
Linux on System z9 and zSeries

How to use Execute-in-Place Technology

with Linux on z/VM

December 14, 2005

Linux Kernel 2.6 (October 2005 stream)

SC33-8287-00

���

Linux on System z9 and zSeries

How to use Execute-in-Place Technology

with Linux on z/VM

December 14, 2005

Linux Kernel 2.6 (October 2005 stream)

SC33-8287-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 37.

First Edition (December 2005)

This edition applies to Linux kernel 2.6 (October 2005 stream) and to all subsequent releases and modifications until

otherwise indicated in new editions.

SC33-8286 is the October 2005 stream equivalent to SC33-8283, which applies to the April 2004 stream.

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Summary of changes v

About this publication vii

Who should read this document vii

How this document is organized vii

Where to get more information viii

Chapter 1. Introduction to DCSS 1

Which data you can share 1

Where a DCSS can reside 1

DCSS above guest storage 2

DCSS in a storage gap 2

How programs run from a DCSS 4

Granularity of shared data 5

Sharing directories 5

Sharing individual files 5

Limitations and trade-offs you must be aware of . . 6

Using multiple DCSSs 7

Considerations for sharing files or directories that

are not on the root file system 7

Requirements 7

Chapter 2. Setting up a DCSS 9

Task 1: Planning the DCSS content 9

Identifying individual files to be shared 9

Identifying directories to be shared 12

Task 2: Planning the size and location of the DCSS 13

Task 3: Creating the DCSS 14

Task 4: Copying the shared data to the DCSS . . . 15

Task 5: Setting up your guest for accessing the

DCSS 17

Defining a storage gap 18

Extending the addressable address range beyond

the guest storage 18

Task 6: Testing the DCSS 19

Task 7: Providing a script to over-mount shared data

on startup 20

Over-mounting individual files 20

Over-mounting entire directories 21

Task 8: Activating execute-in-place 22

Chapter 3. Making your Linux guests

use the DCSS 25

Chapter 4. Updating the software on a

DCSS 27

Updating software on an existing DCSS 27

Replacing a DCSS 28

Appendix. Scripts used for setting up a

DCSS 29

copylibs.sh 30

xipinit-fw.sh 32

xipinit.sh 33

update.sh 34

Notices 37

Trademarks 38

© Copyright IBM Corp. 2004, 2005 iii

||

||

iv How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

Summary of changes

This edition contains changes related to the October 14th, 2005 code software drop.

This document is the October 2005 stream equivalent to SC33-8283, which applies

to the April 2004 stream.

Changes compared to SC33-8283-00 are:

v The execute-in-place technology is now available as a mount option of the

second extended file system (ext2). You no longer need the execute-in-place file

system (xip2).

v This document no longer describes how to copy data to a DCSS by performing

an IPL.

v The mkxipimage.sh script has become obsolete and has been deleted from this

document.

© Copyright IBM Corp. 2004, 2005 v

|

|

|
|
|

|

|
|
|

|
|

|
|

vi How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

About this publication

This document describes how you can keep down the memory requirements and

boost the performance of a virtual Linux® server farm by using a z/VM®

discontiguous saved segment (DCSS). DCSSs can be used by Linux instances that

run as z/VM guests on an IBM® System z9™ or Eserver zSeries® mainframe.

In this book, System z9 and zSeries is taken to include System z9, zSeries in 64-

and 31-bit mode, as well as S/390® in 31-bit mode.

You can find the latest version of this document on developerWorks® at:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

Who should read this document

This document is intended for Linux administrators and system programmers in

charge of a virtual Linux server farm that runs under z/VM.

Note

This document is intended for expert users. Be sure you understand the

implications of using a DCSS before you attempt to perform the tasks

described in this document.

How this document is organized

Chapter 1, “Introduction to DCSS,” on page 1 introduces the concepts of DCSSs

and discusses the options you have when setting up a DCSS for your Linux guests.

Chapter 2, “Setting up a DCSS,” on page 9 provides step-by-step procedures for

planning and setting up a DCSS. For some of the tasks there are alternate

procedures you can use, depending on the options you choose for:

v The location of your DCSS in storage

v The granularity of the data in your DCSS

The introduction to each of these alternate procedures clearly indicates to which

option it applies.

Chapter 3, “Making your Linux guests use the DCSS,” on page 25 summarizes

what you need to do for each Linux guest to make it use the DCSS, after you have

put the DCSS in place.

© Copyright IBM Corp. 2004, 2005 vii

|

|
|

|

|

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html

Chapter 4, “Updating the software on a DCSS,” on page 27 describes how you can

update a DCSS that is already in use.

“Scripts used for setting up a DCSS,” on page 29 contains the scripts that are

referred to in the main part of this document. You can also find a tarball with these

scripts at:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

Where to get more information

For more information on the CP commands and guest storage, refer to CP

Command and Utility Reference, SC24-6081.

For information on DCSSs refer to z/VM Saved Segments Planning and

Administration, SC24-6056

For more information on the DCSS block device driver refer to Device Drivers,

Features, and Commands. You can obtain the latest version of this book on

developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

For information on the xip mount option of the second extended file system (ext2),

see:

v Documentation/filesystems/xip.txt

v Documentation/filesystems/ext2.txt

in your Linux kernel source tree.

viii How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|

|

|

|

|

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html
http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html

Chapter 1. Introduction to DCSS

This section explains what a z/VM DCSS is and how DCSSs can help to boost the

performance of virtual Linux server farms.

All operating system instances that run concurrently on a System z9 or zSeries

mainframe vie for some of the available physical memory. When multiple

operating system instances need the same data, that data might get loaded into

memory several times.

In a virtual server farm with similar Linux instances there is often a considerable

amount of data that is required by all instances. A DCSS enables z/VM to load

such data into a designated segment of physical memory and allow all Linux

instances that need the data to share this memory segment.

A major part of the memory required by a Linux server is used for binary

application files and for shared library files. The potential for saving memory by

sharing application binaries and libraries depends on the respective applications. In

some test scenarios, the same resources could support four times the number of

Linux guests for a given guest performance after a DCSS was put in place.

Which data you can share

The shared data must be identical across all sharing Linux instances.

v Application files can only be shared by Linux instances that use the same

version of an application.

v Shared data must be read-only. To prevent Linux instances from interfering with

one another they are not given write permission for the DCSS.

v Applications and libraries that are frequently used by numerous Linux instances

are good candidates for sharing.

The following items are not suitable for sharing:

v Files or directories that are being written to.

Note: If you choose to share entire directories, the subdirectories of a shared

directory are also shared. Therefore, you cannot write to a subdirectory of

a shared directory.

v Scripts.

Sharing scripts is ineffective because they are typically interpreted and not

executed directly. Scripts include, for example, files with extension .pl, .py, .sh.

v The /etc directory.

You cannot share Linux instance specific data. The /etc directory holds, for

example, instance specific network configuration data, like a Linux instance’s IP

address.

Where a DCSS can reside

All guests access the DCSS with the same real addresses. There are two alternative

placements for a DCSS to avoid conflicts with the guest’s addressing:

© Copyright IBM Corp. 2004, 2005 1

|

v The DCSS addresses are set to be above the highest storage of all individual

guests

v The DCSS is placed in the address range between non-contiguous storage

extents (referred to as a storage gap in this document)

The guest storage is the amount of memory that z/VM presents to a guest operating

system as the guest machines’s real memory.

DCSS above guest storage

Figure 1 shows two Linux guests with their storage. The “mem=” kernel parameter

enables Linux to handle real addresses beyond what it would normally consider its

real memory. To make the entire DCSS addressable, the value for “mem” must be

at the upper limit of the DCSS, like Linux A in Figure 1, or above the upper limit

of the DCSS, like Linux B in Figure 1.

 z/VM supports DCSSs up to 2047 megabyte only. While DCSSs for 64-bit Linux

guests can go right up to 2047 megabyte, 31-bit Linux guests require the address

range from 1960 megabyte to 2048 megabyte (2 gigabyte) for virtual memory

allocations. The maximum DCSS size is:

64-bit: 2047 MB – <largest guest storage size>

31-bit: 1960 MB – <largest guest storage size>

The guests’ storage must be kept small enough to allow for the DCSS between the

storage size of the guest with the largest storage and the 2047 megabyte or 1960

megabyte ceiling.

