
Linux on System z

Device Drivers, Features, and Commands

November, 2006

Linux Kernel 2.6 - October 2005 stream

SC33-8289-02

���

Linux on System z

Device Drivers, Features, and Commands

November, 2006

Linux Kernel 2.6 - October 2005 stream

SC33-8289-02

���

Note

Before using this document, be sure to read the information in “Notices” on page 389.

Third Edition – (November, 2006)

This edition applies to the Linux on System z kernel 2.6 (October 2005 stream) and to all subsequent releases and

modifications until otherwise indicated in new editions. This edition replaces SC33-8289-01.

SC33-8289 is the Linux on System z kernel 2.6 (October 2005 stream) equivalent to SC33-8281, which applies to

Linux on zSeries kernel 2.6, April 2004 stream.

© Copyright International Business Machines Corporation 2000, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Summary of changes . xiii

Edition 3 changes . xiii

Edition 2 changes . xiii

Updates for the October 2005 stream xiv

About this document . xvii

How this document is organized xvii

Who should read this document xviii

Assumptions . xviii

Distribution specific information xviii

Conventions used in this book xviii

Terminology . xviii

sysfs . xviii

Hexadecimal numbers . xviii

Highlighting . xix

Understanding syntax diagrams xix

Finding IBM books . xxi

Part 1. General concepts . 1

Chapter 1. How devices are accessed by Linux 3

Device nodes and major/minor numbers 3

Creating device nodes . 3

Device nodes provided by udev 4

Network interfaces . 5

Interface names . 5

Matching devices with the corresponding interfaces 6

Main steps for setting up a network interface 7

Chapter 2. Devices in sysfs . 9

Device categories . 9

Devices and device attributes 11

Device views in sysfs . 12

Device driver view . 12

Device category view . 13

Device view . 13

Channel subsystem view . 13

Subchannel attributes . 14

Channel path measurement . 14

Examples . 15

CHPID information . 15

Setting a CHPID logically online or offline 15

CCW hotplug events . 16

Chapter 3. S/390 hypervisor file system 19

Building a kernel with the S/390 hypervisor file system 19

Directory structure . 19

Setting up the S/390 hypervisor file system 21

Working with the S/390 hypervisor file system 21

Defining access rights . 21

Updating the CPU information 22

© Copyright IBM Corp. 2000, 2006 iii

||
||

||
||
||
||
||
||
||

Part 2. Storage device drivers . 23

Chapter 4. DASD device driver 25

Features . 25

What you should know about DASD 26

The IBM label partitioning scheme 26

System z compatible disk layout 27

Linux disk layout . 29

CMS disk layout . 30

DASD naming scheme . 30

Creating device nodes . 31

Assuring that a device node exists for extended error reporting 32

Examples for udev-created DASD device nodes 33

Accessing DASD by bus-ID 34

Accessing DASD by VOLSER 34

Further information . 35

Building a kernel with the DASD device driver 35

Setting up the DASD device driver 36

Kernel parameters . 36

Module parameters . 38

Working with the DASD device driver 39

Preparing an ECKD-type DASD for use 39

Preparing an FBA-type DASD for use 41

Accessing DASD by force . 42

Enabling DIAG calls to access DASDs 43

Working with extended error reporting for ECKD 44

Switching extended error reporting on and off 44

Displaying DASD information 45

Setting a DASD online or offline 46

Chapter 5. SCSI-over-Fibre Channel device driver 49

Features . 49

What you should know about zfcp 49

sysfs structures for FCP channels and SCSI devices 50

SCSI device nodes . 51

Partitioning a SCSI device . 51

zfcp HBA API (FC-HBA) support 51

Discovering SAN ports and LUNs with the san_disc command 52

FCP LUN access control . 53

N_Port ID Virtualization for FCP channels 53

Further information . 53

Building a kernel with the zfcp device driver 54

Setting up the zfcp device driver 54

Device driver kernel parameters 54

zfcp HBA API kernel parameters 55

zfcp HBA API module parameters 56

Installing the zfcp HBA API library 56

Ensuring that the required device node exists for the HBA API support . . . 57

Working with the zfcp device driver 58

Displaying the device driver version 58

Setting an FCP channel online or offline 58

Displaying adapter information 59

Finding out if NPIV is in use 61

Recovering a failed FCP channel 62

Configuring and removing ports 62

Displaying port information 63

iv Device Drivers, Features, and Commands - November, 2006

||

||
||
||

Recovering a failed port . 65

Configuring SCSI devices . 65

Mapping the representations of a SCSI device in sysfs 66

Displaying information on SCSI devices 67

Finding the major and minor numbers for a device 70

Recovering a failed SCSI device 70

Removing SCSI devices . 71

Scenario . 72

API provided by the zfcp HBA API support 72

Functions provided . 72

Environment variables . 73

Chapter 6. Channel-attached tape device driver 75

Features . 75

What you should know about channel-attached tape devices 75

Tape device modes and logical devices 75

Tape naming scheme . 76

Creating device nodes . 78

Examples for udev-created tape device nodes 78

Accessing tapes by bus-ID 79

Using the mt command . 79

Building a kernel with the tape device driver 80

Setting up the tape device driver 81

Loading the tape device driver 81

Working with the tape device driver 81

Setting a tape device online or offline 81

Displaying tape information 83

Enabling compression . 84

Loading and unloading tapes 85

Scenario: Using a tape block device 85

Chapter 7. XPRAM device driver 87

XPRAM features . 87

What you should know about XPRAM 87

XPRAM partitions and device nodes 87

Creating device nodes . 88

XPRAM use for diagnosis . 88

Reusing XPRAM partitions 88

Building a kernel with the XPRAM device driver 88

Setting up the XPRAM device driver 89

Kernel parameters . 89

Module parameters . 90

Part 3. Network device drivers . 93

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 95

Features . 95

What you should know about the qeth device driver 96

qeth group devices . 96

Overview of the steps for setting up a qeth group device 97

qeth interface names and device directories 97

MAC address handling for IPv4 98

MAC address handling for IPv4 with the layer2 option 102

Support for IP Version 6 (IPv6) 103

Further information . 103

Building a kernel with the qeth device driver 103

Contents v

Setting up the qeth device driver 104

Loading the qeth device driver modules 104

Working with the qeth device driver 105

Creating a qeth group device 107

Assigning a port name . 108

Setting up a Linux router . 109

Setting the checksumming method 112

Providing Large Send . 112

Using priority queueing . 113

Setting the Token Ring MAC address format 114

Setting the scope of Token Ring broadcasts 115

Faking broadcast capability 115

Setting the layer2 attribute 116

Adding additional hardware-header space 116

Specifying the number of inbound buffers 116

Specifying the relative port number 117

Finding out the type of your network adapter 117

Setting a device online or offline 118

Finding out the interface name of a qeth group device 118

Finding out the bus ID of a qeth interface 118

Activating an interface . 119

Deactivating an interface . 121

Taking over IP addresses 121

Configuring a device for proxy ARP 123

Configuring a device for virtual IP address (VIPA) 124

Recovering a device . 125

Scenario: VIPA – minimize outage due to adapter failure 125

Standard VIPA . 125

Source VIPA . 127

Source VIPA 2 . 129

Scenario: Virtual LAN (VLAN) support 132

Introduction to VLANs . 132

Configuring VLAN devices 134

Examples . 134

Further information . 135

HiperSockets Network Concentrator 135

Design . 136

Setup . 136

Availability setups . 137

Hints . 137

Restrictions . 138

Examples . 138

Setting up for DHCP with IPv4 141

Required options for using DHCP on Linux for System z 141

Setting up for tcpdump with IPv4 142

Setting up a Linux guest as a z/VM guest LAN sniffer 143

Chapter 9. LAN channel station device driver 145

Features . 145

What you should know about LCS 145

LCS group devices . 145

LCS interface names . 145

Building a kernel with the LCS device driver 146

Setting up the LCS device driver 146

Working with the LCS device driver 147

Creating an LCS group device 147

vi Device Drivers, Features, and Commands - November, 2006

Specifying a timeout for LCS LAN commands 147

Setting a device online or offline 148

Activating and deactivating an interface 148

Chapter 10. CTCMPC device driver 151

Features . 151

What you should know about CTCMPC 151

CTCMPC group devices . 151

CTCMPC interfaces . 151

Building a kernel with the CTCMPC device driver 152

Setting up the CTCMPC device driver 152

Working with the CTCMPC device driver 152

Creating a CTCMPC group device 152

Setting a device online or offline 153

Part 4. z/VM virtual server integration . 155

Chapter 11. z/VM DCSS device driver 157

Features . 157

What you should know about DCSS 157

DCSS naming scheme . 157

Creating device nodes . 157

Further information . 158

Building a kernel with the DCSS device driver 158

Setting up the DCSS device driver 158

Kernel parameters . 158

Module parameters . 159

Working with the DCSS device driver 159

Adding a DCSS . 159

Finding the minor number for a DCSS 160

Setting the access mode . 160

Saving an updated DCSS 161

Removing a DCSS . 162

Changing the contents of a DCSS 162

Chapter 12. z/VM *MONITOR record reader device driver 165

Features . 165

What you should know about the z/VM *MONITOR record device driver . . . 165

Further information . 165

Building a kernel with the z/VM *MONITOR record device driver 166

Setting up the z/VM *MONITOR record reader device driver 166

Providing the required USER DIRECT entries for your z/VM guest 166

Making the DCSS addressable for your Linux guest 166

Specifying the monitor DCSS name 168

Assuring that the required device node exists 169

Working with the z/VM *MONITOR record device driver 169

Opening and closing the character device 170

Reading monitor records . 170

Chapter 13. Linux monitor stream support for z/VM 173

Building a kernel that is enabled for monitoring 173

Setting up the monitor stream support 174

Loading data gathering modules 174

Enabling your VM guest for data gathering 174

Working with the monitor stream support 174

Switching on or off the monitoring support 174

Contents vii

Activating or deactivating individual data gathering modules 175

Setting the sampling interval 175

APPLDATA monitor record layout 176

Programming interfaces . 179

Chapter 14. Monitor stream application support 181

Features . 181

What you should know about monitor stream application support 181

Further information . 181

Building a kernel with monitor stream application support 181

Setting up the monitor stream application support 181

Kernel parameters . 182

Module parameters . 182

Setting up the user . 182

Working with the monitor stream application support 183

Writing data . 184

Using the monwrite_hdr structure 184

Stopping data writing . 184

Chapter 15. z/VM recording device driver 185

Features . 185

What you should know about the z/VM recording device driver 185

z/VM recording device nodes 185

Creating device nodes for the z/VM recording devices 186

Reading records . 186

Further information . 187

Building a kernel with the z/VM recording device driver 187

Setting up the z/VM recording device driver 187

Authorizing the Linux guest 187

Loading the z/VM recording device driver 187

Working with z/VM recording devices 187

Starting and stopping record collection 188

Purging existing records . 189

Querying the VM recording status 189

Opening and closing devices 190

Scenario: Connecting to the *ACCOUNT service. 190

Chapter 16. Watchdog device driver 193

Features . 193

Building a kernel with the watchdog device driver 193

What you should know about the watchdog device driver 193

Setting up the watchdog device driver 194

Kernel parameters . 194

Module parameters . 196

Assuring that a device node exists 196

External programming interfaces 197

Chapter 17. z/VM CP interface device driver 199

What you should know about the z/VM CP interface 199

Differences between vmcp and a 3270 console 199

Creating device nodes . 200

Building a kernel with the z/VM CP interface 200

Setting up the z/VM CP interface 200

Chapter 18. Cooperative memory management 201

Building a kernel with cooperative memory management 201

viii Device Drivers, Features, and Commands - November, 2006

||
||
||
||
||
||
||
||
||
||
||
||
||

||

Setting up cooperative memory management 201

Kernel parameters . 201

Loading the cooperative memory management module 202

Further information . 202

Working with cooperative memory management 203

Part 5. Generic features . 205

Chapter 19. Console device drivers 207

Console features . 207

What you should know about console devices 207

Console modes . 207

Console device names . 208

Using the hardware console 208

Magic sysrequest function 209

Console special characters on line-mode terminals 209

VM console line edit characters 210

Using VInput . 210

Console 3270 emulation . 212

Further information . 212

Building a kernel with the console device drivers 213

Setting up the console device drivers 214

Console kernel parameter syntax 214

Assuring device nodes . 215

Setting up a line-mode terminal 216

Setting up a full-screen mode terminal 216

Enabling a terminal for user log-ins 216

Setting a TTY device online or offline 217

Chapter 20. Generic cryptographic device driver 219

Features . 219

Supported devices . 219

Supported facilities . 219

Elements of zcrypt . 219

Software components . 219

Dependencies . 220

Hardware restrictions . 220

Performance considerations 220

Further information . 221

Building a kernel with the zcrypt device driver 221

Setting up the zcrypt device driver 222

Kernel parameters . 222

Module parameters . 223

The libica library . 225

The openCryptoki library . 225

The sysfs interface . 225

Debugging messages . 226

Setting up for the 31-bit compatibility mode 226

Assuring that you have a device node 226

Checking hardware status, activating and deactivating devices under zcrypt 227

Examples . 227

External programming interfaces 227

Outline of a decryption program 227

The ica_rsa_modexpo structure 228

The ica_rsa_modexpo_crt structure 228

Querying the hardware status 228

Contents ix

||
||
||
||
||
||
||
||

||
||

||
||

||
||

||

Returns from ioctl . 229

Chapter 21. Channel measurement facility 231

Features . 231

Building a kernel with the channel measurement facility 231

Setting up the channel measurement facility 231

Working with the channel measurement facility 232

Enabling, resetting, and switching off data collection 232

Reading data . 232

Chapter 22. Control program identification 235

Building a kernel with CPI support 235

Assigning a name to your Linux instance 235

Example . 236

Chapter 23. OSA-Express SNMP subagent support 237

What you need to know about osasnmpd 237

Setting up osasnmpd . 239

Downloading the IBM OSA-Express MIB 239

Configuring access control 239

Working with the osasnmpd subagent 242

Starting the osasnmpd subagent 242

Checking the log file . 242

Issuing queries . 243

Stopping osasnmpd . 244

Chapter 24. IPL parameter interface 245

Working with the IPL parameter interface 245

Example . 245

Setting the IPL device online 246

Chapter 25. Data execution protection for user processes 247

Features . 247

What you should know about the data execution protection feature 247

Building a kernel with the data execution protection feature 247

Setting up the data execution protection feature 248

Working with the data execution protection feature 248

Enabling and disabling stack execution protection 248

Chapter 26. Other features kernel builders should know about 251

Dependencies between options 251

General architecture-specific options 251

Device driver-related options 258

Part 6. Commands and kernel parameters 265

Chapter 27. Useful Linux commands 267

Generic command options . 267

chccwdev - Set a CCW device online 269

dasdfmt - Format a DASD . 271

dasdview - Display DASD structure 274

fdasd – Partition a DASD . 284

lscss - List subchannels . 292

lsdasd - List DASD devices . 294

lsqeth - List qeth based network devices 295

lstape - List tape devices . 297

x Device Drivers, Features, and Commands - November, 2006

||
||
||
||
||
||
||

lszfcp - List zfcp devices . 299

osasnmpd – Start OSA-Express SNMP subagent 301

qetharp - Query and purge OSA and HiperSockets ARP data 303

qethconf - Configure qeth devices 305

san_disc - Discover ports and LUNs in Fibre Channel SANs 308

scsi_logging_level - Set and get the SCSI logging level 312

snipl – Simple network IPL (Linux image control for LPAR and VM) 315

tape390_display - display messages on tape devices and load tapes 323

tunedasd - Adjust DASD performance 325

vmcp - Send CP commands to the VM hypervisor 328

zipl – zSeries initial program loader 330

Chapter 28. Selected kernel parameters 349

additional_cpus . 350

cio_ignore . 351

cio_msg . 354

ipldelay . 355

maxcpus . 356

mem . 357

noinitrd . 358

possible_cpus . 359

ramdisk_size . 360

ro . 361

root . 362

vmhalt . 363

vmpoff . 364

Appendix A. Booting Linux 365

IPL and booting . 365

Control point and boot medium 366

Menu configurations . 366

Boot data . 366

Kernel image . 367

Boot loader code . 367

Kernel parameters . 367

Initial RAM disk image . 368

Booting a z/VM Linux guest . 368

Using tape . 368

Using DASD . 369

Using SCSI . 370

Using the VM reader . 371

Booting Linux in LPAR mode 372

Booting from DASD, tape, or SCSI 372

Loading Linux from a CD-ROM or from an FTP server 376

Appendix B. Linux diagnose code use 381

Appendix C. Avoiding common pitfalls 383

Ensuring correct channel path status 383

Determining channel path usage 383

Configuring LPAR I/O devices 383

Glossary . 385

Notices . 389

Trademarks . 389

Contents xi

||

||
||
||
||

Index . 391

xii Device Drivers, Features, and Commands - November, 2006

Summary of changes

This revision reflects changes to the October 2005 stream until November, 2006.

Edition 3 changes

New Information

v A new device driver described in Chapter 14, “Monitor stream application

support,” on page 181 allows applications to easily write application-specific

monitor data to the z/VM monitor stream.

v A new file system described in Chapter 3, “S/390 hypervisor file system” supplies

access to LPAR hypervisor CPU accounting data.

v A new sysfs attribute described in “Channel path measurement” on page 14

supplies access to channel path measurement data.

v Linux on System z use of diagnose codes is now described in Appendix B, “Linux

diagnose code use,” on page 381.

v Some common problems and their solutions have been collected in Appendix C,

“Avoiding common pitfalls,” on page 383.

Changed Information

v The DASD device driver now supports extended error reporting.

v The tape device driver now supports 3592 tape subsystems.

v The TSO value for the large_send attribute is ignored when layer2 is specified.

v The changed record layout of the APPLDATA_OS record is described in

“APPLDATA monitor record layout” on page 176

v New features have been added to the cryptographic device driver described in

Chapter 20, “Generic cryptographic device driver,” on page 219.

Deleted Information

v In Chapter 22, “Control program identification,” on page 235, the parameter

sysplex_name has been removed.

v In Chapter 4, “DASD device driver,” on page 25, the external programming

interface (ioctl) has been removed.

This revision also includes maintenance and editorial changes. Technical changes

or additions to the text and illustrations are indicated by a vertical line to the left of

the change.

Edition 2 changes

This revision reflects changes to the October 2005 stream until March 2006.

New Information

v Multiple subchannel set support. On machines that provide more than 64K device

numbers, devices are grouped into subchannel sets of 64K. On these machines,

the device bus ID of subchannel-attached devices is of the form 0.n.dddd, where

n is the subchannel set ID and dddd is the device ID. For machines with 64K

device numbers only, the subchannel set ID is always 0.

v The qeth device driver supports using a Linux guest as a guest LAN sniffer (see

“Setting up a Linux guest as a z/VM guest LAN sniffer” on page 143).

© Copyright IBM Corp. 2000, 2006 xiii

|

|
|
|

|
|

|
|

|
|

|
|

|

|

|

|
|

|
|

|
|

|
|

|

v There are new cryptographic kernel configuration options (see “General

architecture-specific options” on page 251).

v A new command, lsfcp, allows you to list information on zfcp adapters, ports,

units, and their associated class devices in a summary format (see “lszfcp - List

zfcp devices” on page 299).

v A new command, san_disc, allows you to discover ports and LUNs in SANs (see

“san_disc - Discover ports and LUNs in Fibre Channel SANs” on page 308)

v A new command, scsi_logging_level, allows you to create, set, or get the SCSI

logging level for troubleshooting purposes (see “scsi_logging_level - Set and get

the SCSI logging level” on page 312).

Changed Information

v The zfcp device driver now supports Fibre Channel transport class attributes (see

Chapter 5, “SCSI-over-Fibre Channel device driver,” on page 49).

v The 3590 tape device driver is now available as open source (see Chapter 6,

“Channel-attached tape device driver,” on page 75).

v Supported IOCTLs have been added to Chapter 16, “Watchdog device driver,” on

page 193.

v The chccwdev command now supports generic attributes (see “chccwdev - Set a

CCW device online” on page 269).

v Long command options have been added to “osasnmpd – Start OSA-Express

SNMP subagent” on page 301.

This revision also includes maintenance and editorial changes. Technical changes

or additions to the text and illustrations are indicated by a vertical line to the left of

the change.

Deleted Information

v The CLAW, CTC, and NETIUCV device drivers are deprecated and their

descriptions have been removed. For information about the device drivers, see

earlier versions of this book. The device drivers are still available for backward

compatibility.

Instead of the deprecated drivers, use the qeth device driver for OSA-Express

(QDIO) and HiperSockets as follows:

– As an alternative for CTC, use an OSA feature that is configured for QDIO

mode.

– As an alternative for virtual CTC and NETIUCV, use guest LAN Hipersockets

or guest LAN type QDIO.

– As an alternative for CTC inside a CEC use Hipersockets.

Updates for the October 2005 stream

This edition contains changes related to the October 14th, 2005 software drop. This

book is the equivalent to SC33-8281, which applies to Linux® on zSeries® kernel

2.6, April 2004 stream.

Changes compared to SC33-8281-00 are as follows:

New information

v A device driver and tool is available for sending control program commands to

the VM hypervisor (see “vmcp - Send CP commands to the VM hypervisor” on

page 328 and Chapter 17, “z/VM CP interface device driver,” on page 199

xiv Device Drivers, Features, and Commands - November, 2006

v Cooperative memory management support is available (see Chapter 18,

“Cooperative memory management,” on page 201)

v The IPL device can be derived (see Chapter 24, “IPL parameter interface,” on

page 245)

Changed Information

v The qeth device driver now supports Open Systems Adapter for NCP

(ESCON/CDLC bridge) (see Chapter 8, “qeth device driver for OSA-Express

(QDIO) and HiperSockets,” on page 95)

v The generic cryptographic device driver now supports Crypto Express2

Accelerator (CEX2A) (see Chapter 20, “Generic cryptographic device driver”)

v The DIAG250 interface supports 64-bit addressing mode from z/VM 5.2 or later

(see “Enabling DIAG calls to access DASDs” on page 43)

v The SCSI-over-Fibre Channel device driver has been updated to support N-port

ID virtualization on System z9 (seeChapter 5, “SCSI-over-Fibre Channel device

driver,” on page 49)

v Information about the impact of buffersize has been added.

v The fdasd command has been changed slightly to better fit other Linux

commands.

Deleted Information

v A device-bus ID restriction has been deleted from Chapter 10, “CTCMPC device

driver.”

v Hotplug support has been removed from the generic cryptographic device driver.

Summary of changes xv

xvi Device Drivers, Features, and Commands - November, 2006

About this document

This document describes the device drivers available to Linux for the control of

IBM® System z9™, and eServer™ zSeries devices and attachments with the kernel

2.6 (October 2005 stream). It also provides information on commands and

parameters relevant to configuring Linux for IBM mainframes.

Unless stated otherwise, the device drivers, features, and commands described in

this book are available for the System z 64-bit and 31-bit architectures with version

2.6 of the Linux kernel.

Unless stated otherwise, all z/VM® related information in this book is based on the

assumption that z/VM 4.4 or later is used.

In this book, System z is taken to include System z9 and zSeries in 64- and 31-bit

mode.

The drivers described herein have been developed with version 2.6 of the Linux

kernel. If you are using a later version of the kernel, the kernel parameters may be

different from those described in this document.

For more specific information about the device driver structure, see the documents

in the kernel source tree at ...linux/Documentation/s390.

When you have installed Linux including the kernel sources, this path will be on

your machine. Typically: /usr/src/linux/Documentation/s390.

Note: For tools related to taking and analyzing system dumps, see Linux on

System z9 and zSeries Using the Dump Tools.

You can find the latest version of this document and of Linux on System z9 and

zSeries Using the Dump Tools on the developerWorks® Web site at:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

How this document is organized

The first part of this document contains general and overview information for the

Linux on System z device drivers.

Part two consists of chapters specific to individual storage device drivers.

Part three consists of chapters specific to individual network device drivers.

Part four consists of chapters that describe device drivers and features in support of

z/VM virtual server integration.

Part five consists of chapters that describe Linux on System z features that are

beyond the scope of an individual device driver.

Part six contains information on the commands and parameters used in configuring

Linux on System z.

The Appendix provides a description of how you can boot Linux on System z.

© Copyright IBM Corp. 2000, 2006 xvii

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.shtml

Who should read this document

Most of the information in this document is intended for system administrators who

want to configure a Linux on System z system.

 Some sections are of interest primarily to kernel builders who want to build their

own Linux kernel. These sections are marked with the same icon on the left margin

as this paragraph.

 Some sections are of interest primarily to specialists who want to program

extensions to the Linux on System z device drivers and features. These sections

are marked with the same icon on the left margin as this paragraph.

Assumptions

The following general assumptions are made about your background knowledge:

v You have an understanding of basic computer architecture, operating systems,

and programs.

v You have an understanding of Linux, System z terminology.

v You are familiar with Linux device driver software.

v You are familiar with the System z devices attached to your system.

Distribution specific information

This book does not provide information that is specific to a particular Linux

distribution. The device drivers, features, options, and commands it describes are

either provided by the October 2005 stream downloads on developerWorks or are

commonly available tools.

Your Linux distribution might provide additional utilities for working with System z

devices that are not described in this book. For example, the examples in this book

use the ifconfig command to activate interfaces. If your distribution provides it, you

can also use IP tools instead of ifconfig. Refer to the documentation that is

provided with your distribution to find out what additional utilities you can use.

Conventions used in this book

This section informs you on the styles, highlighting, and assumptions used

throughout the book.

Terminology

In this book, the term booting is used for running boot loader code that loads the

Linux operating system. IPL is used for issuing an IPL command, to load boot

loader code, a stand-alone dump utility, or a DCSS. See also “IPL and booting” on

page 365.

sysfs

Throughout the book, the mount point for the virtual Linux file system sysfs is

assumed to be /sys.

Hexadecimal numbers

Mainframe books and Linux books tend to use different styles for writing

hexadecimal numbers. Thirty-one, for example, would typically read X’1F’ in a

mainframe book and 0x1f in a Linux book.

xviii Device Drivers, Features, and Commands - November, 2006

Because the Linux style is required in many commands and is also used in some

code samples, the Linux style is used throughout this book.

Highlighting

This book uses the following highlighting styles:

v Paths and URLs are highlighted in monospace.

v Variables are highlighted in <italics within angled brackets>.

v Commands in text are highlighted in bold.

v Input and output as normally seen on a computer screen is shown

within a screen frame.

Prompts are shown as hash signs:

Understanding syntax diagrams

This section describes how to read the syntax diagrams in this manual.

To read a syntax diagram follow the path of the line. Read from left to right and top

to bottom.

v The ��─── symbol indicates the beginning of a syntax diagram.

v The ───� symbol, at the end of a line, indicates that the syntax diagram

continues on the next line.

v The �─── symbol, at the beginning of a line, indicates that a syntax diagram

continues from the previous line.

v The ───�� symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

v Directly on the line (required)

v Above the line (default)

v Below the line (optional)

Case sensitivity

Unless otherwise noted, entries are case sensitive.

Symbols

You must code these symbols exactly as they appear in the syntax diagram

* Asterisk

: Colon

, Comma

= Equals sign

- Hyphen

// Double slash

() Parentheses

. Period

+ Add

$ Dollar sign

For example:

About this document xix

dasd=0.0.7000-0.0.7fff

Variables

An italicized lowercase word indicates a variable that you must substitute

with specific information. For example:

�� -p <interface> ��

Here you must code -p as shown and supply a value for <interface>.

 An italicized uppercase word indicates a variable that must appear in

uppercase:

�� vmhalt=<COMMAND> ��

Repetition

An arrow returning to the left means that the item can be repeated.

��

�

<repeat>

��

A character within the arrow means you must separate repeated items with

that character.

