507630e07fca2/unit_add

echo 0x4011402200000000 > /sys/bus/ccw/drivers/zfcp/0.0.c702/0x500507630e07fca2/unit_add

echo 0x4011402200000000 > /sys/bus/ccw/drivers/zfcp/0.0.b602/0x500507630e87fca2/unit_add

echo 0x4011402200000000 > /sys/bus/ccw/drivers/zfcp/0.0.c602/0x500507630e87fca2/unit_add

3. Load the dm_multipath module:

modprobe dm_multipath

4. Use multipath to detect multiple paths to devices for failover or performance

reasons and coalesce them:

multipath

create: 3600507630efffca20000000000001122

[size=25 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [prio=100]

_ 0:0:1:0 sdc 8:32 [ready]

_ 2:0:1:0 sdd 8:48 [ready]

_ round-robin 0 [prio=20]

_ 1:0:1:0 sda 8:0 [ready]

_ 3:0:1:0 sdb 8:16 [ready]

Note that the priority only displays after calling multipath for the first time.

5. Start the multipathd daemon to run a working multipath environment:

/etc/init.d/multipathd start

6. Use the following command to display the resulting multipath configuration:

#multipath -l

3600507630efffca20000000000001122

[size=25 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [active]

_ 0:0:1:0 sdc 8:32 [active][ready]

_ 2:0:1:0 sdd 8:48 [active][ready]

_ round-robin 0 [enabled]

_ 1:0:1:0 sda 8:0 [active][ready]

_ 3:0:1:0 sdb 8:16 [active][ready]

18 How to use FC-attached SCSI devices - July 2006

Example of multipath I/O devices as physical volumes for LVM2

By default, LVM2 does not consider device-mapper block devices. To enable the

MPIO devices for LVM2, change the device section of /etc/lvm/lvm.conf as follows:

1. Add the directory with the DM device nodes to the array that contains

directories scanned by LVM2. LVM2 will accept device nodes within these

directories only:

scan = ["/dev", "/dev/mapper"]

2. Add device-mapper volumes as an acceptable block devices type:

types = ["device-mapper". 16]

3. Modify the filter patterns, which LVM2 applies to devices found by a scan. The

following line instructs LVM2 to accept the multipath I/O devices and reject all

other devices.

Note: If you are also using LVM2 on non-MPIO devices you will need to modify

this line according to your requirements.

filter = ["a|/dev/disk/by-name/.*|", "r|.*|"]

With the above settings you should be able to use the multipath I/O devices for

LVM2. The next steps are similar for all types of block devices.

The following example shows the steps to create a volume group composed of four

multipath I/O devices. It assumes that the multipath I/O devices are already

configured.

1. List available multipath I/O devices:

multipath -l

36005076304ffc671000000000000b007

[size=5 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [active]

 _ 0:0:1:3 sdm 8:192 [active]

 _ 1:0:1:3 sdn 8:208 [active]

 _ 2:0:1:3 sdo 8:224 [active]

 _ 3:0:1:3 sdp 8:240 [active]

36005076304ffc671000000000000b006

[size=5 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [active]

 _ 0:0:1:2 sdi 8:128 [active]

 _ 1:0:1:2 sdj 8:144 [active]

 _ 2:0:1:2 sdk 8:160 [active]

 _ 3:0:1:2 sdl 8:176 [active]

36005076304ffc671000000000000b005

[size=5 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [active]

 _ 0:0:1:1 sde 8:64 [active]

 _ 1:0:1:1 sdf 8:80 [active]

 _ 2:0:1:1 sdg 8:96 [active]

 _ 3:0:1:1 sdh 8:112 [active]

36005076304ffc671000000000000b004

[size=5 GB][features="1 queue_if_no_path"][hwhandler="0"]

_ round-robin 0 [active]

 _ 0:0:1:0 sda 8:0 [active]

 _ 1:0:1:0 sdb 8:16 [active]

 _ 2:0:1:0 sdc 8:32 [active]

 _ 3:0:1:0 sdd 8:48 [active]

Chapter 5. Improving system availability using multipathing 19

2. Initialize the volume using pvcreate (you must do this before a volume can be

used for LVM2):

pvcreate /dev/mapper/36005076304ffc671000000000000b004

 Physical volume "/dev/mapper/36005076304ffc671000000000000b004" successfully created

Repeat this step for all multipath I/O devices that you intend to use for LVM2.

3. Create the volume group:

vgcreate sample_vg /dev/mapper/36005076304ffc671000000000000b00[4567]

 Volume group "sample_vg" successfully created

vgdisplay sample_vg

 --- Volume group ---

 VG Name sample_vg

 System ID

 Format lvm2

 Metadata Areas 4

 Metadata Sequence No 1

 VG Access read/write

 VG Status resizable

 MAX LV 0

 Cur LV 0

 Open LV 0

 Max PV 0

 Cur PV 4

 Act PV 4

 VG Size 19.98 GB

 PE Size 4.00 MB

 Total PE 5116

 Alloc PE / Size 0 / 0

 Free PE / Size 5116 / 19.98 GB

 VG UUID 5mNa4I-Ioun-Fh56-Iqmc-lyzG-HZom-3SaBxA

Now you can proceed normally: Create logical volumes, build file systems and

mount the logical volumes.

Once configured, the multipath I/O devices and LVM2 volume groups can be made

available at startup time. In order to do this, continue with the following additional

steps.

1. Build a new initrd to make LUs available at IPL time (output shortened):

20 How to use FC-attached SCSI devices - July 2006

mkinitrd

Root device: /dev/dasda2 (mounted on / as ext3)

Module list: jbd ext3 dasd_eckd_mod sd_mod zfcp

Kernel image: /boot/image-2.6.5-7.252-s390x

Initrd image: /boot/initrd-2.6.5-7.252-s390x

Shared libs: lib64/ld-2.3.3.so .../libblkid.so.1.0 .../libc.so.6 ...

 /libselinux.so.1 ...

 /libuuid.so.1.2

Modules: ...kernel/drivers/s390/block/dasd_eckd_mod.ko

 .../scsi_mod.ko

 .../sd_mod.ko

 .../qdio.ko

 .../zfcp.ko

DASDs: 0.0.2c1a(ECKD) 0.0.2c1b(ECKD)

zfcp HBAs: 0.0.b40b 0.0.b50b 0.0.c40b 0.0.c50b

zfcp disks:

 0.0.b40b:0x5005076304004671:0x40b0400400000000

 0.0.b40b:0x5005076304004671:0x40b0400500000000

 0.0.b40b:0x5005076304004671:0x40b0400600000000

 0.0.b40b:0x5005076304004671:0x40b0400700000000

 0.0.b50b:0x50050763041b4671:0x40b0400400000000

 0.0.b50b:0x50050763041b4671:0x40b0400500000000

 0.0.b50b:0x50050763041b4671:0x40b0400600000000

 0.0.b50b:0x50050763041b4671:0x40b0400700000000

 0.0.c40b:0x5005076304104671:0x40b0400400000000

 0.0.c40b:0x5005076304104671:0x40b0400500000000

 0.0.c40b:0x5005076304104671:0x40b0400600000000

 0.0.c40b:0x5005076304104671:0x40b0400700000000

 0.0.c50b:0x50050763040b4671:0x40b0400400000000

 0.0.c50b:0x50050763040b4671:0x40b0400500000000

 0.0.c50b:0x50050763040b4671:0x40b0400600000000

 0.0.c50b:0x50050763040b4671:0x40b0400700000000

Including: udev

initrd updated, zipl needs to update the IPL record before IPL!

2. Update the IPL record:

zipl

Using config file ’/etc/zipl.conf’

Building bootmap in ’/boot/zipl’

Adding IPL section ’ipl’ (default)

Preparing boot device: dasda (2c1a).

Done.

3. Enable all needed system init scripts:

insserv /etc/init.d/boot.device-mapper

insserv /etc/init.d/boot.multipath

insserv /etc/init.d/multipathd

insserv /etc/init.d/boot.lvm

After re-boot you should see messages that report multipath I/O devices and LVM2

groups in the /var/log/boot.msg:

Chapter 5. Improving system availability using multipathing 21

<5>SCSI subsystem initialized

<4>qdio: loading QDIO base support version 2 ($Revision: 1.79.2.9 ...)

...

<6>scsi0 : zfcp

<3>zfcp: The adapter 0.0.b40b reported the following characteristics:

<4>WWNN 0x5005076400c16f8a, WWPN 0x5005076401207b12, S_ID 0x00610d13,

<4>adapter version 0x3, LIC version 0x406, FC link speed 2 Gb/s

<3>zfcp: Switched fabric fibrechannel network detected at adapter 0.0.b40b.

<6>scsi1 : zfcp

<3>zfcp: The adapter 0.0.b50b reported the following characteristics:

<4>WWNN 0x5005076400c16f8a, WWPN 0x5005076401009017, S_ID 0x00632213,

<4>adapter version 0x3, LIC version 0x406, FC link speed 2 Gb/s

<3>zfcp: Switched fabric fibrechannel network detected at adapter 0.0.b50b.

...

<6>device-mapper: Allocated new minor_bits array for 1024 devices

<6>device-mapper: 4.4.0-ioctl (2005-01-12) initialised: dm-devel@redhat.com

<6>device-mapper: dm-multipath version 1.0.4 loaded

<6>device-mapper: dm-round-robin version 1.0.0 loaded

...

<notice>run boot scripts (boot.device-mapper)

Activating device mapper...

Creating /dev/mapper/control character device with major:10 minor:62.

..done

<notice>exit status of (boot.device-mapper) is (0)

<notice>run boot scripts (boot.multipath)

Creating multipath targetsdm names N

...

..done

<notice>exit status of (boot.multipath) is (0)

<notice>run boot scripts (boot.lvm)

Scanning for LVM volume groups...

 Reading all physical volumes. This may take a while...

 Found volume group "sample_vg" using metadata type lvm2

Activating LVM volume groups...

 0 logical volume(s) in volume group "sample_vg" now active

..done

<notice>exit status of (boot.lvm) is (0)

...

Starting multipathd..done

...

22 How to use FC-attached SCSI devices - July 2006

Chapter 6. Booting the system using SCSI IPL

SCSI IPL (initial program load) is the ability to load a zSeries operating system from

an FCP-attached SCSI device. This could be a SCSI disk, SCSI CD or SCSI DVD

device. SCSI IPL is a mechanism that expands the set of I/O devices that you can

use during IPL.

Before you begin, see:

v “Hardware requirements” on page 24

v “Software requirements” on page 24

Why SCSI IPL?

Without SCSI IPL you are only able to IPL from CCW-based devices. These could

be ECKD™ or FBA Direct Access Storage Devices (DASDs) or tapes. zSeries

operating systems were usually installed on ECKD DASDs. With z800, z900, and

z/VM 4.3 it became possible to use SCSI disks, but only as pure data devices, you

could not IPL from these devices.

With the SCSI IPL feature, you can now IPL from SCSI devices. You can have a

Linux root file system on a SCSI disk, which is the first step in the direction of a

SCSI-only system, a Linux system that does not use ECKD DASDs.

At first glance, a traditional IPL (also called CCW IPL) and a SCSI IPL are similar:

1. A mainframe administrator initiates an IPL at the SE, HMC, or at a z/VM

console.

2. The machine checks the IPL parameters and tries to access the corresponding

IPL devices.

3. Some code will be loaded from the IPL device into main storage and executed.

Usually this initial code will load some more code into storage until the entire

operating system is in memory.

The only difference between SCSI IPL and CCW IPL is the connection to the IPL

device. In the CCW case the IPL device is connected more or less directly to the

host. In contrast, in the SCSI IPL case there could be an entire Fibre Channel SAN

between the host and the IPL device.