DCSS in a storage gap

You can define your guests’ storage as one or more non-contiguous storage extents.

Defining non-contiguous storage extents implicitly defines non-addressable storage

ranges between the extents. For convenience, this document refers to such

non-addressable storage ranges as storage gaps.

A DCSS can be placed into an address range that is within a storage gap for all

Linux guests that are to share the DCSS. A storage gap is the preferred DCSS

placement for 64-bit Linux guests.

Figure 1. DCSS above Linux guest storage

2 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

Figure 2 illustrates a DCSS at an address range that is a storage gap for two 64-bit

Linux guests.

 To avoid conflicts with data structures that Linux guests require at low memory

locations, you are advised to define your storage gaps above 128 megabyte.

Always use full megabyte boundaries as starting and ending addresses for the

storage gaps.

For 64-bit Linux guests you can assign guest storage above 2 gigabyte (2048

megabyte). Locating the DCSS in a storage gap allows a large DCSS to reside

below 2 gigabyte without constraining the size of the 64-bit Linux guest storage.

As shown in Figure 3, for 31-bit Linux guests both guest storage and the storage

gap surrounding the DCSSs must be below 1960 megabyte. A large DCSS,

therefore, constrains your guest storage sizes.

 While storage gaps for 64-bit Linux guests can go up to 2047 megabyte, 31-bit

Linux guests require the address range from 1960 megabyte to 2 gigabyte for

virtual memory allocations. The maximum DCSS size is:

Figure 2. DCSS in a storage gap — 64-bit

Figure 3. DCSS in a storage gap — 31-bit

Chapter 1. Introduction to DCSS 3

64-bit: 2047 MB – 128 MB = 1919 MB

31-bit 1960 MB – <largest guest storage size>

How programs run from a DCSS

z/VM allows you to define DCSSs that can be loaded with data and saved on

z/VM’s spool space. Guest operating systems can load a DCSS into their own

address space. If multiple guest operating system instances load the same DCSS,

z/VM loads it into memory once only.

While the kernel and all other data that are not shared run from the storage of

each guest, shared user space programs are mapped to the DCSS and run directly

from the DCSS.

 Figure 4 shows a simple example where bash and vi are shared between two Linux

guests, Linux A and Linux B.

Linux can access a DCSS using the DCSS block device driver and the second

extended file system (ext2) with the xip mount option. To replace directories in the

Linux file system with shared content from a DCSS, the shared directories must be

over-mounted.

Figure 4. Shared programs run directly from the DCSS

Figure 5. ext2 with the xip mount option over-mounting directories

4 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|
|

|

On the left side, Figure 5 on page 4 shows a Linux file system with the

corresponding DASD volume where it resides as a file system image file. On the

right, two of the directories, c and d, have been over-mounted with an ext2 file

system. The ext2 file system is mounted on a spare directory, e. Any calls to c are

being redirected to e/c and calls to d are redirected to e/d.

Linux loads shared libraries and application files through the mmap() operation.

mmap() maps the contents of a file into the application’s address space. If mounted

with the xip option, the ext2 file system performs this operation by mapping the

contents of the DCSS into the application’s address space while other file systems

use a page cache. The feature enabled by the xip mount option is called

execute-in-place because the file contents are not physically copied to a different

memory location.

Execute-in-place allows application files and libraries to be accessed without I/O

operations. Avoiding I/O operations increases performance. Running applications

directly in a shared memory segment saves memory.

Granularity of shared data

A DCSS can contain shared data at the granularity of:

v Entire directories

v Individual files

With the scripts and methods described in this document you cannot create DCSSs

that combine both granularities. This section helps you to decide which granularity

is more suitable for your needs.

Sharing directories

You can share data at the granularity of entire directories as illustrated in Figure 5

on page 4.

Advantages: Sharing entire directories allows you to share a large number of files

with only a few bind-mount operations, and therefore with only a little overhead

in memory consumption.

Disadvantages: Every shared directory and its subdirectories are read-only. You

cannot share read-only files in directories that also contain files that are written to.

Sharing files at the granularity of entire directories is advantageous if:

v You want to share a large number of small files.

v You do not want to share files in directories that are written to.

Sharing individual files

The left side of Figure 6 on page 6 shows a Linux file system with the

corresponding DASD volume where it resides as a file system image. Directories /c

and /d are shown with a small number of the files they contain. Some of these files

are to be shared.

Chapter 1. Introduction to DCSS 5

|
|

|
|
|
|

On the right side, a DCSS contains individual files, /c/file1, /c/dir1/file2, and

/d/file5. Mounting the ext2 file system from this DCSS over-mounts only these

individual files. With the DCSS mounted on a mount point e, calls to these files are

redirected to /e/c/file1, /e/c/dir1/file2, and e/d/file5, respectively. Calls to

other files in directories c and d are not affected.

Advantages: Sharing individual files allows you to be very specific about what you

want to share and what you do not want to share. Directories with shared

read-only files are not limited to reading, new files can be created in them at any

time, and files that have not been selected to be shared can be written to.

Disadvantages: Sharing files at the granularity of individual files requires a

bind-mount operation for each shared file. Every bind-mount operation consumes

up to 750 byte of storage for each guest that shares the DCSS. For a large number

of shared files, there can be considerable storage consumption on account of

bind-mount operations.

Sharing files at the granularity of individual files is advantageous if:

v You want to share a small number of files.

v You want to share files that reside in directories that are written to.

v You want to share files that are spread over a large number of directories, while

numerous files in these directories do not need to be shared.

Limitations and trade-offs you must be aware of

v DCSSs occupy spool space. When you update a DCSS, multiple versions of the

DCSS might coexist. Ensure that your available spool space is at least a multiple

of the DCSS size.

v The address range where the DCSS is located is the same for all guest operating

system instances and needs to be set when the DCSS is created.

v The address range must not overlap with the guest storage (perceived as

physical memory by Linux) of any operating system instance that accesses it.

v Linux needs memory management data structures to access data on the DCSS.

These data structures occupy 13 MB (31-bit Linux kernel) or 26 MB (64-bit

Linux kernel) per GB DCSS. These data structures are subject to z/VM paging

and are accessed infrequently, but be aware that DCSS resource consumption

Figure 6. ext2 with the xip mount option over-mounting individual files

6 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|

|

increases with size. Sharing files or directories that contain rarely used data can

degrade the performance and scalability of a server farm.

v Sharing individual files rather than entire directories can lead to an increase in

storage consumption of up to 750 byte for each file. These data structures are

subject to z/VM paging and are accessed infrequently, but be aware that

resource consumption increases with the number of shared files.

v Some of the tasks you need to perform to set up or update a DCSS include

commands that might take considerable time to complete. Be sure that the z/VM

watchdog is not active on any Linux guest that you are using to perform these

tasks. The watchdog might time out and restart your Linux guest.

Using multiple DCSSs

You can set up multiple DCSSs to be used by the same Linux guest. A Linux guest

can concurrently use multiple DCSSs above the storage limit or multiple DCSSs in

storage gaps, but not a combination of the two. To use multiple DCSSs

concurrently, you need to ensure that the address ranges of any two used DCSSs

do not overlap.

This document describes using a single DCSS only.

Considerations for sharing files or directories that are not on

the root file system

You might want to share a file or directory that is not on the root file system (the

file system mounted on /) but on a separate partition. Sharing files or directories

that are on file systems other than the root file system is beyond the scope of this

document.

If you want to share such files or directories, you need to be able to adapt the

steps in this document. In particular, you need to be able to modify the startup

scripts of your Linux distribution and adapt your xipinit.sh or xipinit-fw.sh script

(see “Task 7: Providing a script to over-mount shared data on startup” on page 20)

to ensure that:

v Any file systems with directories or files to be over-mounted are mounted at the

beginning of your script, before the bind mount operations.

v The file systems with directories or files to be over-mounted are not mounted

again after the DCSS has been mounted.

Requirements

To be able to use a DCSS:

v All Linux instances that share a DCSS must be guest operating systems of the

same z/VM.

v Your Linux distribution must provide the ext2 file system and must have the xip

configuration option compiled into the kernel (kernel configuration parameter

CONFIG_EXT2_FS_XIP).

v Your Linux distribution must include the DCSS block device driver, either

built-in or as a separate module.

Chapter 1. Introduction to DCSS 7

|

|
|
|

|
|

8 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

Chapter 2. Setting up a DCSS

This section describes what you need to do to put a DCSS in place.