��

�

 ,

<repeat>

��

Defaults

Defaults are above the line. The system uses the default unless you

override it. You can override the default by coding an option from the stack

below the line. For example:

��
 A

B

C

��

In this example, A is the default. You can override A by choosing B or C.

Required Choices

When two or more items are in a stack and one of them is on the line, you

must specify one item. For example:

�� A

B

C

 ��

Here you must enter either A or B or C.

Optional Choice

When an item is below the line, the item is optional. Only one item may be

chosen. For example:

xx Device Drivers, Features, and Commands - November, 2006

��

A

B

C

 ��

Here you may enter either A or B or C, or you may omit the field.

Finding IBM books

The PDF version of this book contains URL links to much of the referenced

literature.

For some of the referenced IBM books, links have been omitted to avoid pointing to

a particular edition of a book. You can locate the latest versions of the referenced

IBM books through the IBM Publications Center at:

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?

About this document xxi

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?

xxii Device Drivers, Features, and Commands - November, 2006

Part 1. General concepts

This part provides information at an overview level and describes concepts that

apply across different devices drivers and kernel features.

v Chapter 1, “How devices are accessed by Linux”

v Chapter 2, “Devices in sysfs”

v Chapter 3, “S/390 hypervisor file system”

© Copyright IBM Corp. 2000, 2006 1

|

2 Device Drivers, Features, and Commands - November, 2006

Chapter 1. How devices are accessed by Linux

User space programs access devices through:

v Device nodes (character and block devices)

v Interfaces (network devices)

Device nodes and major/minor numbers

The Linux kernel represents the character and block devices it knows as a pair of

numbers <major>:<minor>.

Some major numbers are reserved for particular device drivers, others are

dynamically assigned to a device driver when Linux boots. For example, major

number 94 is always the major number for DASD devices while the device driver for

channel-attached tape devices has no fixed major number. A major number can

also be shared by multiple device drivers.

The device driver uses the minor number <minor> to distinguish individual physical

or logical devices. For example, the DASD device driver assigns four minor

numbers to each DASD: one to the DASD as a whole and the other three for up to

three partitions.

Device drivers assign device names to their devices, according to a device

driver-specific naming scheme (see, for example, “DASD naming scheme” on page

30). Each device name is associated with a minor number.

 User space programs access character and block devices through device nodes

also referred to as device special files. When a device node is created, it is

associated with a major and minor number.

Your distribution might create these device nodes for you or provide udev to create

them (see “Device nodes provided by udev” on page 4). If no devices nodes are

provided, you need to create them yourself.

Creating device nodes

You can create a device node with an mknod command of the form:

mknod <node> <mode> <major> <minor>

where:

<node>

specifies the path to the node. You can use any path. To comply with Linux

conventions, the path should begin with /dev/.

Figure 1. Major and minor numbers

© Copyright IBM Corp. 2000, 2006 3

<mode>

is “c” for character devices and “b” for block devices. For each minor number

you can define a character device and a block device.

<major>

is the major number that identifies the required device driver to the kernel.

<minor>

is the minor number that maps to a device name used by the device driver.

 Figure 2 shows a standard device node that matches the device name used by the

device driver. You need not use device nodes like this. Which device a device node

maps to is determined by the major and minor number associated with it. You can

have multiple device nodes that all map to the same device.

For example, the following commands all create device nodes for the same device:

mknod /dev/dasda b 94 0

mknod /dev/firstdasd b 94 0

mknod /dev/as/you/please b 94 0

For some device drivers, the assignment of minor numbers and names can change

between kernel boots, when devices are added or removed in a VM environment,

or even if devices are set offline and back online. The same file name, therefore,

can lead to a completely different device.

Device nodes provided by udev

If your distribution provides udev, you can use udev to create device nodes for you.

udev is a utility program that can use the device information in sysfs (see

Chapter 2, “Devices in sysfs,” on page 9) to create device nodes.

Apart from creating device nodes that are based on the device names, udev can

create additional device nodes that are based on characteristics of the physical

devices, for example, on device bus-IDs or VOLSERs. Unless you change these

characteristics of your devices, the device nodes that are based on them remain the

same and map to the same device, even if the device name of a device has

changed (for example, after rebooting). udev keeps track of the mapping of the

device name and the actual devices for you and so helps you ensure that you are

addressing the device you intend to.

The format of the nodes that udev creates for you depends on distribution-specific

configuration files that reside in /etc/udev/rules.d/. If you use udev, be sure that

you use the nodes according to your distribution. Refer to your distribution

documentation to find out which udev-created device nodes are available.

Figure 2. Device nodes

4 Device Drivers, Features, and Commands - November, 2006

See “Examples for udev-created DASD device nodes” on page 33 and “Examples

for udev-created tape device nodes” on page 78 for examples of what udev created

device nodes might look like.

Refer to the udev man page for more details.

Network interfaces

The Linux kernel representation of a network device is an interface.

 When a network device is defined, it is associated with a real or virtual network

adapter. You can configure the adapter properties for a particular network device

through the device representation in sysfs (see “Devices and device attributes” on

page 11).

You activate or deactivate a connection by addressing the interface with ifconfig or

an equivalent command. All interfaces that are provided by the network device

drivers described in this book are interfaces for the Internet Protocol (IP).

Interface names

The interface names are assigned by the Linux network stack and are of the form

<base_name><n> where <base_name> is a base name used for a particular

interface type and <n> is an index number that identifies an individual interface of a

given type.

Table 1 summarizes the base names used for the Linux on System z network

device drivers for interfaces that are associated with real hardware:

 Table 1. Interface base names for real devices

Base name Interface type Device driver

module

Hardware

eth Ethernet qeth, lcs OSA-Express, OSA-2,

OSA-Express2

tr Token Ring qeth, lcs OSA-Express, OSA-2

ctc¹ Channel-to-Channel ctc ESCON® channel

card, FICON® channel

card

mpc Channel-to-Channel mpc ESCON channel card

claw¹ CLAW claw ESCON channel card

¹Note that the CTC and CLAW device drivers are deprecated. For information about them,

see earlier versions of this book.

Table 1 summarizes the base names used for the Linux on System z network

device drivers for interfaces that are associated with virtual hardware:

Figure 3. Interfaces

Chapter 1. How devices are accessed by Linux 5

Table 2. Interface base names for virtual devices

Base name Interface type Device driver

module

Comment

hsi HiperSockets™, Guest

LAN

qeth Real HiperSockets or

HiperSockets guest

LAN

eth Guest LAN qeth QDIO guest LAN

ctc¹ virtual

Channel-to-Channel

ctc virtual CTC/A

mpc virtual

Channel-to-Channel

mpc virtual CTC/A

iucv¹ IUCV netiucv IUCV must be

enabled for the VM

guest

¹Note that the CTC and NETIUCV device drivers are deprecated. For information about

them, see earlier versions of this book.

Both the qeth device driver and the LCS device driver use the generic base name

for Ethernet and Token Ring interfaces.

When the first device for a particular interface name is set online, it is assigned the

index number 0, the second is assigned 1, the third 2, and so on. For example, the

first HiperSockets interface is named hsi0, the second hsi1, the third hsi2, and so

on. As an exception, IUCV devices do not need to be set online and the interface

names are assigned when the device is created.

When a network device is set offline, it retains its interface name. When a device is

removed, it surrenders its interface name and the name can be reassigned as

network devices are defined in the future. When an interface is defined, the Linux

kernel always assigns the interface name with the lowest free index number for the

particular type. For example, if the network device with an associated interface

name hsi1 is removed while the devices for hsi0 and hsi2 are retained, the next

HiperSockets interface to be defined becomes hsi1.

Matching devices with the corresponding interfaces

If you define multiple interfaces on a Linux instance, you need to keep track of the

interface names assigned to your network devices. Your distribution might provide a

way to track the mapping or to assign meaningful names to your interfaces.

How you can keep track of the mapping yourself differs depending on the network

device driver.

For qeth, you can use the lsqeth command (see “lsqeth - List qeth based network

devices” on page 295) to obtain a mapping.

After setting a device online (or creating an IUCV device), read /var/log/messages

or issue dmesg to find the associated interface name in the messages that are

issued in response to the device being set online (or created for IUCV).

For each IUCV network device and all other network devices that are online, there

is a symbolic link of the form /sys/class/net/<interface>/device where

<interface> is the interface name. This link points to a sysfs directory that

6 Device Drivers, Features, and Commands - November, 2006

represents the corresponding network device. You can read this symbolic link with

readlink to confirm that an interface name corresponds to a particular network

device.

Main steps for setting up a network interface

The following main steps apply to all Linux on System z network devices drivers.

How to perform a particular step can be different for the different device drivers.

The main steps for setting up a network interface are:

v Define a network device.

This means creating directories that represent the device in sysfs.

v Configure the device through its attributes in sysfs (see “Device views in sysfs”

on page 12).

For some devices, there are attributes that can or need to be set later when the

device is online or when the connection is active.

v Set the device online (skip this for IUCV network devices)

This makes the device known to the Linux network stack and associates the

device with an interface name. For devices that are associated with a physical

network adapter it also initializes the adapter for the network interface.

v Activate the interface.

This adds interface properties like IP addresses, MTU, and netmasks to a

network interface and makes the network interface available to user space

programs.

Chapter 1. How devices are accessed by Linux 7

8 Device Drivers, Features, and Commands - November, 2006

Chapter 2. Devices in sysfs

Most of the Linux on System z device drivers create structures in sysfs. These

structures hold information on individual devices and are also used to configure and

control the devices. This section provides an overview of these structures and of

two of the categories into which the Linux on System z device drivers and devices

are grouped in sysfs.

Device categories

Figure 4 illustrates a part of the Linux on System z sysfs.

 /sys/bus and /sys/devices are common Linux directories. The directories following

/sys/bus sort the device drivers according to the categories of devices they control.

Linux on System z has several categories of devices:

AP devices

are adjunct processors used for cryptographic operations.

CCW devices

are devices that can be addressed with channel-command words (CCWs).

These devices use a single subchannel on the mainframe’s channel

subsystem.

CCW group devices

are devices that use multiple subchannels on the mainframe’s channel

subsystem.

IUCV devices

are devices for virtual connections within an IBM mainframe. IUCV devices

do not use the channel subsystem.

Figure 4. sysfs

© Copyright IBM Corp. 2000, 2006 9

|
|

Table 3 lists the Linux on System z device drivers:

 Table 3. Linux on System z device drivers

Device driver Category sysfs directories

3215 console CCW /sys/bus/ccw/drivers/3215

3270 console CCW /sys/bus/ccw/drivers/3270

Hardware console n/a n/a

DASD CCW /sys/bus/ccw/drivers/dasd-eckd

/sys/bus/ccw/drivers/dasd-fba

SCSI-over-Fibre Channel CCW /sys/bus/ccw/drivers/zfcp

Tape CCW /sys/bus/ccw/drivers/tape_34xx

/sys/bus/ccw/drivers/tape_3590

Cryptographic AP /sys/bus/ap/drivers/cex2a

/sys/bus/ap/drivers/pcica

/sys/bus/ap/drivers/pcicc

/sys/bus/ap/drivers/pcixcc

DCSS n/a /sys/devices/dcssblk

z/VM monitor record reader n/a none

XPRAM n/a /sys/devices/system/xpram

z/VM recording device driver IUCV /sys/bus/iucv/drivers/vmlogrdr

OSA-Express, OSA-Express2

/ HiperSockets (qeth)

CCW group /sys/bus/ccwgroup/drivers/qeth

Watchdog device driver n/a none

LCS CCW group /sys/bus/ccwgroup/drivers/lcs

CTCMPC CCW group /sys/bus/ccwgroup/drivers/ctcmpc

Some device drivers do not relate to physical devices that are connected through

the channel subsystem. Their representation in sysfs differs from the CCW and

CCW group devices:

v The following are not categorized and do not have data under /sys/bus:

– Hardware console device driver

– DCSS device driver

– z/VM monitor record reader

– XPRAM device driver

– Watchdog device driver

– z/VM monitor record reader

v The IUCV device driver and the IUCV-dependent z/VM recording device driver

have their own category, IUCV.

The following sections provide more details about devices and their representation

in sysfs

10 Device Drivers, Features, and Commands - November, 2006

|
|
|
|

Devices and device attributes

Each device that is known to Linux is represented by a directory in sysfs.

For CCW and CCW group devices the name of the directory is a bus ID that

identifies the device within the scope of a Linux instance. For a CCW device, the

bus ID is the device’s device number with a leading “0.n.”, where n is the

subchannel set ID. For example, 0.1.0ab1.

CCW group devices are associated with multiple device numbers. For CCW group

devices, the bus ID is the primary device number with a leading “0.n.”, where n is

the subchannel set ID.

The device directories contain attributes. You control a device by writing values to

its attributes.

Some attributes are common to all devices in a device category, other attributes are

specific to a particular device driver. The following attributes are common to all

CCW devices:

online

You use this attribute to set the device online or offline. To set a device online

write the value “1” to its online attribute. To set a device offline write the value

“0” to its online attribute.

cutype

specifies the control unit type and model, if applicable. This attribute is

read-only.

cmb_enable

enables I/O data collection for the device. See “Enabling, resetting, and

switching off data collection” on page 232 for details.

devtype

specifies the device type and model, if applicable. This attribute is read-only.

availability

indicates if the device can be used. Possible values are:

good This is the normal state, the device can be used.

boxed The device has been locked by another operating system instance and

cannot be used until the lock is surrendered or forcibly broken (see

“Accessing DASD by force” on page 42).

no device

Applies to disconnected devices only. The device is gone after a

machine check and the device driver has requested to keep the (online)

device anyway. Changes back to “good” when the device returns after

another machine check and the device driver has accepted the device

back.

no path

Applies to disconnected devices only. The device has no path left after

a machine check or a logical vary off and the device driver has

requested to keep the (online) device anyway. Changes back to “good”

when the path returns after another machine check or logical vary on

and the device driver has accepted the device back.

modalias

contains the module alias for the device. It is of the format:

Chapter 2. Devices in sysfs 11

|
|

ccw:t<cu_type>m<cu_model>

or

ccw:t<cu_type>m<cu_model>dt<dev_type>dm<dev_model>

 “Device views in sysfs” tells you where you can find the device directories with their

attributes in sysfs.

Device views in sysfs

sysfs provides multiple views of device specific data. The most important views are:

v Device driver view

v Device category view

v Device view

v Channel subsystem view

Many paths in sysfs contain device bus IDs to identify devices. Device bus IDs of

subchannel-attached devices are of the form:

0.n.dddd

where n is the subchannel set ID and dddd is the device ID. On machines that

provide more than 64K device numbers, devices are grouped into subchannel sets

of 64K. For machines with 64K device numbers only and for Linux systems running

under z/VM, the subchannel set ID is always 0. Multiple subchannel sets are

available on System z9 or later machines.

Device driver view

The device driver view is of the form:

/sys/bus/<bus>/drivers/<driver>/<device_bus_id>

where:

<bus> is the device category, for example, ccw or ccwgroup.

<driver> is a name that specifies an individual device driver or the device

driver component that controls the device (see Table 3 on page 10).

<device_bus_id>

identifies an individual device (see “Devices and device attributes”

on page 11).

Note: DCSSs and XPRAM are not represented in this view.

Examples:

v This example shows the path for an ECKD™ type DASD device:

/sys/bus/ccw/drivers/dasd-eckd/0.0.b100

v This example shows the path for a qeth device:

/sys/bus/ccwgroup/drivers/qeth/0.0.a100

v This example shows the path for a cryptographic device (a CEX2A card):

/sys/bus/ap/drivers/cex2a/card3b

12 Device Drivers, Features, and Commands - November, 2006

|

|

|

|
|

|

|

Device category view

The device category view does not sort the devices according to their device

drivers. All devices of the same category are contained in a single directory. The

device category view is of the form:

/sys/bus/<bus>/devices/<device_bus_id>

where:

<bus> is the device category, for example, ccw or ccwgroup.

<device_bus_id>

identifies an individual device (see “Devices and device attributes” on page

11).

Note: DCSSs and XPRAM are not represented in this view.

Examples:

v This example shows the path for a CCW device.

/sys/bus/ccw/devices/0.0.b100

v This example shows the path for a CCW group device.

/sys/bus/ccwgroup/devices/0.0.a100

v This example shows the path for a cryptographic device:

/sys/bus/ap/devices/card3b

Device view

The device view sorts devices according to their device drivers, but independent

from the device category. It also includes logical devices that are not categorized.

The device view is of the form:

/sys/devices/<driver>/<device>

where:

<driver>

identifies device driver.

<device>

identifies an individual device. The name of this directory can be a device

bus-ID or the name of a DCSS or IUCV device.

Examples:

v This example shows the path for a qeth device.

/sys/devices/qeth/0.0.a100

v This example shows the path for a DCSS block device.

/sys/devices/dcssblk/mydcss

Channel subsystem view

The channel subsystem view shows the devices in relation to their respective

subchannel sets and subchannels. It is of the form:

/sys/devices/css0/<subchannel>/<device_bus_id>

where:

Chapter 2. Devices in sysfs 13

|

|

<subchannel>

is a subchannel number with a leading “0.n.”, where n is the subchannel set

ID.

<device_bus_id>

is a device number with a leading “0.n.”, where n is the subchannel set ID

(see “Devices and device attributes” on page 11).

Examples:

v This example shows a CCW device with device number 0xb100 that is

associated with a subchannel 0x0001.

/sys/devices/css0/0.0.0001/0.0.b100

v This example shows a CCW device with device number 0xb100 that is

associated with a subchannel 0x0001 in subchannel set 1.

/sys/devices/css0/0.1.0001/0.1.b200

v The entries for a group device show as separate subchannels. If a CCW group

device uses three subchannels 0x0002, 0x0003, and 0x0004 the subchannel

information could be:

/sys/devices/css0/0.0.0002/0.0.a100

/sys/devices/css0/0.0.0003/0.0.a101

/sys/devices/css0/0.0.0004/0.0.a102

Each subchannel is associated with a device number. Only the primary device

number is used for the bus ID of the device in the device driver view and the

device view.

The channel subsystem view also shows the channel-path identifiers (CHPIDs) see

“CHPID information” on page 15.

Subchannel attributes

Apart from the bus ID of the attached device, the subchannel directories contain

three attributes:

chpids

is a list of the CHPIDs through with the device is connected.

detach_state

is reserved for future use.

pimpampom

provides the path installed, path available and path operational masks. Refer to

z/Architecture™ Principles of Operation, SA22-7832 for details on the masks.

Channel path measurement

In sysfs, an attribute is created for the channel subsystem:

/sys/devices/css0/cm_enable

With the cm_enable attribute you can enable and disable the extended channel-path

measurement facility. It can take the following values:

0 Deactivates the measurement facility and remove the measurement-related

attributes for the channel paths. No action if measurements are not active.

1 Attempts to activate the measurement facility and create the

measurement-related attributes for the channel paths. No action if

measurements are already active.

14 Device Drivers, Features, and Commands - November, 2006

|

|

|

|
|

||
|

||
|
|

If a machine does not support extended channel measurements the cm_enable

attribute is not created.

Two sysfs attributes are added for each channel path object:

cmg Specifies the channel measurement group or unknown if no characteristics

are available.

shared

Specifies whether the channel path is shared between LPARs or unknown if

no characteristics are available.

If measurements are active, two more sysfs attributes are created for each channel

path object:

measurement

A binary sysfs attribute that contains the extended channel measurement

data for the channel path. It consists of eight 32-bit values and must always

be read in its entirety, or 0 will be returned.

measurement_chars

A binary sysfs attribute that is either empty, or contains the channel

measurement group dependent characteristics for the channel path, if the

channel measurement group is 2 or 3. If not empty, it consists of five 32-bit

values.

Examples

v To turn measurements on issue:

echo 1 > /sys/devices/css0/cm_enable

v To turn measurements off issue:

echo 0 > /sys/devices/css0/cm_enable

CHPID information

All CHPIDs that are known to Linux are shown alongside the subchannels in the

/sys/devices/css0 directory. The directories that represent the CHPIDs have the

form:

/sys/devices/css0/chp0.<chpid>

where <chpid> is a two digit hexadecimal CHPID.

Example: /sys/devices/css0/chp0.4a

Setting a CHPID logically online or offline

Directories that represent CHPIDs contain a “status” attribute that you can use to

set the CHPID logically online or offline.

When a CHPID has been set logically offline from a particular Linux instance, the

CHPID is, in effect, offline for this Linux instance. A CHPID that is shared by

multiple operating system instances can be logically online to some instances and

offline to others. A CHPID can also be logically online to Linux while it has been

varied off at the SE.

Chapter 2. Devices in sysfs 15

|
|

|

||
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

|

|
||

|

|
||

To set a CHPID logically online, set its status attribute to “online” by writing the

value “on” to it. To set a CHPID logically offline, set its status attribute to “offline” by

writing “off” to it. Issue a command of this form:

Note: Depending on your distribution, it might be necessary to reboot to set the

device online.

echo <value> > /sys/devices/css0/chp0.<CHPID>/status

where:

<CHPID> is a two digit hexadecimal CHPID.

<value> is either “on” or “off”.

Examples

v To set a CHPID 0x4a logically offline issue:

echo off > /sys/devices/css0/chp0.4a/status

v To read the status attribute to confirm that the CHPID has been set logically

offline issue:

cat /sys/devices/css0/chp0.4a/status

offline

v To set the same CHPID logically online issue:

echo on > /sys/devices/css0/chp0.4a/status

v To read the status attribute to confirm that the CHPID has been set logically

online issue:

cat /sys/devices/css0/chp0.4a/status

online

CCW hotplug events

A hotplug event is generated when a CCW device appears or disappears with a

machine check. The hotplug events provide the following variables:

CU_TYPE for the control unit type of the device that appeared or disappeared.

CU_MODEL for the control unit model of the device that appeared or

disappeared.

DEV_TYPE for the type of the device that appeared or disappeared.

DEV_MODEL for the model of the device that appeared or disappeared.

MODALIAS for the module alias of the device that appeared or disappeared.

The module alias is the same value that is contained in

/sys/devices/css0/<subchannel_id>/<device_id>/modalias and is

of the format
ccw:t<cu_type>m<cu_model> or

ccw:t<cu_type>m<cu_model>dt<dev_tpe>dm<dev_model>

Hotplug events can be used, for example, for:

v Automatically setting devices online as they appear

16 Device Drivers, Features, and Commands - November, 2006

||
|
|
|
|
|

v Automatically loading driver modules for which devices have appeared

For information on the device driver modules see /lib/modules/<kernel_version>/
modules.ccwmap. This file is generated when you install the Linux kernel (version

<kernel_version>).

Chapter 2. Devices in sysfs 17

18 Device Drivers, Features, and Commands - November, 2006

Chapter 3. S/390 hypervisor file system

The S/390 hypervisor file system provides a mechanism to access LPAR hypervisor

CPU accounting data. Data is provided for each physical CPU of the machine and

for all virtual CPUs of the different logical partitions.

Note that hypfs is not supported under z/VM. Therefore hypfs is not registered as a

file system in a Linux VM guest.

Building a kernel with the S/390 hypervisor file system

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the S/390

hypervisor file system.

You need to select the kernel configuration option CONFIG_S390_HYPFS_FS to be

able to access LPAR CPU data.

Directory structure

When the hypfs file system is mounted the accounting information is retrieved and a

file system tree is created with a full set of attribute files containing the CPU

information.

The recommended mount point for the hypervisor file system is

/sys/hypervisor/s390.

Figure 5 on page 20 illustrates the file system tree that is created.

Base setup

 └ s390 hypervisor file system support (CONFIG_S390_HYPFS_FS)

© Copyright IBM Corp. 2000, 2006 19

|
|
|

|

|

|
|
|

|
|

|
|

|
|
|
|

|
|
||

|
|

|
|
|

|
|

|
|

The directories and attributes have the following meaning:

update

Write only file to trigger an update of all attributes.

cpus/ Directory for all physical CPUs.

cpus/<cpu ID>

Directory for one physical CPU. <cpu ID> is the logical (decimal) CPU

number.

type Type name of physical CPU, such as CP or IFL.

mgmtime

Physical-LPAR-management time in microseconds (LPAR

overhead).

hyp/ Directory for hypervisor information.

hyp/type

Type of hypervisor (currently only "LPAR Hypervisor").

systems/

Directory for all LPARs.

systems/<lpar name>/

Directory for one LPAR.

systems/<lpar name>/cpus/<cpu ID>/

Directory for the virtual CPUs for one LPAR. The <cpu ID> is the logical

(decimal) cpu number.

type Type of the logical CPU, such as CP or IFL.

Figure 5. hypfs

20 Device Drivers, Features, and Commands - November, 2006

|

|
|
|
|

|
|

||

|
|
|

||

|
|
|

||

|
|

|
|

|
|

|
|
|

||

mgmtime

LPAR-management time. Accumulated number of microseconds

during which a physical CPU was assigned to the logical cpu and

the cpu time was consumed by the hypervisor and was not

provided to the LPAR (LPAR overhead).

cputime

Accumulated number of microseconds during which a physical CPU

was assigned to the logical cpu and the cpu time was consumed by

the LPAR.

onlinetime

Accumulated number of microseconds during which the logical CPU

has been online.

Note: For older machines the onlinetime attribute might be missing. In general,

user space applications should be prepared that attributes are missing or

new attributes are added to the file system. To check the content of the files

you can use tools such as cat or less.

Setting up the S/390 hypervisor file system

This section describes the parameters that you can use to configure the S/390

hypervisor file system.

In order to use the file system, it has to be mounted. You can do this either

manually with the mount command or with an entry in /etc/fstab.

To mount the file system manually issue the following command:

mount none -t s390_hypfs <mount point>

where <mount point> is where you want the file system mounted. Preferably, use

/sys/hypervisor/s390.

If you want to put hypfs into your /etc/fstab you can add the following line:

none <mount point> s390_hypfs defaults 0 0

Working with the S/390 hypervisor file system

This section describes typical tasks that you need to perform when working with the

S/390 hypervisor file system.

v Defining access rights

v Updating the CPU information

Defining access rights

If no mount options are specified, the files and directories of the file system get the

uid and gid of the user who mounted the file system (normally root). It is possible to

explicitly define uid and gid using the mount options uid=<number> and

gid=<number>.

Example: You can define uid=1000 and gid=2000 with the following mount

command:

Chapter 3. S/390 hypervisor file system 21

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|

|
||

|
|

|

|
||

|
|

|
|

|

|

|

|
|
|
|

|
|

mount none -t s390_hypfs -o "uid=1000,gid=2000" <mount point>

Alternatively, you can add the following line to the /etc/fstab file:

none <mount point> s390_hypfs uid=1000,gid=2000 0 0

The first mount defines uid and gid. Subsequent mounts automatically have the

same uid and gid setting as the first one.

The permissions for directories and files are as follows:

v Update file: 0220 (-w-w---)

v Regular files: 0440 (-r-r---)

v Directories: 0550 (-r-xr-x--)

Updating the CPU information

You trigger the update process by writing something into the update file at the top

level hypfs directory. For example, you can do this by writing the following:

echo 1 > update

During the update the whole directory structure is deleted and rebuilt. If a file was

open before the update, subsequent reads will return the old data until the file is

opened again. Within one second only one update can be done. If within one

second more than one update is triggered, only the first one is done and the

subsequent write system calls return -1 and errno is set to EBUSY.

If an application wants to ensure consistent data, the following should be done:

1. Read modification time through stat(2) from the update attribute.

2. If data is too old, write to the update attribute and go to 1.

3. Read data from file system.

4. Read modification time of the update attribute again and compare it with first

timestamp. If the timestamps do not match then go to 2.