In order to understand the difference to SCSI IPL better, some background on the

traditional CCW IPL is helpful. A channel command word (CCW) contains a

command to perform a read, write, or control operation. A chain of CCWs is called a

channel program, and this will be executed in a channel by channel engines that

run independently of the usual CPUs. All I/O is controlled by channel programs and

IPL is supported only for CCW-based I/O devices. I/O devices are identified by a

two-byte device number. The I/O devices are configured within the I/O definition file

(IODF). A CCW IPL is also called 24-bytes-IPL because only one PSW and two

CCWs are read from the disk initially. These 24 bytes are the first stage boot loader

and are enough to allow the reading of more IPL code from the IPL device.

This is not possible with SCSI IPL, which is more complex. SCSI IPL can:

v Login to an Fibre Channel fabric.

v Maintain a connection through the Fibre Channel SAN.

v Send SCSI commands and associated data.

© Copyright IBM Corp. 2006 23

To accomplish this, an enhanced set of IPL parameters is required (see “SCSI IPL

parameters” on page 25).

Hardware requirements

To be able to IPL a Linux system from a SCSI disk, the following hardware is

required:

v The SCSI IP hardware feature. You need to order and install SCSI IPL

separately using Feature Code FC9904.

Note: Models z800 and z900 require an initial, one-time power-on-reset (POR)

of the machine to activate the feature. Activating the SCSI IPL feature is

concurrent on z890, z990, or newer, machines.

v An FCP channel. This could be any supported adapter card (see “Supported

hardware” on page vii). You must configure the adapter as an FCP adapter card

within your IODF.

v One or more FCP-attached SCSI disks from which to IPL.

Software requirements

To be able to IPL a Linux system from a SCSI disk, the following software is

required:

v For SCSI IPL under z/VM, z/VM version 4.4 (PTF UM30989 installed) or later.

z/VM 4.4 does not itself run on SCSI disks, however, it provides SCSI guest

support and SCSI IPL guest support.

z/VM version 5.1 or later can itself be installed on SCSI disks.

v A Linux distribution that supports zfcp (for example, SLES8 or RHEL4 or later).

SAN addressing

To access a device within a Fibre Channel SAN the following addressing

parameters are required (see Figure 9 on page 25.):

v The device number of the FCP adapter (device-bus ID). This is a two-byte

hexadecimal number specifying the host bus adapter, and more precisely, the

port at the local host bus adapter. This is the only addressing parameter

configured within the IODF. The device-bus ID is the way out of the mainframe.

v The worldwide port name (WWPN) of your target port. There can be several

hundred storage devices with several ports each within your storage area

network. You must specify the storage device and the entry port into this storage

device. For this reason, each port has a unique number, called the worldwide

port name. This WWPN is eight bytes in length and is, as the name says, unique

worldwide.

The last of the three addressing parameters is the logical unit (LUN). This

parameter specifies the device within the storage box, there could be several

hundred disks in your storage box.

24 How to use FC-attached SCSI devices - July 2006

SCSI IPL parameters

Use these IPL parameters to configure SCSI IPL.

Load type

Without SCSI IPL there are the two load types, normal and clear. Both are

used to IPL an operating system. The only difference is that the memory will

be cleared before IPL in the second case. There are two new load types for

SCSI IPL, called SCSI and SCSI dump. The load type SCSI loads an OS

from a SCSI device and clears the memory before, every time. SCSI dump

is intended to load a dump program from a SCSI device. In this case the

memory will not be cleared.

Load address

(Required.) The load address is a 2-byte hexadecimal number. It is the

device number of the FCP adapter and it is NOT associated with an I/O

device, but with the adapter! This is one of the most important differences

compared to CCW IPL. This is the only SCSI IPL parameter defined in the

IODF.

Worldwide port name

(Required.) The worldwide port name (WWPN) is an 8-byte hexadecimal

number and uniquely identifies the FCP adapter port of the SCSI target

device.

Logical unit number

(Required.) The logical unit number (LUN) is an 8-byte hexadecimal number

that identifies the logical unit representing the IPL device.

Boot program selector

(Optional.) Selects a boot configuration, which can be a Linux kernel, a

kernel parameter file, or optionally a ram disk. There could be up to 31

(decimal 0 – 30) different configurations on a single SCSI disk, independent

of on which partition they are stored. The different configurations must be

prepared with the Linux zipl tool. The default value is 0.

 There are several possible uses for this parameter. For example, if you

have one production and one development kernel, it allows you to always

IPL the system even if the development kernel does not work. Another use

would be a rescue system, or the same kernel with several different kernel

parameters or ram disks. This parameter adds flexibility to SCSI IPL.

Figure 9. SAN addressing parameters

Chapter 6. Booting the system using SCSI IPL 25

Boot record logical block address

(Optional.) The boot record logical block address specifies the entry or

anchor point to find the operating system on a SCSI disk. A block number

can be specified here. Usually, in Linux, this block is the master boot record

and the first block on the IPL devices. With this parameter it is possible to

use a different block as entry point. For example, z/VM does not have a

master boot record. The default value is 0.

OS specific load parameter

(Optional.) Operating system specific load parameter are parameters for the

loaded operating system. It is intended to hand over parameters to the

operating system or dump program. This field is only passed through. The

main difference to all other SCSI IPL parameters is that this field is not

used to access the IPL device or the operating system on the IPL device.

This field is currently restricted to 256 Bytes (SE) and 4096 Bytes (z/VM).

Store status and time-out value

These two parameters are not needed for SCSI IPL. For SCSI IPL, no store

status is required and for SCSI dump a store status command will always

be performed.

Load parameter

This parameter is SCSI IPL independent and can be used as usual. The

loaded operating system receives these IPL parameters at a later point in

time. This parameter is not used to access the IPL device.

SCSI disk installation and preparation

Direct installation to SCSI disk is possible with:

v SUSE LINUX Enterprise Server 9

v RedHat EL 4

A migration guide is available for:

v SLES8, SUSE LINUX Enterprise Server 8 for IBM S/390 and IBM zSeries

Installation, at:

http://www.novell.com/documentation

v RHEL3 at

http://www.redhat.com/docs/manuals/enterprise/

Migration from an existing ECKD installation to SCSI disk installation is possible.

You can not install SLES8 and RHEL3 directly to a SCSI disk. Nevertheless these

distributions can run on SCSI disks. You must start by installing the distribution on

the ECKD DASD. Then you can migrate the installation to a SCSI disk using the

migration guide delivered with your distribution.

Usually the disk preparation will be done by installation tools, for example, SUSE's

Yast. If there is no such tool available or the distribution does not support an

installation on a SCSI disk, it is also possible to perform these steps manually to

make a disk bootable.

The standard Linux disk preparation tool on zSeries is zipl. The zipl command

writes the boot loader for IBM S/390 and zSeries architectures. This preparation

could be done on the command line or using the config file /etc/zipl.conf. The

zipl command prepares SCSI disks as well as ECKD DASDs and it is possible to

write several boot configurations (kernel, parameter file, ram disk) to one disk. This

possibility is called boot menu option or multi-boot option.

26 How to use FC-attached SCSI devices - July 2006

It is also possible to prepare a SCSI dump disk with the zipl command whereas it is

possible to have IPL and dump programs on the same disk. See the zipl and

zipl.conf man pages for more information.

The following zipl.conf example defines two boot configurations, scsi-ipl-1 and

scsi-ipl-2, which are selectable with boot program selector 1 and 2. The default boot

program selector 0 will IPL scsi-ipl-2.

/etc/zipl.conf

[defaultboot]

default = scsi-ipl-1

[scsi-ipl-1]

target = "/boot"

image = "/boot/kernel-image-1"

parmfile = "/boot/parmfile-1"

[scsi-ipl-2]

target = "/boot"

image = "/boot/kernel-image-2"

parmfile = "/boot/parmfile-2"

ramdisk = "/boot/initrd-2"

:menu1

target = "/boot"

1=scsi-ipl-1

2=scsi-ipl-2

default=2

This zipl.conf configuration will be activated with the following zipl command:

[root@host /]# zipl -m menu1

Using config file ’/etc/zipl.conf’

Building bootmap ’/boot/bootmap’

Building menu ’menu1’

Adding #1: IPL section ’scsi-ipl-1‘

Adding #2: IPL section ’scsi-ipl-2‘

(default)

Preparing boot device: 08:00

Done.

[root@host /]#

The disk is now bootable and contains two boot configurations, selectable at boot

time.

SCSI dump

SCSI dump is a stand-alone dump to a SCSI disk. It is the IPL of an operating

system-dependent dump program. Currently SCSI dump is only supported in an

LPAR environment. An initiated SCSI dump will always perform a store status

automatically. A reset normal instead of reset clear will be performed which does

not clear the memory.

Machine loader and system dump program run in the same LPAR memory that

must be dumped. For this reason the lower-address area of the LPAR memory will

be copied into a reserved area (HSA) of the machine. The system dump program

then reads the first part of the dump from the HSA and the second part from

memory.

This is why SCSI dumps will be serialized on a machine. There is only one save

area for all LPARs. Normally this does not cause problems because you seldom

Chapter 6. Booting the system using SCSI IPL 27

need a dump and the HSA is locked less than a second. Should you happen on this

short timeframe, you will get a pop-up window on the SE that tells you what LPAR

currently uses the HSA.

The system dumper under Linux on zSeries is the zfcpdump command. It is part of

the s390-tools package and must be prepared with the zipl tool. This tool is an

independent Linux instance (a kernel with ram disk).

The dump program determines where to put the dump. Currently, the dump

program places the dump on the SCSI disk where the program resides.

The dump disk contains the dump program and a file system. The dump disk is

mountable and all dumps are files. It is possible to have several dumps on one

dump disk.

Example: IODF definition

Here is an example of how the IODF could look. As mentioned before, only the

FCP adapter must be configured within the mainframe. All other parameters must

be configured outside the mainframe, that is, within switches or at the target storage

box.

In this example two ports of a FICON or FICON Express adapter card are

configured as FCP. First two FCP CHPIDs are defined, both get the number 50, one

for channel subsystem 0 and one for channel subsystem 1. An FCP control unit

5402 is then assigned to these new CHPIDs. The last step is to define several

logical FCP adapters starting with device number 5400.

CHPID PATH=(CSS(0),50),SHARED, *

 PARTITION=((LP01,LP02,LP03,LP04,LP05,LP06,LP07,LP08,LP09*

 ,LP10,LP11,LP12,LP13,LP14,LP15),(=)),PCHID=160,TYPE=FCP

CHPID PATH=(CSS(1),50),SHARED, *

 PARTITION=((LP16,LP17,LP18,LP19,LP20,LP21,LP22,LP23,LP24*

 ,LP25,LP26,LP27,LP28,LP29,LP30),(=)),PCHID=161,TYPE=FCP

...

CNTLUNIT CUNUMBR=5402,PATH=((CSS(0),50),(CSS(1),50)),UNIT=FCP

...

IODEVICE ADDRESS=(5400,002),CUNUMBR=(5402), *

 PARTITION=((CSS(0),LP01),(CSS(1),LP16)),UNIT=FCP

IODEVICE ADDRESS=(5402,002),CUNUMBR=(5402), *

 PARTITION=((CSS(0),LP02),(CSS(1),LP17)),UNIT=FCP

...

IODEVICE ADDRESS=(5460,144),CUNUMBR=(5402), *

 PARTITION=((CSS(0),LP15),(CSS(1),LP30)),UNIT=FCP

Example: SCSI IPL of an LPAR

Follow these steps to IPL an LPAR from a SCSI disk:

1. Once the SCSI IPL feature is active, an enhanced SE or HMC load panel as

shown in Figure 10 on page 29 appears.