Perform the following tasks to provide a DCSS for your virtual Linux server farm:

1. Plan the DCSS content.

2. Plan the size and location of the DCSS.

3. Create the DCSS.

4. Copy the shared data to the DCSS.

5. Set up the guest for accessing the DCSS.

6. Test the DCSS.

7. Provide a script to over-mount shared data on startup.

8. Activate execute-in-place.

Task 1: Planning the DCSS content

This task helps you to decide what to include in a DCSS.

You might want to use the DCSS to share entire read-only file system directories or

to share the read-only files of applications and other individual read-only files.

v If you want to share applications and individual files, proceed with “Identifying

individual files to be shared.”

v If you want to share entire directories, proceed with “Identifying directories to

be shared” on page 12.

You need to plan your DCSS such that it fits into the address space of all guest

operating system instances that are going to use it (see “Task 2: Planning the size

and location of the DCSS” on page 13).

Identifying individual files to be shared

This section helps you to decide what to include in a DCSS if you want to share

the read-only files of applications and other individual files. If you want to share

entire directories, skip this section and perform the steps in “Identifying directories

to be shared” on page 12 instead.

1. List the applications with the highest memory consumption on your Linux

guests. These applications are your candidates for sharing. Issue:

ps -e -ouser,pid,size,args | sort +2n -3

Processes with the highest memory consumption are listed last in the command

output.

You get the maximum benefit from sharing applications that are used

frequently by a large number of Linux guests.

2. Create an empty directory to serve as a repository for the files to be shared.

3. For each application you consider sharing, find out the space needed to

accommodate the read-only application files.

a. Get a copy of the copylibs.sh script (see “copylibs.sh” on page 30). See

“Scripts used for setting up a DCSS,” on page 29 for information on where

you can obtain a copy of this script.

© Copyright IBM Corp. 2004, 2005 9

|

|

b. Run copylibs.sh to identify the read-only files of a particular application

and to copy them to the directory you created in step 2 on page 9. Issue a

command of this form:

copylibs.sh -f <application> -d <destination_directory>

The script assumes that the application is in the path. Add the application

to the path if necessary.

Example: This command copies the read-only files of the httpd Web server

to a directory /dcss

copylibs.sh -f httpd -d /dcss

Result: copylibs.sh determines the directory where the application resides

and copies the application’s read-only files to the destination directory. The

script replicates the application’s subdirectory structure. Symbolic links are

resolved and files are copied to a subdirectory that corresponds to their

actual location. If the destination directory does not exist, copylibs.sh creates

it.

Example: Figure 7 shows a simplified example where an application consists

of five files:

v /usr/bin/abc/symlink is a symbolic link that points to a read-only file

/lib/read3.so

v /usr/bin/abc/write1 is a file that can be written to

v /usr/bin/abc/read1 is a read-only file

v /usr/bin/abc/xyz/read2 is a read-only file

v /usr/bin/abc/xyz/write2 is a file that can be written to

copylibs.sh resolves the symbolic link and copies the read-only files to the

destination directory:

v /dcss/lib/read3.so

v /dcss/usr/bin/abc/read1

v /dcss/usr/bin/abc/xyz/read2

Figure 7. Example: files copied by copylibs.sh

10 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

c. Determine the space occupied by the copied files:

du -sk <destination_directory>

Example:

du -sk /dcss

61761

The output shows the space in kilobyte.

Note: The script might not copy all shared objects used by the application.

For example, the Apache HTTP Server uses a shared object,

/usr/lib64/apache2 that copylibs.sh does not copy. You can copy

such objects as individual files to include them in the DCSS (see step

4).

d. Repeat steps 3b on page 10 and 3c for each application. Find the size of

each application from the increment in the output of the du -sk command.
4. Copy any individual read-only files or libraries that you know are used

frequently. Issue a command like this for each individual file you want to

include in the DCSS:

copylibs.sh -f <file> -d <destination_directory>

Example: To copy /usr/lib64/apache2 to /dcss/usr/lib64/apache2 issue:

copylibs.sh -f /usr/lib64/apache2 -d /dcss

5. Find the total size of your DCSS.

du -sk <destination_directory>

Example:

du -sk /dcss

882402

6. Allow some space for file system metadata. As a conservative estimate, use

4 KB per shared file.

a. Count the files in the DCSS.

Example:

find /dcss | wc -1

21043

b. Calculate the additional space requirement.

Example: 21043 × 4 KB = 84172 KB

Tip: Add extra space to allow for future software updates, like security fixes.

Example: The example of the previous steps yields

882402 KB + 84172 KB = 966574 KB as an estimate for the space requirement.

Adding extra space for future updates results in a space requirement of:

1 GB = 1024 MB = 1048576 KB.

Hint: DCSSs at the granularity of individual files are often much smaller than

1 GB.

Chapter 2. Setting up a DCSS 11

Note: Be aware that each file in your DCSS will be mounted with the mount

--bind command, and that each mounted file consumes up to 750 bytes of

guest storage.

Tip: You can use the destination directory with the files copied in this task as a

source for creating the DCSS. However, you cannot remove applications that you

have already added. If you decide not to include an application that you have

already added, repeat all of step 3 on page 9, omitting the unwanted application.

Proceed with “Task 2: Planning the size and location of the DCSS” on page 13.

Identifying directories to be shared

This section helps you to decide what to include in a DCSS if you want to share

entire directories. If you want to share applications and individual files, omit this

section and perform the steps in “Identifying individual files to be shared” on page

9 instead.

1. The following list helps you to find directories that are candidates for sharing:

v Issue the following command to find all regular files with execute

permission:

find / -perm -100 -type f

Directories that contain any of these files are candidates for sharing.

v Check the PATH environment variable of the superuser and a normal user.

The standard binary directories defined therein are candidates for sharing.

Check the directories’ contents and include directories that are referred by

symbolic links.

v The major library directories as defined in /etc/ld.so.conf are candidates

for sharing. For 64-bit Linux, distributions also include the lib64 directories.

Check the directories’ contents and include directories that are referred by

symbolic links.

The following list helps you to eliminate candidates that are not suitable:

v Be sure not to share directories that are written to. Within the context of this

description, sharing includes subdirectories. You cannot write to a

subdirectory of a shared directory.

v Sharing scripts is ineffective because they are typically interpreted instead of

being executed directly. Scripts include, for example, files with extensions .pl,

.py, .sh.

v Do not include the /etc directory.

You get the most benefit from sharing directories with programs that are

frequently used by a large number of the sharing operating system instances.

2. Calculate the space requirements for sharing the directories you have selected.

a. Issue the following command to find the space occupied by each directory:

du -sk <directories>

b. Build the sum of the individual spaces to find the total space occupied by

the directories.

c. Allow some space for file system metadata. As a conservative estimate, use

4 KB per shared file.

Tip: Add extra space to allow for future software updates, like security

fixes.

12 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

Example: Assume that the directories to be shared are: /lib, /usr/lib,

/usr/X11R6/lib, /bin, /sbin, /usr/X11R6/bin, and /usr/bin and that you obtain

this space information:

du -sk /lib /usr/lib /usr/X11R6/lib /bin /sbin /usr/X11R6/bin /usr/bin

46596 /lib

562972 /usr/lib

97372 /usr/X11R6/lib

5752 /bin 7768 /sbin

16956 /usr/X11R6/bin

152424 /usr/bin

The space used by the directories adds up to 882072 KB. Adding about 10% for

metadata and contingencies results in a space requirement of

1 GB = 1024 MB = 1048576 KB.

Task 2: Planning the size and location of the DCSS

This task describes how to determine suitable page frame numbers for the start

and end of the DCSS.

1. Determine the maximum size of the DCSS. The maximum size depends on:

v Whether you are running 31-bit or 64-bit Linux kernels

v Whether you want to place your DCSS above the storage of your Linux

guests or in a common storage gap

v The storage size of the largest guest that is to share the DCSS

Use Table 1 to determine the maximum DCSS size according to your

environment. For details on how these formulas are obtained see “DCSS above

guest storage” on page 2 and “DCSS in a storage gap” on page 2.