22 Device Drivers, Features, and Commands - November, 2006

|
||

|

|
||

|
|

|

|

|

|

|

|
|

|
||

|
|
|
|
|

|

|

|

|

|
|

Part 2. Storage device drivers

This part describes the following device drivers:

v Chapter 4, “DASD device driver”

v Chapter 5, “SCSI-over-Fibre Channel device driver”

v Chapter 6, “Channel-attached tape device driver”

v Chapter 7, “XPRAM device driver”

Note

For prerequisites and restrictions for these device drivers refer to the kernel

2.6 October 2005 stream pages on developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_recommended.html

© Copyright IBM Corp. 2000, 2006 23

http://www.ibm.com/developerworks/linux/linux390/october2005_recommended.shtml

24 Device Drivers, Features, and Commands - November, 2006

Chapter 4. DASD device driver

The DASD device driver provides access to all real or emulated Direct Access

Storage Devices (DASD) that can be attached to the channel subsystem of an IBM

mainframe. DASD devices include a variety of physical media on which data is

organized in blocks or records or both. The blocks or records in a DASD can be

accessed for read or write in random order.

Traditional DASD devices are attached to a control unit that is connected to a

mainframe I/O channel. Today, these real DASD have been largely replaced by

emulated DASD, such as the internal disks of the Multiprise® family, the volumes of

the RAMAC® virtual array, or the volumes of the IBM TotalStorage® Enterprise

Storage Server® (ESS). These emulated DASD are completely virtual and the

identity of the physical device is hidden.

SCSI disks attached through a System z9 or zSeries FCP adapter are not classified

as DASD. They are handled by the zfcp driver (see Chapter 5, “SCSI-over-Fibre

Channel device driver,” on page 49).

Features

The DASD device driver supports the following devices and functions:

v The DASD device driver supports ESS virtual ECKD-type disks

v The DASD device driver supports the control unit attached physical devices as

summarized in Table 4:

 Table 4. Supported control unit attached DASD

Device format Control unit type Device type

ECKD (Extended

Count Key Data)

1750 3380 and 3390

2107 3380 and 3390

2105 3380 and 3390

3990 3380 and 3390

9343 9345

FBA (Fixed Block

Access)

6310 9336

3880 3370

All models of the specified control units and device types are supported.

v The DASD device driver is also known to work with these devices:

– Multiprise internal disks

– RAMAC

– RAMAC RVA

v Linux on System z provides a disk format with up to three partitions per disk. See

“System z compatible disk layout” on page 27 for details.

v The DASD device driver provides an option for extended error reporting for

ECKD devices. Extended error reporting can support high availability setups.

v The DASD device driver supports parallel access volume (PAV) on storage

devices that provide this feature.

© Copyright IBM Corp. 2000, 2006 25

|
|

|
|

What you should know about DASD

This section describes the available DASD layouts and the naming scheme Linux

on System z uses for DASD devices.

The IBM label partitioning scheme

The DASD device driver is embedded into the Linux generic support for partitioned

disks. This implies that you can have any kind of partition table known to Linux on

your DASD.

Traditional mainframe operating systems (such as, z/OS®, OS/390®, z/VM, and

VSE/ESA™) expect a standard DASD format. In particular, the format of the first two

tracks of a DASD is defined by this standard and includes System z IPL, label, and

for some layouts VTOC records. Partitioning schemes for platforms other than

System z generally do not preserve these mainframe specific records.

Linux on System z includes the IBM label partitioning scheme that preserves the

System z IPL, label, and VTOC records. This partitioning scheme allows Linux to

share a disk with other mainframe operating systems. For example, a traditional

mainframe operating system could handle backup and restore for a partition that is

used by Linux.

The following sections describe the layouts that are supported by the IBM label

partitioning scheme:

v “System z compatible disk layout” on page 27

v “Linux disk layout” on page 29

v “CMS disk layout” on page 30

DASD partitions

A DASD partition is a contiguous set of DASD blocks that is treated by Linux as an

independent disk and by the traditional mainframe operating systems as a data set.

The compatible disk layout allows for up to three partitions on a DASD. The Linux

disk layout and the CMS disk layout both permit a single partition only.

There are several reasons why you might want to have multiple partitions on a

DASD, for example:

v Increase disk space efficiency. You can use different block sizes for different

partitions. A large block size can improve performance, but can also be wasteful

of space. As a general rule, wastage amounts to half a block for each file, which

can become significant for small files. It can be advantageous to store small files

in a partition with a small block size and large files in a different partition with a

larger block size.

v Limit data growth. Runaway processes or undisciplined users can consume

disk space to an extend that the operating system runs short of space for

essential operations. Partitions can help to isolate the space that is available to

particular processes.

v Encapsulate your data. If a file system gets damaged, this damage is likely to

be restricted to a single partition. Partitioning can reduce the scope of data

damage.

Recommendations:

v Use fdasd to create or alter partitions. If you use another partition editor, it is

your responsibility to ensure that partitions do not overlap. If they do, data

damage will occur.

26 Device Drivers, Features, and Commands - November, 2006

v Leave no gaps between adjacent partitions to avoid wasting space. Gaps are not

reported as errors, and can only be reclaimed by deleting and recreating one or

more of the surrounding partitions and rebuilding the file system on them.

A disk need not be partitioned completely. You may begin by creating only one or

two partitions at the start of your disk and convert the remaining space to a partition

later (perhaps when performance measurements have given you a better value for

the block size).

There is no facility for moving, enlarging or reducing partitions, because fdasd has

no control over the file system on the partition. You only can delete and recreate

them. Changing the partition table results in loss of data in all altered partitions. It is

up to you to preserve the data by copying it to another medium.

System z compatible disk layout

Restriction: You can only format ECKD-type DASD with the compatible disk layout.

Figure 6 illustrates a DASD with the compatible disk layout.

 The IPL records, volume label (VOL1), and VTOC of disks with the compatible disk

layout are on the first two tracks of the disks. These tracks are not intended for use

by Linux applications. Apart from a slight loss in disk capacity this is transparent to

the user.

Linux can address the device as a whole as /dev/dasd<x>, where <x> can be one

to four letters that identify the individual DASD (see “DASD naming scheme” on

page 30).

Disks with the compatible disk layout can have one to three partitions. Linux can

address the partitions as /dev/dasd<x>1, /dev/dasd<x>2, and /dev/dasd<x>3,

respectively.

You use the dasdfmt command (see “dasdfmt - Format a DASD” on page 271) to

format a disk with the compatible disk layout. You use the fdasd command (see

“fdasd – Partition a DASD” on page 284) to create and modify partitions.

Volume label

The DASD volume label is located in the third block of the first track of the device

(cylinder 0, track 0, block 2). This block has a 4-byte key, and an 80-byte data area.

The contents are:

key for disks with the compatible disk layout, contains the four EBCDIC

characters “VOL1” to identify the block as a volume label.

label identifier

is identical to the key field.

VOLSER

is a name that you can use to identify the DASD device. A volume serial

Figure 6. Compatible disk layout

Chapter 4. DASD device driver 27

number (VOLSER) can be one to six EBCDIC characters. If you want to

use VOLSERs as identifiers for your DASD, be sure to assign unique

VOLSERs.

 You can assign VOLSERs from Linux by using the dasdfmt or fdasd

command. These commands enforce that VOLSERs:

v Are alphanumeric

v Are uppercase (by uppercase conversion)

v Contain no embedded blanks

v Contain no special characters other than $, #, @, and %

Recommendation: Avoid special characters altogether.

Restriction: The VOLSER values SCRTCH, PRIVAT, MIGRAT or Lnnnnn (An “L”

followed by five digits) are reserved for special purposes by other

mainframe operating systems and should not be used by Linux.

 These rules are more restrictive than the VOLSERs that are allowed by the

traditional mainframe operating systems. For compatibility, Linux tolerates

existing VOLSERs with lowercase letters and special characters other than

$, #, @, and %. You might have to enclose a VOLSER with special

characters in apostrophes when specifying it, for example, as a command

parameter.

VTOC address

contains the address of a standard IBM format 4 data set control block

(DSCB). The format is: cylinder (2 bytes) track (2 bytes) block (1 byte).

 All other fields of the volume label contain EBCDIC space characters (code 0x40).

VTOC

Linux on System z does not use the normal Linux partition table to keep an index of

all partitions on a DASD. Like other System z operating systems, Linux on System

z uses a Volume Table Of Contents (VTOC). The VTOC contains pointers to the

location of every data set on the volume. In Linux on System z, these data sets

form the Linux partitions.

The VTOC is located in the second track (cylinder 0, track 1). It contains a number

of labels, each written in a separate block:

v One format 4 DSCB that describes the VTOC itself

v One format 5 DSCB

The format 5 DSCB is required by other operating systems but is not used by

Linux. fdasd sets it to zeroes.

v For volumes with more than 65636 tracks, one format 7 DSCB following the

format 5 DSCB

v A format 1 DSCB for each partition

The key of the format 1 DSCB contains the data set name, which identifies the

partition to z/OS, OS/390, z/VM or VSE/ESA.

The VTOC can be displayed with standard System z tools such as VM/DITTO. A

Linux DASD with physical device number 0x0193, volume label “LNX001”, and

three partitions might be displayed like this:

28 Device Drivers, Features, and Commands - November, 2006

VM/DITTO DISPLAY VTOC LINE 1 OF 5

===> SCROLL ===> PAGE

CUU,193 ,VOLSER,LNX001 3390, WITH 100 CYLS, 15 TRKS/CYL, 58786 BYTES/TRK

--- FILE NAME --- (SORTED BY =,NAME ,) ---- EXT BEGIN-END RELTRK,

1...5...10...15...20...25...30...35...40.... SQ CYL-HD CYL-HD NUMTRKS

 *** VTOC EXTENT *** 0 0 1 0 1 1,1

LINUX.VLNX001.PART0001.NATIVE 0 0 2 46 11 2,700

LINUX.VLNX001.PART0002.NATIVE 0 46 12 66 11 702,300

LINUX.VLNX001.PART0003.NATIVE 0 66 12 99 14 1002,498

 *** THIS VOLUME IS CURRENTLY 100 PER CENT FULL WITH 0 TRACKS AVAILABLE

PF 1=HELP 2=TOP 3=END 4=BROWSE 5=BOTTOM 6=LOCATE

PF 7=UP 8=DOWN 9=PRINT 10=RGT/LEFT 11=UPDATE 12=RETRIEVE

In Linux, this DASD might appear so:

ls -l /dev/dasd/0.0.0193/

total 0

brw------- 1 root root 94, 12 Jun 1 2001 disc -> ../../dasda

brw------- 1 root root 94, 13 Jun 1 2001 part1 -> ../../dasda1

brw------- 1 root root 94, 14 Jun 1 2001 part2 -> ../../dasda2

brw------- 1 root root 94, 15 Jun 1 2001 part3 -> ../../dasda3

where the disc file and the device file represent the whole DASD and the part#

files represent the individual partitions.

Linux disk layout

You can only format ECKD-type DASD with the Linux disk layout. Figure 7

illustrates a disk with the Linux disk layout.

 DASDs with the Linux disk layout either have an LNX1 label or are not labeled. The

IPL records and volume label are not intended for use by Linux applications. Apart

from a slight loss in disk capacity this is transparent to the user.

All remaining records are grouped into a single partition. You cannot have more

than a single partition on a DASD that is formatted in the Linux disk layout.

Linux can address the device as a whole as /dev/dasd<x>, where <x> can be one

to four letters that identify the individual DASD (see “DASD naming scheme” on

page 30). Linux can access the partition as /dev/dasd<x>1.

You use the dasdfmt command (see “dasdfmt - Format a DASD” on page 271) to

format a disk with the Linux disk layout.

Figure 7. Linux disk layout

Chapter 4. DASD device driver 29

CMS disk layout

The CMS disk layout only applies to Linux as a VM guest operating system. The

disks are formatted using z/VM tools. Both ECKD- or FBA-type DASD can have the

CMS disk layout. Apart from accessing the disks as ECKD or FBA devices, you can

also access them using DIAG calls.

Figure 8 illustrates two variants of the CMS disk layout.

 The variant in the upper part of Figure 8 contains IPL records, a volume label

(CMS1), and a CMS data area. Linux treats DASD like this equivalent to a DASD

with the Linux disk layout, where the CMS data area serves as the Linux partition.

The lower part of Figure 8 illustrates a CMS reserved volume. DASD like this have

been reserved by a CMS RESERVE fn ft fm command. In addition to the IPL records

and the volume label, DASD with the CMS disk layout also have CMS metadata.

The CMS reserved file serves as the Linux partition.

Both variants of the CMS disk layout only allow a single Linux partition. The IPL

record, volume label and (where applicable) the CMS metadata, are not intended

for use by Linux applications. Apart from a slight loss in disk capacity this is

transparent to the user.

Addressing the device and partition is the same for both variants. Linux can

address the device as a whole as /dev/dasd<x>, where <x> can be one to four

letters that identify the individual DASD (see “DASD naming scheme”). Linux can

access the partition as /dev/dasd<x>1.

“Enabling DIAG calls to access DASDs” on page 43 describes how you can enable

DIAG.

DASD naming scheme

The DASD device driver uses the major number 94. For each configured device it

uses 4 minor numbers:

v The first minor number always represents the device as a whole, including IPL,

VTOC and label records.

v The remaining three minor numbers represent the up to three partitions.

With 1,048,576 (20-bit) available minor numbers, the DASD device driver can

address 262,144 devices.

Figure 8. CMS disk layout

30 Device Drivers, Features, and Commands - November, 2006

The DASD device driver uses a device name of the form dasd<x> for each DASD.

In the name, <x> is one to four lowercase letters. Table 5 shows how the device

names map to the available minor numbers.

 Table 5. Mapping of DASD names to minor numbers

Name for device as a whole Minor number for device as a

whole

Number of

devices

From To From To

dasda dasdz 0 100 26

dasdaa dasdzz 104 2804 676

dasdaaa dasdzzz 2808 73108 17,576

dasdaaaa dasdnwtl 73112 1048572 243,866

Total number of devices: 262,144

The DASD device driver also uses a device name for each partition. The name of

the partition is the name of the device as a whole with a 1, 2, or 3 appended to

identify the first, second, or third partition. The three minor numbers following the

minor number of the device as a whole are the minor number for the first, second,

and third partition.

Examples:

v “dasda” refers to the whole of the first disk in the system and “dasda1”, “dasda2”,

and “dasda3” to the three partitions. The minor number for the whole device is 0.

The minor numbers of the partitions are 1, 2, and 3.

v “dasdz” refers to the whole of the 101st disk in the system and “dasdz1”,

“dasdz2”, and “dasdz3” to the three partitions. The minor number for the whole

device is 100. The minor numbers of the partitions are 101, 102, and 103.

v “dasdaa” refers to the whole of the 102nd disk in the system and “dasdaa1”,

“dasdaa2”, and “dasdaa3” to the three partitions. The minor number for the whole

device is 104. The minor numbers of the partitions are 105, 106, and 107.

Creating device nodes

User space programs access DASD by device nodes. Your distribution might create

the device nodes for you or provide udev to create them (see “Device nodes

provided by udev” on page 4).

If no device nodes are created for you, you need to create them yourself, for

example, with the mknod command. Refer to the mknod man page for further

details.

Tip: Use the device names to construct your nodes (see “DASD naming scheme”

on page 30).

Example:

The following nodes use the form /dev/<device_name> for the device nodes. The

assignment of minor numbers is according to Table 5.

Chapter 4. DASD device driver 31

mknod -m 660 /dev/dasda b 94 0

 # mknod -m 660 /dev/dasda1 b 94 1

 # mknod -m 660 /dev/dasda2 b 94 2

 # mknod -m 660 /dev/dasda3 b 94 3

 # mknod -m 660 /dev/dasdb b 94 4

 # mknod -m 660 /dev/dasdb1 b 94 5

 ...

Assuring that a device node exists for extended error reporting

Before you start: This section applies only if you want to support applications that

use the extended error reporting for ECKD-type DASD. See “Building a kernel with

the DASD device driver” on page 35 for information on the kernel configuration

option that enables extended error reporting.

Applications that use the extended error reporting facility require a misc character

device to access the extended error data. This device node is typically called

/dev/dasd_eer. If your distribution does not create the device node for you (for

example, with udev), you need to create a node.

To check if there is already a node issue:

find / -name dasd_eer

If your distribution provides the extended error reporting as a separate module, be

sure to load the module before you check for the node.

If there is no device node, you need to create one. To find out the major and minor

number for your monitor device read the dev attribute of the device’s representation

in sysfs:

cat /sys/class/misc/dasd_eer/dev

The value of the dev attribute is of the form <major>:<minor>.

To create the device node issue a command of the form:

mknod <node> c <major> <minor>

where <node> is your device node.

Example:

To create a device node /dev/dasd_eer:

cat /sys/class/misc/dasd_eer/dev

10:61

mknod /dev/dasd_eer c 10 61

In the example, the major number was 10 and the minor 61.

32 Device Drivers, Features, and Commands - November, 2006

|

|
|
|
|

|
|
|
|

|

|
||

|
|

|
|
|

|
||

|

|

|
||

|

|
|

|
|
|
||

|

Examples for udev-created DASD device nodes

Note

The format of the nodes that udev creates for you depends on

distribution-specific configuration files that reside in /etc/udev/rules.d. If you

use udev, be sure that you use the nodes according to your distribution. The

following examples use hypothetical nodes that are provided for illustration

purposes only.

 If your distribution provides udev, you can use udev to create DASD device nodes

for you. udev is a utility program that can use the device information in sysfs (see

Chapter 2, “Devices in sysfs,” on page 9) to create device nodes.

Apart from creating device nodes that are based on the device names, udev can

create additional device nodes that are based on, for example, on device bus-IDs or

VOLSERs. Unless you change the VOLSERs or device numbers of your devices,

device nodes that are based on a device bus-ID or VOLSER remain the same and

map to the same device, even if the device name of a device has changed (for

example, after rebooting). udev keeps track of the mapping of the device name and

the actual devices for you and so helps you ensure that you are addressing the

device you intend to.

For example, the configuration file might instruct udev to create three nodes for

each device name. For a DASD with two partitions, a device bus-ID 0.0.b100

(device number 0xb100), and a VOLSER LNX001 it might create:

For the whole DASD:

v /dev/dasdzzz (standard device node according to the DASD naming scheme)

v /dev/dasd/0.0.b100/disc

v /dev/dasd/LNX001/disc

For the first partition:

v /dev/dasdzzz1 (standard device node according to the DASD naming scheme)

v /dev/dasd/0.0.b100/part1

v /dev/dasd/LNX001/part1

For the second partition:

v /dev/dasdzzz2 (standard device node according to the DASD naming scheme)

v /dev/dasd/0.0.b100/part2

v /dev/dasd/LNX001/part2

There is a program that you can use to read DASD VOLSERs from sysfs. You can

use it to write your own udev rules for creating VOLSER based DASD device

nodes. The following udev rule specification returns a VOLSER:

PROGRAM="/sbin/udev_volume_id -d -l

The sections that follow show how such nodes can be used to access a device by

VOLSER or device bus-ID, regardless of its device name.

Chapter 4. DASD device driver 33

Accessing DASD by bus-ID

You can use device nodes that are based on your DASDs’ device bus-IDs to be

sure that you access a DASD with a particular bus-ID, regardless of the device

name that is assigned to it.

Example

The examples in this section assume that udev provides device nodes as described

in “Examples for udev-created DASD device nodes” on page 33. To assure that you

are addressing a device with bus-ID 0.0.b100 you could make substitutions like the

following.

Instead of issuing:

fdasd /dev/dasdzzz

issue:

fdasd /dev/dasd/0.0.b100/disc

In the file system information in /etc/fstab you could replace the following

specifications:

/dev/dasdzzz1 /temp1 ext2 defaults 0 0

/dev/dasdzzz2 /temp2 ext2 defaults 0 0

with these specifications:

/dev/dasd/0.0.b100/part1 /temp1 ext2 defaults 0 0

/dev/dasd/0.0.b100/part2 /temp2 ext2 defaults 0 0

Accessing DASD by VOLSER

If you want to use device nodes based on VOLSER, be sure that the VOLSERs in

your environment are unique (see “Volume label” on page 27).

You can assign VOLSERs to ECKD-type devices with dasdfmt when formatting or

later with fdasd when creating partitions. If you assign the same VOLSER to

multiple devices, Linux can access all of them through the device nodes that are

based on the respective device names. However, only one of them can be

accessed through the VOLSER-based device node. This makes the node

ambiguous and should be avoided. Furthermore, if the VOLSER on the device that

is addressed by the node is changed, the previously hidden device is not

automatically addressed instead. This requires a reboot or needs to be forced, for

example, by issuing:

blockdev --rereadpt /dev/dasdzzz

Examples

The examples in this section assume that udev provides device nodes as described

in “Examples for udev-created DASD device nodes” on page 33. To assure that you

are addressing a device with VOLSER LNX001 you could make substitutions like

the following.

Instead of issuing:

fdasd /dev/dasdzzz

34 Device Drivers, Features, and Commands - November, 2006

issue:

fdasd /dev/dasd/LNX001/disc

In the file system information in /etc/fstab you could replace the following

specifications:

/dev/dasdzzz1 /temp1 ext2 defaults 0 0

/dev/dasdzzz2 /temp2 ext2 defaults 0 0

with these specifications:

/dev/dasd/LNX001/part1 /temp1 ext2 defaults 0 0

/dev/dasd/LNX001/part2 /temp2 ext2 defaults 0 0

Further information

For information on the IBM TotalStorage Enterprise Storage Server (ESS) and

ECKD:

v Visit: ibm.com/servers/storage/disk/ess/

v Refer to IBM TotalStorage Enterprise Storage Server User’s Guide 2105 Models

E10, E20, F10, and F20, SC26-7295

v Refer to IBM TotalStorage Enterprise Storage Server System/390® Command

Reference 2105 Models E10, E20, F10, and F20, SC26-7295

For information on DIAG refer to:

v z/VM CP Programming Services, SC24-5956

Building a kernel with the DASD device driver

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the DASD

device driver.

The DASD device driver is provided as a base component with supplementary

components for different device formats and optional functions. The driver can be

compiled into the kernel or as a suite of separate modules that can be added and

removed at run-time.

Figure 9 gives an overview of the available DASD kernel configuration options and

the corresponding modules.

 Block device drivers

 Support for DASD devices (CONFIG_DASD)

 ├─Profiling support for dasd devices (CONFIG_DASD_PROFILE)

 ├─Support for ECKD Disks (CONFIG_DASD_ECKD)

 ├─Support for FBA Disks (CONFIG_DASD_FBA)

 ├─Support for DIAG access to Disks (CONFIG_DASD_DIAG)

 └─Compatibility interface for DASD channel

 measurement blocks

(CONFIG_DASD_CMB)

Figure 9. DASD kernel configuration menu options

Chapter 4. DASD device driver 35

http://www.ibm.com/servers/storage/disk/ess/

CONFIG_DASD

This option is required if you want to work with DASD devices and is a

prerequisite for all other DASD options. It can be compiled into the kernel or as

a separate module, dasd_mod.

 This option depends on CONFIG_CCW.

CONFIG_DASD_PROFILE

This option makes the DASD device driver write profiling information to

/proc/dasd/statistics.

CONFIG_DASD_ECKD

This option can be compiled into the kernel or as a separate module,

dasd_eckd_mod.

CONFIG_DASD_FBA

This option can be compiled into the kernel or as a separate module,

dasd_fba_mod.

CONFIG_DASD_DIAG

This option provides support for accessing disks under VM with the

Diagnose250 command. It can be compiled into the kernel or as a separate

module, dasd_diag_mod. It is available for 31-bit only. You must also enable the

support for ECKD or FBA disks in order to get the device online.

CONFIG_DASD_EER

This option provides extended error reporting for ECKD disks. It can be

compiled into the kernel or included in the separate module dasd_mod. Select

this option if you want to use applications that require extended error reporting.

CONFIG_DASD_CMB

This option provides an additional interface to the channel measurement facility,

which is normally accessed though sysfs. It is only needed to run applications

written for the kernel 2.4 DASD channel measurement facility interface. It can

be compiled into the kernel.

Setting up the DASD device driver

This section describes the parameters that you can use to configure the DASD

device driver.

Kernel parameters

This section describes how to configure the DASD device driver if at least the base

module has been compiled into the kernel. You configure the device driver by

adding parameters to the kernel parameter line.

DASD kernel parameter syntax

��

�

�

 ,

dasd=

<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

:

(

ro

)

diag

autodetect

probeonly

nopav

��

36 Device Drivers, Features, and Commands - November, 2006

|
|
|
|

|

where:

autodetect

causes the DASD device driver to allocate device names and the

corresponding minor numbers to all DASD devices and set them online

during the boot process. See “DASD naming scheme” on page 30 for the

naming scheme.

 The device names are assigned in order of ascending subchannel numbers.

Auto-detection can yield confusing results if you change your I/O

configuration and reboot, or if you are running as a guest operating system

in VM because the devices might appear with different names and minor

numbers after rebooting.

probeonly

causes the DASD device driver to reject any “open” syscall with EPERM.

autodetect,probeonly

causes the DASD device driver to assign device names and minor numbers

as for auto-detect. All devices regardless of whether or not they are

accessible as DASD return EPERM to any “open” requests.

nopav suppresses parallel access volume (PAV) enablement for Linux instances

that run in LPAR mode. The nopav keyword has no effect on Linux

instances that run as VM guest operating systems.

<device_bus_id>

specifies a single DASD.

<from_device_bus_id>-<to_device_bus_id>

specifies the first and last DASD in a range. All DASD devices with bus IDs

in the range are selected. The device bus-IDs <from_device_bus_id> and

<to_device_bus_id> need not correspond to actual DASD.

(ro) specifies that the given device or range is to be accessed in read-only

mode.

(diag) forces the device driver to access the device (range) using the DIAG

access method.

If you supply a DASD kernel parameter with device specifications

dasd=<device-list1>,<device-list2> ... the device names and minor numbers

are assigned in the order in which the devices are specified. The names and

corresponding minor numbers are always assigned, even if the device is not

present, or not accessible.

Example

The following kernel parameter specifies a range of DASD devices and two

individual DASD devices.

dasd=0.0.7000-0.0.7002,0.0.7005(ro),0.0.7006

Table 6 shows the resulting allocation of device names and minor numbers:

 Table 6. Example mapping of device names and minor numbers to devices

Minor Name To access

0 dasda device 0.0.7000 as a whole

1 dasda1 the first partition on 0.0.7000

2 dasda2 the second partition on 0.0.7000

3 dasda3 the third partition on 0.0.7000

Chapter 4. DASD device driver 37

||
|
|

Table 6. Example mapping of device names and minor numbers to devices (continued)

Minor Name To access

4 dasdb device 0.0.7001 as a whole

5 dasdb1 the first partition on 0.0.7001

6 dasdb2 the second partition on 0.0.7001

7 dasdb3 the third partition on 0.0.7001

8 dasdc device 0.0.7002 as a whole

9 dasdc1 the first partition on 0.0.7002

10 dasdc2 the second partition on 0.0.7002

11 dasdc3 the third partition on 0.0.7002

12 dasdd device 0.0.7005 as a whole

13 dasdd1 the first partition on 0.0.7005 (read-only)

14 dasdd2 the second partition on 0.0.7005 (read-only)

15 dasdd3 the third partition on 0.0.7005 (read-only)

16 dasde device 0.0.7006 as a whole

17 dasde1 the first partition on 0.0.7006

18 dasde2 the second partition on 0.0.7006

19 dasde3 the third partition on 0.0.7006

Module parameters

This section describes how to load and configure those components of the DASD

device driver that have been compiled as separate modules.