28 How to use FC-attached SCSI devices - July 2006

(If the SCSI IPL feature is not enabled, some fields are not visible.) The SE

remembers the last set of specified IPL parameters. It is also possible to set the

SCSI IPL parameters within the activation profile.

2. Specify IPL parameters (see “SCSI IPL parameters” on page 25) and click OK.

The operating system starts.

The only difference to a system that uses CCW IPL are the two messages:

v MLOEVL012I: Machine loader up and running.

v MLOPDM003I: Machine loader finished, moving data to final storage location.

The operating system now boots as expected. Figure 11 on page 30 shows the

boot messages. As you can see at the kernel command line, the root file system of

this Linux instance is on a SCSI disk (/dev/sda1).

Figure 10. Load panel

Chapter 6. Booting the system using SCSI IPL 29

Example: SCSI IPL of a z/VM guest

SCSI IPL under z/VM is similar. With z/VM 4.4 two new commands have been

introduced:

v SET LOADDEV

v QUERY LOADDEV

Use the first command to specify the IPL parameters and the second command to

check the currently set IPL parameters. There is also a LOADDEV directory

statement and the CP IPL command has been modified to accept FCP adapter

device numbers. First set the IPL parameters with the SET LOADDEV command

and then call the standard IPL command with the FCP adapter as parameter. z/VM

knows to use the specified SCSI IPL parameters if the IPL parameter is an adapter

and not an ECKD disk.

Follow these steps to IPL a z/VM system from a SCSI disk:

1. Login to a CMS session and attach an FCP adapter to your VM guest:

att 50aa *

00: FCP 50AA ATTACHED TO LINUX18 50AA

Ready; T=0.01/0.01 13:16:20

q v fcp

00: FCP 50AA ON FCP 50AA CHPID 40 SUBCHANNEL = 000E

00: 50AA QDIO-ELIGIBLE QIOASSIST-ELIGIBLE

Ready; T=0.01/0.01 13:16:24

The adapter is now available.

Figure 11. Example of a SCSI IPL

30 How to use FC-attached SCSI devices - July 2006

2. Specify the other required parameters for SCSI IPL. You can do this using the

new set loaddev CP command (available with z/VM 4.4). Refer to the z/VM

documentation for details:

set loaddev portname 50050763 00c20b8e lun 52410000 00000000

Ready; T=0.01/0.01 13:16:33

q loaddev

PORTNAME 50050763 00C20B8E LUN 52410000 00000000

BOOTPROG 0 BR_LBA 00000000 00000000

Ready; T=0.01/0.01 13:16:38

3. IPL using the FCP adapter as parameter:

i 50aa

00: HCPLDI2816I Acquiring the machine loader from the processor controller.

00: HCPLDI2817I Load completed from the processor controller.

00: HCPLDI2817I Now starting machine loader.

00: MLOEVL012I: Machine loader up and running (version 0.15).

00: MLOPDM003I: Machine loader finished, moving data to final storage location.

Linux version 2.4.21 (root@tel15v18)(gcc version 3.3 (Red Hat Linux 8.0 3.3-5bb9))

 #3 SMP Mon Sep 15 15:28:42 CEST 2003

We are running under VM (64 bit mode)

On node 0 total pages: 32768

The Linux system comes up after the two SCSI IPL machine loader messages.

Further reading

v IBM Journal of Research and Development, Vol 48, No ¾, 2004 SCSI initial

program loading for zSeries available at:

http://www.research.ibm.com/journal/rd/483/banzhaf.pdf

v IBM Corporation, Enterprise Systems Architecture/390® Principles of Operation,

Order No. SA22-7201; available through the IBM Publications Center at:

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?

v IBM Corporation, z/Architecture™ Principles of Operation, Order No. SA22-7832;

available through the IBM Publications Center.

v I. Adlung, G. Banzhaf, W. Eckert, G. Kuch, S. Mueller, and C. Raisch: FCP for

the IBM eServer zSeries Systems: Access to Distributed Storage, IBM J. Res. &

Dev. 46, No. 4/5, 487–502 (2002).

v IBM Corporation: IBM eServer zSeries z990 System Overview, Order No.

SA22-1032. This book is available in PDF format by accessing Resource Link™

at:

http://www.ibm.com/servers/resourcelink

v IBM Corporation: IBM eServer zSeries Input/Output Configuration Program

User’s Guide for ICP IOCP, Order No. SB10-7037; available through the IBM

Publications Center.

v ANSI/INCITS, Technical Committee T10: Information Systems–Fibre Channel

Protocol for SCSI, Second Version (FCP-2), American National Standards

Institute and International Committee for Information Standards, Washington, DC,

2001.

v The Master Boot Record (MBR) and Why is it Necessary?, available at:

http://www.dewassoc.com/kbase/index.html.

v R. Brown and J. Kyle: PC Interrupts, A Programmer’s Reference to BIOS, DOS,

and Third-Party Calls, Addison-Wesley Publishing Company, Boston, MA, 1994.

Chapter 6. Booting the system using SCSI IPL 31

32 How to use FC-attached SCSI devices - July 2006

Chapter 7. Using SCSI tape and the IBMtape driver

Before you begin:

v The IBMtape driver is available at the ftp site:

ftp://ftp.software.ibm.com/storage/devdrvr/Linux/

v For the IBMtape driver installation, see the IBM TotalStorage Device Drivers

Installation and User’s Guide available at:

ftp://ftp.software.ibm.com/storage/devdrvr/Doc.

Supported tapes and medium change devices

The IBMtape Linux device driver for Linux on zSeries servers currently supports

Fibre Channel attachment of the following devices:

v IBM TotalStorage (formerly Magstar®) tape and medium changer devices.

v IBM Ultrium tape and medium changer devices.

The devices must be attached through a switch. For details, refer to sections

″Supported fibre channel SAN environment″ in IBMtape_359X_zSeries.ReadMe and

IBMtape_Ultrium_zSeries.ReadMe available at the ftp site:

ftp://ftp.software.ibm.com/storage/devdrvr/Linux/

Note: The attachment of 3590 Fibre Channel drive requires drive code level

D0IF_295 (or later).

Supported zSeries server models and host bus adapters

IBM zSeries z890 and z990 and System z9 with Fibre Channel Protocol are

supported.

The following Host Bus Adapters have been tested with the IBMtape Linux device

driver:

v FICON Express card (feature 2319 or 2320) with Fibre Channel Protocol support

v FICON Express 2 card (feature 3319 or 3320) with Fibre Channel Protocol

support

Note: The fibre channel microcode level must be MCL05 EC J13471 or higher.

Supported operating system environments

The 32-bit IBMtape Linux device driver for Linux on S/390 operates under the

following environments:

v SUSE LINUX Enterprise Server

v Red Hat Enterprise Linux

The 64-bit IBMtape Linux Device Driver for Linux for zSeries operates under the

following environments:

v SUSE LINUX Enterprise Server

v Red Hat Enterprise Linux

© Copyright IBM Corp. 2006 33

For the most recent list of supported operating system environments please refer to

IBMtape_359X_zSeries.ReadMe and IBMtape_Ultrium_zSeries.ReadMe available at

the ftp site:

ftp://ftp.software.ibm.com/storage/devdrvr/Linux/

34 How to use FC-attached SCSI devices - July 2006

Chapter 8. Logging using the SCSI logging feature

This chapter describes the SCSI logging feature, which is of interest primarily for

software developers who are debugging software problems. It can also be useful for

administrators who track down hardware or configuration problems.

Before you begin:

v The scsi_logging_level command is available from the s390-tools package,

version 1.5.2.

The SCSI logging feature can log information such as:

v Initiation of commands

v Completion of commands

v Error conditions

v Sense data for SCSI commands

The information is written into the Linux log buffer and usually appears in

/var/log/messages.

The SCSI logging feature is controlled by a 32 bit value -- the SCSI logging level.

This value is divided into 3-bit fields describing the log level of a specific log area.

Due to the 3-bit subdivision, setting levels or interpreting the meaning of current

levels of the SCSI logging feature is not trivial.

The following logging areas are provided with the SCSI logging feature:

SCSI LOG ERROR RECOVERY

Messages regarding error recovery

SCSI LOG TIMEOUT

Messages regarding timeout handling of SCSI commands.

SCSI LOG SCAN BUS

Messages regarding bus scanning.

SCSI LOG MLQUEUE

Messages regarding command handling in in SCSI mid-level handling of

scsi commands.

SCSI LOG MLCOMPLETE

Messages regarding command completion in SCSI mid layer.

SCSI LOG LLQUEUE

Messages regarding command handling in low-level drivers (for example,

sd, sg, or sr). (Not used in current vanilla kernel)

SCSI LOG LLCOMPLETE

Messages regarding command completion in low-level drivers. (Not used in

current vanilla kernel.)

SCSI LOG HLQUEUE

Messages regarding command handling in high-level drivers (for example,

sd, sg, or sr).

SCSI LOG HLCOMPLETE

Messages regarding command completion in high-level drivers.

SCSI LOG IOCTL

Messages regarding handling of IOCTLs.

© Copyright IBM Corp. 2006 35

Each area has its own logging level. The logging levels can be changed using a

logging word, which can be passed from and to the kernel with a sysctl. The

logging levels can easily be read and set with the scsi_logging_level command (part

of s390-tools). For a detailed description of the scsi_logging_level tool, see Device

Drivers, Features, and Commands, SC33-8289 available on the developerWorks

Web site at:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

The following logging levels might be of interest for administrators:

v SCSI LOG MLQUEUE=2 will trace opcodes of all initiated SCSI commands

v SCSI LOG MLCOMPLETE=1 will trace completion (opcode, result, sense data) of

SCSI commands that did not complete successfully in terms of the SCSI stack.

Such commands timed out or need to be retried.

v SCSI LOG MLCOMPLETE=2 will trace completion (opcode, result, sense data) of

all SCSI commands

v SCSI LOG IOCTL=2 will trace initiation of IOCTLs for scsi disks (device,

ioctl-command)

Examples

v Example 1 shows how to set the log level for SCSI_LOG_MLCOMPLETE to 1 to

log all non-successful completions and completions with sense data.