 Table 1. Maximum DCSS size

Kernel DCSS location Maximum DCSS size

64-bit DCSS in a storage gap 1919 MB

DCSS above guest storage 2047 MB − <largest guest storage size>

31-bit either location 1960 MB − <largest guest storage size>

Example: Consider a number of Web servers with 64-bit Linux kernels where

some have been assigned 256 MB guest storage and others have been assigned

512 MB guest storage. This example allows the following DCSS size:

v For a DCSS in a storage gap: 1919 MB (independent of the guest storage

sizes)

v For a DCSS above guest storage: 2047 MB – 512 MB = 1535 MB

The same size Web servers with 31-bit Linux kernels would allow:

v 1960 MB – 512 MB = 1448 MB
2. Ensure that the required size (see “Task 1: Planning the DCSS content” on page

9) does not exceed the maximum DCSS size for your environment. If necessary,

remove files or directories from the list of items you want to share. Remove

items where you expect the least benefit, that is, where the data is used least

frequently.

3. Decide on a start and end address for the DCSS. The start and end addresses

must be on a page boundary (4 KB, on a mainframe) and in hexadecimal

notation.

v For a DCSS in a storage gap choose an address at or above 128 MB.

Chapter 2. Setting up a DCSS 13

v For a DCSS above the guest virtual the start address must be at or above the

virtual storage size of the largest guest.
Examples: The following start and end address provide for a DCSS of

1024 MB.

Start address: 512 MB => 0x20000000

End address: 512 MB + 1024 MB - 1 B => 0x5FFFFFFF

Tip: Round to easily remembered hexadecimal numbers because you will need

to use them later in several commands.

If the DCSS is to be located above the guests storage, this start address limits

the guest storage to a maximum of 512 MB. If the DCSS is to be located in a

storage gap, guest storage can be allocated below 512 MB and starting from

1024 MB above the DCSS.

4. Calculate the page frame number for the start and end address. You do this by

first rounding the address down to the nearest multiple of 4096 and then

dividing this number by 4096.

Hint: In hexadecimal notation this is accomplished by dropping the last three

digits.

Example: Start and end address 0x20000000 and 0x5FFFFFFF result in start and

end frame numbers 0x20000 and 0x5FFFF.

Task 3: Creating the DCSS

This task describes how to create the DCSS (see CP Command and Utility Reference,

SC24-6081 for more information on the commands used in the steps).

Before you start:

v You need to know size of the DCSS you want to share.

v You need to know the start and end address of your DCSS.

v You need privilege class E for your z/VM guest. This guest must be set up to

allow a temporary increase of storage using a define store command.
1. Take down Linux and IPL CMS in your guest machine.

2. From CMS, use the defseg command to define the DCSS. Issue a command of

this form:

defseg <name of the DCSS> <first page number>-<last page number> sr

The DCSS name is restricted to 8 characters. The page frame numbers must be

in hexadecimal notation. For more details on the defseg command, refer to the

z/VM CP documentation.

Example:

defseg lnxshare 20000-5ffff sr

3. Verify that the DCSS has been defined. Issue:

query nss map

The DCSS has been defined correctly if the output shows your segment with

the address limits that you have specified.

4. Define your virtual guest storage sufficiently large to cover the entire DCSS.

Issue a command of the form:

14 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|
|

|

|

|

|
|

define stor <value>

Specify a value greater than the last page number you used in the defseg

statement in step 2 on page 14.

Example: To allow for a DCSS with an upper limit of 1536 MB issue:

define stor 1536M

Tip: Increasing the size to 2G covers any possible DCSS.

5. Save the DCSS by issuing a command of this form:

saveseg <name of the DCSS>

This command can take several minutes to complete.

Example: To save a DCSS named LNXSHARE issue:

saveseg LNXSHARE

6. Verify that the DCSS was saved correctly. Issue:

query nss map

Result: The save operation has completed successfully if the class (column title:

CL) has changed from skeleton (S) to active (A).

7. Log off from your z/VM guest. Next time you IPL an operating system in the

guest, the guest storage will be reset to its previous size.

Now you are ready to boot your Linux guest and use the DCSS block device

driver to copy the directories or files to the DCSS.

Task 4: Copying the shared data to the DCSS

This tasks describes how to write the shared data to the DCSS.

Before you start:

v You need privilege class E for your z/VM guest.

v You need the DCSS block device driver, either as a module or built into the

kernel.
 1. Ensure that the DCSS block device driver is available. Unless the DCSS block

device driver has been built into your kernel or has already been loaded, load

the dcssblk module. Issue:

modprobe dcssblk

Result: The device driver has been loaded successfully if cat /proc/devices

shows an entry “dcssblk”. The number preceding the device driver name is

the major number of your DCSS block device.

 2. Ensure that there are device nodes for your DCSS block devices. If they are

not created for you, for example by udev, create them with the mknod

command.

The following lines create 4 nodes:

Chapter 2. Setting up a DCSS 15

|

|

|

|

|
|

mknod /dev/dcssblk0 b <major number> 0

mknod /dev/dcssblk1 b <major number> 1

mknod /dev/dcssblk2 b <major number> 2

mknod /dev/dcssblk3 b <major number> 3

In the commands, replace <major number> with the major number from

/proc/devices.

The examples for the following steps use the nodes with standard device

names as created by the commands in this step. If your distribution provides

different device nodes, you can use these nodes instead.

Note: The first DCSS that is loaded on a Linux system is assigned minor

number 0, the second minor number 1, and so on. Therefore, for

working with a single DCSS a single device node with minor number 0

is sufficient.

 3. Load the DCSS by adding it to the block device driver. Issue a command of

this form:

echo "<name of DCSS>" > /sys/devices/dcssblk/add

With the device nodes of step 2, the first DCSS you add becomes

/dev/dcssblk0, the second /dev/dcssblk1, and so on.

Result: Loading a DCSS creates a subdirectory with the name of the DCSS

within /sys/devices/dcssblk. This subdirectory contains three attributes and

a symbolic link, block. The symbolic link points to the block device that

corresponds to the DCSS. The save and shared attributes are used in the steps

that follow.

Example:

echo "LNXSHARE" > /sys/devices/dcssblk/add

ls -l /sys/devices/dcssblk/LNXSHARE

total 0

lrwxrwxrwx 1 root root 0 Oct 26 19:29 block -> ../../../block/dcssblk0

-rw-r--r-- 1 root root 4096 Oct 26 19:29 detach_state

-rw-r--r-- 1 root root 4096 Oct 26 19:29 save

-rw-r--r-- 1 root root 4096 Oct 26 19:29 shared

 4. Change the access mode of the DCSS from “share” (default) to

“exclusive-writable”. Issue a command of this form:

echo 0 > /sys/devices/dcssblk/<name of DCSS>/shared

Example:

echo 0 > /sys/devices/dcssblk/LNXSHARE/shared

 5. Create an ext2 file system on the block device that is associated with the

DCSS. Use a block size of 4 KB.

Example:

mke2fs -b 4096 /dev/dcssblk0

 6. Mount the file system in the DCSS on a spare mount point.

Example:

16 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|
|
|
|

mount -t ext2 -o xip /dev/dcssblk0 /mnt

 7. Copy the directories or files you want to be shared to the file system on the

DCSS. Proceed according to the granularity at which you are sharing data:

v If you want to share individual read-only files, you will have used

copylibs.sh (see “Identifying individual files to be shared” on page 9) to

copy the files to a separate destination directory. You can copy the entire

destination directory to the file system image:

Example:

cp -a /dcss/* /mnt

Alternatively, you can use copylibs.sh to directly copy the files to the file

system on the DCSS. Specify the file system’s mount point as the target

directory.

Example:

copylibs.sh -f httpd -d /mnt

copylibs.sh -f ...

...

v If you want to share entire directories, copy these directories to the file

system on the DCSS.

Example:

cp -a /bin /mnt

cp -a /lib /mnt

mkdir /mnt/usr

cp -a /usr/bin /mnt/usr

cp -a /usr/lib /mnt/usr

 8. Save the DCSS.

You create a save request by issuing:

echo 1 > /sys/devices/dcssblk/<name of DCSS>/save

The save request is performed after the device is unmounted.

Hint: You can cancel an existing save request by issuing:

echo 0 > /sys/devices/dcssblk/<name of DCSS>/save

 9. Unmount the file system.

Example:

unmount /mnt

10. Remove the device. For example, remove the entry in sysfs by issuing:

echo <name of DCSS> > /sys/devices/dcssblk/remove

Task 5: Setting up your guest for accessing the DCSS

Proceed according to your intended DCSS location:

v If you want to place your DCSS in a storage gap, follow the steps in “Defining a

storage gap” on page 18.