DASD module parameter syntax

��

�

 eer_pages=5

modprobe

dasd_mod

insmod

,

eer_pages=<pages>

dasd=

device-spec

autodetect

probeonly

nopav

dasd_eckd_mod

dasd_fba_mod

dasd_diag_mod

��

device-spec:

�

 <device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

:

(

ro

)

diag

Where:

dasd_mod

loads the device driver base module.

 When loading the base module you can specify the dasd= parameter. The

variables and key words have the same meaning as in “Kernel parameters”

on page 36.

38 Device Drivers, Features, and Commands - November, 2006

|

|
|
|

When the extended error reporting feature is compiled into this module (see

page 36), you can use the eer_pages parameter to determine the number of

pages used for internal buffering of error records.

dasd_eckd_mod

loads the ECKD module.

dasd_fba_mod

loads the FBA module.

dasd_diag_mod

loads the DIAG module.

The DASD base component is required by the other modules. Be sure that it has

been compiled into the kernel or that it is loaded first if it has been compiled as a

separate module. modprobe takes care of this dependency for you and ensures

that the base module is loaded automatically, if necessary.

For details on insmod and modprobe refer to the respective man pages.

Example

insmod dasd_mod dasd=0.0.7000-0.0.7002,0.0.7005(ro),0.0.7006

For the same mainframe setup, the resulting allocation of device nodes and minor

numbers would be the same as in Table 6 on page 37.

Working with the DASD device driver

This section describes typical tasks that you need to perform when working with

DASD devices.

Preparing an ECKD-type DASD for use

This section describes the main steps for enabling an ECKD-type DASD for use by

Linux on System z.

Before you can use an ECKD-type DASD as a Linux on System z disk, you must

format it with a suitable disk layout. If you format the DASD with the compatible disk

layout, you need to create one, two, or three partitions. You can then use your

partitions as swap areas or to create a Linux file system.

Before you start:

v The base component and the ECKD component of the DASD device driver must

have been compiled into the kernel or have been loaded as modules.

v The DASD device driver must have recognized the device as an ECKD-type

device.

v You need to know the device node through which the DASD can be addressed.

The DASD device nodes have the form /dev/dasd<x>, where <x> can be one to

four lowercase alphabetic characters.

Perform these steps to prepare the DASD:

1. Assure that device nodes exist to address the DASD as a whole and for the

partitions you intend to create.

Example: To check if the device nodes for a DASD dasdzzz exist, change to

/dev and issue:

Chapter 4. DASD device driver 39

|
|
|

ls dasdzzz*

If necessary, create the device nodes. For example, issue:

mknod -m 660 /dev/dasdzzz b 94 73108

mknod -m 660 /dev/dasdzzz1 b 94 73109

mknod -m 660 /dev/dasdzzz2 b 94 73110

mknod -m 660 /dev/dasdzzz3 b 94 73111

See Table 5 on page 31 for the mapping of device names and minor numbers.

2. Format the device with the dasdfmt command (see “dasdfmt - Format a DASD”

on page 271 for details). The formatting process can take hours for large DASD.

Recommendations:

v Use the default -d cdl option. This option formats the DASD with the IBM

compatible disk layout that permits you to create partitions on the disk.

v Use the -p option to display a progress bar.

Example:

dasdfmt -b 4096 -d cdl -p /dev/dasdzzz

3. Proceed according to your chosen disk layout:

v If you have formatted your DASD with the Linux disk layout, skip this step

and continue with step 4. You already have one partition and cannot add

further partitions on your DASD.

v If you have formatted your DASD with the compatible disk layout use the

fdasd command to create up to three partitions (see “fdasd – Partition a

DASD” on page 284 for details).

Example: To start the partitioning tool in interactive mode for partitioning a

device /dev/dasdzzz issue:

fdasd /dev/dasdzzz

If you create three partitions for a DASD /dev/dasdzzz, the device nodes for

the partitions are: /dev/dasdzzz1, /dev/dasdzzz2, and /dev/dasdzzz3.

Result: fdasd creates the partitions and updates the partition table (see

“VTOC” on page 28).

4. Depending on the intended use of each partition, create a file system on the

partition or define it as a swap space.

Either:

Create a file system of your choice. For example, use the Linux mke2fs

command to create an ext3 file system (refer to the man page for

details).

 Restriction: You must not make the block size of the file system lower

than that used for formatting the disk with the dasdfmt command.

 Recommendation: Use the same block size for the file system that has

been used for formatting.

 Example:

mke2fs -j -b 4096 /dev/dasdzzz1

40 Device Drivers, Features, and Commands - November, 2006

Or: Define the partition as a swap space with the mkswap command (refer

to the man page for details).

5. Mount each file system to the mount point of your choice in Linux and enable

your swap partitions.

Example: To mount a file system in a partition /dev/dasdzzz1 to a mount point

/mnt and to enable a swap partition /dev/dasdzzz2 issue:

mount /dev/dasdzzz1 /mnt

swapon /dev/dasdzzz2

If a block device supports barrier requests, journaling file systems like ext3 or

raiser-fs can make use of this feature to achieve better performance and data

integrity. Barrier requests are supported for the DASD device driver and apply to

ECKD, FBA, and the DIAG discipline.

Write barriers are used by file systems and are enabled as a file-system specific

option. For example, barrier support can be enabled for an ext3 file system by

mounting it with the option -o barrier=1:

mount -o barrier=1 /dev/dasdzzz1 /mnt

Preparing an FBA-type DASD for use

This section describes the main steps for enabling an FBA-type DASD for use by

Linux on System z.

Note: To access FBA devices, use the DIAG access method (see “Enabling DIAG

calls to access DASDs” on page 43 for more information).

Before you start:

v The base component and the FBA component of the DASD device driver must

have been compiled into the kernel or have been loaded as modules.

v The DASD device driver must have recognized the device as an FBA device.

v You need to know the device bus-ID or the device node through which the DASD

can be addressed. The DASD device nodes have the form /dev/dasd<x>, where

<x> can be one to four lowercase alphabetic characters.

Perform these steps to prepare the DASD:

1. Assure that device nodes exist to address the DASD as a whole and the

partition.

Example: To check if the device nodes for a DASD dasdzzy exist, change to

/dev and issue:

ls dasdzzy*

If necessary, create the device nodes. For example, issue:

mknod -m 660 /dev/dasdzzy b 94 73104

mknod -m 660 /dev/dasdzzy1 b 94 73105

See Table 5 on page 31 for the mapping of device names and minor numbers.

2. Depending on the intended use of the partition, create a file system on it or

define it as a swap space.

Chapter 4. DASD device driver 41

|
|

Either:

Create a file system of your choice. For example, use the Linux mke2fs

command to create an ext2 file system (refer to the man page for

details).

 Example: mke2fs -b 4096 /dev/dasdzzy1

Or: Define the partition as a swap space with the mkswap command (refer

to the man page for details).

3. Mount the file system to the mount point of your choice in Linux or enable your

swap partition.

Example: To mount a file system in a partition /dev/dasdzzy1 issue:

mount /dev/dasdzzy1 /mnt

Accessing DASD by force

When a Linux instance boots in a mainframe environment, it can encounter DASD

that are locked by another system. Such a DASD is referred to as “externally

locked” or “boxed”. The Linux instance cannot analyze a DASD while it is externally

locked.

To check if a DASD has been externally locked, read its availability attribute. This

attribute should be “good”. If it is “boxed”, the DASD has been externally locked.

Because boxed DASD might not be recognized as DASD, it might not show up in

the device driver view in sysfs. If necessary, use the device category view instead

(see “Device views in sysfs” on page 12).

Issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/availabilty

Example: This example shows that a DASD with device bus-ID 0.0.b110 (device

number 0xb110) has been externally locked.

cat /sys/bus/ccw/devices/0.0.b110/availabilty

boxed

If the DASD is an ECKD-type DASD and if you know the device bus-ID, you can

break the external lock and set the device online. This means that the lock of the

external system is broken with the “unconditional reserve” channel command.

 CAUTION:

Breaking an external lock can have unpredictable effects on the system that

holds the lock.

To force a boxed DASD online write “force” to the online device attribute. Issue a

command of this form:

echo force > /sys/bus/ccw/devices/<device_bus_id>/online

If the external lock is successfully broken or if it the lock has been surrendered by

the time the command is processed, the device is analyzed and set online. If it is

not possible to break the external lock (for example, because of a timeout, or

42 Device Drivers, Features, and Commands - November, 2006

because it is an FBA-type DASD), the device remains in the boxed state. This

command might take some time to complete.

Example: To force a DASD with device number 0xb110 online issue:

echo force > /sys/bus/ccw/devices/0.0.b110/online

For information on how to break the look of a DASD that has already been

analyzed see “tunedasd - Adjust DASD performance” on page 325.

Enabling DIAG calls to access DASDs

If the z/VM version is 5.2 or higher, 64-bit DIAG operations are supported. 31-bit is

supported on all z/VM releases.

Before you start: This section only applies to Linux instances and DASD for which

all of the following are true:

v The Linux instance runs as a VM guest.

v The Linux instance has a 31-bit kernel or a 64-bit kernel (from z/VM 5.2 or later)

that has been compiled with the CONFIG_DASD_DIAG option (see “Building a

kernel with the DASD device driver” on page 35).

v The devices can be either in CMS format or in any other fixed block size format

(for example LDL).

v The DIAG component (dasd_diag_mod) must be loaded or compiled into kernel.

v The component that corresponds to the DASD type (dasd_eckd_mod or

dasd_fba_mod) must be loaded or compiled into kernel.

v The DASD is offline.

You can use DIAG calls to access both ECKD- and FBA-type DASD. You use the

device’s use_diag sysfs attribute to enable or switch off DIAG calls in a system that

is online. Set the use_diag attribute to “1” to enable DIAG calls. Set the use_diag

attribute to “0” to switch off DIAG calls (this is the default).

Alternatively, you can specify ″diag″ on the command line, for example during IPL,

to force the device driver to access the device (range) using the DIAG access

method.

Issue a command of this form:

echo <flag> > /sys/bus/ccw/devices/<device_bus_id>/use_diag

Where:

<device_bus_id>

identifies the DASD.

If DIAG calls are not available and you set the use_diag attribute to “1”, you will not

be able to set the device online (see “Setting a DASD online or offline” on page 46).

Note: When switching between enabled and disabled DIAG calls on FBA-type

DASD, first re-initialize the DASD. Otherwise data previously stored on the

disk might no longer be accessible. You can re-initialize the DASD, for

example, with CMS format or by overwriting any previous content.

Chapter 4. DASD device driver 43

|
|
|
|

Example

In this example, DIAG calls are enabled for a DASD with device number 0xb100.

Note: You can only use the use_diag attribute when the device is offline.

1. Ensure that the driver is loaded (only applicable when compiled as module):

modprobe dasd_diag_mod

2. Identify the sysfs CCW-device directory for the device in question and change to

that directory:

cd /sys/bus/ccw/devices/0.0.b100/

3. Ensure that the device is offline:

echo 0 > online

4. Enable the DIAG access method for this device by writing ’1’ to the use_diag

sysfs attribute:

echo 1 > use_diag

5. Use the online attribute to set the device online:

echo 1 > online

Working with extended error reporting for ECKD

Before you start: To use the extended error reporting for ECKD-type DASD you

need:

v A kernel that includes extended error reporting, either compiled into the kernel or

as a separate module (see “Building a kernel with the DASD device driver” on

page 35.

v A misc character device (see “Assuring that a device node exists for extended

error reporting” on page 32).

You can perform the following file operations on the device node:

open

Multiple processes can open the node concurrently. Each process that opens

the node has access to the records that are created from the time the node is

opened. A process cannot access records that were created before the process

opened the node.

close

You can close the node as usual.

read

Blocking read as well as non-blocking read is supported. When a record is

partially read and then purged, the next read returns an I/O error -EIO.

poll

The poll operation is typically used in conjunction with non-blocking read.

Switching extended error reporting on and off

Extended error reporting is turned off by default. To turn extended error reporting

on, issue a command of this form:

44 Device Drivers, Features, and Commands - November, 2006

|

|
|

|
|
|

|
|

|

|
|
|
|
|

|
|

|
|
|

|
|

|

|
|

echo 1 > /sys/bus/ccw/devices/<device bus-id>/eer_enabled

where /sys/bus/ccw/devices/<device bus-id> represents the device in sysfs.

When it is enabled on a device, a specific set of errors will generate records and

may have further side effects. The records are made available via a character

device interface.

To switch off extended error reporting issue a command of this form:

echo 0 > /sys/bus/ccw/devices/<device bus-id>/eer_enabled

Displaying DASD information

Each DASD is represented in a sysfs directory of the form

/sys/bus/ccw/devices/<device_bus_id>

where <device_bus_id> is the device bus-ID. This sysfs directory contains a

number of attributes with information on the DASD.

 Table 7. DASD device attributes

alias “0” if the DASD is a parallel access volume (PAV) base device or

“1” if the DASD is an alias device. For an example of how to use

PAV see How to Improve Performance with PAV on

developerWorks at

www.ibm.com/developerworks/linux/linux390/october2005_documentation.html

This attribute is read-only.

discipline Is the base discipline, ECKD or FBA, that is used to access the

DASD. This attribute is read-only.

online “1” if the DASD is online or “0” if it is offline (see “Setting a DASD

online or offline” on page 46).

eer_enabled “1” if the DASD is enabled for extended error reporting or “0” if it

is not enabled (see “Switching extended error reporting on and

off” on page 44).

readonly “1” if the DASD is read-only “0” if it can be written to.

uid A device identifier of the form

<vendor>.<serial>.<subsystem_id>.<unit_address> where

<vendor>

is the specification from the vendor attribute.

<serial>

is the serial number of the storage system.

<subsystem_id>

is the subsystem ID used within the storage system to

identify the DASD.

<unit_address>

is the address used within the storage system to identify the

DASD.
This attribute is read-only.

use_diag “1” if enable DIAG calls are enabled “0” if DIAG calls are not

enabled (see “Enabling DIAG calls to access DASDs” on page

43).

Chapter 4. DASD device driver 45

|
||

|

|
|
|

|

|
||

|

|

|

|
|

||

||
|
|
|
|

|

||
|

||
|

||
|
|

||

||
|

|
|

|
|

|
|
|

|
|
|
|

||
|
|

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.shtml

Table 7. DASD device attributes (continued)

vendor A specification that identifies the manufacturer of the storage

system that contains the DASD. This attribute is read-only.

Issue a command of this form to read an attribute:

cat /sys/bus/ccw/devices/<device_bus_id>/<attribute>

where <attribute> is one of the attributes of Table 7 on page 45.

Example

The following sequence of commands reads the attributes for a DASD with a device

bus-ID 0.0.b100:

cat /sys/bus/ccw/devices/0.0.b100/alias

0

cat /sys/bus/ccw/devices/0.0.b100/discipline

ECKD

cat /sys/bus/ccw/devices/0.0.b100/eer_enabled

0

cat /sys/bus/ccw/devices/0.0.b100/online

1

cat /sys/bus/ccw/devices/0.0.b100/readonly

1

cat /sys/bus/ccw/devices/0.0.b100/uid

IBM.75000000092461.e900.8a

cat /sys/bus/ccw/devices/0.0.b100/use_diag

1

cat /sys/bus/ccw/devices/0.0.b100/vendor

IBM

Setting a DASD online or offline

When Linux boots, it senses your DASD. Depending on your specification for the

“dasd=” parameter, it automatically sets devices online.

Use the chccwdev command (“chccwdev - Set a CCW device online” on page 269)

to set a DASD online or offline. Alternatively, you can write “1” to the device’s online

attribute to set it online or “0” to set it offline.

Examples

v To set a DASD with device bus-ID 0.0.b100 online, issue:

chccwdev -e 0.0.b100

or

echo 1 > /sys/bus/ccw/devices/0.0.b100/online

v To set a DASD with device bus-ID 0.0.b100 offline, issue:

chccwdev -d 0.0.b100

or

echo 0 > /sys/bus/ccw/devices/0.0.b100/online

46 Device Drivers, Features, and Commands - November, 2006

|

||
|
|

|

|
||

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

Dynamic attach and detach

You can dynamically attach devices to a running Linux on System z instance, for

example, from VM.

When a DASD is attached, Linux attempts to initialize it according to the DASD

device driver configuration (see “Kernel parameters” on page 36). You can then set

the device online. You can automate setting dynamically attached devices online by

using CCW hotplug events (see “CCW hotplug events” on page 16).

Note

Detachment in VM of a device still open or mounted in Linux may trigger a

limitation in the Linux kernel 2.6 common code and cause the system to hang

or crash. Be sure that you unmount a device and set it offline before you

detach it.

Chapter 4. DASD device driver 47

48 Device Drivers, Features, and Commands - November, 2006

Chapter 5. SCSI-over-Fibre Channel device driver

This chapter describes the SCSI-over-Fibre Channel device driver (zfcp device

driver) for the QDIO-based System z SCSI-over-Fibre Channel adapter. The zfcp

device driver provides support for Fibre Channel-attached SCSI devices on Linux

on System z.

Throughout this chapter, the term FCP channel refers to a single virtual instance of

a QDIO-based System z9 or zSeries SCSI-over-Fibre Channel adapter.

Both the Linux on System z 64-bit and 31-bit architectures are supported.

Features

The zfcp device driver supports the following devices and functions:

v Linux on System z can make use of all SAN-attached SCSI device types

currently supported by Linux on other platforms. These include, for example,

SCSI disks, tapes, CD-ROMs, and DVDs.

v SAN access through the following FCP adapters:

– FICON

– FICON Express

– FICON Express2

v The zfcp device driver supports switched fabric and point-to-point topologies.

v The zfcp device driver provides an interface for SAN management clients (see

“zfcp HBA API (FC-HBA) support” on page 51).

What you should know about zfcp

The zfcp device driver is a low-level or host-bus adapter driver that supplements the

Linux SCSI stack. Figure 10 illustrates how the device drivers work together.

Figure 10. Device drivers supporting the Linux on System z FCP environment

© Copyright IBM Corp. 2000, 2006 49

sysfs structures for FCP channels and SCSI devices

FCP channels are CCW devices.

When Linux is booted, it senses the available FCP channels and creates directories

of the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to the FCP channel.

You use the attributes in this directory to work with the FCP channel.

Example: /sys/bus/ccw/drivers/zfcp/0.0.3d0c

You can extend this structure by adding target ports to the FCP channel (see

“Configuring and removing ports” on page 62). For each port you add you get a

directory of the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>

where <wwpn> is the worldwide port name (WWPN) of the target port. You use the

attributes of this directory to work with the port.

Example: /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562

You can further extend this structure by adding SCSI devices to the ports (see

“Configuring SCSI devices” on page 65). For each SCSI device you add you get a

directory of the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<fcp_lun>

where <fcp_lun> is the logical unit number (LUN) of the SCSI device. You use the

attributes in this directory to work with an individual SCSI device.

Example: /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/
0x4010403200000000

 Figure 11 illustrates how the path to the sysfs representation of a SCSI device is

derived from properties of various components in an IBM mainframe FCP

environment.

Information about zfcp objects and their associated objects in the SCSI stack is

distributed over the sysfs tree. To ease the burden of collecting information about

Figure 11. SCSI device in sysfs

50 Device Drivers, Features, and Commands - November, 2006

zfcp adapters, ports, units, and their associated SCSI stack objects, a command

called lszfcp is provided with s390-tools. See “lszfcp - List zfcp devices” on page

299 for more details about the command.

See also “Mapping the representations of a SCSI device in sysfs” on page 66.

SCSI device nodes

User space programs access SCSI devices through device nodes.

SCSI device names are assigned in the order in which the devices are detected. In

a typical SAN environment, this can mean a seemingly arbitrary mapping of names

to actual devices that can change between boots. Therefore, using standard device

nodes of the form /dev/<device_name> where <device_name> is the device name

that the SCSI stack assigns to a device, can be a challenge.

If you are using a distribution that provides udev, udev might create device nodes

for you that allow you to identify the corresponding actual device. Refer to your

distribution documentation to find out if udev is present and which device nodes it

provides. See “Device nodes and major/minor numbers” on page 3 for more general

information on udev.

You can create your own device nodes with mknod commands of the form:

mknod /dev/<your_name> b <major> <minor>

See “Finding the major and minor numbers for a device” on page 70 if you need to

create your own nodes.

The examples in this chapter use standard device nodes as assigned by the SCSI

stack. These nodes have the form /dev/sd<x> for entire disks and /dev/sd<x><n>

for partitions. In these node names <x> represents one or more letters and <n> is

an integer. Refer to Documentation/devices.txt in the Linux source tree for more

information on the SCSI device naming scheme.

Partitioning a SCSI device

You can partition SCSI devices that are attached through an FCP channel in the

same way that you can partition SCSI attached devices on other platforms. Use the

fdisk command to partition a SCSI disk not fdasd.

If your distribution provides udev, udev might create device nodes for your partition.

Refer to your distribution documentation for details. If you need to create your own

nodes for your partitions, see “Finding the major and minor numbers for a device”

on page 70.

Example

To partition a SCSI disk with a device node /dev/sda issue:

fdisk /dev/sda

zfcp HBA API (FC-HBA) support

The zfcp host bus adapter API (HBA API) provides an interface for SAN

management clients that run on Linux on System z9 or zSeries.

Chapter 5. SCSI-over-Fibre Channel device driver 51

As shown in Figure 12, the zfcp HBA API support includes a kernel module and a

user space library.

 The library provides the zfcp HBA API to SAN management applications and uses a

misc device file to communicate with the kernel module zfcp_hbaapi. The kernel

module uses the zfcp device driver to communicate with the FCP adapter and the

SAN.

Overview of zfcp HBA API support setup

Setting up the zfcp HBA API support includes:

1. Ensuring that the module is loaded if the support has been compiled as a

module and, optionally, providing kernel or module parameters (see “zfcp HBA

API kernel parameters” on page 55 and “zfcp HBA API module parameters” on

page 56)

2. “Installing the zfcp HBA API library” on page 56

3. “Ensuring that the required device node exists for the HBA API support” on page

57

Discovering SAN ports and LUNs with the san_disc command

To discover ports and scan LUNs in a Fibre Channel SAN a command called

san_disc is provided. The command can be helpful when detecting configuration

problems with zfcp.

It is based on zfcp HBA API and is installed with newer versions of lib-zfcp-hbaapi.

See “Installing the zfcp HBA API library” on page 56. See “san_disc - Discover ports

and LUNs in Fibre Channel SANs” on page 308 for more details.

Figure 12. zfcp HBA API support modules

52 Device Drivers, Features, and Commands - November, 2006

FCP LUN access control

Access to devices can be restricted by access control software on the FCP

channel. For more information on FCP LUN Access Control, visit The IBM Resource

Link Web site at:

https://www.ibm.com/servers/resourcelink/hom03010.nsf/pages/fcpaccumain?opendocument

The Resource Link page requires registration. If you are not a registered user of

Resource Link, you will need to register and then log in. On the left navigation bar,

click Tools, then in the Servers column on the ACT page, click the link

Configuration Utility for FCP LUN Access Control.

N_Port ID Virtualization for FCP channels

N_Port ID Virtualization (NPIV) allows a single FCP port to appear as multiple,

distinct ports that provide separate port identification. NPIV support can be

configured on the SE per CHPID and LPAR for an FCP adapter. The zfcp device

driver supports NPIV error messages and adapter attributes. See “Displaying

adapter information” on page 59 for the adapter attributes.

For more details, refer to the connectivity page at

ibm.com/servers/eserver/zseries/connectivity/fcp.html

N_Port ID Virtualization is exclusive to IBM System z9.

Further information

FC/FCP/SCSI-3 specifications

Describes SCSI-3, the Fibre Channel Protocol, and fiber channel related

information.

 http://www.t10.org and http://www.t11.org

Getting Started with zSeries Fibre Channel Protocol

Introduces the concepts of zSeries Fibre Channel Protocol support, and

shows how various SCSI devices can be configured to build an IBM

mainframe FCP environment. The information is written for Linux 2.4, but

much of it is of a general nature and also applies to Linux 2.6:

ibm.com/redbooks/redpapers/pdfs/redp0205.pdf

Linux for zSeries: Fibre Channel Protocol Implementation Guide

Includes an explanation of how FCP is configured using SUSE SLES9

under kernel 2.6.

ibm.com/redbooks/abstracts/sg246344.html?Open

Linux for IBM System z9 and IBM zSeries

Includes a chapter about FCP-attached SCSI disks.

ibm.com/redbooks/abstracts/sg246694.html?Open

Supported FCP connectivity options

Lists supported SCSI devices and provides links to further documentation

on FCP and SCSI.

ibm.com/servers/eserver/zseries/connectivity/

zfcp HBA API

See “API provided by the zfcp HBA API support” on page 72.

Chapter 5. SCSI-over-Fibre Channel device driver 53

https://www.ibm.com/servers/resourcelink/hom03010.nsf/pages/fcpaccumain?opendocument
http://www.t10.org
http://www.t11.org
http://www.redbooks.ibm.com/redpapers/pdfs/redp0205.pdf
http://www.redbooks.ibm.com/abstracts/sg246344.html?Open
http://www.ibm.com/redbooks/abstracts/sg246694.html?Open
http://www.ibm.com/servers/eserver/zseries/connectivity/

Building a kernel with the zfcp device driver

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the zfcp

device driver.

Figure 13 summarizes the kernel configuration menu options that are relevant to the

zfcp device driver:

CONFIG_ZFCP

This option is required for zfcp support. Can be compiled into the kernel or

as a separate module, zfcp.

CONFIG_ZFCP_HBAAPI

This option includes zfcp HBA API support. It can be compiled into the

kernel or as a separate module, zfcp_hbaapi.

 In addition, the following common code options are required:

v CONFIG_QDIO

v CONFIG_SCSI

zfcp needs the CONFIG_SCSI_FC_ATTRS option, which is automatically selected

when you select CONFIG_ZFCP.

As for Linux on any platform, you need the common code options for specific

devices and file systems you want to support. For example:

v SCSI disks support and PC-BIOS disk layout support

Partitioning is only possible if PC-BIOS disk layout support is compiled into the

kernel

v SCSI tapes support

v SCSI CD-ROM and ISO 9660 file system

v SCSI generic support

Setting up the zfcp device driver

This section provides information on how you can specify a SCSI boot device and

how you can set up the zfcp HBA API support.

Device driver kernel parameters

This section describes how to configure the zfcp device driver if it has been

compiled into the kernel. You configure the device driver by adding parameters to

the kernel parameter line.

Use the zfcp.device kernel parameter to enable a SCSI device to be used as initial

device.

SCSI Device Support --->

 SCSI low-level drivers --->

 FCP host bus adapter driver for IBM eServer zSeries (CONFIG_ZFCP)

 └─ FC HBA Support (CONFIG_ZFCP_HBAAPI)

Figure 13. zfcp kernel configuration menu options

54 Device Drivers, Features, and Commands - November, 2006

zfcp kernel parameter syntax

�� zfcp.device=<device_bus_id>,<wwpn>,<fcp_lun> ��

where:

<device_bus_id>

specifies the device bus-ID of the FCP channel through which the

SCSI device is attached.

<wwpn> specifies the target port through which the SCSI device is

accessed.

<fcp_lun> specifies the LUN of the SCSI device.

Example

The following parameter in the kernel parameter line allows you to boot from a

SCSI device with LUN 0x4010403200000000, accessed through a target port with

WWPN 0x500507630300c562 and connected through an FCP channel with device

bus-ID 0.0.3d0c. Assuming that a device node /dev/sda1 has been created for that

SCSI device:

zfcp.device=0.0.3d0c,0x500507630300c562,0x4010403200000000 root=/dev/sda1

zfcp HBA API kernel parameters

If the HBA API support (see “zfcp HBA API (FC-HBA) support” on page 51) has

been compiled into the kernel, you can optionally configure it by adding parameters

to the kernel parameter line:

zfcp HBA API kernel parameter syntax

��
 zfcp_hbaapi.maxshared=20 zfcp_hbaapi.maxpolled=20

zfcp_hbaapi.maxshared=<maxshared>

zfcp_hbaapi.maxpolled=<maxpolled>

�

�
 (1)

zfcp_hbaapi.minor=<minor number>

��

Notes:

1 If you specify multiple parameters, separate them with blanks.

where:

<maxshared> is the maximum number of events in the shared event queue. The

default is 20.