#>scsi_logging_level -s --mlcomplete 1

New scsi logging level:

dev.scsi.logging_level = 4096

SCSI_LOG_ERROR=0

SCSI_LOG_TIMEOUT=0

SCSI_LOG_SCAN=0

SCSI_LOG_MLQUEUE=0

SCSI_LOG_MLCOMPLETE=1

SCSI_LOG_LLQUEUE=0

SCSI_LOG_LLCOMPLETE=0

SCSI_LOG_HLQUEUE=0

SCSI_LOG_HLCOMPLETE=0

SCSI_LOG_IOCTL=0

When configuring a new LUN for zfcp, additional messages appear (in bold):

May 17 12:03:58 t2945012 kernel: Vendor: IBM Model: 2107900 Rev: .203

May 17 12:03:58 t2945012 kernel: Type: Direct-Access ANSI SCSI revision: 05

May 17 12:03:58 t2945012 kernel: sd 0:0:0:0: done SUCCESS 2 sd 0:0:0:0:

May 17 12:03:58 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:03:58 t2945012 kernel: : Current: sense key: Unit Attention

May 17 12:03:58 t2945012 kernel: Additional sense: Power on, reset, or bus device reset occurred

May 17 12:03:58 t2945012 kernel: SCSI device sda: 10485760 512-byte hdwr sectors (5369 MB)

May 17 12:03:58 t2945012 kernel: sda: Write Protect is off

May 17 12:03:58 t2945012 kernel: SCSI device sda: drive cache: write back

May 17 12:03:58 t2945012 kernel: SCSI device sda: 10485760 512-byte hdwr sectors (5369 MB)

May 17 12:03:58 t2945012 kernel: sda: Write Protect is off

May 17 12:03:58 t2945012 kernel: SCSI device sda: drive cache: write back

May 17 12:03:58 t2945012 kernel: sda: sda1 sda2

May 17 12:03:58 t2945012 kernel: sd 0:0:0:0: Attached scsi disk sda

v Example 2 shows how to set the log level for SCSI_LOG_MLCOMPLETE to 2 to

log all command completions:

36 How to use FC-attached SCSI devices - July 2006

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html
http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html
http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html

#>scsi_logging_level -s --mlcomplete 2

New scsi logging level:

dev.scsi.logging_level = 8192

SCSI_LOG_ERROR=0

SCSI_LOG_TIMEOUT=0

SCSI_LOG_SCAN=0

SCSI_LOG_MLQUEUE=0

SCSI_LOG_MLCOMPLETE=2

SCSI_LOG_LLQUEUE=0

SCSI_LOG_LLCOMPLETE=0

SCSI_LOG_HLQUEUE=0

SCSI_LOG_HLCOMPLETE=0

SCSI_LOG_IOCTL=0

When configuring a new LUN for zfcp, additional log messages appear (in bold):

May 17 12:06:01 t2945012 kernel: 1:0:0:0: done SUCCESS 0 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Inquiry: 12 00 00 00 24 00

May 17 12:06:01 t2945012 kernel: 1:0:0:0: done SUCCESS 0 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Inquiry: 12 00 00 00 a4 00

May 17 12:06:01 t2945012 kernel: Vendor: IBM Model: 2107900 Rev: .203

May 17 12:06:01 t2945012 kernel: Type: Direct-Access ANSI SCSI revision: 05

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 2 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:06:01 t2945012 kernel: : Current: sense key: Unit Attention

May 17 12:06:01 t2945012 kernel: Additional sense: Power on, reset, or bus device reset occurred

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Read Capacity (10): 25 00 00 00 00 00 00 00 00 00

May 17 12:06:01 t2945012 kernel: SCSI device sdb: 10485760 512-byte hdwr sectors (5369 MB)

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 3f 00 04 00

May 17 12:06:01 t2945012 kernel: sdb: Write Protect is off

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 08 00 04 00

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 08 00 20 00

May 17 12:06:01 t2945012 kernel: SCSI device sdb: drive cache: write back

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Read Capacity (10): 25 00 00 00 00 00 00 00 00 00

May 17 12:06:01 t2945012 kernel: SCSI device sdb: 10485760 512-byte hdwr sectors (5369 MB)

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 3f 00 04 00

May 17 12:06:01 t2945012 kernel: sdb: Write Protect is off

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 08 00 04 00

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Mode Sense (6): 1a 00 08 00 20 00

May 17 12:06:01 t2945012 kernel: SCSI device sdb: drive cache: write back

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:06:01 t2945012 kernel: command: Read (10): 28 00 00 00 00 00 00 00 08 00

May 17 12:06:01 t2945012 kernel: sdb:sdb1 sdb2

May 17 12:06:01 t2945012 kernel: sd 1:0:0:0: Attached scsi disk sdb

...

v Example 3 shows how to set the log level for SCSI_LOG_MLQUEUE to 2 to log

command queueing in the SCSI mid-layer.

#>scsi_logging_level -s --mlqueue 2

New scsi logging level:

dev.scsi.logging_level = 1024

SCSI_LOG_ERROR=0

SCSI_LOG_TIMEOUT=0

SCSI_LOG_SCAN=0

SCSI_LOG_MLQUEUE=2

SCSI_LOG_MLCOMPLETE=0

SCSI_LOG_LLQUEUE=0

SCSI_LOG_LLCOMPLETE=0

SCSI_LOG_HLQUEUE=0

SCSI_LOG_HLCOMPLETE=0

SCSI_LOG_IOCTL=0

Chapter 8. Logging using the SCSI logging feature 37

The output shows Test Unit Ready commands issued by the path checker of

multipathd (from multipath-tools):

May 17 12:07:36 t2945012 kernel: sd 0:0:0:0: send sd 0:0:0:0:

May 17 12:07:36 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:07:37 t2945012 kernel: sd 1:0:0:0: send sd 1:0:0:0:

May 17 12:07:37 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

v Example 4 shows how to set the log level for SCSI_LOG_MLQUEUE and

SCSI_LOG_MLCOMPLETE to 2 to log command queueing and command

completion in the SCSI mid-layer.

#>scsi_logging_level -s --mlqueue 2 --mlcomplete 2

New scsi logging level:

dev.scsi.logging_level = 9216

SCSI_LOG_ERROR=0

SCSI_LOG_TIMEOUT=0

SCSI_LOG_SCAN=0

SCSI_LOG_MLQUEUE=2

SCSI_LOG_MLCOMPLETE=2

SCSI_LOG_LLQUEUE=0

SCSI_LOG_LLCOMPLETE=0

SCSI_LOG_HLQUEUE=0

SCSI_LOG_HLCOMPLETE=0

SCSI_LOG_IOCTL=0

The output shows Test Unit Ready commands issued by the path checker of

multipathd (from multipath-tools). In contrast to the previous example with

additional messages (in bold):

May 17 12:07:56 t2945012 kernel: sd 0:0:0:0: send sd 0:0:0:0:

May 17 12:07:56 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:07:56 t2945012 kernel: sd 0:0:0:0: done SUCCESS 0 sd 0:0:0:0:

May 17 12:07:56 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:07:57 t2945012 kernel: sd 1:0:0:0: send sd 1:0:0:0:

May 17 12:07:57 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:07:57 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:07:57 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

v Example 5 shows how to set the log level for SCSI_LOG_MLQUEUE,

SCSI_LOG_MLCOMPLETE and SCSI_LOG_IOCTL to 2 to log command

queueing and command completion in the scsi mid-layer and IOCTL information.

#>scsi_logging_level -s --mlqueue 2 --mlcomplete 2 --ioctl 2

New scsi logging level:

dev.scsi.logging_level = 268444672

SCSI_LOG_ERROR=0

SCSI_LOG_TIMEOUT=0

SCSI_LOG_SCAN=0

SCSI_LOG_MLQUEUE=2

SCSI_LOG_MLCOMPLETE=2

SCSI_LOG_LLQUEUE=0

SCSI_LOG_LLCOMPLETE=0

SCSI_LOG_HLQUEUE=0

SCSI_LOG_HLCOMPLETE=0

SCSI_LOG_IOCTL=2

The output shows Test Unit Ready commands issued by the path checker of

multipathd (from multipath-tools). In contrast to the previous example, this one

has additional messages (in bold):

38 How to use FC-attached SCSI devices - July 2006

May 17 12:08:17 t2945012 kernel: sd_ioctl: disk=sda, cmd=0x2285

May 17 12:08:17 t2945012 kernel: sd 0:0:0:0: send sd 0:0:0:0:

May 17 12:08:17 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:08:17 t2945012 kernel: sd 0:0:0:0: done SUCCESS 0 sd 0:0:0:0:

May 17 12:08:17 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:08:18 t2945012 kernel: sd_ioctl: disk=sdb, cmd=0x2285

May 17 12:08:18 t2945012 kernel: sd 1:0:0:0: send sd 1:0:0:0:

May 17 12:08:18 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

May 17 12:08:18 t2945012 kernel: sd 1:0:0:0: done SUCCESS 0 sd 1:0:0:0:

May 17 12:08:18 t2945012 kernel: command: Test Unit Ready: 00 00 00 00 00 00

v Example 6 shows how to switch off all SCSI logging levels:

#>scsi_logging_level -s -a 0

New scsi logging level:

dev.scsi.logging_level = 0

SCSI_LOG_ERROR=0

SCSI_LOG_TIMEOUT=0

SCSI_LOG_SCAN=0

SCSI_LOG_MLQUEUE=0

SCSI_LOG_MLCOMPLETE=0

SCSI_LOG_LLQUEUE=0

SCSI_LOG_LLCOMPLETE=0

SCSI_LOG_HLQUEUE=0

SCSI_LOG_HLCOMPLETE=0

SCSI_LOG_IOCTL=0

Chapter 8. Logging using the SCSI logging feature 39

40 How to use FC-attached SCSI devices - July 2006

Chapter 9. Debugging using zfcp traces

Traces exploit the debug feature for FCP. This chapter describes the format of the

traces and what information you can get with the different level settings.

Before you begin:

v You need a kernel version that supports traces, from 2.6.15 and up.

The base directory for trace entries is s390dbf.

pwd

/sys/kernel/debug/s390dbf

The FCP device driver deploys separate trace areas (seen as separate directories)

for each FCP subchannel, or virtual FCP HBA.

For each FCP subchannel, there are separate trace areas (seen as separate

directories) for different aspects of FCP operation, for example Linux SCSI, FCP

channel, SAN, and error recovery. The naming of the trace areas is:

driver_bus.id_area

For example, an FCP subchannel SAN trace area might be called

zfcp_0.0.50d5_san.

ll -d zfcp*

drwxr-xr-x 2 root root 0 Aug 8 15:02 zfcp_0.0.50d5_erp

drwxr-xr-x 2 root root 0 Aug 8 15:02 zfcp_0.0.50d5_hba

drwxr-xr-x 2 root root 0 Aug 8 15:02 zfcp_0.0.50d5_san

drwxr-xr-x 2 root root 0 Aug 8 15:02 zfcp_0.0.50d5_scsi

A debug view (seen as a file named structured) has been introduced for all new

traces. Every event traced by the FCP driver results in a trace record, which is a

structured set of relevant information gathered for the respective condition from

various sources. Each entry of a trace record consists of a name and a value.

Users of the FCP traces are encouraged to work with the ″structured″ view instead

of the ″hex_ascii″ view.

ll zfcp_0.0.50d5_san

total 0

--w------- 1 root root 0 Aug 8 15:02 flush

-r-------- 1 root root 0 Aug 8 15:02 hex_ascii

-rw------- 1 root root 0 Aug 8 15:02 level

-rw------- 1 root root 0 Aug 8 15:02 pages

-r-------- 1 root root 0 Aug 8 15:02 structured

Note: The traces described herein might be changed in future releases.

Particularly, trace refinements might comprise:

v Addition, removal or modification of single trace record fields.

v Reclassification of trace record with regard to their verbosity level.

v Addition or removal of trace records.

v Addition or removal of entire trace areas.

© Copyright IBM Corp. 2006 41

Figure 12 shows where tracing is done; SCSI tracing is performed between the

SCSI core and the zfcp device driver, HBA trace between the zfcp device driver and

the FCP adapter, and SAN trace at the SAN switch and the SCSI devices.

Interpreting trace records

Interpretation of individual trace records may require additional documentation or

other sources of information, for example FCP and SCSI standards, FCP Channel

documentation, Linux documentation, or even Linux source code.

Entries in trace records reflect current values of respective structures as described

below, or, if this information or these structures are not accessible, zeroes. For

example, if some fields of a trace record indicate that some operation has not

finished or failed, then the content of other fields of the same record might be

empty or obsolete, because it would have been derived from a successful

completion. In other cases, the content of some fields might reflect data from a

previous iteration, for example the result of the last retry. This kind of information

can be valuable as well, and has therefore been intentionally retained. Users of

FCP traces are encouraged to use common sense and, if in doubt, check the Linux

source code to judge the content of individual trace records.