Chapter 2. Setting up a DCSS 17

|

v If you want to place your DCSS above the guest storage, follow the steps in

“Extending the addressable address range beyond the guest storage.”

Defining a storage gap

This section describes how to set up your guest if you want to locate your DCSS in

a storage gap. If you want to locate your DCSS above the virtual storage, skip this

section and perform the steps in “Extending the addressable address range beyond

the guest storage” instead.

To define a storage gap for your guest, establish a CMS session with the VM guest

that you want to set up for accessing the DCSS. Then add a line of this form to

your PROFILE.EXEC:

DEF STOR CONFIG 0.<gap_start>M <gap_end>M.<guest_storage>M

where:

<gap_start>

defines the lower boundary of the storage gap. The lower boundary must be

lower than the start address of the DCSS but not below 128 megabytes.

<gap_end>

defines the upper boundary of the storage gap. The upper boundary must be

higher than the end address of the DCSS. For 64-bit Linux guests the upper

boundary can be up to 2047 MB for 31-bit Linux guests it can be up to

1960 MB.

<guest_storage>

specifies the size of the storage extent above the storage gap.

For more information on the DEF STOR CONFIG command, refer to CP Command

and Utility Reference, SC24-6081.

Example: This example defines a storage gap between 500 and 1600 megabytes and

sets your guest storage to 750 megabytes (500 megabytes below the storage gap

and another 250 above).

DEF STOR CONFIG 0.500M 1600M.250M

Extending the addressable address range beyond the guest

storage

This section describes how to set up your guest if you want to locate your DCSS

above the guest storage. If you want to locate your DCSS in a storage gap, omit

this section and follow the instructions in “Defining a storage gap” instead.

Before your Linux kernel can use the DCSS above the guest storage, it must be

aware of the extended address space that covers the DCSS.

Perform the following steps to set the mem kernel parameter accordingly:

1. Start up your Linux system.

2. Add a mem=<value> parameter to your kernel parameter line (parmfile). The

value must cover the entire DCSS, that is, it must be equal to or above the

DCSS end address.

The value can be in either of these forms: in byte, in the form <x>k, in the form

<y>M, or in the form <z>G, where <x>, <y>, and <z> represent the value in

kilobyte, megabyte, and gigabyte, respectively.

18 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

Example: To accommodate a DCSS with an end address 0x5FFFFFFF add

mem=1536M

3. Run zipl with the new parameter file.

4. Reboot Linux.

5. Issue the following command to verify that Linux is using the new parameter:

cat /proc/cmdline

Task 6: Testing the DCSS

This task describes how you can assure that your DCSS has been set up correctly.

Perform the following steps to test the DCSS:

1. Load the DCSS by adding it to the block device driver. Issue a command of this

form:

echo "<name of DCSS>" > /sys/devices/dcssblk/add

This command assigns one of the device nodes you created in step 2 of task

“Task 4: Copying the shared data to the DCSS” on page 15) to your DCSS.

2. Mount the ext2 file system read-only with the xip mount option. Use a

command of this form:

mount -t ext2 -o ro,xip <device node> <mount point>

This command can take several minutes to complete.

Example: Assuming that the DCSS has been assigned to the device node

/dev/dcssblk0 in step 1 and you want to mount to a mount point /mnt issue:

mount -t ext2 -o ro,xip /dev/dcssblk0 /mnt

3. Issue the following command to verify that the file system has been mounted

correctly:

cat /proc/mounts

The file system has been mounted correctly if a line indicates that the mount

point is active with the ext2 file system.

4. Verify that all files that you have copied to the mount point are now accessible.

Issue:

cd <mount point>

tar -cvf /dev/null *

where <mount point> is your mount point.

If you encounter any problems, check the following:

v Issue the following command from CP to show the DCSS memory range:

query nss

v If you are using a storage gap, verify that the entire DCSS fits within the gap.

Chapter 2. Setting up a DCSS 19

|
|

|
||

|
|

|

|

|

v If you have located the DCSS above the guest storage:

– Verify that the mem parameter is active and covers the entire DCSS.

– Verify that the virtual machine memory is smaller than the start address of

the DCSS.
v Verify that the file system size does not exceed the size of the DCSS.

If you have a problem that is not caused by these possible reasons, your DCSS is

most probably not set up correctly. Use the CMS purge command to remove the

DCSS and repeat the tasks “Task 1: Planning the DCSS content” on page 9 through

“Task 6: Testing the DCSS” on page 19.

Issue a command like this:

purge nss name <name of the DCSS>

where <name of the DCSS> is the name of your DCSS.

Example:

purge nss name LNXSHARE

Task 7: Providing a script to over-mount shared data on startup

This task provides information on sample scripts that you can use to over-mount

files or directories with the content of a DCSS before Linux accesses them.

In this context, over-mounting a directory or file means replacing it with the

contents of the DCSS at system startup. Shared items must be over-mounted before

being accessed. If an individual file or a file in a shared directory is accessed before

being over-mounted, the accessed file might remain in memory, and so waste

memory, after the corresponding file or directory is over-mounted.

Proceed according to how you have planned the DCSS in “Task 1: Planning the

DCSS content” on page 9:

v If your DCSS is to contain individual files, follow the steps in “Over-mounting

individual files.”

v If your DCSS is to contain entire directories, follow the steps in “Over-mounting

entire directories” on page 21.

Over-mounting individual files

This section applies if you want to over-mount individual files. If you want to

over-mount entire directories, skip this section and perform the steps in

“Over-mounting entire directories” on page 21 instead.

You can use the xipinit-fw.sh script (see “xipinit-fw.sh” on page 32) to over-mount

individual files. See “Scripts used for setting up a DCSS,” on page 29 for

information on where you can obtain a copy of this script.

This script will have to run before /sbin/init. On system startup, xipinit-fw.sh

runs instead of /sbin/init. First xipinit-fw.sh over-mounts the shared files and

then it runs /sbin/init.

Perform these steps to tailor the script to your environment:

20 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

1. Find the line ROMOUNT="" and specify the mount-point for the DCSS.

Example: ROMOUNT="/mnt"

2. Find the line XIPIMAGE="" and specify the name of your DCSS.

Example: XIPIMAGE="LNXSHARE"

3. Find the line RODEV="" and specify the device node for the DCSS.

Example: RODEV="/dev/dcssblk0"

This example uses the device nodes of step 2 in task “Task 4: Copying the

shared data to the DCSS” on page 15 and assumes that no other DCSS is

accessed.

4. Place the tailored script in the /sbin directory, name it xipinit-fw.sh, and ensure

that the system administrator root is permitted to run it.

Proceed with “Task 8: Activating execute-in-place” on page 22.

Over-mounting entire directories

This section applies if you want to over-mount entire directories. If you want to

over-mount individual files, omit this section and perform the steps in

“Over-mounting individual files” on page 20 instead.

Directories that are on the root file system need to be over-mounted before running

the first program on system startup: /sbin/init.

Directories on other file systems (for example, /usr/bin if /usr is on a separate

DASD) need to be over-mounted right after the startup scripts for your kernel

have mounted the other file systems. If you want to share directories that are not

on the root file system, you need to modify the startup scripts. Because startup

scripts are distribution-specific, this document does not describe how to do this.

You can use the xipinit.sh script (see “xipinit.sh” on page 33) to over-mount

directories on the root file system (the file system mounted on /). See “Scripts used

for setting up a DCSS,” on page 29 for information on where you can obtain a

copy of this script.

On system startup, xipinit.sh runs instead of /sbin/init. First xipinit.sh

over-mounts the shared directories and then it runs /sbin/init.

Perform these steps to tailor the script to your environment:

1. Find the line ROMOUNT="" and specify the mount-point for the DCSS.

Example: ROMOUNT="/mnt"

2. Find the line XIPIMAGE="" and specify the name of your DCSS.

Example: XIPIMAGE="LNXSHARE"

3. Find the line RODEV="" and specify the device node for the DCSS.

Example: RODEV="/dev/dcssblk0"

This example uses the device nodes of step 2 in task “Task 4: Copying the

shared data to the DCSS” on page 15 and assumes that no other DCSS is

accessed.