<maxpolled> is the maximum number of events in the polled event queue. The

default is 20.

<minor number>

is the minor number for the misc device that is registered. If no

minor number is specified, it is allocated dynamically.

Chapter 5. SCSI-over-Fibre Channel device driver 55

Example

The following parameters in the kernel parameter line limit the number of events in

the zfcp HBA API shared event queue to 10 and forces the minor number for the

character device to be 50.

zfcp_hbaapi.maxshared=10 zfcp_hbaapi.minor=50

zfcp HBA API module parameters

If your zfcp HBA API support has been compiled as a module, load the module with

modprobe to assure that any other required modules are loaded. When you load

the module, you can, optionally, provide parameters to configure the zfcp HBA API

support.

zfcp HBA API module parameter syntax

��
 maxshared=20 maxpolled=20

modprobe

zfcp_hbaapi

maxshared=<maxshared>

maxpolled=<maxpolled>

�

�
minor=<minor number>

 ��

where:

<maxshared> is the maximum number of events in the shared event queue. The

default is 20.

<maxpolled> is the maximum number of events in the polled event queue. The

default is 20.

<minor number>

is the minor number for the misc device that is registered. If no

minor number is specified, it is allocated dynamically.

Installing the zfcp HBA API library

If you want to provide zfcp HBA API support, you need to install the zfcp HBA API

library. You can find the library as a source package lib-zfcp-hbaapi-1.x.tar.gz at

developerWorks:

ibm.com/developerworks/linux/linux390/index.shtml

On the left navigation bar, select Useful add-ons to find the HBA API library.

Perform the following steps to install the library:

1. Download the source package lib-zfcp-hbaapi-1.<x>.tar.gz from

developerWorks. In the library name, <x> represents the newest available

version.

2. Compile and install the package:

tar xzf lib-zfcp-hbaapi-1.<x>.tar.gz

cd lib-zfcp-hbaapi-1.<x>

./configure

make

make install

3. Optionally, build and install documentation. For this step you require the

package doxygen.

56 Device Drivers, Features, and Commands - November, 2006

http://www.ibm.com/developerworks/linux/linux390/index.shtml

make dox

make install

Result: You have installed:

v Shared and static versions of libzfcphbaapi at /usr/local/lib.

v The header file hbaapi.h at /usr/local/include.

v Optionally, the documentation package at /usr/local/share/doc/zfcp-hbaapi-
1.<x>.

v A command, san_disc, for the discovery of ports and scanning of LUNs in a

Fibre Channel SAN.

Note: The exact contents of the library depends on the version, see “API provided

by the zfcp HBA API support” on page 72.

Ensuring that the required device node exists for the HBA API support

The zfcp HBA API support provides a misc device. This misc device is used for

kernel-user-space communication. The major number for the device is 10. You can

specify a minor number as a kernel or module parameter (see “zfcp HBA API kernel

parameters” on page 55 and “zfcp HBA API module parameters” on page 56) or

use a dynamic minor number.

Check for the device node, for example at /dev/zfcp_hbaapi. If your distribution

does not create a device node for the zfcp HBA API support (for example, with

udev), you need to create one.

To find out the major and minor number for your monitor device, read the dev

attribute of the device’s representation in sysfs:

cat /sys/class/misc/zfcp_hbaapi/dev

The value of the dev attribute is of the form 10:<minor>.

To create, issue a command of the form:

mknod <node> c 10:<minor>

where <node> is your device node.

Example:

To create a device node /dev/zfcp_hbaapi:

cat /sys/class/misc/zfcp_hbaapi/dev

10:64

mknod /dev/zfcp_hbaapi c 10 64

In the example, the major number was 10 and the minor 64.

 Alternatively, you can create the device node, /dev/zfcp_hbaapi, using the following

commands:

minor=’cat /proc/misc | awk "\$2==\"zfcp_hbaapi\" {print \$1}"’

mknod /dev/zfcp_hbaapi c 10 $minor

Chapter 5. SCSI-over-Fibre Channel device driver 57

Working with the zfcp device driver

This section describes typical tasks that you need to perform when working with

FCP channels, target ports, and SCSI devices. Set an FCP channel online before

you attempt to perform any other tasks.

v Working with FCP channels

– Setting an FCP channel online or offline

– Displaying adapter information

– Recovering a failed FCP channel

– Configuring and removing ports

– Finding out if NPIV is in use

v Working with target ports

– Displaying port information

– Recovering a failed port

– Configuring SCSI devices

v Working with SCSI devices

– Mapping the representations of a SCSI device in sysfs

– Displaying information on SCSI devices

– Finding the major and minor numbers for a device

– Recovering a failed SCSI device

– Removing SCSI devices

Displaying the device driver version

The read-only attribute “version” in sysfs provides the version of the zfcp device

driver:

/sys/bus/ccw/drivers/zfcp/version

Setting an FCP channel online or offline

By default, FCP channels are offline. Set an FCP channel online before you perform

any other tasks.

Use the chccwdev command (“chccwdev - Set a CCW device online” on page 269)

to set an FCP channel online or offline. Alternatively, you can write “1” to an FCP

channel’s online attribute to set it online, or “0” to set it offline.

Setting an FCP channel online registers it with the Linux SCSI stack.

When you set an FCP channel offline, the port and LUN subdirectories are

preserved but it is unregistered from the SCSI stack and its attribute values are no

longer valid.

When the FCP channel is set back online, the SCSI device names and minor

numbers are freshly assigned. The mapping of devices to names and numbers

might be different from what they were before the FCP channel was set offline.

Examples

v To set an FCP channel with device bus-ID 0.0.3d0c online issue:

chccwdev -e 0.0.3d0c

58 Device Drivers, Features, and Commands - November, 2006

or

echo 1 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/online

v To set an FCP channel with device bus-ID 0.0.3d0c offline issue:

chccwdev -d 0.0.3d0c

or

echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/online

Displaying adapter information

Before you start: The FCP channel must be online for the adapter information to

be valid.

For each online FCP channel, there is a number of read-only attributes in sysfs that

provide information on the corresponding adapter card. Table 8 summarizes the

relevant attributes.

 Table 8. Attributes with adapter information

lic_version Hardware microcode level

in_recovery Shows if adapter is in recovery (0 or 1)

failed Shows if adapter is in failed state (0 or 1)

online Shows if adapter is online (0 or 1)

peer_wwnn WWNN of peer for a point-to-point connection

peer_wwpn WWPN of peer for a point-to-point connection

peer_d_id Destination ID of the peer for a point-to-point connection

 Table 9. Relevant transport class attributes, fc_host attributes

maxframe_size Maximum frame size of adapter

node_name Worldwide node name (WWNN) of adapter

permanent_port_name WWPN associated with the physical port of the FCP channel

port_id Destination ID of the adapter port.

port_name WWPN. If N_Port ID Virtualization is not available, this

shows the same value as permanent_port_name.

port_type Port type indicating topology of port.

serial_number Serial number of adapter.

speed Speed of FC link.

supported_classes Supported FC service class.

supported_speeds Supported speeds.

tgid_bind_type Target binding type.

 Table 10. Relevant transport class attributes, fc_host statistics

reset_statistics Writeable attribute to reset statistic counters.

seconds_since_last_reset Seconds since last reset of statistic counters.

tx_frames Transmitted FC frames.

Chapter 5. SCSI-over-Fibre Channel device driver 59

Table 10. Relevant transport class attributes, fc_host statistics (continued)

tx_words Transmitted FC words.

rx_frames Received FC frames.

rx_words Received FC words.

lip_count Number of LIP sequences.

nos_count Number of NOS sequences.

error_frames Number of frames received in error.

dumped_frames Number of frames lost due to lack of host resources.

link_failure_count Link failure count.

loss_of_sync_count Loss of synchronization count.

loss_of_signal_count Loss of signal count.

prim_seq_protocol_err_count Primitive sequence protocol error count.

invalid_tx_word_count Invalid transmission word count.

invalid_crc_count Invalid CRC count.

fcp_input_requests Number of FCP operations with data input.

fcp_output_requests Number of FCP operations with data output.

fcp_control_requests Number of FCP operations without data movement.

fcp_input_megabytes Megabytes of FCP data input.

fcp_output_megabytes Megabytes of FCP data output.

Issue a command of this form to read an attribute:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<attribute>

where:

<device_bus_id>

is the device bus-ID that corresponds to the FCP channel.

<attribute> is one of the attributes in Table 8 on page 59.

To read attributes of the associated fc_host use:

cat /sys/class/fc_host/<host_name>/<attribute>

where:

<host_name> is the ID of the host.

<attribute> is one of the attributes in Table 9 on page 59.

Examples

v In this example, information is displayed on an adapter card for an FCP channel

that corresponds to a device bus-ID 0.0.3d0c:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/hardware_version

0x00000000

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/lic_version

0x00009111

v Alternatively you can use lszfcp (see “lszfcp - List zfcp devices” on page 299) to

display all attributes of an adapter:

60 Device Drivers, Features, and Commands - November, 2006

lszfcp -b 0.0.3d0c -a

0.0.3d0c host0

Bus = "ccw"

 availability = "good"

 card_version = "0x0003"

 cmb_enable = "0"

 cutype = "1731/03"

 devtype = "1732/03"

 failed = "0"

 hardware_version = "0x00000000"

 in_recovery = "0"

 lic_version = "0x00000600"

 modalias = "ccw:t1731m03dt1732dm03"

 online = "1"

 peer_d_id = "0x000000"

 peer_wwnn = "0x0000000000000000"

 peer_wwpn = "0x0000000000000000"

 status = "0x5400082e"

Class = "fc_host"

 maxframe_size = "2112 bytes"

 node_name = "0x5005076400cd6aad"

 permanent_port_name = "0x5005076401c08f98"

 port_id = "0x650f13"

 port_name = "0x5005076401c08f98"

 port_type = "NPort (fabric via point-to-point)"

 serial_number = "IBM020000000D6AAD"

 speed = "2 Gbit"

 supported_classes = "Class 2, Class 3"

 supported_speeds = "1 Gbit, 2 Gbit"

 tgtid_bind_type = "wwpn (World Wide Port Name)"

Class = "scsi_host"

 cmd_per_lun = "1"

 host_busy = "0"

 proc_name = "zfcp"

 sg_tablesize = "538"

 state = "running"

 unchecked_isa_dma = "0"

 unique_id = "0"

Finding out if NPIV is in use

If the adapter attributes permanent_port_name and port_name are not NULL and

are different from each other, the subchannel is operating in NPIV mode.

Example

You can examine whether the adapter attributes port_name and

permanent_port_name are the same:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/host0/fc_host:host0/port_name

0x5005076401c08f98

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/host0/fc_host:host0/permanent_port_name

0x5005076401c08f98

Alternatively you can use lszfcp (see “lszfcp - List zfcp devices” on page 299) to

display the above attributes:

Chapter 5. SCSI-over-Fibre Channel device driver 61

lszfcp -b 0.0.3d0c -a

0.0.3d0c host0

Bus = "ccw"

 availability = "good"

 ...

Class = "fc_host"

 maxframe_size = "2112 bytes"

 node_name = "0x5005076400cd6aad"

 permanent_port_name = "0x5005076401c08f98"

 port_id = "0x650f13"

 port_name = "0x5005076401c08f98"

 port_type = "NPort (fabric via point-to-point)"

 serial_number = "IBM020000000D6AAD"

 ...

The example shows that permanent_port_name is the same as port_name, and the

subchannel does not operate in NPIV mode.

Recovering a failed FCP channel

Before you start: The FCP channel must be online.

Failed FCP channels are automatically recovered by the zfcp device driver. You can

read the in_recovery attribute to check if recovery is under way. Issue a command

of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/in_recovery

The value is “1” if recovery is under way and “0” otherwise. If the value is “0” for a

non-operational FCP channel, recovery might have failed or the device driver might

have failed to detect that the FCP channel is malfunctioning.

To find out if recovery has failed read the failed attribute. Issue a command of this

form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/failed

The value is “1” if recovery has failed and “0” otherwise.

You can start or restart the recovery process for the FCP channel by writing “0” to

the failed attribute. Issue a command of this form:

echo 0 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/failed

Example

In the following example, an FCP channel with a device bus ID 0.0.3d0c is

malfunctioning. The first command reveals that recovery is not already under way.

The second command manually starts recovery for the FCP channel:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/in_recovery

0

echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/failed

Configuring and removing ports

Before you start: The FCP channel must be online.

62 Device Drivers, Features, and Commands - November, 2006

To configure a port for an FCP channel write the port’s WWPN to the FCP

channel’s port_add attribute. Issue a command of this form:

echo <wwpn> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/port_add

where:

<device_bus_id>

is the device bus-ID that corresponds to the FCP channel.

<wwpn> is the WWPN of the port to be added.

Adding a port creates a directory in /sys/bus/ccw/drivers/zfcp/<device_bus_id>

with the WWPN as the directory name.

You cannot read from the port_add attribute. List the contents of

/sys/bus/ccw/drivers/zfcp/<device_bus_id> to find out which ports are currently

configured for the FCP channel.

To remove a port from an FCP channel write the port’s WWPN to the FCP

channel’s port_remove attribute. Issue a command of this form:

echo <wwpn> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/port_remove

where:

<device_bus_id>

is the device bus-ID that corresponds to the FCP channel.

<wwpn> is the WWPN of the port to be removed.

You cannot remove a port while SCSI devices are configured for it (see “Configuring

SCSI devices” on page 65) or if the port is in use, for example, by error recovery.

Example

In this example, a port with WWPN 0x500507630303c562 has already been

configured for an FCP Channel with device bus-ID 0.0.3d0c. An additional target

port with WWPN 0x500507630300c562 is configured and then the port with WWPN

0x500507630303c562 is removed.

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*

0x500507630303c562

echo 0x500507630300c562 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_add

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*

0x500507630303c562

0x500507630300c562

echo 0x500507630303c562 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_remove

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*

0x500507630300c562

Displaying port information

For each target port, there is a number of read-only attributes in sysfs that provide

port information. Table 11 on page 64 summarizes the relevant attributes.

Chapter 5. SCSI-over-Fibre Channel device driver 63

Table 11. Attributes with port information

access_denied Flag that indicates if the port access is restricted by access

control software on the FCP channel (see “FCP LUN access

control” on page 53).

The value is “1” if access is denied and “0” if access is

permitted.

in_recovery Shows if port is in recovery (0 or 1)

failed Shows if port is in failed state (0 or 1)

 Table 12. Transport class attributes with port information

node_name WWNN of the remote port.

port_name WWPN of remote port.

port_id Destination ID of remote port

port_state State of remote port.

roles Role of remote port (usually FCP target).

scsi_target_id Linux SCSI ID of remote port.

supported_classes Supported classes of service.

Issue a command of this form to read an attribute:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<attribute>

where:

<device_bus_id>

is the device bus-ID that corresponds to the FCP channel.

<wwpn> is the WWPN of the target port.

<attribute> is one of the attributes in Table 11.

To read attributes of the associated fc_host use a command of this form:

cat /sys/class/fc_remote_port/<rport_name>/<attribute>

where:

<rport_name> is the name of the remote port.

<attribute> is one of the attributes in Table 12.

Examples

v In this example, information is displayed for a target port 0x500507630300c562

that is attached through an FCP channel that corresponds to a device bus-ID

0.0.3d0c:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/access_denied

0

v To display transport class attributes of a target port you can use lszfcp:

64 Device Drivers, Features, and Commands - November, 2006

lszfcp -p 0x500507630300c562 -a

0.0.3d0c/0x500507630300c562 rport-0:0-0

Class = "fc_remote_ports"

 node_name = "0x5005076303ffc562"

 port_id = "0x652113"

 port_name = "0x500507630300c562"

 port_state = "Online"

 roles = "FCP Target"

 scsi_target_id = "0"

Recovering a failed port

Before you start: The FCP channel must be online.

Failed target ports are automatically recovered by the zfcp device driver. You can

read the in_recovery attribute to check if recovery is under way. Issue a command

of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/in_recovery

where the variables are the same as in “Configuring and removing ports” on page

62.

The value is “1” if recovery is under way and “0” otherwise. If the value is “0” for a

non-operational port, recovery might have failed or the device driver might have

failed to detect that the port is malfunctioning.

To find out if recovery has failed read the failed attribute. Issue a command of this

form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/failed

The value is “1” if recovery has failed and “0” otherwise.

You can start or restart the recovery process for the port by writing “0” to the failed

attribute. Issue a command of this form:

echo 0 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/failed

Example

In the following example, a port with WWPN 0x500507630300c562 that is

connected through an FCP channel with a device bus ID 0.0.3d0c is malfunctioning.

The first command reveals that recovery is not already under way. The second

command manually starts recovery for the port:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/in_recovery

0

echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/failed

Configuring SCSI devices

To configure a SCSI device for a target port write the device’s LUN to the port’s

unit_add attribute. Issue a command of this form:

echo <fcp_lun> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/unit_add

Chapter 5. SCSI-over-Fibre Channel device driver 65

where:

<fcp_lun> is the LUN of the SCSI device to be configured.

<device_bus_id>

is the device bus-ID that corresponds to the FCP channel.

<wwpn> is the WWPN of the target port.

Adding a SCSI device creates a directory in /sys/bus/ccw/drivers/zfcp/
<device_bus_id>/<wwpn> with the LUN as the directory name.

You cannot read from the unit_add attribute. List the contents of

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn> to find out which SCSI

devices are currently configured for the port.

Adding a SCSI device also registers the device with the SCSI stack and creates a

sysfs entry in the SCSI branch (see “Mapping the representations of a SCSI device

in sysfs”).

Example

In this example, a target port with WWPN 0x500507630300c562 is connected

through an FCP channel with device bus-ID 0.0.3d0c. A SCSI device with LUN

0x4010403200000000 is already configured for the port. An additional SCSI device

with LUN 0x4010403300000000 is added to the port.

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x*

0x4010403200000000

echo 0x4010403300000000 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/unit_add

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x*

0x4010403200000000

0x4010403300000000

Mapping the representations of a SCSI device in sysfs

Each SCSI device that is configured is represented by multiple directories in sysfs.

In particular:

v A directory in the zfcp branch (see “Configuring SCSI devices” on page 65)

v A directory in the SCSI branch

The directory in the sysfs SCSI branch has the following form:

/sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>

where:

<scsi_host_no>

This is the scsi_host_number for the corresponding FCP channel.

<scsi_id> This is the scsi_id for the target port.

<scsi_lun> This is the scsi_lun for the SCSI device.

Figure 14 on page 67 shows how the directory name is composed of attributes of

consecutive directories in the sysfs zfcp branch. You can find the name of the

directory in the sysfs SCSI branch by reading the corresponding attributes in the

zfcp branch.

66 Device Drivers, Features, and Commands - November, 2006

To find the scsi_device for a zfcp_unit you must compare the scsi_device attributes

hba_id, wwpn, and fcp_lun of all available scsi_devices with the triple consisting of

<device_bus_id>, <wwpn> and <fcp_lun> of your zfcp unit.

To simplify this task, you can use lszfcp (see “lszfcp - List zfcp devices” on page

299).

Example

This example shows how you can use lszfcp to display the name of the SCSI

device that corresponds to a zfcp unit, for example:

lszfcp -l 0x4010403200000000

0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:0

In the example, the output informs you that the unit with the LUN

0x4010403200000000, which is configured on a port with the WWPN

0x500507630300c562 on an adapter with the device_bus_id 0.0.3d0c, maps to

SCSI device ″0:0:0:0″.

To confirm that the SCSI device belongs to the zfcp unit:

cat /sys/bus/scsi/devices/0:0:0:0/hba_id

0.0.3d0c

cat /sys/bus/scsi/devices/0:0:0:0/wwpn

0x500507630300c562

cat /sys/bus/scsi/devices/0:0:0:0/fcp_lun

0x4010403200000000

Displaying information on SCSI devices

For each SCSI device, there is a number of read-only attributes in sysfs that

provide access information for the device. These attributes indicate if the device

access is restricted by access control software on the FCP channel. Table 13

summarizes the relevant attributes.

 Table 13. Attributes with device access information

access_denied Flag that indicates if access to the device is restricted by access

control software on the FCP channel.

The value is “1” if access is denied and “0” if access is permitted. (See

“FCP LUN access control” on page 53).

Figure 14. SCSI devices in sysfs

Chapter 5. SCSI-over-Fibre Channel device driver 67

Table 13. Attributes with device access information (continued)

access_shared Flag that indicates if access to the device is shared or exclusive.

The value is “1” if access is shared and “0” if access is exclusive. (See

“FCP LUN access control” on page 53).

access_readonly Flag that indicates if write access to the device is permitted or if

access is restricted to read-only.

The value is “1” if access is restricted read-only and “0” if write access

is permitted. (See “FCP LUN access control” on page 53).

in_recovery Shows if unit is in recovery (0 or 1)

failed Shows if unit is in failed state (0 or 1)

 Table 14. SCSI device class attributes

device_blocked Flag that indicates if device is in blocked state (0 or 1).

iocounterbits The number of bits used for I/O counters.

iodone_cnt The number of completed or rejected scsi commands.

ioerr_cnt The number of SCSI commands that completed with an error.

iorequest_cnt The number of SCSI commands.

queue_depth The depth of the queue for this SCSI device.

queue_type The type of queue for the SCSI device. The value can be one of the

following:

v none

v simple

v ordered

model The model of the SCSI device (received from inquiry data).

rev The revision of the SCSI device (received from inquiry data).

scsi_level The SCSI revision level (received from inquiry data).

type The type of the SCSI device (received from inquiry data).

vendor The vendor of the SCSI device (received from inquiry data).

fcp_lun The LUN of the SCSI device in 64-bit format.

hba_id The bus ID of the SCSI device.

wwpn The WWPN of the remote port.

state Shows the state of SCSI devices (writeable attribute). The value is one

of the following:

v created

v running

v cancel

v quiesce

v offline

v blocked

timeout Shows the timeout for SCSI commands sent on this device (writeable

attribute).

delete Triggers deletion of a SCSI device (write-only attribute).

rescan Triggers a re-scan of a SCSI device (write-only attribute).

Issue a command of this form to read an attribute:

68 Device Drivers, Features, and Commands - November, 2006

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<scsi_lun>/<attribute>

where:

<device_bus_id> is the device bus-ID that corresponds to the FCP

channel.

<wwpn> is the WWPN of the target port.

<scsi_lun> is the FCP LUN of the SCSI device.

<attribute> is one of the attributes in Table 13 on page 67.

To read attributes of the associated scsi_device use a command of this form:

cat /sys/class/scsi_device/<device_name>/<attribute>

where:

<device_name> is the name of the associated SCSI device.

<attribute> is one of the attributes in Table 14 on page 68.

Examples

v In this example, information is displayed for a SCSI device with LUN

0x4010403200000000 that is accessed through a target port with WWPN

0x500507630300c562 and is connected through an FCP channel with device

bus-ID 0.0.3d0c. For the device, shared read-only access is permitted.

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x4010403200000000/access_denied

0

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x4010403200000000/access_shared

1

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x4010403200000000/access_readonly

1

For the device to be accessible, the access_denied attribute of the target port,

0x500507630300c562, must also be “0” (see “Displaying port information” on

page 63).

v You can use lszfcp to display attributes of a SCSI device:

lszfcp -l 0x4010403200000000 -a

0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:0

Class = "scsi_device"

 device_blocked = "0"

 fcp_lun = "0x4010403200000000"

 hba_id = "0.0.3d0c"

 iocounterbits = "32"

 iodone_cnt = "0x111"

 ioerr_cnt = "0x1"

 iorequest_cnt = "0x111"

 model = "2107900 "

 queue_depth = "32"

 queue_type = "simple"

 rev = ".203"

 scsi_level = "6"

 state = "running"

 timeout = "30"

 type = "0"

 vendor = "IBM "

 wwpn = "0x500507630300c562"

Chapter 5. SCSI-over-Fibre Channel device driver 69

Finding the major and minor numbers for a device

You can find the major and minor numbers of a SCSI device and of SCSI partitions

from the device representation in the sysfs SCSI branch (see “Mapping the

representations of a SCSI device in sysfs” on page 66).

/sys/bus/scsi/devices/<scsi_device>/block:sd<x>/dev

 In Figure 15, <scsi_device> is the directory that represents a SCSI device (compare

Figure 14 on page 67). If the disk is partitioned, the block directory that follows

contains directories of the form <name><n> that represent the partitions. <name> is

a standard name that the SCSI stack has assigned to the SCSI device and <n> is a

positive integer that identifies the partition.

Both the block directory and the directories that represent the partitions contain an

attribute dev. Read the dev attribute to find out the major and minor numbers for the

entire device or for an individual partition. The value of the dev attributes is of the

form <major>:<minor>.

Example

The following command shows a major of 8 and a minor of 0 for the SCSI device

0:0:1:1:

cat /sys/bus/scsi/devices/0:0:1:1/block:sda/dev

8:0

Assuming that the device has three partitions sda1, sda2, and sda3, the following

commands show the respective major and minor numbers:

cat /sys/bus/scsi/devices/0:0:1:1/block:sda/sda1/dev

8:1

cat /sys/bus/scsi/devices/0:0:1:1/block:sda/sda2/dev

8:2

cat /sys/bus/scsi/devices/0:0:1:1/block:sda/sda3/dev

8:3

Recovering a failed SCSI device

Before you start: The FCP channel must be online.

Failed SCSI devices are automatically recovered by the zfcp device driver. You can

read the in_recovery attribute to check if recovery is under way. Issue a command

of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<scsi_lun>/in_recovery

where the variables have the same meaning as in “Configuring SCSI devices” on

page 65.

Figure 15. Major/minor numbers for SCSI devices in sysfs

70 Device Drivers, Features, and Commands - November, 2006

The value is “1” if recovery is under way and “0” otherwise. If the value is “0” for a

non-operational SCSI device, recovery might have failed or the device driver might

have failed to detect that the SCSI device is malfunctioning.

To find out if recovery has failed read the failed attribute. Issue a command of this

form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<scsi_lun>/failed

The value is “1” if recovery has failed and “0” otherwise.

You can start or restart the recovery process for the SCSI device by writing “0” to

the failed attribute. Issue a command of this form:

echo 0 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<scsi_lun>/failed

Example

In the following example, SCSI device with LUN 0x4010403200000000 is

malfunctioning, The SCSI device is accessed through a target port with WWPN

0x500507630300c562 that is connected through an FCP channel with a device bus

ID 0.0.3d0c. The first command reveals that recovery is not already under way. The

second command manually starts recovery for the SCSI device:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x4010403200000000/in_recovery

0

echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x4010403200000000/failed

Removing SCSI devices

To remove a SCSI device from a target port you need to first unregister the device

from the SCSI stack and then remove it from the target port.

You unregister the device by writing “1” to the delete attribute of the directory that

represents the device in the sysfs SCSI branch. See “Mapping the representations

of a SCSI device in sysfs” on page 66 for information on how to find this directory.

Issue a command of this form:

echo 1 > /sys/bus/scsi/devices/<device>/delete

You can then remove the device from the port by writing the device’s LUN to the

port’s unit_remove attribute. Issue a command of this form:

echo <fcp_lun> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/unit_remove

where the variables have the same meaning as in “Configuring SCSI devices” on

page 65.

Example

The following example removes a SCSI device with LUN 0x4010403200000000,

accessed through a target port with WWPN 0x500507630300c562 and an FCP

channel with a device bus-ID 0.0.3d0c. The corresponding directory in the sysfs

SCSI branch is assumed to be /sys/bus/scsi/devices/0:0:1:1.