 Table 1. Sample trace record

Entry Value Meaning

timestamp 3331355552811473

cpu 01

tag iels Incoming ELS

fsf_reqid 0x29e8a00

fsf_seqno 0x00000000

s_id 0xfffffd sender (switch)

d_id 0x653b13 fsf_seqno 0x00000000 recipient (FCP

subchannel).

ls_code 0x61 ELS is RSCN (State Change

Notification).

Figure 12. FCP traces

42 How to use FC-attached SCSI devices - July 2006

Table 1. Sample trace record (continued)

Entry Value Meaning

payload 6104000800650713 Destination ID (D_ID) of the port for

which the state change is reported.

Chapter 9. Debugging using zfcp traces 43

44 How to use FC-attached SCSI devices - July 2006

Chapter 10. Hints and tips

This chapter discusses some common problems and ways to steer clear of trouble.

Setting up TotalStorage DS8000 and DS6000 for FCP

 There are three things you should be aware of when configuring the TotalStorage

system:

v New mask: For the logical volume number X’abcd’ the LUN ID will be:

X’40ab40cd00000000’.

v Using the correct WWPN. Every port has a WWPN, but the one you need is the

storage controller WWPN, as illustrated in Figure 13. Talk to the person who

configures the switches to find out what the correct WWPN is.

v The ″Host Ports″ (nomenclature used by the storage description) at the storage

side must be configured to allow the access from the FCP adapter’s port being

used. The FCP port is illustrated in Figure 13.

v The zoning of the switch (if the FCP adapter is not directly connected to the

storage’s host ports) must be configured properly (see the documentation related

to the switch being used).

Further information

v The IBM TotalStorage DS6000 Series: Concepts and Architecture, SG24-6471.

v The IBM TotalStorage DS8000 Series: Concepts and Architecture, SG24-6452.

Figure 13.

© Copyright IBM Corp. 2006 45

Troubleshooting NPIV

If NPIV is not working as expected, first check whether the adapter supports NPIV.

If the adapter supports NPIV, check the error messages to find more details about

what is wrong.

If NPIV is enabled on an FCP adapter that is used by zfcp, some NPIV-specific

messages may be logged on the system console and in /var/log/messages. Older

versions of the zfcp device driver (such as for RHEL 4) logged the following

message when the adjacent link to the FCP adapter is down:

(0x00000005):Local link to adapter <device_bus_id> is down

Later versions of the zfcp device driver (such as for SLES9 and SLES10) provide

more detailed messages, which may better help to understand the cause of the link

down problem:

(0x00000000) Physical link to adapter <device_bus_id> is down

(0x00000001) Local link to adapter <device_bus_id> is down due to failed FDISC login

(0x00000002) Local link to adapter <device_bus_id> is down due to firmware update on adapter

(other subtypes) Local link to adapter <device_bus_id> is down due to unknown reason

(0x00000020) The local link to adapter <busid> is down (firmware update in progress)

(0x00000100) The local link to adapter <busid> is down (duplicate or invalid WWPN detected)

(0x00000200) The local link to adapter <busid> is down (no support for NPIV by Fabric)

(0x00000400) The local link to adapter <busid> is down (out of resource in FCP daughtercard)

(0x00000800) The local link to adapter <busid> is down (out of resource in Fabric)

(0x00001000) The local link to adapter <busid> is down (unable to Fabric login)

(0x00002000) WWPN assignment file corrupted on adapter <busid>

(0x00004000) Mode table corrupted on adapter <busid>

(0x00008000) No WWPN for assignment table on adapter <busid>

46 How to use FC-attached SCSI devices - July 2006

Finding the right LUN with the SAN_disc tool

Environment: This example uses SUSE SLES9 SP2 64-bit, online-update

2.6.5-7.201-s390x, and Total Storage DS8000.

1. To install, issue the following commands:

tar xzf lib-zfcp-hbaapi-1.3.tgz

cd lib-zfcp-hbaapi-1.3

./configure

make

make install #if doxygen is not installed, you might receive some warnings

man libzfcphaapi #to see the environment variables for the library

man san_disc #tool instructions and help

2. To use, issue the following commands:

modprobe zfcp_hbaapi

lsmod

Module Size Used by

zfcp_hbaapi 53856 0

zfcp 256612 1 zfcp_hbaapi,[permanent]

scsi_mod 207480 1 zfcp

qeth 236696 0

qdio 75088 4 zfcp,qeth

ipv6 426384 139 qeth

ccwgroup 27648 1 qeth

dm_mod 100120 0

dasd_eckd_mod 89344 2

dasd_mod 103528 3 dasd_eckd_mod

ext3 184256 1

jbd 118856 1 ext3

3. Set the device online:

echo 1 > /sys/bus/ccw/drivers/zfcp/0.0.<device_bus_id>/online

where <device_bus_id> is the device number, for example 500e. Then check

the result:

Figure 14. Scenario environment

Chapter 10. Hints and tips 47

cat /sys/bus/ccw/drivers/zfcp/0.0.500e/online

1

4. To find the ID of the FCP adapter used, issue:

san_disc -c HBA_LIST |grep "0x"

41 0x5005076401202fd5 0x5005076400c1795a IBM0200000001795A 0.0.500e

5. To find the WWPNs of the storage machines that use that FCP adapter, issue:

san_disc -a <ID> -c PORT_LIST -V

Note: Those of interest are the "Storage subsystem".
For example:

san_disc -a 41 -c PORT_LIST -V

 No. Port WWN Node WWN DID Type AssociatedType

 1 0x500507640140863c 0x5005076400cd6aad 0x650613 N_Port (not specified)

 2 0x50050764010087ef 0x5005076400cd6aad 0x650713 N_Port (not specified)

 3 0x5005076401c08fa8 0x5005076400cd6aad 0x650a13 N_Port (not specified)

 4 0x5005076401808fa8 0x5005076400cd6aad 0x650b13 N_Port (not specified)

 5 0x500507630313c562 0x5005076303ffc562 0x650d13 N_Port Storage subsystem

 6 0x5005076401408fa8 0x5005076400cd6aad 0x650e13 N_Port (not specified)

 7 0x5005076401c08f98 0x5005076400cd6aad 0x650f13 N_Port (not specified)

 8 0x500507630303c562 0x5005076303ffc562 0x651113 N_Port Storage subsystem

 9 0x5005076401008fa8 0x5005076400cd6aad 0x651213 N_Port (not specified)

 10 0x5005076401808f98 0x5005076400cd6aad 0x651313 N_Port (not specified)

 ...

 75 0x50050764016022e4 0x5005076400c1ab8a 0x683313 N_Port (not specified)

 76 0x5005076401e08b14 0x5005076400c00305 0x683413 N_Port (not specified)

 77 0x5005076303000104 0x5005076303ffc104 0x683513 N_Port Storage subsystem

 78 0x5005076300cb93cb 0x5005076300c093cb 0x683613 N_Port Storage subsystem

 79 0x5005076401202ff7 0x5005076400c1ab8a 0x683713 N_Port (not specified)

 80 0x5005076401a08b14 0x5005076400c00305 0x683813 N_Port (not specified)

 81 0x50050763030b0104 0x5005076303ffc104 0x683913 N_Port Storage subsystem

 82 0x5005076300cc93cb 0x5005076300c093cb 0x683a13 N_Port Storage subsystem

 83 0x5005076401202fd1 0x5005076400c1ab8a 0x683b13 N_Port (not specified)

 84 0x5005076401c08f99 0x5005076400c1ab8a 0x683c13 N_Port (not specified)

 85 0x5005076303100104 0x5005076303ffc104 0x683d13 N_Port Storage subsystem

 86 0x5005076300c293cb 0x5005076300c093cb 0x683e13 N_Port Storage subsystem

 87 0x5005076401202fd8 0x5005076400c1ab8a 0x683f13 N_Port (not specified)

 88 0x5005076401808f99 0x5005076400c1ab8a 0x684013 N_Port (not specified)

 89 0x50050763031b0104 0x5005076303ffc104 0x684113 N_Port Storage subsystem

 90 0x5005076300c393cb 0x5005076300c093cb 0x684213 N_Port Storage subsystem

 91 0x50050764012022e4 0x5005076400c1ab8a 0x684313 N_Port (not specified)

 92 0x500507640140863c 0x5005076400cd6aad 0x650613 N_Port (not specified)

6. Add the WWPN port to the FCP configuration:

echo <WWPN> > /sys/bus/ccw/drivers/zfcp/0.0.<device_bus_id>/port_add

For example:

echo 0x5005076303000104 > /sys/bus/ccw/drivers/zfcp/0.0.500e/port_add

ls -aF /sys/bus/ccw/drivers/zfcp/0.0.500e/

./ cmb_enable fc_link_speed host0/ peer_wwnn scsi_host_no

../ cutype fc_service_class in_recovery peer_wwpn serial_number

0x5005076303000104/ detach_state fc_topology lic_version port_add status

availability devtype generic_services/ online port_remove wwnn

card_version failed hardware_version peer_d_id s_id wwpn

7. To find out the LUNs (SCSI devices) that are visible from that WWPN in the

storage machine, issue:

48 How to use FC-attached SCSI devices - July 2006

san_disc -a <ID> -p <WWPN> -c REPORT_LUNS

For example:

tel08fe:~ # san_disc -a 41 -p 0x5005076303000104 -c REPORT_LUNS

 Number of LUNs: 133

 No. LUN

 1 0x4011400000000000

 2 0x4011400100000000

 3 0x4011400200000000

 4 0x4011400300000000

 5 0x4011400400000000

 6 0x4011400500000000

 7 0x4011400600000000

 8 0x4011400700000000

 9 0x4011400800000000

 10 0x4011400900000000

 ...

 132 0x4012405000000000

 133 0x4012405100000000

8. Add the LUN to the unit configuration:

echo <LUN> > /sys/bus/ccw/drivers/zfcp/0.0.<device_bus_id>/<WWPN>/unit_add

For example:

echo 0x4011400000000000 > /sys/bus/ccw/drivers/zfcp/0.0.500e/0x5005076303000104/unit_add

dmesg:....

SCSI subsystem initialized

zfcp_hbaapi: module license ’unspecified’ taints kernel.

zfcp: loaded hbaapi.o, version $Revision: 1.4.4.1 $, maxshared=20, maxpolled=20

zfcp: registered dynamic minor with misc device

scsi0 : zfcp

zfcp: The adapter 0.0.500e reported the following characteristics:

WWNN 0x5005076400c1795a, WWPN 0x5005076401202fd5, S_ID 0x00653b13,

adapter version 0x2, LIC version 0xe307, FC link speed 2 Gb/s

zfcp: Switched fabric fibrechannel network detected at adapter 0.0.500e.

zfcp: ELS request rejected/timed out, force physical port reopen

 (adapter 0.0.500e, port d_id=0x00683513)

zfcp: warning: failed gid_pn nameserver request for wwpn 0x5005076303000104

 for adapter 0.0.500e

zfcp: port erp failed (adapter 0.0.500e, wwpn=0x5005076303000104)

 Vendor: IBM Model: 2107900 Rev: 0.97

 Type: Direct-Access ANSI SCSI revision: 05

SCSI device sda: 4194304 512-byte hdwr sectors (2147 MB)

SCSI device sda: drive cache: write back

 sda: unknown partition table

Attached scsi disk sda at scsi0, channel 0, id 1, lun 0

Attached scsi generic sg0 at scsi0, channel 0, id 1, lun 0, type 0

tel08fe:~ # lsscsi

[0:0:1:0] disk IBM 2107900 0.97 /dev/sda

Now you can work with /dev/sda.

Chapter 10. Hints and tips 49

Disabling QIOASSIST (V=V)

Before you begin:

v This section only applies to z/VM version 5.2 or higher.

v The z/VM fix APAR63838 is required to disable QIOASSIST.