4. Specify the directories you want to be shared. Find the line that starts with

RODIRS= and replace the value with a comma separated list of the directories

you want to be shared.

Note: Be sure to end the line with a comma character.

Chapter 2. Setting up a DCSS 21

|

|

|

|

|
|
|

|
|

|

|

|

|

|

|

|

|
|
|

|
|
|

|

5. Place the tailored script in the /sbin directory, name it xipinit.sh, and ensure

that the system administrator root is permitted to run it.

Task 8: Activating execute-in-place

This task describes how to assure that your shared directories or individual files

are over-mounted with the DCSS content at startup.

If all directories or files to be shared are located on the root file system, you just

need the xipinit.sh or xipinit-fw.sh script in place as described in “Task 7:

Providing a script to over-mount shared data on startup” on page 20.

If you also want to share directories or individual files that are not on your root

file system, you have to ensure that all directories to be shared, or the directories

containing the individual files to be shared, are mounted to their correct positions

before their content is accessed. To do this you need to modify the startup scripts

of your Linux distribution.

Perform these steps to activate execute-in-place:

1. Depending on whether you are sharing individual files or entire directories, test

your xipinit-fw.sh or xipinit.sh script. Run your script as user root.

v If you are sharing individual files, issue /sbin/xipinit-fw.sh.

Example:

/sbin/xipinit-fw.sh

Usage: init 0123456SsQqAaBbCcUu

v If you are sharing entire directories, issue /sbin/xipinit.sh.

Example:

/sbin/xipinit.sh

mounting read-only segment

binding directory /lib

binding directory /usr/lib

binding directory /usr/X11R6/lib

binding directory /bin

binding directory /sbin

binding directory /usr/X11R6/bin

binding directory /usr/bin

Usage: init 0123456SsQqAaBbCcUu

2. Enter cat /proc/mounts to confirm that the directories or files to be shared

have been over-mounted with the ext2 file system. The output depends on the

directories or files you are sharing.

Examples:

v The following is part of a sample output when sharing individual files.

Depending on the number of shared files, the output might be lengthy:

cat /proc/mounts

none /mnt ext2 ro,xip 0 0

none /usr/bin/less ext2 ro,xip 0 0

none /sbin/fsck ext2 ro,xip 0 0

none /bin/bash ext2 ro,xip 0 0

...

v The following is a sample output when sharing entire directories:

22 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|
|

|

|
|

|

|

|
|
|
|
|
|

cat /proc/mounts

none /mnt ext2 ro,xip 0 0

none /lib ext2 ro,xip 0 0

none /usr/lib ext2 ro,xip 0 0

none /usr/X11R6/lib ext2 ro,xip 0 0

none /bin ext2 ro,xip 0 0

none /sbin ext2 ro,xip 0 0

none /usr/X11R6/bin ext2 ro,xip 0 0

none /usr/bin ext2 ro,xip 0 0

Note: Because /sbin/xipinit.sh or /sbin/xipinit-fw.sh does not add the

mounted directories to /etc/fstab, the mount command does not reflect

these mounts properly!

If your xipinit.sh or xipinit-fw.sh script does not work as intended, revisit

“Task 7: Providing a script to over-mount shared data on startup” on page 20.

3. Depending on the granularity at which you are sharing data, add

init=/sbin/xipinit-fw.sh (individual files) or init=/sbin/xipinit.sh (entire

directories) to your kernel parameter line (parmfile).

4. Run zipl with the new parameter file.

5. Reboot Linux.

Execute-in-place is now active and your Linux instance makes use of the DCSS.

Chapter 2. Setting up a DCSS 23

|
|
|
|
|
|
|
|
|

|

|

|

24 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

Chapter 3. Making your Linux guests use the DCSS

This task describes these steps you need to perform on each Linux instance that

you want to use the DCSS.

Perform these steps to enable a Linux kernel to use a DCSS:

1. If your DCSS is located above the guest storage, change the kernel parameter

line (see “Task 5: Setting up your guest for accessing the DCSS” on page 17).

Skip this step if your DCSS is located in a storage gap.

2. Ensure that there are device nodes for DCSS block devices. (see step 2 of task

“Task 4: Copying the shared data to the DCSS” on page 15).

3. Depending on the granularity at which you are sharing data, get a copy of the

/sbin/xipinit-fw.sh or /sbin/xipinit.sh script you have adapted in “Task 7:

Providing a script to over-mount shared data on startup” on page 20 and

activate it on your Linux (see “Task 8: Activating execute-in-place” on page 22).

© Copyright IBM Corp. 2004, 2005 25

|
|

|
|
|
|

26 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

Chapter 4. Updating the software on a DCSS

This task describes how you can update the data on a DCSS.

Proceed according to the granularity at which you are sharing data and the extend

of the intended changes:

v If you want to make minor changes to a DCSS with shared data at the

granularity of entire directories, follow the steps in “Updating software on an

existing DCSS.”

v If you are sharing data at the granularity of individual files or if you are making

major updates to a DCSS of any granularity, follow the steps in “Replacing a

DCSS” on page 28.

Updating software on an existing DCSS

This task describes how you can perform minor software updates by writing to

files on an existing DCSS file system. If you are intending to make major updates

or if your DCSS contains data at the granularity of individual files, omit this

section and perform the steps in “Replacing a DCSS” on page 28 instead.

Before you start:

v You need the DCSS block device driver, either as a module or built into the

kernel.

v You need a z/VM guest with Class E user privileges to perform step 3.

v The updated file system image must fit into the existing DCSS.

To update data on an existing DCSS, perform the following steps:

1. Restart your Linux guests without activating execute-in-place. For each guest

that shares the DCSS:

a. Remove the “init=” parmeter from the kernel parameter line (parmfile).

b. Run zipl with the new parameter file.

c. Boot Linux using the new boot configuration.
2. Perform the required software update on each guest that shares the DCSS.

Perform the updates according to your distribution documentation, as you

would on any platform. Be sure to make the same updates on each guest. For

example, install or update the same packages with the same version. Do not

continue until all updates are completed on all guests that share the DCSS.

3. Run the script update.sh to write the updates to your DCSS. Only run the

update.sh once, on only one of your Linux guests.

a. Get a copy of the update.sh script (see “update.sh” on page 34). See “Scripts

used for setting up a DCSS,” on page 29 for information on where you can

obtain this script.

b. Run the script as superuser root. The script parses your xipinit.sh file,

accesses the DCSS, and updates the DCSS according to your xipinit.sh file.
4. Restart your Linux guests with execute-in-place activated. For each guest that

shares the DCSS:

a. Add init=/sbin/xipinit.sh to your kernel parameter line (parmfile).

b. Run zipl with the new parameter file.

© Copyright IBM Corp. 2004, 2005 27

|

|

c. Reboot Linux.

Your Linux guests now use the updated DCSS.

Replacing a DCSS

This section describes how to replace your DCSS with a new DCSS that provides

the updated software. You can use this update method for any DCSS.

Tip: If you are making minor updates to a DCSS that contains shared data at the

granularity of entire directories, you can also proceed as described in “Updating

software on an existing DCSS” on page 27 instead of replacing the DCSS.

To replace a DCSS, perform the following steps:

1. Restart your Linux guests without activating execute-in-place. For each guest

that shares the DCSS:

a. Remove the “init=” parmeter from the kernel parameter line (parmfile).

b. Run zipl with the new parameter file.

c. Reboot Linux using the changed boot configuration.
2. Perform the required software update on each guest that shares the DCSS.

Perform the updates according to your distribution documentation, as you

would on any platform. Be sure to make the same updates on each guest. For

example, install or update the same packages with the same version. Do not

continue until all updates are completed on all guests that share the DCSS.

3. Create a new DCSS as described in Chapter 2, “Setting up a DCSS,” on page 9.

4. On every guest, change the value of XIPIMAGE=″″ in your /sbin/xipinit.sh or

/sbin/xipinit-fw.sh script, to the name of the new DCSS.

5. Restart your Linux guests with execute-in-place activated. For each guest that

shares the DCSS:

a. Add an “init=” parameter to your kernel parameter line (parmfile). The

value depends on the granularity of the shared data in the DCSS (see

“Granularity of shared data” on page 5):

 For sharing at directory level add For sharing at file level add

init=/sbin/xipinit.sh init=/sbin/xipinit-fw.sh

b. Run zipl with the new parameter file.

c. Reboot Linux using the changed boot configuration.