Chapter 5. SCSI-over-Fibre Channel device driver 71

echo 1 > /sys/bus/scsi/devices/0:0:1:1/delete

echo 0x4010403200000000 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/unit_remove

Scenario

The following scenario describes the life-cycle of a SCSI device with LUN

0x4010403200000000. The device is attached through an FCP channel with device

bus-ID 0.0.3d0c and accessed through a target port 0x500507630300c562.

The FCP channel is set online, then port and device are configured.

echo 1 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/online

echo 0x500507630300c562 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_add

echo 0x4010403200000000 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/unit_add

SCSI device and port are now to be removed. First the SCSI device must be

unregistered from the SCSI stack. Find out the SCSI device for the zfcp unit as

follows:

lszfcp -l 0x4010403200000000

0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:0

Delete SCSI device 0:0:0:0 and then remove the zfcp unit and port.

echo 1 > /sys/bus/scsi/devices/0:0:0:0/delete

echo 0x4010403200000000 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/unit_remove

echo 0x500507630300c562 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_remove

API provided by the zfcp HBA API support

 This section provides information for those who want to program SAN management

clients that run on Linux on System z.

Table 15 gives an overview of available packages of zfcp HBA API and the binaries

that are installed with those versions.

 Table 15. zfcp HBA API library versions

Package Installed binaries

zfcp HBA API library 1.4 san_disc command

zfcp HBA API library 1.3 libzfcphbaapi.so, san_disc command

zfcp HBA API library 1.2 and earlier libzfcphbaapi.so

Note: The zfcp-specific HBA API library libzfcphbaapi is a proprietary solution for

an HBA API library. It is not installed with new packages of lib-zfcp-hbaapi.

Instead the san_disc command is statically linked against libzfcphbaapi.

Functions provided

The zfcp HBA API (see “zfcp HBA API (FC-HBA) support” on page 51) is defined in

the Fibre Channel - HBA API (FC-HBA) specification (see http://www.t11.org).

The zfcp HBA API implements the following FC-HBA functions:

72 Device Drivers, Features, and Commands - November, 2006

http://www.t11.org

v HBA_GetVersion()

v HBA_LoadLibrary()

v HBA_FreeLibrary()

v HBA_GetWrapperLibraryAttributes()

v HBA_GetVendorLibraryAttributes()

v HBA_GetNumberOfAdapters()

v HBA_GetAdapterName()

v HBA_OpenAdapter()

v HBA_CloseAdapter()

v HBA_RefreshInformation()

v HBA_RefreshAdapterConfiguration()

v HBA_GetAdapterAttributes()

v HBA_GetAdapterPortAttributes()

v HBA_GetDiscoveredPortAttributes()

v HBA_SendScsiInquiry()

v HBA_SendReadCapacity()

v HBA_SendReportLUNs()

v HBA_GetFcpTargetMapping()

v HBA_SendCTPassThru()

v HBA_GetRNIDMgmtInfo()

v HBA_GetEventBuffer()

v HBA_SendRNID()

v HBA_SendRLS()

v HBA_SendRPS()

v HBA_GetPortStatistics()

v HBA_ResetStatistics()

All other FC-HBA functions return status code

HBA_STATUS_ERROR_NOT_SUPPORTED where possible. The exception are the

following commands that are not implemented: HBA_GetSBTargetMapping(),

HBA_GetSBStatistics(), and HBA_SBDskCapacity().

Restriction: ZFCP HBA API for Linux 2.6 can access only adapters, ports and units

that are configured in the operating system. As an exception, ELS commands can

also be sent to ports that are not configured within zfcp.

Environment variables

The zfcp HBA API support uses the following environment variables for logging

errors in the zfcp HBA API library:

LIB_ZFCP_HBAAPI_LOG_LEVEL

to specify the log level. If not set or set to zero there is no logging. If set to

an integer value greater than 1, logging is enabled.

LIB_ZFCP_HBAAPI_LOG_FILE

specifies a file for the logging output. If not specified stderr is used.

LIB_ZFCP_HBAAPI_DEVICE_FILE

specifies the name of the misc device file to be used. The default is

/dev/hba_api.

Chapter 5. SCSI-over-Fibre Channel device driver 73

74 Device Drivers, Features, and Commands - November, 2006

Chapter 6. Channel-attached tape device driver

The Linux on System z tape device driver supports channel-attached tape devices.

SCSI tape devices attached through a System z9 or zSeries FCP adapter are

handled by the zfcp device driver (see Chapter 5, “SCSI-over-Fibre Channel device

driver,” on page 49).

Features

The tape device driver supports the following devices and functions:

v The tape device driver supports channel-attached tape drives that are compatible

with IBM 3480, 3490, 3590, and 3592 magnetic tape subsystems. Various

models of these device types are handled (for example, the 3490/10).

3592 devices that emulate 3590 devices are recognized and treated as 3590

devices.

v Character and block devices (see “Tape device modes and logical devices”)

v Control operations through mt (see “Using the mt command” on page 79)

v Message display support (“tape390_display - display messages on tape devices

and load tapes” on page 323)

v Up to 128 physical tape devices.

What you should know about channel-attached tape devices

This section provides information about the available operation modes, about

devices names, and about device nodes for your channel-attached tape devices.

Tape device modes and logical devices

The tape device driver supports up to 128 physical tape devices. Each physical

tape device can be used in three different modes. The tape device driver treats

each mode as a separate logical device:

Non-rewinding character device

Provides sequential (traditional) tape access without any caching done in

the kernel.

 You can use the character device in the same way as any other Linux tape

device. You can write to it and read from it using normal Linux facilities

such as GNU tar. You can perform control operations (such as rewinding

the tape or skipping a file) with the standard tool mt. Most Linux tape

software should work with the character device.

 When the device is closed, the tape is left at the current position.

Rewinding character device

Provides tape access like the non-rewinding device, except that the tape is

rewound when the device is closed.

Block device

Provides a read-only tape block device.

 This device could be used for the installation of software in the same way

as tapes are used under other operating systems on the System z

platforms. (This is similar to the way most Linux software distributions are

shipped on CD using the ISO9660 file system.)

© Copyright IBM Corp. 2000, 2006 75

|

|
|

It is advisable to use only the ISO9660 file system on Linux on System z

tapes, because this file system is optimized for CD-ROM devices, which –

just like 3480, 3490, or 3590 tape devices – cannot perform fast seeks.

 The ISO9660 file system image file need not be the first file on the tape but

can start at any position. The tape must be positioned at the start of the

image file before the mount command is issued to the tape block device.

 The file system image must reside on a single tape. Tape block devices

cannot span multiple tape volumes.

Tape naming scheme

The tape device driver assigns minor numbers along with an index number when a

physical tape device comes online. The naming scheme for tape devices is

summarized in Table 16:

 Table 16. Tape device names and minor numbers

Names Minor numbers

Non-rewinding character

devices

ntibm<n> 2×<n>

Rewinding character devices rtibm<n> 2×<n>+1

Block devices btibm<n> 2×<n>

where <n> is the index number assigned by the device driver. The index starts from

0 for the first physical tape device, 1 for the second, and so on. The name space is

restricted to 128 physical tape devices, so the maximum index number is 127 for

the 128th physical tape device.

The index number and corresponding minor numbers and device names are not

permanently associated with a specific physical tape device. When a tape device

goes offline it surrenders its index number. The device driver assigns the lowest

free index number when a physical tape device comes online. An index number

with its corresponding device names and minor numbers can be reassigned to

different physical tape devices as devices go offline and come online.

Tip: Use the lstape command (see “lstape - List tape devices” on page 297) to

determine the current mapping of index numbers to physical tape devices.

When the tape device driver is loaded, it dynamically allocates a major number to

channel-attached character tape devices and a major number to channel-attached

block tape devices. The major numbers can but need not be the same. Different

major number might be used when the device driver is reloaded, for example when

Linux is rebooted.

For online tape devices, there are directories that provide information on the

major/minor assignment. The directories have the form:

v /sys/class/tape390/ntibm<n>

v /sys/class/tape390/rtibm<n>

v /sys/block/btibm<n>

Each of these directories has a dev attribute. The value of the dev attribute has the

form <major>:<minor>, where <major> is the major number for the character or

block tape devices and <minor> is the minor number specific to the logical device.

Example

In this example, four physical tape devices are present, with three of them online.

The TapeNo column shows the index number and the BusID indicates the

76 Device Drivers, Features, and Commands - November, 2006

associated physical tape device. In the example, no index number has been

allocated to the tape device in the first row. This means that the device is offline

and, currently, no names and minor numbers are assigned to it.

lstape

TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState

0 0.0.01a1 3490/10 3490/40 auto UNUSED --- UNLOADED

1 0.0.01a0 3480/01 3480/04 auto UNUSED --- UNLOADED

2 0.0.0172 3590/50 3590/11 auto IN_USE --- LOADED

N/A 0.0.01ac 3490/10 3490/40 N/A OFFLINE --- N/A

The resulting names and minor numbers for the online devices are:

 Bus ID Index (TapeNo) Device Device name Minor number

0.0.01ac not assigned not assigned not assigned

0.0.01a1 0 non-rewind ntibm0 0

rewind rtibm0 1

block btibm0 0

0.0.01a0 1 non-rewind ntibm1 2

rewind rtibm1 3

block btibm1 2

0.0.0172 2 non-rewind ntibm2 4

rewind rtibm2 5

block btibm2 4

For the online character devices, the major/minor assignments can be read from

their respective representations in /sys/class:

cat /sys/class/tape390/ntibm0/dev

254:0

cat /sys/class/tape390/ntibm0/dev

254:1

cat /sys/class/tape390/ntibm1/dev

254:2

cat /sys/class/tape390/ntibm1/dev

254:3

cat /sys/class/tape390/ntibm2/dev

254:4

cat /sys/class/tape390/ntibm2/dev

254:5

In the example, the major number used for character devices is 254 the minor

numbers are as expected for the respective device names.

Similarly, the major/minor assignments for the online block devices can be read

from their respective representations in /sys/block:

cat /sys/block/btibm0/dev

254:0

cat /sys/block/btibm1/dev

254:1

cat /sys/block/btibm2/dev

254:2

Chapter 6. Channel-attached tape device driver 77

The minor numbers are as expected for the respective device names. In the

example, the major number used for block devices is also 254.

Creating device nodes

User space programs access tape devices by device nodes. Your distribution might

create these device nodes for you or provide udev to create them (see “Device

nodes provided by udev” on page 4).

If no device nodes are created for you, you need to create them yourself, for

example, with the mknod command. Refer to the mknod man page for further

details.

Tip: Use the device names to construct your nodes (see “Tape naming scheme” on

page 76).

Example: Defining standard tape nodes

In this example, the tape major number is assumed to be 254 for both the character

and block devices. The nodes use the standard form /dev/<device_name> for the

device nodes and the assignment of minor numbers is according to Table 16 on

page 76.

mknod /dev/ntibm0 c 254 0

mknod /dev/rtibm0 c 254 1

mknod /dev/btibm0 b 254 0

mknod /dev/ntibm1 c 254 2

mknod /dev/rtibm1 c 254 3

mknod /dev/btibm1 b 254 2

mknod /dev/ntibm2 c 254 4

mknod /dev/rtibm2 c 254 5

mknod /dev/btibm2 b 254 4

...

Examples for udev-created tape device nodes

Note

The format of the nodes that udev creates for you depends on

distribution-specific configuration files that reside in /etc/udev/rules.d. If you

use udev, be sure that you use the nodes according to your distribution. The

following examples use hypothetical nodes that are provided for illustration

purposes only.

 If your distribution provides udev, you can use udev to create tape device nodes for

you. udev is a utility program that can use the device information in sysfs (see

Chapter 2, “Devices in sysfs,” on page 9) to create device nodes.

Apart from creating device nodes that are based on the device names, udev can

create additional device nodes that are based on, for example, on device bus-IDs.

Unless you change the device bus-IDs of your devices, device nodes that are

based on a device bus-ID remain the same and map to the same device, even if

the device name of a tape device has changed (for example, after rebooting). udev

keeps track of the mapping of the device name and the actual devices for you and

so helps you ensure that you are addressing the device you intend to.

For example, the configuration file might instruct udev to create two nodes for each

logical device, the standard node and a node that is based on the device bus-ID.

For a tape device with a device bus-ID 0.0.01ac it might create:

78 Device Drivers, Features, and Commands - November, 2006

For the non-rewinding character device:

v /dev/ntibm0 (standard device node according to the tape naming scheme)

v /dev/tape/0.0.01ac/non-rewinding

For the rewinding character device:

v /dev/rtibm0 (standard device node according to the tape naming scheme)

v /dev/tape/0.0.01ac/rewinding

For the block device:

v /dev/btibm0 (standard device node according to the tape naming scheme)

v /dev/tape/0.0.01ac/block

The next section shows how such nodes can be used to access a tape device by

device bus-ID, regardless of its device name.

Accessing tapes by bus-ID

You can use device nodes that are based on your tape devices’ device bus-IDs to

be sure that you access a tape device with a particular bus-ID, regardless of the

device name that is assigned to it.

Example

The examples in this section assume that udev provides device nodes as described

in “Examples for udev-created tape device nodes” on page 78. To assure that you

are addressing a device with bus-ID 0.0.01ac you could make substitutions like the

following:

Instead of issuing:

mt -f /dev/ntibm0 unload

issue:

mt -f /dev/tape/0.0.01ac/non-rewinding unload

Using the mt command

Basic Linux tape control is handled by the mt utility. Refer to the man page for

general information on mt.

Be aware that for channel-attached tape hardware there are some differences in the

MTIO interface with corresponding differences for some operations of the mt

command:

setdensity

has no effect because the recording density is automatically detected on

channel-attached tape hardware.

drvbuffer

has no effect because channel-attached tape hardware automatically

switches to unbuffered mode if buffering is unavailable.

lock / unlock

have no effect because channel-attached tape hardware does not support

media locking.

Chapter 6. Channel-attached tape device driver 79

setpartition / mkpartition

have no effect because channel-attached tape hardware does not support

partitioning.

status returns a structure that, aside from the block number, contains mostly

SCSI-related data that does not apply to the tape device driver.

load does not automatically load a tape but waits for a tape to be loaded

manually.

offline or rewoffl or eject

all include expelling the currently loaded tape. Depending on the stacker

mode, it might attempt to load the next tape (see “Loading and unloading

tapes” on page 85 for details).

Building a kernel with the tape device driver

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the tape

device driver.

The tape device driver is available as a base component with supplementary

components for particular hardware and for the block device mode.

Figure 16 summarizes the kernel configuration menu options that are relevant to the

tape device driver:

CONFIG_S390_TAPE

This option is required if you want to work with channel-attached tape

devices. It can be compiled into the kernel or as a separate module, tape.

CONFIG_S390_TAPE_BLOCK

This base component option allows you to use channel-attached tapes as

block devices.

CONFIG_S390_TAPE_34XX

This option can be compiled into the kernel or as a separate module,

tape_34xx.

CONFIG_S390_TAPE_3590

This option can be compiled into the kernel or as a separate module,

tape_3590.

Character device drivers

 S/390 tape device support (CONFIG_S390_TAPE)

 ├─Support for tape block devices (CONFIG_S390_TAPE_BLOCK)

 ├─Support for 3480/3490 tape hardware (CONFIG_S390_TAPE_34XX)

 └─Support for 3590 tape hardware (CONFIG_S390_TAPE_3590)

Figure 16. Tape kernel configuration menu options

80 Device Drivers, Features, and Commands - November, 2006

Setting up the tape device driver

There are no kernel or module parameters for the tape device driver. This section

describes how to load the tape modules, where applicable.

For information on device nodes see “Tape naming scheme” on page 76.

Loading the tape device driver

If the tape_34xx or tape_3590 device drivers have not been built into the kernel,

you must load the kernel modules before you can work with the tape devices.

Use the modprobe command to ensure that any other required modules are loaded

in the correct order.

Tape module syntax

�� modprobe tape_34xx

tape_3590
 ��

 Refer to the modprobe man page for details on modprobe.

Working with the tape device driver

This section describes typical tasks that you need to perform when working with

tape devices:

v Setting a tape device online or offline

v Displaying tape information

v Enabling compression

v Loading and unloading tapes

For information on working with the channel measurement facility, see Chapter 21,

“Channel measurement facility,” on page 231.

For information on how to display messages on a tape device’s display unit, see

“tape390_display - display messages on tape devices and load tapes” on page 323.

Setting a tape device online or offline

Setting a physical tape device online makes all corresponding logical devices

accessible:

v The non-rewind character device

v The rewind character device

v The block device (if supported)

At any time, the device can be online to a single Linux instance only. You must set

the tape device offline to make it accessible to other Linux instances in a shared

environment.

Use the chccwdev command (see “chccwdev - Set a CCW device online” on page

269) to set a tape online or offline. Alternatively, you can write “1” to the device’s

online attribute to set it online or “0” to set it offline.

Chapter 6. Channel-attached tape device driver 81

When a physical tape device is set online, the device driver assigns an index

number to it. This index number is used in the standard device nodes (see

“Creating device nodes” on page 78) to identify the corresponding logical devices.

The index number is in the range 0 to 127. A maximum of 128 physical tape

devices can be online concurrently.

If you are using the standard device nodes, you need to find out which index

number the tape device driver has assigned to your tape device. This index

number, and consequently the associated standard device node, can change after a

tape device has been set offline and back online.

Your distribution might use udev to create alternative device nodes that distinguish

devices by the physical device’s bus ID instead of the index number. If you are

using such device nodes you do not need to know the index number (see

“Examples for udev-created tape device nodes” on page 78).

If you need to know the index number, issue a command of this form:

lstape <device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to the physical tape

device. The index number is the value in the TapeNo column of the command

output.

Examples

v To set a physical tape device with device bus-ID 0.0.015f online, issue:

chccwdev -e 0.0.015f

or

echo 1 > /sys/bus/ccw/devices/0.0.015f/online

To find the index number the tape device driver has assigned, issue:

lstape 0.0.015f

TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState

2 0.0.015f 3480/01 3480/04 auto UNUSED --- LOADED

In the example, the assigned index number is “2”. The standard device nodes for

working with the device until it is set offline are then:

– /dev/ntibm2 for the non-rewinding device

– /dev/rtibm2 for the rewinding device

– /dev/btibm2 for the block device

v To set a physical tape device with device bus-ID 0.0.015f offline, issue:

chccwdev -d 0.0.015f

or

echo 0 > /sys/bus/ccw/devices/0.0.015f/online

82 Device Drivers, Features, and Commands - November, 2006

Displaying tape information

Each physical tape device is represented in a sysfs directory of the form

/bus/ccw/devices/<device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to the physical tape

device. This directory contains a number of attributes with information on the

physical device. The attributes: blocksize, state, operation, and medium_state,

might not show the current values if the device is offline.

 Table 17. Tape device attributes

online “1” if the device is online or “0” if it is offline (see “Setting a tape

device online or offline” on page 81)

cmb_enable “1” if channel measurement block is enabled for the physical

device or “0” if it is not enabled (see Chapter 21, “Channel

measurement facility,” on page 231)

cutype Type and model of the control unit

devtype Type and model of the physical tape device

blocksize Currently used block size in bytes or “0” for auto

state State of the physical tape device, either of:

UNUSED Device is not in use and is currently available

to any operating system image in a shared

environment

IN_USE Device is being used as a character device by

a process on this Linux image

BLKUSE Device is being used as a block device by a

process on this Linux image

OFFLINE The device is offline.

NOT_OP Device is not operational

operation The current tape operation, for example:

--- No operation

WRI Write operation

RFO Read operation
There are several other operation codes, for example, for rewind

and seek.

medium_state Current state of the tape cartridge:

1 Cartridge is loaded into the tape device

2 No cartridge is loaded

0 The tape device driver does not have information about the

current cartridge state

Issue a command of this form to read an attribute:

cat /bus/ccw/devices/<device_bus_id>/<attribute>

where <attribute> is one of the attributes of Table 17.

Tip: You can display a summary of this information by using the lstape command

(see “lstape - List tape devices” on page 297).

Chapter 6. Channel-attached tape device driver 83

Example

The following sequence of commands reads the attributes for a physical tape

device with a device bus-ID 0.0.015f:

cat /bus/ccw/devices/0.0.015f/online

1

cat /bus/ccw/devices/0.0.015f/cmb_enable

0

cat /bus/ccw/devices/0.0.015f/cutype

3480/01

cat /bus/ccw/devices/0.0.015f/devtype

3480/04

cat /bus/ccw/devices/0.0.015f/blocksize

0

cat /bus/ccw/devices/0.0.015f/state

UNUSED

cat /bus/ccw/devices/0.0.015f/operation

cat /bus/ccw/devices/0.0.015f/medium_state

1

Issuing an lstape command for the same device yields:

lstape 0.0.015f

TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState

2 0.0.015f 3480/01 3480/04 auto UNUSED --- LOADED

Enabling compression

You can use the mt command to control Improved Data Recording Capability

(IDRC) compression.

Compression is off after the tape device driver has loaded. To switch compression

on, issue:

mt -f <node> compression

or

mt -f <node> compression 1

where <node> is the device node for a character device, for example, /dev/ntibm0.

To switch compression off, issue:

mt -f <tape> compression 0

Any other numeric value has no effect, and any other argument switches

compression off.

Example

To switch on compression for a tape device with a device node /dev/ntibm0 issue:

mt -f /dev/ntibm0 compression 1

84 Device Drivers, Features, and Commands - November, 2006

Loading and unloading tapes

You can unload tapes by issuing a command of this form:

mt -f <node> unload

where <node> is one of the character device nodes.

Whether or not you can load tapes from your Linux instance depends on the

stacker mode of your tape hardware. There are three possible modes:

manual

Tapes must always be loaded manually by an operator. You can use the

tape390_display command (see “tape390_display - display messages on

tape devices and load tapes” on page 323) to display a short message on

the tape device’s display unit when a new tape is required.

automatic

If there is another tape present in the stacker, the tape device automatically

loads a new tape when the current tape is expelled. You can load a new

tape from Linux by expelling the current tape with the mt command.

system

The tape device loads a tape when instructed from the operating system.

From Linux, you can load a tape with the tape390_display command (see

“tape390_display - display messages on tape devices and load tapes” on

page 323). You cannot use the mt command to load a tape.

Example

To expel a tape from a tape device that can be accessed through a device node

/dev/ntibm0, issue:

mt -f /dev/ntibm0 unload

Assuming that the stacker mode of the tape device is “system” and that a tape is

present in the stacker, you can load a new tape by issuing:

tape390_display -l "NEW TAPE" /dev/ntibm0

“NEW TAPE” is a message that is displayed on the tape devices display unit until

the tape device receives the next tape movement command.

Scenario: Using a tape block device

In this scenario, an ISO9660 file system is to be created as the second file on a

tape. The scenario uses the mt and mkisofs commands. Refer to the respective

man pages for details.

Assumptions: The following assumptions are made:

v The required tape device driver modules have either been compiled into the

kernel or have already been loaded.

v Device nodes are available as defined in “Example: Defining standard tape

nodes” on page 78.

v The ISO9660 file system support has been compiled into the kernel.

v A tape device is attached through a device bus-ID 0.0.015f.

Chapter 6. Channel-attached tape device driver 85

1. Create a Linux directory, somedir, and fill it with the contents of the file system:

mkdir somedir

cp <contents> somedir

2. Set the tape online:

chccwdev -e 0.0.015f

3. If you are using standard device nodes, find out which index number the tape

device driver has assigned to it. You can skip this step if you are using

udev-created device nodes that distinguish devices by device bus-ID rather than

the index number.

lstape 0.0.015f

TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState

1 0.0.015f 3480/01 3480/04 auto UNUSED --- LOADED

The index number is shown in the TapeNo column of the command output, “1”

in the example. The standard device nodes are therefore /dev/ntibm1,

/dev/rtibm1, and /dev/btibm1.

4. Insert a tape.

5. Ensure the tape is positioned at the correct position on the tape. For example,

to set it to the beginning of the second file, issue:

mt -f /dev/ntibm1 rewind

mt -f /dev/ntibm1 fsf 1

fsf skips a specified number of files, one in the example.

6. Set the block size of the character driver. (The block size 2048 bytes is

commonly used on ISO9660 CD-ROMs.)

mt -f /dev/ntibm1 setblk 2048

7. Write the file system to the character device driver:

mkisofs -l -f -o file.iso somedir

dd if=file.iso of=/dev/ntibm1 bs=2048

8. Set the tape to the beginning of the file:

mt -f /dev/ntibm0 rewind

mt -f /dev/ntibm0 fsf 1

9. Now you can mount your new file system as a block device:

mount -t iso9660 -o ro,block=2048 /dev/btibm0 /mnt

86 Device Drivers, Features, and Commands - November, 2006

Chapter 7. XPRAM device driver

The zSeries architecture in 31-bit mode and the S/390 architecture support only 2

GB (gigabytes) of main storage (main memory). To overcome this limitation

additional storage can be declared and accessed as expanded storage. For

compatibility reasons, expanded storage can also be declared in the 64-bit mode of

zSeries.

The XPRAM device driver is a block device driver that enables Linux on System z

to access expanded storage. Thus XPRAM can be used as a basis for fast swap

devices and/or fast file systems. Expanded storage range can be swapped in or out

of the main storage in 4 KB blocks. All XPRAM devices do always provide a block

size of 4096 bytes.

XPRAM features

The XPRAM device driver provides the following features:

v Automatic detection of expanded storage.

If expanded storage is not available, XPRAM fails gracefully with a log message

reporting the absence of expanded storage.

v The expanded storage can be divided into up to 32 partitions.

What you should know about XPRAM

This section provides information on XPRAM partitions and the device nodes that

make them accessible.

XPRAM partitions and device nodes

The XPRAM device driver uses major number 35. The standard device names are

of the form xpram<n>, where <n> is the corresponding minor number.

You can use the entire available expanded storage as a single XPRAM device or

divide it into up to 32 partitions. Each partition is treated as a separate XPRAM

device.

If the entire expanded storage is used a single device, the device name is xpram0.

For partitioned expanded storage, the <n> in the device name denotes the (n+1)th

partition. For example, the first partition is called xpram0, the second xpram1, and

the 32nd partition is called xpram31.

 Table 18. XPRAM device names, minor numbers, and partitions

Minor Name To access

0 xpram0 the first partition or the entire expanded storage if there are no

partitions

1 xpram1 the second partition

2 xpram2 the third partition

...

<n>

...

...

xpram<n>

...

...

the (<n>+1)th partition

...

31 xpram31 the 32nd partition

© Copyright IBM Corp. 2000, 2006 87

Creating device nodes

User space programs access XPRAM devices by device nodes. Your distribution

might create these device nodes for you or provide udev to create them (see

“Device nodes provided by udev” on page 4).

If no device nodes are created for you, you need to create them yourself, for

example, with the mknod command. Refer to the mknod man page for further

details.

Tip: Use the device names to construct your nodes (see “XPRAM partitions and

device nodes” on page 87).

Example: Defining standard XPRAM nodes

The nodes use the standard form /dev/<device_name> for the device nodes and the

assignment of minor numbers is according to Table 18 on page 87.

mknod /dev/xpram0 b 35 0

mknod /dev/xpram1 b 35 1

mknod /dev/xpram2 b 35 2

...

mknod /dev/xpram30 b 35 30

mknod /dev/xpram31 b 35 31

XPRAM use for diagnosis

Issuing an IPL command to reboot Linux on System z does not reset expanded

storage, so it is persistent across IPLs and could be used, for example, to store

diagnostic information. The expanded storage is reset by an IML (power off/on).