The z/VM feature queue-I/O assist (QDIO performance assist for V=V guests) for a

virtual machine was introduced with z/VM 5.2.

QIOASSIST applies only to devices that use the Queued Direct I/O (QDIO)

architecture, HiperSockets™ devices and FCP devices. It gives a performance

benefit for queue-directed I/O. With QIOASSIST I/O interrupts can be passed

directly from the hardware to the virtual machine and certain QDIO-related

instructions can be interpretively executed by the processor, without z/VM

involvement. This feature is turned on by default. However, QIOASSIST might lead

to various zfcp problems, for example, the system might hang after a SCSI IPL. For

that reason it is recommended to turn QIOASSIST off.

There are two possibilities to switch off QIOASSIST:

v Switch QIOASSIST on or off for the entire z/VM guest.

v Switch QIOASSIST on or off for single zfcp subchannels.

Switching QIOASSIST on or off for the entire z/VM guest

Note: QIOASSIST is also used for OSA adapters. Disabling this feature for the

entire z/VM guest will also disable the adapters.

1. Use the QUERY QIOASSIST command to determine the current status of the

queue-I/O assist for your guest.

#cp query qioassist for *

00: ALL USERS SET - ON

00:

00: USER SETTING STATUS

00: T2930033 ON INACTIVE

The setting ″on″ indicates that the guest is able to use QIOASSIST and the

status INACTIVE means the specified user ID is currently not using the

queue-I/O assist. When the setting for all users is OFF, queue-I/O assist is

disabled for all virtual machines. When the setting for all users is ON, then the

individual user setting determines whether QIOASSIST is allowed or disallowed

for the specified z/VM guest.

2. Use the SET QIOASSIST command to control the queue-I/O assist:

50 How to use FC-attached SCSI devices - July 2006

#cp query qioassist for *

00: ALL USERS SET - ON

00:

00: USER SETTING STATUS

00: T2930033 ON ACTIVE

Ready; T=0.01/0.01 16:59:15

#cp set set qioassist off

Ready; T=0.01/0.01 16:59:21

#cp query qioassist for *

00: ALL USERS SET - ON

00:

00: USER SETTING STATUS

00: T2930033 OFF USER DISABLED

Ready; T=0.01/0.01 16:59:24

Switching QIOASSIST on or off for single zfcp subchannels

The switch to turn QIOASSIST on or off is part of the CP ATTACH command. The

option NOQIOASSIST disables this feature for the specified subchannel:

#cp att 3c15 to * NOQIOASSIST

Verify that the subchannel is disabled with the following command:

#cp q v fcp

00: CP Q V FCP

00: FCP 3C15 ON FCP 3C15 CHPID 50 SUBCHANNEL = 0014

00: 3C15 DEVTYPE FCP CHPID 50 FCP

00: 3C15 QDIO-ELIGIBLE QIOASSIST DISABLED

The following QIOASSIST states are possible:

v QIOASSIST NOT AVAILABLE. The QIOASSIST feature is not supported,

QIOASSIST is not available.

v QIOASSIST ELIGIBLE. The device is eligible to use.

v QIOASSIST QIOASSIST DISABLED. QIOASSIST is in general possible, but

disabled for this adapter.

v QIOASSIST ACTIVE. QIOASSIST is active and usable.

Chapter 10. Hints and tips 51

52 How to use FC-attached SCSI devices - July 2006

Appendix. Traces

While any zfcp messages found in /var/log/messages are alerts which usually

require intervention by administrators, the new traces described herein provide

additional information. Administrators alerted by some kernel 5 message might find

it advantageous to examine these traces among other additional sources of

information, such as hardware messages on the SE, FC analyzer traces, SAN

component specific information, and other Linux data. While events found in the

described traces do not necessarily indicate abnormal behavior, they might provide

clues on how an abnormal behavior has evolved.

The zfcp driver deploys separate trace areas (seen as separate directories) for

each FCP subchannel, or virtual FCP HBA. For each FCP subchannel, there are

separate trace areas (seen as separate directories) for different aspects of zfcp's

operation, that is Linux SCSI, FCP channel, SAN, and error recovery.

SCSI trace

This trace holds data records, which describe events related to the interaction

between the zfcp driver and the Linux SCSI subsystem, that is,

v Information about SCSI commands passed through the zfcp driver

v Error recovery events executed by the zfcp driver on behalf of the SCSI stacks

recovery thread

v Other noteworthy events indicated to the Linux SCSI stack by the zfcp driver

Trace records for the following events are available:

v SCSI command completion (see Table 3 on page 54)

v SCSI command abort (see Table 4 on page 55)

v SCSI logical unit and target reset (see Table 5 on page 56)

Trace records for other events to be added later might be:

v FCP transport class-related events (new SCSI stack interface)

The naming scheme for this type of trace is:

v zfcp_$<$busid$>$_scsi, e.g. zfcp_0.0.4000_scsi (for kernel 2.6)

v zfcp_$<$devno$>$_scsi, e.g. zfcp_4000_scsi (for kernel 2.4)

The following rules apply to the naming of individual fields of SCSI trace records:

v All fields with a prefix of scsi refer to Linux SCSI stack data structures, most

notably the scsi_cmnd data structure.

v All fields with a prefix of fcp refer to data structures defined in FCP standards,

most notably the FCP_CMND and FCP_RSP information units.

v All fields with a prefix of fsf refer to data structures defined by zSeries-specific

FCP documents.

The new traces are implemented in the new source code file: drivers/s390/scsi/
zfcp_dbf.c. Calls to trace functions defined in the source code file can be found

throughout the zfcp driver source code.

Debug feature levels enable you to adjust which events are traced (see Table 2 on

page 54).

© Copyright IBM Corp. 2006 53

Table 2. SCSI Trace, Verbosity Levels

Level Events

0

1 SCSI command abort, SCSI logical unit, or target reset.

2

3 (default) SCSI command completion tagged ″erro″.

4 SCSI command completion tagged ″retr″.

5 SCSI command completion tagged ″clrf″ or ″fail″.

6 SCSI command completion tagged ″norm″.

 Table 3. SCSI trace, SCSI command vompletion

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 ″rslt″

tag2 4 v ″norm″ if the command completes with a good SCSI

status (no sense data).

v ″erro″ if the command completes with a SCSI status

other than good.

v ″retr″ if the command completes with a good SCSI

status after being retried.

v ″fail″ if the command cannot be sent.

v ″clrf″ if the command is flushed from an internal retry

queue (kernel 2.4 only).

scsi_id 4 SCSI ID as seen by the SCSI stack.

scsi_lun 4 SCSI LUN as seen by the SCSI stack.

scsi_result 4 SCSI result from the scsi_cmnd including the so-called

host byte, status byte, driver byte, and message byte.

scsi_cmnd 8 Pointer to the scsi_cmnd structure.

scsi_serial 8 Serial number assigned to the scsi_cmnd by the SCSI

stack on submission.

scsi_opcode 16 SCSI opcode as copied from the scsi_cmnd to

FCP_CMND IU, it is truncated if necessary.

scsi_retries 1 Number of retries the SCSI stack makes for the

scsi_cmnd.

scsi_allowed 1 Maximum number of retries allowed for the scsi_cmnd

by the upper-level SCSI driver (for example, sd or st).

fsf_reqid 8 Pointer to the fsf_req structure used to convey the

FCP_CMND IU and to retrieve the FCP_RSP IU, also

the request identifier.

fsf_seqno 4 fsf_req sequence number.

fsf_issued 8 Time when the fsf_req is issued.

fcp_rsp_validity 1 Various validity bits as found in the FCP_RSP IU.

fcp_rsp_scsi_status 1 SCSI status from the FCP_RSP IU.

fcp_rsp_resid 4 Residual count for data underrun from the FCP_RSP

IU.

54 How to use FC-attached SCSI devices - July 2006

Table 3. SCSI trace, SCSI command vompletion (continued)

Field Bytes Description

fcp_rsp_code 1 RSP_CODE as defined in the FCP_RSP IU.

fcp_sns_info_len 4 Length in bytes of the SCSI sense data in the

FCP_RSP IU.

fcp_sns_info 0-256 SCSI sense data from FCP_RSP IU, it is truncated if

needed .

 Table 4. SCSI trace, SCSI command abort

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 ″abrt″

tag2 4 v ″okay″ if the abort request completes successfully.

v ″fail″ if the abort request completes unsuccessfully.

v ″lte1″ if the command finishes before an abort

request is issued.

v ″lte2″ if the command finishes before an abort

request is processed.

v ″nres″ if the abort request cannot be issued due to

resource constraints.

v ″fake″ if the command is aborted from the internal

retry queue, the command has not been sent (kernel

2.4 only).

scsi_id 4 SCSI ID as seen by the SCSI stack.

scsi_lun 4 SCSI LUN as seen by the SCSI stack.

scsi_result 4 SCSI result from the scsi_cmnd including the so-called

host byte, status byte, driver byte, and message byte.

scsi_cmnd 8 Pointer to the scsi_cmnd structure.

scsi_serial 8 Serial number assigned to scsi_cmnd by the SCSI

stack on submission.

scsi_opcode 16 SCSI opcode as copied from scsi_cmnd to the

FCP_CMND IU, it is truncated if needed.

scsi_retries 1 Number of retries that the SCSI stack makes for the

scsi_cmnd.

scsi_allowed 1 Maximum number of retries allowed for the scsi_cmnd

by upper-level SCSI driver (for example, sd or st).

fsf_reqid 8 Pointer to the fsf_req structure used to convey

FCP_CMND IU and to retrieve the FCP_RSP IU (the

request that is to be aborted), also the request identifier.

fsf_seqno 4 fsf_req sequence number.

fsf_issued 8 Time when fsf_req was issued.

fsf_reqid_abort 8 Pointer to the fsf_req structure used to convey the SCSI

command abort, also the request identifier.

fsf_seqno_abort 4 fsf_req sequence number.

fsf_issued_abort 8 Time when fsf_req was issued.

Appendix. Traces 55

Table 5. SCSI Trace, SCSI Logical Unit and Target Reset

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 v ″lrst″ for logical unit reset

v ″trst″ for target reset

tag2 4 v ″okay″ if the reset completes successfully.

v ″fail″ if the reset completes unsuccessfully.

v ″nsup″ if the reset completes unsuccessfully and the

device indicates that this task management function is

not supported (usually only for logical unit reset).

v ″nres″ if the reset cannot be issued due to resource

constraints.

scsi_id 4 SCSI ID as seen by the SCSI stack

scsi_lun 4 SCSI LUN as seen by the SCSI stack

scsi_result 4 SCSI result from the scsi_cmnd including the so-called

host byte, status byte, driver byte, and message byte

scsi_cmnd 8 Pointer to the scsi_cmnd structure

scsi_serial 8 Serial number assigned to the scsi_cmnd by the SCSI

stack on submission

scsi_opcode 16 SCSI opcode as copied from the scsi_cmnd to

FCP_CMND IU, it is truncated if needed

scsi_retries 1 Number of retries that the SCSI stack makes for the

scsi_cmnd

scsi_allowed 1 Maximum number of retries allowed for the scsi_cmnd by

upper-level SCSI driver (for example, sd or st)

fsf_reqid 8 Pointer to fsf_req used to convey the FCP_CMND IU and

to retrieve the FCP_RSP IU, also the request identifier

fsf_seqno 4 fsf_req sequence number

fsf_issued 8 Time when fsf_req was issued

fsf_reqid_reset 8 Pointer to the fsf_req structure used to convey reset

request, also the request identifier

fsf_seqno_reset 4 fsf_req sequence number

fsf_issued_reset 8 Time when fsf_req was issued

The following sample trace shows normal SCSI command completion (loglevel 6):

timestamp 3331567109686553

cpu 01

tag rslt

tag norm

scsi_id 0x00000001

scsi_lun 0x00000000

scsi_result 0x00000000

scsi_residual 0x00000000

scsi_cmnd 0x2a45000

scsi_serial 0x00000000000000ef

scsi_opcode 28000043 463e0000 08000000 00000000

scsi_retries 0x00

scsi_allowed 0x05

scsi_state 0x1003

56 How to use FC-attached SCSI devices - July 2006

scsi_ehstate 0x0000

scsi_owner 0x0102

fsf_reqid 0x8a7b800

fsf_seqno 0x000000f5

fsf_elapsed 0x00000000

fcp_rsp_validity 0x00

fcp_rsp_scsi_status 0x00

fcp_rsp_resid 0x00000000

fcp_rsp_code 0x00

fcp_sns_info_len 0x00000000

fcp_sns_info

HBA trace

This trace holds data records which describe events related to the interaction

between the zfcp driver and an FCP subchannel (or, in Linux lingo, a SCSI host or

an HBA), i.e. information about the protocol used for hardware-software

communication, I/O requests and other requests by the FCP channel executed on

behalf of the Linux device driver, and other noteworthy events indicated to the Linux

device driver by the FCP channel.