Your Linux guests now use the new DCSS.

28 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|

|
|

|
|
|

|||

||
|

|

|

Appendix. Scripts used for setting up a DCSS

This appendix contains the scripts that are referred to in the main part of this

document:

v copylibs.sh

v xipinit-fw.sh

v xipinit.sh

v update.sh

You can download a tarball with copies of these scripts from:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

If you copy any of the scripts from this appendix, confirm that copying and

pasting does not change any characters.

© Copyright IBM Corp. 2004, 2005 29

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.html

copylibs.sh

You need copylibs.sh for “Task 1: Planning the DCSS content” on page 9 if you

want to share the read-only parts of applications and individual files.

#!/bin/bash

copylibs.sh, Version 3

(C) Copyright IBM Corp. 2005

copies the binary and the libraries used to destination directory

usage: ./copylibs.sh -f <executable|file> -d <destination directory>

#FAKE=echo

function getlibs {

 for i in `ldd $FILE | awk ’{print $3}’`

 do

 echo $i

 if [[-h $i]]

 then

 echo $i is a link

 #LINKPATH=${i%/*}

 FILELINKEDTO=$(readlink -f $i)

 #FILELINKEDTOPATH=${FILELINKEDTO%/*}

 echo $FILELINKEDTO

 $FAKE cp -a --parent ${FILELINKEDTO} ${DESTINATION}

 elif [[-e $i]]

 then

 $FAKE cp -a --parent $i ${DESTINATION}

 fi

 done

 echo NOTE: Libraries which were loaded with libdl will not be copied.

 echo NOTE: be sure that you copy these extra.

}

here the script starts

if [[$# -ne 4]]

then

 echo "Usage: ./copylibs.sh -f <executable|file> -d <destination directory>"

 exit 1

fi

Figure 8. copylibs.sh - 1/2

copylibs.sh

30 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

while getopts :f::d: OPT

do

 case $OPT in

 f) if [[! $FILE && ${OPTARG:0:1} != ’-’]]

 then

 echo "option f is set with $OPTARG"

 FILE=$OPTARG

 echo $FILE

 else

 echo error for option -f please check

 exit 1

 fi

 ;;

 d) if [[! $DESTINATION && ${OPTARG:0:1} != ’-’]]

 then

 echo "option d is set with $OPTARG"

 DESTINATION=$OPTARG

 echo $DESTINATION

 else

 echo error for option -d please check

 exit 1

 fi

 ;;

 :) echo "no option set" ;exit 1 ;;

 esac

done

#here check if file (full qualified) exists

if [[-e $FILE]]

then

 if [[$(file $FILE|grep ELF > /dev/null) -eq 0]]

 then

 getlibs

 # a dynamic shared object, so get all other libs needed

 fi

 #copy file itself first check if file is a symlink

 if [[-h $FILE]]

 then

 FILE=$(readlink -f $FILE)

 fi

 $FAKE cp -a --parent $FILE $DESTINATION

elif [[! -e $FILE]]

then

 #check if file is an executable maybe found in PATH

 FILE=$(which $FILE)

 if [[$? -ne 0]]

 then

 echo File not found, exiting...

 exit 1

 else

 $FAKE cp -a --parent $FILE $DESTINATION

 getlibs

 fi

fi

exit

Figure 9. copylibs.sh (continued 2/2)

copylibs.sh

Appendix. Scripts used for setting up a DCSS 31

xipinit-fw.sh

You need xipinit-fw.sh for “Task 7: Providing a script to over-mount shared data

on startup” on page 20 if you want to share the read-only parts of applications and

individual files. If you want to share entire directories use “xipinit.sh” on page 33

instead.

#!/bin/bash

xipinit-fw.sh, Version 3

(C) Copyright IBM Corp. 2005

#mount point of xipimage

ROMOUNT=""

#name of xipimage

XIPIMAGE=""

#name of device node

RODEV=""

mount -t sysfs none /sys

if [! -e /sys/devices/dcssblk]; then

 echo "xipinit-fw: loading dcssblk module"

 /sbin/modprobe dcssblk

fi

echo $XIPIMAGE > /sys/devices/dcssblk/add

echo "xipinit-fw: mounting read-only segment"

/bin/mount -t ext2 -o ro,xip $RODEV $ROMOUNT

echo "xipinit-fw: binding files"

for i in $(/usr/bin/find $ROMOUNT/*)

do

 if [[-f $i]]; then

 /bin/mount --bind $i ${i#$ROMOUNT}

 fi

done

umount /sys

exec /sbin/init $@

Figure 10. xipinit-fw.sh sample script

xipinit-fw.sh

32 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

xipinit.sh

You need xipinit.sh for “Task 7: Providing a script to over-mount shared data on

startup” on page 20 if you want to share entire directories. If you want to share

individual files use “xipinit-fw.sh” on page 32 instead.

#!/bin/sh

xipinit.sh, Version 2

(C) Copyright IBM Corp. 2002,2005

/sbin/xipinit: use read only files from another file system

default options

internals

#set -v

#FAKE=echo

#mount point of xipimage

ROMOUNT=""

#name of xipimage

XIPIMAGE=""

#name of device node

RODEV=""

RODIRS="/lib,/usr/lib,/usr/X11R6/lib,/bin,/sbin,/usr/X11R6/bin,/usr/bin,"

make sure it ends with ,

RODIRS="$RODIRS",

mount -t sysfs none /sys

if [! -e /sys/devices/dcssblk]; then

 echo "xipinit: loading dcssblk module"

 /sbin/modprobe dcssblk

fi

echo $XIPIMAGE > /sys/devices/dcssblk/add

mount ro file system to its mount point

echo "xipinit: mounting read-only segment"

$FAKE mount -t ext2 -o ro,xip "$RODEV" "$ROMOUNT"

bind mount all ro dirs into rw filesystem

while [-n "$RODIRS"] ; do

 dir="${RODIRS%%,*}"

 RODIRS="${RODIRS#*,}"

 test -d "$dir" || continue

 echo "xipinit: binding directory" $dir

 $FAKE mount --bind "$ROMOUNT/$dir" "$dir"

done

umount /sys

run real init

$FAKE exec /sbin/init "$@"

Figure 11. xipinit.sh sample script

xipinit.sh

Appendix. Scripts used for setting up a DCSS 33

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

update.sh

You need update.sh for “Updating software on an existing DCSS” on page 27. In

this task, you make minor updates by writing to an existing DCSS with data at the

granularity of entire directories.

#!/bin/sh

update.sh, Version 3

(C) Copyright IBM Corp. 2005

This script can be used to mount a DCSS for software updates. Requirements:

- /sbin/xipinit.sh in with up-to-date RODIRS defined

- superuser privileges in Linux

- class E privileges in z/VM

#temporary device node used

TEMPNODE=/tmp/dcssupdate.dev

#uncommend following 2 lines for debugging only

#set -v

#FAKE=echo

parse_xipinit() {

 #looks for xipinit.sh script, and parses its settings

 # save parameters from environment

 _RODEV="$rodev"

 _RODIRS="$rodirs"

 _XIPIMAGE="$xipimage"

 _ROMOUNT="$romount"

 # now parse the script

 echo "reading" /sbin/xipinit.sh

 eval $(cat /sbin/xipinit.sh | grep "RODIRS=" |grep -v ’RODIRS=\"\$’ |grep -v "#RODIRS=")

 eval $(cat /sbin/xipinit.sh | grep "RODEV=" |grep -v "#RODEV=")

 eval $(cat /sbin/xipinit.sh | grep "XIPIMAGE=" |grep -v "#XIPIMAGE=")

 eval $(cat /sbin/xipinit.sh | grep "ROMOUNT=" |grep -v "#ROMOUNT=")

 # override parameters with saved environment

 RODEV="${_RODEV:-$RODEV}"

 RODIRS=${_RODIRS:-$RODIRS}

 XIPIMAGE=${_XIPIMAGE:-$XIPIMAGE}

 ROMOUNT=${_ROMOUNT:-$ROMOUNT}

 # make sure it ends with ,

 RODIRS="$RODIRS",

}

check_blockdev() {

 #load dcss block device driver if needed

 test -d /sys/devices/dcssblk || (echo "loading dcss block device driver" && modprobe dcssblk)

 if [! -d /sys/devices/dcssblk]; then

 echo "error: could not initialize dcss block device driver"

 exit 1

 fi

 echo "dcss block device driver found"