Reusing XPRAM partitions

You might be able to reuse existing file systems or swap devices on an XPRAM

device or partition after reloading the XPRAM device driver (for example, after

rebooting Linux). For file systems or swap devices to be reusable, the XPRAM

kernel or module parameters for the new device or partition must match the

parameters of the previous use of XPRAM.

If you change the XPRAM parameters, you must create a new file system (for

example with mke2fs) or a new swap device for each partition that has changed. A

device or partition is considered changed if its size has changed. All partitions

following a changed partition are also considered changed even if their sizes are

unchanged.

Building a kernel with the XPRAM device driver

 This section is intended for those who want to build their own kernel.

To build a kernel with XPRAM support you need to select option

CONFIG_BLK_DEV_XPRAM in the configuration menu:

88 Device Drivers, Features, and Commands - November, 2006

The XPRAM support is available as a module, xpram, or built-in.

Setting up the XPRAM device driver

This section describes the parameters that you can optionally use to split the

available expanded storage into partitions. The syntax is different for the kernel

parameters and the corresponding module parameters. By default the entire

expanded storage is treated as a single partition.

See “Creating device nodes” on page 88 for information on the device nodes that

you need to access the partitions.

Kernel parameters

This section describes how to configure the XPRAM device driver if it has been

compiled into the kernel. You can optionally partition the available expanded storage

by adding the xpram.parts kernel parameter to the kernel parameter line.

XPRAM kernel parameter syntax

��

�

 xpram.parts=<number_of_partitions>

,

,

<partition_size>

 ��

where:

<number_of_partitions>

is an integer in the range 1 to 16 that defines how many partitions the

expanded storage is split into.

<partition_size>

specifies the size of a partition. The i-th value defines the size of the i-th

partition.

 Each size may be blank, specified as a decimal value, or a hexadecimal value

preceded by 0x, and may be qualified by a magnitude:

v k or K for Kilo (1024) is the default

v m or M for Mega (1024×1024)

v g or G for Giga (1024×1024×1024)

You can specify up to <number_of_partitions> values. If you specify less values

than <number_of_partitions>, the missing values are interpreted as blanks.

Blanks are treated like zeros.

Any partition defined with a non-zero size is allocated the amount of memory

specified by its size parameter.

Block devices

 XPRAM disk support (CONFIG_BLK_DEV_XPRAM)

Figure 17. XPRAM kernel configuration menu option

Chapter 7. XPRAM device driver 89

|

|||

Any remaining memory is divided as equally as possible among any partitions with

a zero or blank size parameter, subject to the two constraints that blocks must be

allocated in multiples of 4K and addressing constraints may leave un-allocated

areas of memory between partitions.

Examples

v The following specification allocates the extended storage into four partitions.

Partition 1 has 2 GB (hex 800M), partition 4 has 4 GB, and partitions 2 and 3

use equal parts of the remaining storage. If the total amount of extended storage

was 16 GB, then partitions 3 and 4 would each have approximately 5 GB.

xpram.parts=4,0x800M,0,0,4g

v The following specification allocates the extended storage into three partitions.

The partition 2 has 512 KB and the partitions 1 and 3 use equal parts of the

remaining storage.

xpram.parts=3,,512

v The following specification allocates the extended storage into two partitions of

equal size.

xpram.parts=2

Module parameters

This section describes how to load and configure the XPRAM device driver if it has

been compiled as a separate module. You can optionally partition the available

expanded storage by using the devs and sizes module parameters when you load

the xpram module.

XPRAM module parameter syntax

��

�

 insmod xpram

modprobe

devs=<number_of_partitions>

,

sizes=

<partition_size>

 ��

where:

<number_of_partitions>

is an integer in the range 1 to 16 that defines how many partitions the

expanded storage is split into.

<partition_size>

specifies the size of a partition. The i-th value defines the size of the i-th

partition.

 Each size is a non-negative integer that defines the size of the partition in KB or

a blank. Only decimal values are allowed and no magnitudes are accepted.

 You can specify up to <number_of_partitions> values. If you specify less values

than <number_of_partitions>, the missing values are interpreted as blanks.

Blanks are treated like zeros.

Any partition defined with a non-zero size is allocated the amount of memory

specified by its size parameter.

90 Device Drivers, Features, and Commands - November, 2006

|

|

|

Any remaining memory is divided as equally as possible among any partitions with

a zero or blank size parameter, subject to the two constraints that blocks must be

allocated in multiples of 4K and addressing constraints may leave un-allocated

areas of memory between partitions.

Examples

v The following specification allocates the extended storage into four partitions.

Partition 1 has 2 GB (2097152 KB), partition 4 has 4 GB (4194304 KB), and

partitions 2 and 3 use equal parts of the remaining storage. If the total amount of

extended storage was 16 GB, then partitions 3 and 4 would each have

approximately 5 GB.

modprobe xpram devs=4 sizes=2097152,0,0,4194304

v The following specification allocates the extended storage into three partitions.

The partition 2 has 512 KB and the partitions 1 and 3 use equal parts of the

remaining extended storage.

modprobe xpram devs=3 sizes=,512

v The following specification allocates the extended storage into two partitions of

equal size.

modprobe xpram devs=2

Chapter 7. XPRAM device driver 91

92 Device Drivers, Features, and Commands - November, 2006

Part 3. Network device drivers

This part describes the following device drivers:

v Chapter 8, “qeth device driver for OSA-Express (QDIO) and HiperSockets”

v Chapter 9, “LAN channel station device driver”

v Chapter 10, “CTCMPC device driver”

The CLAW, CTC, and NETIUCV device drivers are deprecated and their

descriptions have been removed. For information about the device drivers, see

earlier versions of this book. The device drivers are still available for backward

compatibility.

Instead of the deprecated drivers, use the qeth device driver for OSA-Express

(QDIO) and HiperSockets as follows:

v As an alternative for CTC, use an OSA feature that is configured for QDIO mode.

v As an alternative for virtual CTC and NETIUCV, use guest LAN Hipersockets or

guest LAN type QDIO.

v As an alternative for CTC inside a CEC use Hipersockets.

Note

For prerequisites and restrictions for these device drivers refer to the kernel

2.6 October 2005 stream pages on developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_recommended.html

© Copyright IBM Corp. 2000, 2006 93

http://www.ibm.com/developerworks/linux/linux390/october2005_recommended.shtml

94 Device Drivers, Features, and Commands - November, 2006

Chapter 8. qeth device driver for OSA-Express (QDIO) and

HiperSockets

The qeth network device driver supports System z OSA-Express and

OSA-Express2 features in QDIO mode and HiperSockets as follows:

v OSA-Express:

– Fast Ethernet

– 1000Base-T Ethernet

– Gigabit Ethernet

– Token Ring (zSeries only)

– ATM

v OSA-Express2:

– Gigabit Ethernet

– 10 Gigabit Ethernet

– 1000Base-T Ethernet (System z9 only)

v HiperSockets:

– Virtual network devices that provide virtual networks within a System z

mainframe.

Most of the qeth device driver parameters are common to HiperSockets and to

OSA-Express devices in QDIO mode.

OSA-Express is a LAN adapter that is used to connect a System z9, zSeries, or

S/390® mainframe to a LAN. In addition it may serve as a Network Control Program

(NCP) adapter for an internal ESCON/CDLC interface to another host operating

system. This feature is exploited by the IBM Communication Controller for Linux on

System z9 (CCL). Note that the OSA CHPID type does not support any additional

network functions and its only purpose is to provide a bridge between the CDLC

and QDIO interfaces to connect to the Linux NCP. For more details see the IBM

Communication Controller Migration Guide, SG24-6298-01

Note: Unless otherwise indicated, OSA-Express refers to OSA-Express and

OSA-Express2.

Features

The qeth device driver supports the following functions:

v (OSA-Express2 only) Up to 640 TCP/IP stacks or connections per dedicated

CHPID or 640 total stacks across multiple LPARs using a shared or spanned

CHPID.

v Virtual QDIO guest LAN environments

v HiperSockets

v Guest LANs using virtual HiperSockets

v OSA Network Control Program (ESCON/CDLC bridge) (System z9 only)

v Auto-detection of qeth subchannels (see “Overview of the steps for setting up a

qeth group device” on page 97)

v Internet Protocol Version 4 (IPv4)

v Internet Protocol Version 6 (IPv6) for Ethernet interfaces (see “Support for IP

Version 6 (IPv6)” on page 103)

© Copyright IBM Corp. 2000, 2006 95

|

v Routing (see “Setting up a Linux router” on page 109)

v Checksumming (see “Setting the checksumming method” on page 112)

v Priority queueing for OSA-Express CHPID in QDIO mode (see “Using priority

queueing” on page 113)

v Broadcast (see “Setting the scope of Token Ring broadcasts” on page 115 and

“Faking broadcast capability” on page 115)

v Query and purge of ARP data (see “qetharp - Query and purge OSA and

HiperSockets ARP data” on page 303)

v SNMP via the OSA-Express feature (see “osasnmpd – Start OSA-Express SNMP

subagent” on page 301and Chapter 23, “OSA-Express SNMP subagent support,”

on page 237)

v IP address takeover (see “Taking over IP addresses” on page 121)

v VLAN (see “Scenario: Virtual LAN (VLAN) support” on page 132)

v Virtual IP addresses for OSA-Express CHPID in QDIO mode (see “Scenario:

VIPA – minimize outage due to adapter failure” on page 125)

v DHCP for OSA-Express CHPID in QDIO mode (see “Setting up for DHCP with

IPv4” on page 141)

v MAC-based addressing for qeth devices (see “MAC address handling for IPv4

with the layer2 option” on page 102)

v Guest LAN sniffer (see “Setting up a Linux guest as a z/VM guest LAN sniffer” on

page 143)

What you should know about the qeth device driver

This section describes qeth group devices in relation to subchannels and their

corresponding device numbers and device bus-IDs. It also describes the interface

names that are assigned to qeth group devices, and how an OSA-Express adapter

handles IPv4 packets.

qeth group devices

The qeth device driver requires three I/O subchannels for each HiperSockets

CHPID or OSA-Express CHPID in QDIO mode. One subchannel is for control

reads, one for control writes, and the third is for data. The qeth device driver uses

the QDIO protocol to communicate with the HiperSockets and OSA-Express

adapter.

 The three device bus-IDs that correspond to the subchannel triplet are grouped as

one qeth group device. The following rules apply for the device bus-IDs:

read must be even.

write must be the device bus-ID of the read subchannel plus one.

Figure 18. I/O subchannel interface

96 Device Drivers, Features, and Commands - November, 2006

|
|
|

data can be any free device bus-ID on the same CHPID.

You can configure different triplets of device bus-IDs on the same CHPID differently.

For example, if you have CHPID 0xfc, then you can configure

0.0.fc00,0.0.fc01,0.0.fc02 and 0.0.fc04,0.0.fc05,0.0.fc06 with different attribute

values, for example for priority queueing.

Overview of the steps for setting up a qeth group device

Before you start: Find out how the hardware is configured and which qeth device

bus-IDs are on which CHPID, for example by looking at the IOCDS. Identify the

device bus-IDs that you want to group into a qeth group device. The three device

bus-IDs must be on the same CHPID.

Hint: After booting Linux, each qeth device bus-ID is represented by a subdirectory

in /sys/bus/ccw/drivers/qeth/. These subdirectories are the named with the bus

IDs of the devices. For example, a qeth device with bus-ID 0.0.fc00 is represented

as /sys/bus/ccw/drivers/qeth/0.0.fc00

There are several steps you need to perform until user space applications on your

Linux instance can use a qeth group device:

v Create the qeth group device.

v Configure the device.

v Set the device online.

v Activate the device.

These tasks and the configuration options are described in detail in “Working with

the qeth device driver” on page 105.

qeth interface names and device directories

The qeth device driver automatically assigns interface names to the qeth group

devices and creates the corresponding sysfs structures. According to the type of

CHPID and feature used, the naming scheme uses the following base names:

eth<n>

for Ethernet features (including the OSA-Express ATM device when

emulating Ethernet in QDIO mode).

hsi<n>

for HiperSockets devices.

tr<n> for Token Ring features.

osn<n>

for ESCON/CDLC bridge (OSA NCP).

 where <n> is an integer that uniquely identifies the device. When the first device for

a base name is set online it is assigned 0, the second is assigned 1, the third 2,

and so on. Each base name is counted separately.

For example, the interface name of the first Ethernet feature that is set online is

“eth0”, the second “eth1”, and so on. When the first HiperSockets device is set

online, it is assigned the interface name “hsi0”.

While an interface is online, it is represented in sysfs as:

/sys/class/net/<interface>

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 97

The qeth device driver shares the name space for Ethernet and Token Ring

interfaces with the LCS device driver. Each driver uses the name with the lowest

free identifier <n>, regardless of which device driver occupies the other names. For

example, if the first qeth Token Ring feature is set online and there is already one

LCS Token Ring feature online, the LCS feature is named “tr0” and the qeth feature

is named “tr1”. See also “LCS interface names” on page 145.

The mapping between interface names and the device bus-ID that represents the

qeth group device in sysfs is preserved when a device is set offline and back

online. However, it can change when rebooting, when devices are ungrouped, or

when devices appear or disappear with a machine check.

“Finding out the interface name of a qeth group device” on page 118 and “Finding

out the bus ID of a qeth interface” on page 118 provide information on how to map

device bus-IDs and interface names.

MAC address handling for IPv4

In LAN environments, data packets find their destination through Media Access

Control (MAC) addresses in their Logical Link Control (LLC) header (see Figure 19).

 MAC address handling as shown in Figure 19) applies to non-mainframe

environments and a mainframe environment with an OSA-Express adapter where

the layer2 option is enabled (see “MAC address handling for IPv4 with the layer2

option” on page 102).

For IPv6, both inbound and outbound packets are complete packets with LLC

headers. The OSA-Express adapter in QDIO mode passes complete packets to the

Linux image and the device driver lets the network stack compose packets with an

LLC header.

For IPv4 without the layer2 option, the adapter removes the LLC header before

passing the packet to the network stack of the recipient Linux image (see Figure 20

on page 99).

Figure 19. Standard IPv4 processing

98 Device Drivers, Features, and Commands - November, 2006

For outbound packets, without the layer2 option, the adapter adds the LLC header

to IPv4 packets with the destination MAC address.

Letting the OSA-Express hardware handle the LLC header allows multiple operating

systems to share an OSA-Express adapter. Usually, LLC processing by the

OSA-Express adapter also yields better performance than letting the Linux images

that share the OSA-Express handle the LLC header themselves.

IP addresses

The network stack of each operating system that shares an OSA-Express adapter

in QDIO mode registers all its IP addresses with the adapter. Whenever IP

addresses are deleted from or added to a network stack, the device drivers

download the resulting IP address list changes to the OSA-Express adapter.

For the registered IP addresses, the OSA-Express adapter off-loads various

functions, in particular also:

v Handling MAC addresses and LLC headers

v ARP processing

LLC headers

Without the layer2 option, the OSA-Express adapter in QDIO mode removes the

LLC header with the MAC address from incoming IPv4 packets and uses the

registered IP addresses to forward a packet to the recipient TCP/IP stack. Thus the

OSA-Express adapter is able to deliver IPv4 packets to the correct Linux images.

Apart from broadcast packets, a Linux image can only get packets for IP addresses

it has configured in the stack and registered with the OSA-Express adapter.

Because the OSA-Express QDIO microcode builds LLC headers for outgoing IPv4

packets and removes them from incoming IPv4 packets, the operating systems’

network stacks only send and receive IPv4 packets without LLC headers.

This can be a problem for applications that expect LLC headers. For examples of

how such problems can be resolved see:

v DHCP (see “Setting up for DHCP with IPv4” on page 141)

v tcpdump (see “Setting up for tcpdump with IPv4” on page 142)

Figure 20. IPv4 processing by OSA-Express without layer2

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 99

ARP

The OSA-Express adapter in QDIO mode responds to Address Resolution Protocol

(ARP) requests for all registered IP addresses.

ARP is a TCP/IP protocol that translates 32-bit IP addresses into the corresponding

hardware addresses. For example, for an Ethernet, the hardware addresses are

48-bit Ethernet Media Access Control (MAC) addresses. The mapping of IP

addresses to the corresponding hardware addresses is defined in the ARP cache.

When it needs to send a packet, a host consults the ARP cache of its network

adapter to find the MAC address of the target host.

If there is an entry for the destination IP address, the corresponding MAC address

is copied into the LLC header and the packet is added to the appropriate interface’s

output queue. If the entry is not found, the ARP functions retain the IP packet, and

broadcast an ARP request asking the destination host for its MAC address. When a

reply is received, the packet is sent to its destination.

This short overview is intended as background information for the sections that

follow and is by no means an exhaustive description of the ARP protocol. Consult

the TCP/IP literature for more details on ARP.

Faking LLC headers

Note: The information in this section is not applicable if you are using the layer2

option (see “MAC address handling for IPv4 with the layer2 option” on page

102). If you are using the layer2 option, the qeth device driver ignores your

setting for faking LLC headers.

Before you start:

v This section applies to IPv4 only.

v The device must be offline while you enable faking LLC headers.

v If you are setting up an IPv4 interface for an OSA-Express CHPID in QDIO mode

you must not enable the layer2 option (see “MAC address handling for IPv4 with

the layer2 option” on page 102).

IPv4 packets within mainframe environments do not have LLC headers.

HiperSockets do not use LLC headers and the OSA-Express QDIO microcode

removes LLC headers from incoming packets (see “MAC address handling for IPv4”

on page 98). This is a problem for network programs that require incoming packets

with LLC headers.

The fake_ll attribute instructs qeth to insert a fake LLC header in all incoming

packets. The packets are then passed to the Linux network stack and finally to the

recipient programs or applications (Figure 21 on page 101).

100 Device Drivers, Features, and Commands - November, 2006

Network programs that expect incoming packets to have a LLC header can then be

used as usual, without any patches. Examples for programs that expect an LLC

header are the DHCP server program dhcp and client program dhcpcd (see “Setting

up for DHCP with IPv4” on page 141).

Shortcomings of fake_ll: An obvious disadvantage of fake_ll is, that it introduces

additional processing and, thus, has an adverse effect on performance.

Because fake_ll is a qeth option, it also cannot supply fake LLC headers for

programs that intercept outgoing packets before they have reached the qeth driver.

The OSA-Express adapter in QDIO mode suppresses the construction of LLC

headers in the associated network stacks. Outgoing packets that originate from

programs that build their own LLC headers and bypass the Linux network stack

have LLC headers. Outgoing packets from all programs that work through the

network stack do not have an LLC header until they reach the OSA-Express

adapter.

 An example of a program that expects LLC headers in outgoing packets is libpcap

a program that captures outgoing packets for tcpdump.

Figure 21. qeth with fake_ll option for incoming packets

Figure 22. qeth with fake_ll option for outgoing packets

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 101

See “Setting up for tcpdump with IPv4” on page 142 for information on how to make

tcpdump work correctly for IPv4.

Setting the fake_ll attribute: Set the value of the device’s fake_ll attribute to “1”

to insert fake LLC headers in incoming IPv4 packets and to “0” to suppress

inserting fake LLC headers. By default, the qeth device driver does not insert fake

LLC headers.

Example: To make a device 0xa110 insert fake LLC headers in incoming IPv4

packets issue:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a110/fake_ll

MAC address handling for IPv4 with the layer2 option

The layer2 option stops the OSA-Express adapter from stripping the MAC

addresses from incoming packets. Incoming and outgoing packets are complete

with an LLC header at all stages between the Linux network stack and the LAN as

shown in Figure 19 on page 98. This layer 2 based forwarding requires unique MAC

addresses for all concerned Linux instances.

Be aware that in conjunction with the layer2 option, the following cannot be

configured as described in the respective sections:

v Router definitions (see “Setting up a Linux router” on page 109)

v HiperSockets network concentrator (see “HiperSockets Network Concentrator” on

page 135)

v IP address takeover (see “Taking over IP addresses” on page 121)

v Proxy ARP (see “Configuring a device for proxy ARP” on page 123)

v VIPA (see “Configuring a device for virtual IP address (VIPA)” on page 124)

v Stateless autoconfiguration in IPv6 (see “Support for IP Version 6 (IPv6)” on

page 103)

Accordingly, you cannot use the following commands if you are using the layer2

option:

v qetharp (see “qetharp - Query and purge OSA and HiperSockets ARP data” on

page 303)

v qethconf (see “qethconf - Configure qeth devices” on page 305)

If your environment does not fulfill the requirements, or you want to use a feature

that you cannot use in conjunction with the layer2 option, consider using the fake_ll

option instead (see “Faking LLC headers” on page 100).

For connections within a QDIO based z/VM guest LAN environment, z/VM assigns

the necessary MAC addresses to its guests.

For Linux instances that are directly attached to an OSA-Express adapter in QDIO

mode, you need to assign the MAC addresses yourself. Consult your distribution

documentation on how to assign a MAC address. Alternatively, you can change it

by issuing the command:

ifconfig <interface> hw ether <MAC address>

Note: Be sure not to assign the MAC address of the OSA-Express adapter to your

Linux instance.

102 Device Drivers, Features, and Commands - November, 2006

Support for IP Version 6 (IPv6)

IPv6 applies only to the Ethernet interfaces of the OSA-Express adapter running in

QDIO mode. IPv6 is not supported on HiperSockets nor on the OSA-Express Token

Ring and ATM features.

There are noticeable differences between the IP stacks for versions 4 and 6. Some

concepts in IPv6 are different from IPv4, such as neighbor discovery, broadcast,

and IPSec. IPv6 uses a 16-byte address field, while the addresses under IPv4 are 4

bytes in length.

Without the layer2 option, (see “MAC address handling for IPv4 with the layer2

option” on page 102), stateless autoconfiguration generates unique IP addresses for

all Linux instances, even if they share an OSA-Express adapter with other operating

systems. With the layer2 option, each Linux instances is associated with a unique

MAC addresses.

Using IPv6 is largely transparent to users. You must be aware of the IP version

when specifying IP addresses and when using commands that return IP version

specific output (for example, qetharp).

Further information

For details on OSA-Express in QDIO mode refer to OSA-Express Customer’s Guide

and Reference, SA22-7935.

For information on guest LANs and virtual HiperSockets, refer to:

v http://www.linuxvm.org/Info/HOWTOs/guestlan.html

v zSeries HiperSockets, SG24-6816

v z/VM CP Command and Utility Reference, SC24-6008

For information on proxy ARP, visit: http://www.sjdjweis.com/linux/proxyarp/.

For information on layer2, refer to:

v OSA-Express Implementation Guide

v Networking Overview for Linux on zSeries

v z/VM 5.1 Connectivity

Building a kernel with the qeth device driver

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the qeth

device driver.

Figure 23 on page 104 summarizes the kernel configuration menu options that are

relevant to the qeth device driver:

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 103

http://www.linuxvm.org/Info/HOWTOs/guestlan.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg246816.pdf
http://www.sjdjweis.com/linux/proxyarp/
http://www.redbooks.ibm.com/redbooks/pdfs/sg245948.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp3901.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/hcsc9b01.pdf

CONFIG_QDIO

This option provides the interface between the IBM mainframe and an

OSA-Express CHPID in QDIO mode or a HiperSockets CHPID.

 It is required if you want to work with qeth devices. It depends on the

common code option “TCP/IP networking” (CONFIG_INET).

 It can be compiled into the kernel or as a separate module, qdio.

CONFIG_QDIO_PERF_STATS

This option gathers QDIO performance statistics in procfs.

CONFIG_QETH

This option is required if you want to work with qeth devices. It can be

compiled into the kernel or as a separate module, qeth. This option

depends on the common code options, “Token Ring driver support”

(CONFIG_TR), “Ethernet (10 or 100 Mbit)” (CONFIG_NET_ETHERNET),

and “IP: multicasting”(CONFIG_IP_MULTICAST).

CONFIG_QETH_IPV6

Provides IPv6 support for the qeth device driver.

CONFIG_VLAN

Provides IEEE 802.1q VLAN support for the qeth device driver (see

“Scenario: Virtual LAN (VLAN) support” on page 132).

CONFIG_QETH_PERF_STATS

Gathers QDIO performance statistics in procfs.

 If you want to configure qeth devices for VIPA (see “Configuring a device for virtual

IP address (VIPA)” on page 124), you also need the common code option

CONFIG_DUMMY. It can be compiled into the kernel or as a separate module,

dummy.

Setting up the qeth device driver

There are no kernel or module parameters for the qeth device driver. qeth devices

are set up using sysfs.

Loading the qeth device driver modules

If the qeth device driver has not been built into the kernel, you have to load it

before you can work with qeth devices. Use the modprobe command to load the

qeth device driver to automatically load all required additional modules in the

correct order:

Base setup

 QDIO support (CONFIG_QDIO)

 └─Performance statistics in /proc (CONFIG_QDIO_PERF_STATS)

Networking support

└─S/390 network device drivers

 └─Gigabit Ethernet device support (CONFIG_QETH)

 ├─IPv6 support for qeth (CONFIG_QETH_IPV6)

 ├─VLAN support for qeth (CONFIG_VLAN)

 └─Performance statistics in /proc (CONFIG_QETH_PERF_STATS)

Figure 23. qeth kernel configuration menu options

104 Device Drivers, Features, and Commands - November, 2006

modprobe qeth

Working with the qeth device driver

This section provides an overview of the typical tasks that you need to perform

when working with qeth group devices.

Most of these tasks involve writing to and reading from attributes of qeth group

devices in sysfs. Table 19 serves as both a task overview and a summary of the

attributes and the possible values you can write to them. Underlined values are

defaults.

Not all attributes are applicable to each device. Some attributes apply only to

HiperSockets or only to OSA-Express CHPIDs in QDIO mode, other attributes are

applicable to IPv4 interfaces only. Refer to the respective task descriptions to see

the applicability of each attribute.

The layer2 option changes the way OSA-Express CHPIDs in QDIO mode handle

MAC addresses (see “MAC address handling for IPv4” on page 98) and is

applicable to IPv4 interfaces only. Layer2 is not compatible with some of the other

attributes. Attributes that cannot be specified in conjunction with layer2 are

highlighted in grey.

OSA NCP handles NCP-related packets. Most of the attributes do not apply to OSN

devices. The attributes that apply are:

v if_name

v card_type

v buffer_count

v recover

 Table 19. qeth tasks and attributes. If you specify the layer2 attribute, the attributes and values that are highlighted in

grey are ignored and the defaults apply.

Task Corresponding attributes Possible attribute values

“Creating a qeth group device” on page 107 none n/a

“Assigning a port name” on page 108 portname any valid port name

“Setting up a Linux router” on page 109 route4

route6

primary_router

secondary_router

primary_connector

secondary_connector

multicast_router

no_router

“Setting the checksumming method” on page 112 checksumming hw_checksumming

sw_checksumming

no_checksumming

“Providing Large Send” on page 112 large_send no

EDDP

 TSO

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 105

Table 19. qeth tasks and attributes (continued). If you specify the layer2 attribute, the attributes and values that are

highlighted in grey are ignored and the defaults apply.