So far, trace records for the following events are available:

v FSF request completion (see Table 7.

v unsolicited status (see Table 13 on page 59.

v QDIO error conditions (see Table 14 on page 60.

The naming scheme for this type of trace is:

v zfcp_$<$busid$>$_hba, e.g. zfcp_0.0.4000_hba (for kernel 2.6)

v zfcp_$<$devno$>$_hba, e.g. zfcp_4000_hba (for kernel 2.4)

Debug feature levels allow you to adjust which events are traced (see Table 6).

 Table 6. HBA Trace, Verbosity Levels

Level Events

0 QDIO error conditions

1 FSF request completion tagged ″perr″ , FSF request completion

tagged ″ferr″

2 Unsolicited status

3 (default) FSF request completion tagged ″qual″

4 FSF request completion tagged ″open″

5

6 FSF request completion tagged ″norm″

The internal representation of a single HBA trace record consumes 120 bytes. That

is why about 34 HBA events can be stored in each page of the trace buffer.

 Table 7. HBA Trace, FSF Request Completion

Field Bytes Description

timestamp 8 Time when the event occurred

cpu 1 Number of the CPU where the event occurred

tag 4 ″resp″

Appendix. Traces 57

Table 7. HBA Trace, FSF Request Completion (continued)

Field Bytes Description

tag2 4 v ″perr″ if the request completes with a condition

indicated by an FSF protocol status

v ″ferr″ if the request completes with a condition

indicated by an FSF status

v ″qual″ if the request completes successfully but the

FCP adapter delivers some information into the FSF

status qualifier or the FSF protocol status qualifier

v ″open″ for the requests open port and open LUN with

successful completion (to log the access control

information)

Otherwise ″norm″ (most good completions)

fsf_command 4 FSF command code as issued to the FCP channel

fsf_reqid 8 Pointer to the fsf_req structure used to convey the FSF

command, also request identifier

fsf_seqno 4 fsf_req sequence number

fsf_issued 8 Time when fsf_req was issued

fsf_prot_status 4 FSF protocol status as received in the FCP Channel

response

fsf_status 4 FSF status as received in the FCP Channel response

fsf_prot_status_qual 16 FSF protocol status qualifier as received the FCP

Channel response

fsf_status_qual 16 FSF status qualifier as received in the FCP Channel

response

fsf_req_status 4 zfcp internal status of fsf_req

sbal_first 1 Index of the first SBAL used in the QDIO outbound

queue to convey the request to theFCP Channel

sbal_curr 1 Index of the last SBAL used in the QDIO outbound

queue to convey the request to the FCP Channel

sbal_last 1 Index of the last SBAL available in the QDIO outbound

queue to convey the request to the FCP Channel

pool 1 v ″1″ if fsf_req originated from the low memory

emergency pool

v Otherwise ″0″

FSF command-specific data, if any (see table Table 8

up to and including table Table 12 on page 59).

 Table 8. HBA Trace, FSF Request Completion, Send FCP Command (FSF Command 0x1)

Field Bytes Description

scsi_cmnd 8 Pointer to the scsi_cmnd structure (field unavailable for

task management function)

scsi_serial 8 Serial number assigned to the scsi_cmnd by the SCSI

stack on submission (field unavailable for task

management function)

58 How to use FC-attached SCSI devices - July 2006

Table 9. HBA Trace, FSF Request Completion, Abort FCP Command (FSF Command 0x2)

Field Bytes Description

fsf_reqid 8 Pointer to the fsf_req structure used to convey the FSF

command that is to be aborted, also the request identifier.

fsf_seqno 4 fsf_req sequence number that is to be aborted.

 Table 10. HBA Trace, FSF Request Completion, Open Port, Close Port, Close Physical Port

(FSF Commands 0x5, 0x8, 0x9)

Field Bytes Description

wwpn 8 World-wide port name of the N_Port that is opened or

closed.

d_id 3 Destination ID of the N_Port that is opened or closed.

port_handle 4 Port handle assigned by the FCP Channel to the N_Port

that is opened or closed.

 Table 11. HBA Trace, FSF Request Completion, Open LUN, Close LUN (FSF Commands

0x6, 0x7)

Field Bytes Description

wwpn 8 World-wide port name of the N_Port used to access the

LUN that is opened or closed.

fcp_lun 8 FCP_LUN of the logical unit that is opened or closed.

port_handle 4 Port handle assigned by the FCP Channel to the N_Port

used to access the LUN that is opened or closed.

lun_handle 4 LUN handle assigned by the FCP Channel to the logical

unit that is opened or closed.

 Table 12. HBA Trace, FSF Request Completion, Send ELS (FSF Command 0xb)

Field Bytes Description

d_id 3 Destination ID of the N_Port that is the addressee of ELS.

ls_code 1 Link Service command code.

 Table 13. HBA Trace, Unsolicited Status

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 The number of CPU where the event occurred.

tag 4 ″stat″

tag2 4 v ″fail″ if the status read buffer cannot be made available

to the FCP Channel.

v ″dism″ if the FCP adapter dismisses the unsolicited

status.

v ″read″ if the unsolicited status is received.

failed 1 Number of status read buffers that cannot be made

available to the FCP Channel.

status_type 4 Status type as reported by the FCP Channel.

status_subtype 4 Status subtype as reported by the FCP Channel.

queue_designator 8 Queue designator as reported by the FCP Channel.

Appendix. Traces 59

Table 14. HBA Trace, QDIO Error Conditions

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 ″qdio″

status 4 As passed by the qdio module

qdio_error 4 As passed by the qdio module

siga_error 4 As passed by the qdio module

sbal_index 1 Number of a first SBAL entry

sbal_count 1 Count of processed SBAL entries

The following sample trace shows completion of the FSF request open port:

timestamp 3331041709650204

cpu 01

tag resp

tag open

fsf_command 0x00000005

fsf_reqid 0x1725000

fsf_seqno 0x00000001

fsf_prot_status 0x00000001

fsf_status 0x00000000

fsf_prot_status_qual 00000000 00000000 00000000 00000000

fsf_status_qual 00020000 00000000 00000000 00000000

fsf_req_status 0x00000010

fsf_elapsed 0x00000000

sbal_first 0x11

sbal_curr 0x11

sbal_last 0x00

pool 0x00

erp_action 0x17c1c88

wwpn 0x0000000000000000

d_id 0xfffffc

port_handle 0x00000348

This sample trace shows the unsuccessful completion of the FCP command:

timestamp 3331041721819760

cpu 00

tag resp

tag ferr

fsf_command 0x00000001

fsf_reqid 0x3377800

fsf_seqno 0x0000001f

fsf_prot_status 0x00000100

fsf_status 0x000000af

fsf_prot_status_qual 00000000 00000000 00000000 00000000

fsf_status_qual 00000001 00000001 000002f4 00000000

fsf_req_status 0x00000010

fsf_elapsed 0x00000000

sbal_first 0x2f

sbal_curr 0x2f

sbal_last 0x52

pool 0x00

erp_action 0x0

scsi_cmnd 0x2a45000

scsi_serial 0x000000000000001b

This sample trace shows the incoming unsolicited status:

60 How to use FC-attached SCSI devices - July 2006

timestamp 3331261848311062

cpu 00

tag stat

tag read

failed 0x00

status_type 0x00000002

status_subtype 0x00000000

queue_designator 00000000 00000000

SAN trace

This trace holds data records, which describe events related to the interaction

between the zfcp driver and the FC storage area network (that is, everything

beyond the FCP Channel), that is:

v Information about notifications received from the storage area network

v Requests sent to the storage area network, which are not directly related to SCSI

I/O (FC-0 upto FC-3 layers, as well as FC-GS)

Trace records for the following events are available:

v Incoming ELS (see Table 16).

v ELS request sent to another FC port (see Table 16).

v ELS response received from another FC port (see Table 16).

v CT® request sent to the fabric switch (see Table 17 on page 62).

v CT response received from the fabric switch (see Table 18 on page 62).

The naming scheme for this type of trace is:

v zfcp_$<$busid$>$_san, e.g. zfcp_0.0.4000_san (for kernel 2.6)

v zfcp_$<$devno$>$_san, e.g. zfcp_4000_san (for kernel 2.4)

Debug feature levels enable you to adjust which events are traced (see Table 15).

 Table 15. SAN Trace, Verbosity Levels

Level Events

0

1 Incoming ELS.

2 ELS request sent to another FC port, ELS response received from

another FC port.

3 (default) CT request sent to the fabric switch, CT response received from the

fabric switch.

4

5

6

The internal representation of a single SAN trace record consumes 76 bytes. That

is why about 53 SAN events can be stored in each page of the trace buffer. This

number can be reduced by extensive use of variable length fields, such as ELS

payload.

 Table 16. SAN Trace, ELS

Field Bytes Description

timestamp 8 Time when event occurred.

Appendix. Traces 61

Table 16. SAN Trace, ELS (continued)

Field Bytes Description

cpu 1 Number of the CPU where the event occurred.

tag 4 v ″iels″ for the incoming ELS

v ″sels″ for the ELS request sent to another FC port

v ″rels″ for the ELS response received from another FC

port

fsf_reqid 8 Pointer to the fsf_req structure used to convey ELS, also

the request identifier.

fsf_seqno 4 fsf_req sequence number.

s_id 3 Source ID (D_ID) of that N_Port that is the originator of

ELS (FCP Channel port).

d_id 3 Destination ID (D_ID) of N_Port that is the addressee of

ELS.

ls_code 1 Link Service code.

payload 0-1024 Additional information (payload) from ELS, it is truncated if

needed.

 Table 17. SAN Trace, CT request sent to fabric switch

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 ″sctc″

fsf_reqid 8 Pointer to the fsf_req structure used to convey the CT

request, also the request identifier.

fsf_seqno 4 fsf_req sequence number.

s_id 3 Source ID (D_ID) of the N_Port that is the originator of the

CT request (FCP Channel port).

d_id 3 Destination ID (D_ID) of the N_Port that is the addressee

of the CT request.

cmd_req_code 2 Command code from CT_IU.

revision 1 Revision from CT_IU.

gs_type 1 GS_Type from CT_IU.

gs_subtype 1 GS_Subtype from CT_IU.

options 1 Options from CT_IU.

max_res_size 2 Maximum/residual size from CT_IU.

payload 0-24 Additional information (payload) from CT_IU, it is truncated

if needed.