}

load_segment() {

 #load the segment using the block device

 echo "loading segment" $XIPIMAGE

 $FAKE echo $XIPIMAGE >/sys/devices/dcssblk/add

 if [! -d /sys/devices/dcssblk/$XIPIMAGE]; then

 echo "error: failed to load segment"

 exit 1

 fi

 echo "reloading segment" $XIPIMAGE "in nonshared mode"

 $FAKE echo 0 >/sys/devices/dcssblk/$XIPIMAGE/shared

 TEMPVAR0=$(cat /sys/devices/dcssblk/$XIPIMAGE/shared)

 if [$TEMPVAR0 -ne 0]; then

 echo "error: cannot change segment to nonshared mode, maybe you don’t have class E privileges?"

 exit 1

 fi

}

Figure 12. update.sh - 1/3

update.sh

34 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unload_segment() {

 #unload the segment again

 echo "unloading segment" $XIPIMAGE

 $FAKE echo $XIPIMAGE >/sys/devices/dcssblk/remove

 if [-d /sys/devices/dcssblk/$XIPIMAGE]; then

 echo "error: failed to unload segment. is it still busy?"

 exit 1

 fi

}

create_devnode() {

 #create a temporary device node for mounting

 if [-e $TEMPNODE]; then

 echo "error: temporary device node" $TEMPNODE "already exists."

 echo "if it still exists from a former run, please delete it and try again"

 exit 1

 fi

 if [! -f /sys/devices/dcssblk/$XIPIMAGE/block/dev]; then

 echo "unexpected-error: cannot find block device directory in sysfs, please report to linux390@de.ibm.com"

 exit 1

 fi

 MAJOR=$(cat /sys/devices/dcssblk/$XIPIMAGE/block/dev |sed -e "s/\:[0-9]\{1,\}//g")

 MINOR=$(cat /sys/devices/dcssblk/$XIPIMAGE/block/dev |sed -e "s/[0-9]\{1,\}\://g")

 mknod $TEMPNODE b $MAJOR $MINOR

 if [! -b $TEMPNODE]; then

 echo "error: cannot not create temporary device node" $TEMPNODE

 exit 1

 fi

}

delete_devnode() {

 #delete temporary device node again

 rm -f $TEMPNODE

 if [-e $TEMPNODE]; then

 echo "unexpected-error: cannot remove temporary device node" $TEMPNODE ", please report to linux390@de.ibm.com"

 exit 1

 fi

}

mount_segment() {

 #this mounts the segment on $ROMOUNT

 echo "mounting segment" $XIPIMAGE "on" $ROMOUNT

 $FAKE mount -t ext2 $TEMPNODE $ROMOUNT

 TEMPVAR0=$(cat /proc/mounts |grep $TEMPNODE| wc -l)

 if [! 1 -eq $TEMPVAR0]; then

 echo "error: cannot mount segment, is either already mounted or operation failed"

 umount $TEMPNODE

 delete_devnode

 unload_segment

 exit 1;

 fi

}

unmount_segment() {

 #unmounts the segment from $ROMOUNT

 echo "unmounting segment" $XIPIMAGE

 $FAKE umount $TEMPNODE

}

Figure 13. update.sh (continued 2/3)

update.sh

Appendix. Scripts used for setting up a DCSS 35

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

update_segment() {

 #copies all data from disk to segment

 echo "updating software on segment"

 echo "phase 1: deleting old content"

 TEMPVAR0=$(echo $RODIRS)

 while [-n "$TEMPVAR0"]; do

 dir="${TEMPVAR0%%,*}"

 TEMPVAR0="${TEMPVAR0#*,}"

 if [! -n "$TEMPVAR0"]; then

 continue

 fi

 echo "deleting directory" $ROMOUNT/$dir

 if [! -d "$ROMOUNT/$dir"]; then

 echo "error:cannot find directory" $ROMOUNT/$dir

 echo "does not exist on dcss or is not a directory"

 unmount_segment

 delete_devnode

 unload_segment

 echo "cannot recover from earlier error - exit"

 exit 1

 fi

 $FAKE rm -rf $ROMOUNT/$dir

 if [-d "$ROMOUNT/$dir"]; then

 echo "error:cannot delete directory" $ROMOUNT/$dir

 unmount_segment

 delete_devnode

 unload_segment

 echo "cannot recover from earlier error - exit"

 exit 1

 fi

 done

 echo "phase 2: copy new content"

 TEMPVAR0=$(echo $RODIRS)

 while [-n "$TEMPVAR0"]; do

 dir="${TEMPVAR0%%,*}"

 TEMPVAR0="${TEMPVAR0#*,}"

 if [! -n "$TEMPVAR0"]; then

 continue

 fi

 echo "copying directory" $ROMOUNT/$dir

 mkdir -p $ROMOUNT/$dir

 if [! -d "$ROMOUNT/$dir"]; then

 echo "error:cannot create directory" $ROMOUNT/$dir

 unmount_segment

 delete_devnode

 unload_segment

 echo "cannot recover from earlier error - exit"

 exit 1

 fi

 cp -a /$dir/* $ROMOUNT/$dir

 if [$? -ne 0]; then

 echo "error:cannot copy directory" $ROMOUNT/$dir

 unmount_segment

 delete_devnode

 unload_segment

 echo "cannot recover from earlier error - exit"

 exit 1

 fi

 done

}

save_update () {

 if [! -f /sys/devices/dcssblk/$XIPIMAGE/save]; then

 echo "error:segment or block device driver not loaded"

 exit 1

 fi

 echo 1 >/sys/devices/dcssblk/$XIPIMAGE/save

 TEMPVAR0=$(cat /sys/devices/dcssblk/$XIPIMAGE/save)

 if [$TEMPVAR0 -eq 0]; then

 echo "success: segment saved"

 fi

 if [$TEMPVAR0 -eq 1]; then

 echo "warning: segment scheduled to be saved when it becomes idle, check why it is busy!"

 fi

}

parse_xipinit

check_blockdev

load_segment

create_devnode

mount_segment

update_segment

unmount_segment

delete_devnode

save_update

unload_segment

Figure 14. update.sh (continued 3/3)

update.sh

36 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004, 2005 37

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

developerWorks

eServer

Eserver

IBM

S/390

System z9

z/VM

z9

zSeries

 Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names may be trademarks or service marks

of others.

38 How to use Execute-in-Place Technology with Linux on z/VM – December 14, 2005

Readers’ Comments — We’d Like to Hear from You

Linux on System z9 and zSeries

How to use Execute-in-Place Technology

with Linux on z/VM

December 14, 2005

Linux Kernel 2.6 (October 2005 stream)

 Publication No. SC33-8287-00

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-8287-00

SC33-8287-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH

Information Development

Department 3248

Schoenaicher Strasse 220

71032 Boeblingen

Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC33-8287-00

	Contents
	Summary of changes
	About this publication
	Who should read this document
	How this document is organized
	Where to get more information

	Chapter 1. Introduction to DCSS
	Which data you can share
	Where a DCSS can reside
	DCSS above guest storage
	DCSS in a storage gap

	How programs run from a DCSS
	Granularity of shared data
	Sharing directories
	Sharing individual files

	Limitations and trade-offs you must be aware of
	Using multiple DCSSs
	Considerations for sharing files or directories that are not on the root file system

	Requirements

	Chapter 2. Setting up a DCSS
	Task 1: Planning the DCSS content
	Identifying individual files to be shared
	Identifying directories to be shared

	Task 2: Planning the size and location of the DCSS
	Task 3: Creating the DCSS
	Task 4: Copying the shared data to the DCSS
	Task 5: Setting up your guest for accessing the DCSS
	Defining a storage gap
	Extending the addressable address range beyond the guest storage

	Task 6: Testing the DCSS
	Task 7: Providing a script to over-mount shared data on startup
	Over-mounting individual files
	Over-mounting entire directories

	Task 8: Activating execute-in-place

	Chapter 3. Making your Linux guests use the DCSS
	Chapter 4. Updating the software on a DCSS
	Updating software on an existing DCSS
	Replacing a DCSS

	Appendix. Scripts used for setting up a DCSS
	copylibs.sh
	xipinit-fw.sh
	xipinit.sh
	update.sh

	Notices
	Trademarks

	Readers’ Comments — We'd Like to Hear from You