 Table 18. SAN Trace, CT response received from fabric switch

Field Bytes Description

timestamp 8 Time when the event occurred.

cpu 1 Number of the CPU where the event occurred.

tag 4 ″rctc″

62 How to use FC-attached SCSI devices - July 2006

Table 18. SAN Trace, CT response received from fabric switch (continued)

Field Bytes Description

fsf_reqid 8 Pointer to fsf_req structure used to convey the CT request,

also the request identifier.

fsf_seqno 4 fsf_req sequence number.

s_id 3 Source ID (D_ID) of the N_Port that is the originator of the

CT response (FCP Channel port).

d_id 3 Destination ID (D_ID) of the N_Port that is the addressee

of the CT response.

cmd_rsp_code 2 Response code from the CT_IU.

revision 1 Revision from CT_IU.

reason_code 1 Reason code from CT_IU.

reason_code_expl 1 Reason code explanation from CT_IU.

vendor_unique 1 Vendor unique from CT_IU.

payload 0-24 Additional information (payload) from CT_IU, it is truncated

if needed.

The following sample trace shows two events for CT request and response on the

CT request:

timestamp 3331041709650245

cpu 00

tag octc

fsf_reqid 0x29b2800

fsf_seqno 0x00000002

s_id 0x653b13

d_id 0xfffffc

cmd_req_code 0x0121

revision 0x01

gs_type 0xfc

gs_subtype 0x02

options 0x00

max_res_size 0x1020

payload 50050763 00c20b8e

timestamp 3331041709652398

cpu 02

tag rctc

fsf_reqid 0x29b2800

fsf_seqno 0x00000002

s_id 0xfffffc

d_id 0x653b13

cmd_rsp_code 0x8002

revision 0x01

reason_code 0x00

reason_code_expl 0x00

vendor_unique 0x00

payload 00653e13

This trace shows request and response of ELS command:

timestamp 3331457705921572

cpu 00

tag oels

fsf_reqid 0x8cc1000

fsf_seqno 0x00000022

s_id 0x653b13

d_id 0x653e13

ls_code 0x52

payload 52000000 00653b13 50050764 01202fd5 50050764 00c1795a 00653b13

Appendix. Traces 63

timestamp 3331457705922834

cpu 01

tag rels

fsf_reqid 0x8cc1000

fsf_seqno 0x00000022

s_id 0x653e13

d_id 0x653b13

ls_code 0x52

payload 02000000 00653e13 50050763 00c20b8e 50050763 00c00b8e 00653e13

One more sample trace for incoming ELS:

timestamp 3331355552811473

cpu 01

tag iels

fsf_reqid 0x29e8a00

fsf_seqno 0x00000000

s_id 0xfffffd

d_id 0x653b13

ls_code 0x61

payload 61040008 00650713

64 How to use FC-attached SCSI devices - July 2006

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 65

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

Trademarks

The following terms are trademarks of International Business Machines Corporation

in the United States, other countries, or both:

developerWorks

ECKD

Enterprise Systems Architecture/390

Eserver

FICON

HiperSockets

IBM

Magstar

Resource Link

S/390

SystemStorage

System z

TotalStorage

Virtualization Engine

z/Architecture

z/VM

z9

zSeries

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Linear Tape-Open, LTO and Ultrium are trademarks of International Business

Machines Corporation, Hewlett-Packard Company, and Seagate Corporation in the

United States, other countries or both.

Other company, product, and service names may be trademarks or service marks

of others.

66 How to use FC-attached SCSI devices - July 2006

Glossary

CIFS. Common Internet File System.

Common Internet File System. A protocol that

enables collaboration on the Internet by defining a

remote file-access protocol that is compatible with the

way applications already share data on local disks and

network file servers.

FCP. Fibre Channel Protocol.

Fibre Channel Protocol. The serial SCSI command

protocol used on fibre-channel networks.

HBA. host bus adapter.

host bus adapter. An interface card that connects a

host bus, such as a peripheral component interconnect

(PCI) bus, to the storage area network (SAN)

logical unit number. In the SCSI standard, a unique

identifier used to differentiate devices, each of which is

a logical unit (LU).

LUN. logical unit number.

Network File System. A protocol, developed by Sun

Microsystems, Incorporated, that allows a computer to

access files over a network as if they were on its local

disks.

NFS. Network File System.

NPIV. N_Port ID Virtualization.

N_Port ID Virtualization. The virtualization of target

ports, where an HBA performs multiple logins to a Fibre

Channel fabric using a single physical port (N_port),

thereby creating a unique port name for each login.

These virtualized Fibre Channel N_Port IDs allow a

physical Fibre Channel port to appear as multiple,

distinct ports.

port zoning. Defining a set of Fibre Channel ports

where each Fibre Channel port is specified by the port

number at the switch or fabric to which it is connected.

RAID. Redundant Array of Independent Disks.

Redundant Array of Independent Disks. A collection

of two or more disk physical drives that present to the

host an image of one or more logical disk drives. In the

event of a single physical device failure, the data can be

read or regenerated from the other disk drives in the

array due to data redundancy.

SAN. storage area network.

storage area network. A dedicated storage network

tailored to a specific environment, combining servers,

storage products, networking products, software, and

services.

WWPN zoning. Defining a set of Fibre Channel ports

where each Fibre Channel port is specified by its

WWPN.

zoning. In fibre-channel environments, the grouping of

multiple ports to form a virtual, private, storage network.

Ports that are members of a zone can communicate

with each other, but are isolated from ports in other

zones.

© Copyright IBM Corp. 2006 67

68 How to use FC-attached SCSI devices - July 2006

Index

A
adapter

host bus 1

port, configuring for FCP 7

setting online 9

adapters
Fibre Channel supported vii

B
boot program selector, SCSI IPL parameter 25

boot record logical block address, SCSI IPL

parameter 26

booting the system 23

C
CCW 23

channel command word 23

CIFS 1

command
CP ATTACH 51

lszfcp 9

multipath 18

multipathd 38

scsi_logging_level 36

set loaddev 31

udevinfo 12

zfcpdump 28

zipl 27

Common Internet File System 1

CP ATTACH command 51

D
debugging

using SCSI logging feature 35

using traces 41

developerWorks vi, 36

device
interoperability matrix vii

SCSI, persistent naming 11

dm_multipath module 18

DS8000
configuration 16

dump, SCSI 27

E
ERROR RECOVERY logging area 35

F
fabric

fiber channel 2

zones 8

FCP 1

FCP device
accessing 7

configuring 7

Fibre Channel adapters
supported vii

Fibre Channel Protocol 1

H
hardware

supported vii

HBA 1

HBA API 2

HLCOMPLETE logging area 35

HLQUEUE logging area 35

host bus adapter 1

I
information

IBM Publication Center vii

referenced vii

where to find vi

initial program load 23

IOCTL logging area 35

IODF 28

configuring 7

IPL 23

sequence 23

L
LLCOMPLETE logging area 35

LLQUEUE logging area 35

load address, SCSI IPL parameter 25

load parameter, SCSI IPL parameter 26

load type, SCSI IPL parameter 25

logging word 36

logical unit number 1

logical unit number, SCSI IPL parameter 25

lszfcp command 9

LUN 1

configuring 9

masking 8

M
MLCOMPLETE logging area 35

MLQUEUE logging area 35

MPIO 15

multipath
for DS8000 16

multipath command 18

multipath I/O 15

example 17

© Copyright IBM Corp. 2006 69

multipath tools
using to configure 16

multipath-tools 15

multipathing 15

configuring 16

multipath-tools 15

N
N_port 5

N_Port ID Virtualization
supporting zfcp device driver 5

Network File System 1

NFS 1

NOQIOASSIST option 51

NPIV
access control 6

supporting zfcp device driver 5

troubleshooting 46

O
OS specific load parameter, SCSI IPL parameter 26

P
persistent device naming 11

port
configuring for FCP 7

port zoning 8

prerequisites vii

problems, common 45

Q
QIOASSIST 50

states 51

switching on or off for single zfcp subchannels 51

switching on or off for z/VM guest 50

R
restrictions vii

S
SAN

addressing 24

introduction 1

SCAN BUS logging area 35

SCSI
dump 27

installing Linux on disk 26

logging level 35

persistent device naming 11

SCSI IPL 23

further reading 31

hardware requirements 24

LPAR 28

parameters 25

SCSI IPL (continued)
software requirements 24

z/VM guest 30

SCSI logging feature 35

logging areas 35

logging word 36

scsi_logging_level command 36

set loaddev command 31

storage
devices in SAN 1

further information 45

interoperability matrix i

setup for FCP 45

storage area network
introduction 1

store status, SCSI IPL parameter 26

switch 2

zones 8

System z
meaning v

T
time-out value, SCSI IPL parameter 26

TIMEOUT logging area 35

TotalStorage 45

trace records 42

U
udev 11

example of use 11

rules 12

W
worldwide port name 2

worldwide port name, SCSI IPL parameter 25

WWN zoning 8

WWPN 2

Z
z/VM

version for SCSI IPL 24

zfcp
traces 41

zfcp device driver
architecture v

configuring 9

description 2

patch for HBA API 2

zfcpdump command 28

zipl command 27

zipl.conf example 27

zoning
port 8

WWN 8

70 How to use FC-attached SCSI devices - July 2006

Readers’ Comments — We’d Like to Hear from You

Linux on System z

How to use FC-attached SCSI devices with Linux on System z

July 28, 2006

Linux Kernel 2.6

 Publication No. SC33-8291-00

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-8291-00

SC33-8291-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH

Information Development

Department 3248

Schoenaicher Strasse 220

71032 Boeblingen

Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC33-8291-00

	Contents
	About this document
	Who should read this document
	How this document is organized
	Where to find more information
	Supported hardware

	Chapter 1. Introducing SAN and FCP
	The zfcp device driver

	Chapter 2. Using N_Port ID Virtualization
	Chapter 3. Configuring FCP devices
	Step 1: Configuring the IODF
	Step 2: Defining zones
	Step 3: LUN masking
	Step 4: Configuring the zfcp device driver

	Chapter 4. Naming SCSI devices persistently using udev
	Using udev and zfcp
	Persistent SCSI device naming

	Chapter 5. Improving system availability using multipathing
	Implementing multipathing with the multipath-tools
	Configuring multipathing with the device-mapper and multipath-tools
	Example of a multipath I/O configuration for IBM TotalStorage DS8000
	Example of a multipath I/O configuration for IBM TotalStorage DS6000
	Example of multipath I/O devices as physical volumes for LVM2

	Chapter 6. Booting the system using SCSI IPL
	Why SCSI IPL?
	Hardware requirements
	Software requirements
	SAN addressing
	SCSI IPL parameters
	SCSI disk installation and preparation
	SCSI dump
	Example: IODF definition
	Example: SCSI IPL of an LPAR
	Example: SCSI IPL of a z/VM guest
	Further reading

	Chapter 7. Using SCSI tape and the IBMtape driver
	Supported tapes and medium change devices
	Supported zSeries server models and host bus adapters
	Supported operating system environments

	Chapter 8. Logging using the SCSI logging feature
	Examples

	Chapter 9. Debugging using zfcp traces
	Interpreting trace records

	Chapter 10. Hints and tips
	Setting up TotalStorage DS8000 and DS6000 for FCP
	Further information

	Troubleshooting NPIV
	Finding the right LUN with the SAN_disc tool
	Disabling QIOASSIST (V=V)
	Switching QIOASSIST on or off for the entire z/VM guest
	Switching QIOASSIST on or off for single zfcp subchannels

	Appendix. Traces
	SCSI trace
	HBA trace
	SAN trace

	Notices
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