Task Corresponding attributes Possible attribute values

“Using priority queueing” on page 113 priority_queueing prio_queueing_prec

prio_queueing_tos

no_prio_queueing

no_prio_queueing:0

no_prio_queueing:1

no_prio_queueing:2

no_prio_queueing:3

“Setting the Token Ring MAC address format” on page 114 canonical_macaddr 0 or 1

“Setting the scope of Token Ring broadcasts” on page 115 broadcast_mode local

all_rings

“Faking broadcast capability” on page 115 fake_broadcast 0 or 1

“Faking LLC headers” on page 100 fake_ll 0 or 1

“Setting the layer2 attribute” on page 116 layer2 0 or 1

“Adding additional hardware-header space” on page 116 add_hhlen integer in the range 0 to

1024, the default is 0

“Specifying the number of inbound buffers” on page 116 buffer_count integer in the range 8 to

128, the default is 16

“Specifying the relative port number” on page 117 portno integer, either 0 or 1, the

default is 0

“Finding out the type of your network adapter” on page 117 card_type n/a, read-only

“Setting a device online or offline” on page 118 online 0 or 1

“Finding out the interface name of a qeth group device” on

page 118

if_name n/a, read-only

“Finding out the bus ID of a qeth interface” on page 118 none n/a

“Activating an interface” on page 119 none n/a

“Deactivating an interface” on page 121 none n/a

“Taking over IP addresses” on page 121 ipa_takeover/enable 0 or 1 or toggle

 ipa_takeover/add4

ipa_takeover/add6

ipa_takeover/del4

ipa_takeover/del6

IPv4 or IPv6 IP address

and mask bits

 ipa_takeover/invert4

ipa_takeover/invert6

0 or 1 or toggle

“Configuring a device for proxy ARP” on page 123 rxip/add4

rxip/add6

rxip/del4

rxip/del6

IPv4 or IPv6 IP address

“Configuring a device for virtual IP address (VIPA)” on page

124

 vipa/add4

vipa/add6

vipa/del4

vipa/del6

IPv4 or IPv6 IP address

“Recovering a device” on page 125 recover 1

106 Device Drivers, Features, and Commands - November, 2006

Table 19. qeth tasks and attributes (continued). If you specify the layer2 attribute, the attributes and values that are

highlighted in grey are ignored and the defaults apply.

Task Corresponding attributes Possible attribute values

Tips:

v Instead of using the attributes for IPA, proxy ARP and VIPA directly, use the qethconf command.

v Your distribution might also provide a distribution-specific configuration tool. Refer to your distribution documentation

for distribution-specific alternatives.

sysfs provides multiple paths through which you can access the qeth group device

attributes. For example, if a device with bus-ID 0.0.a100 corresponds to interface

eth0:

/sys/bus/ccwgroup/drivers/qeth/0.0.a100

/sys/bus/ccwgroup/devices/0.0.a100

/sys/devices/qeth/0.0.a100

/sys/class/net/eth0/device

all lead to the attributes for the same device. For example, the following commands

are all equivalent and return the same value:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/if_name

eth0

cat /sys/bus/ccwgroup/devices/0.0.a100/if_name

eth0

cat /sys/devices/qeth/0.0.a100/if_name

eth0

cat /sys/class/net/eth0/device/if_name

eth0

However, the path through the /sys/class/net branch is available only while the

device is online. Furthermore, it might lead to a different device if the assignment of

interface names changes after rebooting or when devices are ungrouped and new

group devices created.

Tips:

v Work through one of the paths that are based on the device bus-ID.

v Your distribution might provide a distribution-specific configuration file through

which you can set the attributes. Refer to your distribution documentation for

distribution-specific information.

The following sections describe the tasks in detail.

Creating a qeth group device

Before you start: You need to know the device bus-IDs that correspond to the

read, write, and data subchannel of your OSA-Express CHPID in QDIO mode or

HiperSockets CHPID as defined in the IOCDS of your mainframe.

To define a qeth group device, write the device numbers of the subchannel triplet to

/sys/bus/ccwgroup/drivers/qeth/group. Issue a command of the form:

echo <read_device_bus_id>,<write_device_bus_id>,<data_device_bus_id> > /sys/bus/ccwgroup/drivers/qeth/group

Result: The qeth device driver uses the device bus-ID of the read subchannel to

create a directory for a group device:

/sys/bus/ccwgroup/drivers/qeth/<read_device_bus_id>

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 107

This directory contains a number of attributes that determine the settings of the qeth

group device. The following sections describe how to use these attributes to

configure a qeth group device.

Note: If you have defined an OSA-Express CHPID in QDIO mode for a mainframe

earlier than z990 you might need to set the portname attribute (see

“Assigning a port name”).

Example

In this example, a single OSA-Express CHPID in QDIO mode is used to connect a

Linux instance to a network.

Mainframe configuration:

Linux configuration:

Assuming that 0xaa00 is the device number that corresponds to the read

subchannel:

echo 0.0.aa00,0.0.aa01,0.0.aa02 > /sys/bus/ccwgroup/drivers/qeth/group

This command results in the creation of the following directories in sysfs:

v /sys/bus/ccwgroup/drivers/qeth/0.0.aa00

v /sys/bus/ccwgroup/devices/0.0.aa00

v /sys/devices/qeth/0.0.aa00

Both the command and the resulting directories would be the same for a

HiperSockets CHPID.

Assigning a port name

Before you start:

v This section does not apply to:

– HiperSockets and OSN CHPIDs

– z9 mainframes

– z990 mainframes

– z900 and z800 mainframes with a microcode level of at least Driver 3G - EC

stream J11204, MCL032 (OSA level 3.33).

– z/VM guest LAN environments with APAR VM63308 applied.

v The device must be offline while you assign the port name.

For S/390 mainframes and z900 or z800 mainframes that are not exempted by the

conditions listed under “Before you start,” you must associate each OSA-Express

108 Device Drivers, Features, and Commands - November, 2006

CHPID in QDIO mode with a port name. The port name identifies the port for

sharing by other operating system instances. The port name can be 1 to 8

characters long and must be uppercase. All operating system instances that share

the port must use the same port name.

To assign a port name set the portname device group attribute to the name of the

port. Issue a command of the form:

echo <PORTNAME> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/portname

Example

In this example, two other mainframe operating systems share the OSA-Express

CHPID in QDIO mode and use the port name “NETWORK1”.

Mainframe configuration:

Linux configuration:

echo NETWORK1 > /sys/bus/ccwgroup/drivers/qeth/0.0.aa00/portname

Setting up a Linux router

Note: If you enable the layer2 option (see “MAC address handling for IPv4 with the

layer2 option” on page 102) the qeth device driver ignores the router settings

described in this section. With the layer2 option enabled, set up a router as

you would in a discrete server environment.

Before you start:

v A suitable hardware setup is in place that permits your Linux instance to act as a

router.

v The Linux instance is set up as a router.

v You must not enable the layer2 option if you are setting up an IPv4 interface for

an OSA-Express CHPID in QDIO mode.

By default, your Linux instance is not a router. Depending on your IP version, IPv4

or IPv6 you can use the route4 or route6 attribute of your qeth device to define it as

a router. You can set the route4 or route6 attribute dynamically, while the qeth

device is online.

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 109

The same values are possible for route4 and route6 but depend on the type of

CHPID:

An OSA-Express CHPID in QDIO mode honors the following values:

primary_router

to make your Linux instance the principal connection between two networks.

secondary_router

to make your Linux instance a backup connection between two networks.

primary_connector

to make your Linux instance the principal connection between a HiperSockets

network and an external network (see “HiperSockets Network Concentrator” on

page 135).

secondary_connector

to make your Linux instance a backup connection between a HiperSockets

network and an external network (see “HiperSockets Network Concentrator” on

page 135).

A HiperSockets CHPID honors the following value, provided the microcode level

supports this feature:

multicast_router

causes the qeth driver to receive all multicast packets of the CHPID. For a

unicast function for HiperSockets see “HiperSockets Network Concentrator” on

page 135.

Both types of CHPIDs honor:

no_router

is the default. You can use this value to reset a router setting to the default.

Note: To configure Linux running as a VM guest or in an LPAR as a router, IP

forwarding must be enabled in addition to setting the route4 or route6

attribute.

For IPv4, this can be done by issuing:

sysctl -w net.ipv4.conf.all.forwarding=1

For IPv6, this can be done by issuing:

sysctl -w net.ipv6.conf.all.forwarding=1

Depending on your distribution, you might be able to use distribution-specific

configuration files. Refer to your distribution documentation for

distribution-specific procedures.

Example

In this example, two Linux instances, “Linux P” and “Linux S”, running on an IBM

mainframe use OSA-Express to act as primary and secondary routers between two

networks. IP forwarding needs to be enabled for Linux in an LPAR or as a VM

guest to act as a router. This is usually done in procfs or in a configuration file; refer

to your distribution manual for details.

Mainframe configuration:

110 Device Drivers, Features, and Commands - November, 2006

It is assumed that both Linux instances are configured as routers in their respective

LPARs or in VM.

Linux P configuration:

 To create the qeth group devices:

echo 0.0.0400,0.0.0401,0.0.0402 > /sys/bus/ccwgroup/drivers/qeth/group

echo 0.0.0200,0.0.0201,0.0.0202 > /sys/bus/ccwgroup/drivers/qeth/group

To assign port names to the CHPIDs (For S/390 and certain microcode

levels of z900 and z800 mainframes only, see “Assigning a port name” on

page 108):

echo NETWORK1 > /sys/bus/ccwgroup/drivers/qeth/0.0.0400/portname

echo NETWORK2 > /sys/bus/ccwgroup/drivers/qeth/0.0.0200/portname

To make Linux P a primary router for IPv4:

echo primary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0400/route4

echo primary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0200/route4

Linux S configuration:

 To create the qeth group devices:

echo 0.0.0404,0.0.0405,0.0.0406 > /sys/bus/ccwgroup/drivers/qeth/group

echo 0.0.0204,0.0.0205,0.0.0206 > /sys/bus/ccwgroup/drivers/qeth/group

To assign port names to the CHPIDs (For S/390 and certain microcode

levels of z900 and z800 mainframes only, see “Assigning a port name” on

page 108):

echo NETWORK1 > /sys/bus/ccwgroup/drivers/qeth/0.0.0404/portname

echo NETWORK2 > /sys/bus/ccwgroup/drivers/qeth/0.0.0204/portname

To make Linux S a secondary router for IPv4:

echo secondary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0404/route4

echo secondary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0204/route4

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 111

See “HiperSockets Network Concentrator” on page 135 for further examples.

Setting the checksumming method

Before you start: The device must be offline while you set the checksumming

method.

You can determine how checksumming is performed for incoming IP packages by

setting a value for the checksumming attribute of your qeth device. Issue a

command of the form:

echo <method> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/checksumming

where <method> can be any of these values:

hw_checksumming

performs the checksumming in hardware if the CHPID is an OSA-Express

CHPID in QDIO mode and your OSA adapter hardware supports

checksumming.

 If you set “hw_checksumming” for an adapter that does not support it or for a

HiperSockets CHPID, the TCP/IP stack performs the checksumming instead of

the adapter.

sw_checksumming

performs the checksumming in the TCP/IP stack. This is the default.

no_checksumming

suppresses checksumming.

Examples

v To find out the checksumming setting for a device 0x1a10 read the

checksumming attribute:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.1a10/checksumming

sw_checksumming

v To enable hardware checksumming for a device 0x1a10 issue:

echo hw_checksumming > /sys/bus/ccwgroup/drivers/qeth/0.0.1a10/checksumming

Providing Large Send

You can offload TCP segmentation from the Linux network stack to the

OSA-Express2 features. Large Send can lead to enhanced performance and

latency for interfaces with predominately large outgoing packets. Issue a command

of the form:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/large_send

where <value> can be any one of:

no No Large Send is provided. The Linux network stack performs the

segmentation. This is the default.

TSO

The network adapter provides hardware Large Send. You can use hardware

Large Send for an OSA-Express2 that connects to an interface though a real

LAN.

112 Device Drivers, Features, and Commands - November, 2006

You cannot use hardware TCP segmentation for HiperSockets or for

connections between systems running on the same OSA-Express2 CHPID. The

qeth device driver does not check if the destination IP address is able to

receive TCP segmentation offloaded packets. Thus it will send out the packet,

which, if systems share an OSA-Express2 CHPID, will lead to unpredictable

results for the receiving system.

Note: If you are using the layer2 option (see “MAC address handling for IPv4

with the layer2 option” on page 102), the TSO value will be ignored.

EDDP

The qeth device driver provides the Large Send. There are no hardware related

restrictions for device driver segmentation offload. It can be used with any qeth

supported hardware.

Examples

v To enable hardware Large Send for a device 0x1a10 issue:

echo TSO > /sys/bus/ccwgroup/drivers/qeth/0.0.1a10/large_send

Using priority queueing

Before you start:

v This section applies to OSA-Express CHPIDs in QDIO mode only.

v The device must be offline while you set the queueing options.

An OSA-Express CHPID in QDIO mode has four output queues (queues 0 to 3) in

central storage. The priority queueing feature gives these queues different priorities

(queue 0 having the highest priority). Queueing is relevant mainly to high traffic

situations. When there is little traffic, queueing has no impact on processing. The

qeth device driver can put data on one or more of the queues. By default, the driver

uses queue 2 for all data.

You can determine how outgoing IP packages are assigned to queues by setting a

value for the priority_queueing attribute of your qeth device. Issue a command of

the form:

echo <method> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/priority_queueing

where <method> can be any of these values:

prio_queueing_prec

to base the queue assignment on the two most significant bits of each packet’s

IP header precedence field.

prio_queueing_tos

to select a queue according to the IP type of service that is assigned to packets

by some applications. The service type is a field in the IP datagram header that

can be set with a setsockopt call. Table 20 shows how the qeth device driver

maps service types to the available queues:

 Table 20. IP service types and queue assignment for type of service queueing

Service type Queue

Low latency 0

High throughput 1

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 113

|
|

Table 20. IP service types and queue assignment for type of service

queueing (continued)

Service type Queue

High reliability 2

Not important 3

no_prio_queueing

causes the qeth device driver to use queue 2 for all packets. This is the default.

no_prio_queueing:0

causes the qeth device driver to use queue 0 for all packets.

no_prio_queueing:1

causes the qeth device driver to use queue 1 for all packets.

no_prio_queueing:2

causes the qeth device driver to use queue 2 for all packets. This is equivalent

to the default.

no_prio_queueing:3

causes the qeth device driver to use queue 3 for all packets.

Example

To make a device 0xa110 use queueing by type of service issue:

echo prio_queueing_tos > /sys/bus/ccwgroup/drivers/qeth/a110/priority_queueing

Setting the Token Ring MAC address format

Before you start:

v This section applies to OSA-Express CHPIDs in QDIO mode with the Token Ring

feature only.

v The device must be offline while you set the Token Ring MAC address format.

The qeth group device can interpret MAC addresses in canonical or non-canonical

form in a Token Ring. The default interpretation is the non-canonical form.

To set the MAC address format to canonical set the canonical_macaddr device

group attribute to “1”. To reset the MAC address format to non-canonical set the

canonical_macaddr device group attribute to “0”. Issue a command of the form:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/canonical_macaddr

Note: If you are using the layer2 option (see “MAC address handling for IPv4 with

the layer2 option” on page 102), the qeth group device uses the default

non-canonical MAC address format regardless of how you set the

canonical_macaddr attribute.

Example

In this example, a device 0.0.a000 is instructed to interpret the Token Ring MAC

addresses as canonical.

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/canonical_macaddr

114 Device Drivers, Features, and Commands - November, 2006

Setting the scope of Token Ring broadcasts

Before you start:

v This section applies to OSA-Express CHPIDs in QDIO mode with the Token Ring

feature only.

v The device must be offline while you set the scope of Token Ring broadcasts.

To control the scope of Token Ring broadcasts set the broadcast_mode attribute to

one of the following values:

local

to restrict Token Ring broadcasts to the local LAN segment.

all_rings

to allow Token Ring broadcasts to propagate to all rings that are connected via

bridges. This is the default.

Issue a command of the form:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/broadcast_mode

Note: If you are using the layer2 option (see “MAC address handling for IPv4 with

the layer2 option” on page 102), the qeth group device uses the default

Token Ring broadcast scope regardless of how you set the broadcast_mode

attribute.

Example

In this example, the scope of broadcasts for a device 0.0.a000 is limited to the local

LAN segment.

echo local > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/broadcast_mode

Faking broadcast capability

Before you start:

v This section applies to devices that do not support broadcast only.

v The device must be offline while you enable faking broadcasts.

For devices that support broadcast, the broadcast capability is enabled

automatically.

There are processes, for example, the gated routing daemon, that require the

devices’ broadcast capable flag to be set in the Linux network stack. To set this flag

for devices that do not support broadcast set the fake_broadcast attribute of the

qeth group device to “1”. To reset the flag set it to “0”.

Issue a command of the form:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/fake_broadcast

Note: If you are using the layer2 option (see “MAC address handling for IPv4 with

the layer2 option” on page 102), the qeth group device does not fake

broadcast capabilities, regardless of how you set the fake_broadcast

attribute.

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 115

Example

In this example, a device 0.0.a100 is instructed to pretend that it has broadcast

capability.

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/fake_broadcast

Setting the layer2 attribute

Before you start: If you are using the layer2 option within a QDIO based guest

LAN environment, you cannot define a VLAN with ID “1”, because ID “1” is reserved

for z/VM use.

Set the value of the device’s layer2 attribute to “1” to make the OSA-Express

adapter keep the MAC addresses in incoming IPv4 packets and to “0” to make the

OSA-Express adapter remove LLC headers. By default, the OSA-Express adapter

removes LLC headers from incoming IPv4 packets.

Example: To make the OSA-Express adapter keep MAC addresses in IPv4 packets

for a device 0xa110:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a110/layer2

Switching on the layer2 option has far-reaching consequences. For more details,

see “MAC address handling for IPv4 with the layer2 option” on page 102.

Adding additional hardware-header space

Before you start: The device must be offline while you add additional

hardware-header space.

Some software makes use of free space in front of packets. For example, extra

space can be beneficial for Linux virtual servers and IP tunneling.

To reserve additional hardware-header space in front of every packet in socket

buffers set the add_hhlen attribute to an integer value up to 1024. The integer is the

number of bytes to be added. Issue a command of the form:

echo <integer> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/add_hhlen

Example

In this example, device 0.0.a000 is instructed to increase the hardware-header

space by 8 bytes.

echo 8 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/add_hhlen

Specifying the number of inbound buffers

Before you start: The device must be offline while you specify the number of

inbound buffers.

By default, the qeth device driver assigns 16 buffers for inbound traffic to each qeth

group device. Depending on the amount of available storage and the amount of

traffic, you can assign from 8 to 128 buffers.

116 Device Drivers, Features, and Commands - November, 2006

The Linux memory usage for inbound data buffers for the devices is: (number of

buffers) × (buffer size).

The buffer size is equivalent to the frame size which is:

v For an OSA-Express CHPID in QDIO mode or an OSA-Express CHPID in OSN

mode: 64 KB

v For HiperSockets: depending on the HiperSockets CHPID definition, 16 KB,

24 KB, 40 KB, or 64 KB

Set the buffer_count attribute to the number of inbound buffers you want to assign.

Issue a command of the form:

echo <number> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/buffer_count

Example

In this example, 64 inbound buffers are assigned to device 0.0.a000.

echo 64 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/buffer_count

Specifying the relative port number

Before you start:

v This section applies to OSA-Express ATM only. In all other cases only a single

port is available.

v The device must be offline while you specify the relative port number.

ATM adapters provide one physical port (port 0) and two logical ports (0 and 1) for

a single CHPID. By default, the qeth group device uses port 0. To use a different

port, issue a command of the form:

echo <integer> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/portno

Where <integer> is either 0 or 1.

Example

In this example, port 1 is assigned to the qeth group device.

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/portno

Finding out the type of your network adapter

You can find out the type of the network adapter through which your device is

connected. To find out the type read the device’s card_type attribute. Issue a

command of the form:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/card_type

Example

To find the card_type of a device 0.0.a100 issue:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/card_type

OSD_100

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 117

Setting a device online or offline

To set a qeth group device online set the online device group attribute to “1”. To set

a qeth group device offline set the online device group attribute to “0”. Issue a

command of the form:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/online

Setting a device online associates it with an interface name (see “Finding out the

interface name of a qeth group device”).

Setting a device offline closes this network device. If IPv6 is active, you will loose

any IPv6 addresses set for this device. After setting the device online, you can

restore lost IPv6 addresses only by issuing the ″ifconfig″ or ″ip″ commands again.

Example

To set a qeth device with bus ID 0.0.a100 online issue:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/online

To set the same device offline issue:

echo 0 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/online

Finding out the interface name of a qeth group device

When a qeth group device is set online an interface name is assigned to it. To find

out the interface name of a qeth group device for which you know the device bus-ID

read the group device’s if_name attribute.

Issue a command of the form:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/if_name

Tip: you can also read the content of /proc/qeth to obtain a mapping for all qeth

interfaces and devices.

Example

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/ifname

eth0

Finding out the bus ID of a qeth interface

For each network interface, there is a directory in sysfs under /sys/class/net/, for

example, /sys/class/net/eth0 for interface eth0. This directory contains a symbolic

link “device” to the corresponding device in /sys/devices.

Read this link to find the device bus-ID of the device that corresponds to the

interface.

Tip: you can also use the lsqeth command (see “lsqeth - List qeth based network

devices” on page 295) or read the content of /proc/qeth to obtain a mapping for all

qeth interfaces and devices.

118 Device Drivers, Features, and Commands - November, 2006

Example

To find out which device bus-ID corresponds to an interface eth0 issue, for

example:

readlink /sys/class/net/eth0/device

../../../devices/qeth/0.0.a100

In this example, eth0 corresponds to the device bus-ID 0.0.a100.

Activating an interface

Before you start:

v You need to know the interface name of the qeth group device (see “Finding out

the interface name of a qeth group device” on page 118).

v You need to know the IP address you want to assign to the device.

The MTU range for OSA-Express CHPIDs in QDIO mode is 576 – 61440. However,

depending on your medium and networking hardware settings, it might be restricted

to 1492, 1500, 8992 or 9000. The recommended MTU size for OSA-Express

CHPIDs in QDIO mode is 1492 (for Gigabit Ethernet and OSA-Express2 OSD

1000Base-T Ethernet: 8992 for jumbo frames). Choosing 1500 (or 9000 for Gigabit

Ethernet or OSA-Express2 OSD 1000Base-T Ethernet jumbo frames) can cause

performance degradation.

On HiperSockets, the maximum MTU size is restricted by the maximum frame size

as announced by the licensed internal code (LIC). The maximum MTU is equal to

the frame size minus 8 KB. Hence, the possible frame sizes of 16 KB, 24 KB,

40 KB or 64 KB result in maximum MTU sizes of 8 KB, 16 KB, 32 KB or 56 KB,

respectively.

The MTU size defaults to the correct settings for both HiperSockets and

OSA-Express CHPIDs in QDIO mode. As a result, you need not specify the MTU

size when activating the interface.

Note that, on heavily loaded systems, MTU sizes exceeding 8 KB can lead to

memory allocation failures for packets due to memory fragmentation. A symptom of

this problem are messages of the form ″order-N allocation failed″ in the system log;

in addition, network connections will drop packets, in extreme cases to the extent

that the network is no longer usable.

As a workaround, use MTU sizes at most of 8 KB (minus header size), even if the

network hardware allows larger sizes (for example, HiperSockets or 10 Gigabit

Ethernet).

 You activate or deactivate network devices with ifconfig or an equivalent command.

For details of the ifconfig command refer to the ifconfig man page.

Examples

v This example activates a HiperSockets CHPID:

ifconfig hsi0 192.168.100.10 netmask 255.255.255.0

v This example activates an OSA-Express CHPID in QDIO mode:

ifconfig eth0 192.168.100.11 netmask 255.255.255.0 broadcast 192.168.100.255

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 119

Or, using the default netmask and its corresponding broadcast address:

ifconfig eth0 192.168.100.11

v This example reactivates an interface that had already been activated and

subsequently deactivated:

ifconfig eth0 up

v This example activates an OSA-Express2 CHPID defined as an OSN type

CHPID for OSA NCP:

ifconfig osn0 up

Confirming that an IP address has been set

The Linux network stack design does not allow feedback about IP address

changes. If ifconfig or an equivalent command fails to set an IP address on an

OSA-Express network CHPID, a query with ifconfig shows the address as being

set on the interface although the address is not actually set on the CHPID.

There are usually failure messages of the form “could not set IP address” or

“duplicate IP address” in the kernel messages. You can display these messages

with dmesg. For most distributions you can also find the messages in

/var/log/messages.

There may be circumstances that prevent an IP address from being set, most

commonly if another system in the network has set that IP address already.

If you are not sure whether an IP address was set properly or experience a

networking problem, check the messages or logs to see if an error was

encountered when setting the address. This also applies in the context of

HiperSockets and to both IPv4 and IPv6 addresses. It also applies to whether an IP

address has been set for IP takeover, for VIPA, or for proxy ARP.

Duplicate IP addresses

The OSA-Express adapter in QDIO mode recognizes duplicate IP addresses on the

same OSA-Express adapter or in the network using ARP and prevents duplicates.

There are several setups that require duplicate addresses:

v To perform IP takeover you need to be able to set the IP address to be taken

over. This address exists prior to the takeover. See “Taking over IP addresses”

on page 121 for details.

v For proxy ARP you need to register an IP address for ARP that belongs to

another Linux instance. See “Configuring a device for proxy ARP” on page 123

for details.

v For VIPA you need to assign the same virtual IP address to multiple devices. See

“Configuring a device for virtual IP address (VIPA)” on page 124 for details.

You can use the qethconf command (see “qethconf - Configure qeth devices” on

page 305) to maintain a list of IP addresses that your device can take over, a list of

IP addresses for which your device can handle ARP, and a list of IP addresses that

can be used as virtual IP addresses, regardless of any duplicates on the same

OSA-Express adapter or in the LAN.

120 Device Drivers, Features, and Commands - November, 2006

Deactivating an interface

You can deactivate an interface with ifconfig or an equivalent command or by

setting the network device offline. While setting a device offline involves actions on

the attached device, deactivating only stops the interface logically within Linux.

To deactivate an interface with ifconfig, Issue a command of the form:

ifconfig <interface_name> down

Example

To deactivate eth0 issue:

ifconfig eth0 down

Taking over IP addresses

This section describes how to configure for IP takeover if the layer2 option (see

“MAC address handling for IPv4 with the layer2 option” on page 102) is not

enabled. If you have enabled the layer2 option, you can configure for IP takeover

as you would in a distributed server environment.

Taking over an IP addresses overrides any previous allocation of this address to

another LPAR. If another LPAR on the same CHPID has already registered for that

IP address, this association is removed.

An OSA-Express CHPID in QDIO mode can take over IP addresses from any

zSeries operating system. IP takeover for HiperSockets CHPIDs is restricted to

taking over addresses from other Linux instances in the same Central Electronics

Complex (CEC).

There are three stages to taking over an IP address:

 Stage 1: Ensure that your qeth group device is enabled for IP takeover

 Stage 2: Activate the address to be taken over for IP takeover

 Stage 3: Issue a command to take over the address

Stage 1: Enabling a qeth group device for IP takeover

The qeth group device that is to take over an IP address must be enabled for IP

takeover. For HiperSockets, both the device that takes over the address and the

device that surrenders the address must be enabled. By default, qeth devices are

not enabled for IP takeover.

To enable a qeth group device for IP address takeover set the enable device group

attribute to “1”. To switch off the takeover capability set the enable device group

attribute to “0”. In sysfs, the enable attribute is located in a subdirectory

ipa_takeover. Issue a command of the form:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/ipa_takeover/enable

Example: In this example, a device 0.0.a500 is enabled for IP takeover:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a500/ipa_takeover/enable

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 121

Stage 2: Activating and deactivating IP addresses for takeover

The qeth device driver maintains a list of IP addresses that each qeth group device

can take over. You use the qethconf command to display or change this list.

To display the list of IP addresses that are activated for IP takeover issue:

qethconf ipa list

To activate an IP address for IP takeover, add it to the list. Issue a command of the

form:

qethconf ipa add <ip_address>/<mask_bits> <interface_name>

To deactivate an IP address delete it from the list. Issue a command of the form:

qethconf ipa del <ip_address>/<mask_bits> <interface_name>

In these commands, <ip_address>/<mask_bits> is the range of IP address to be

activated or deactivated. See “qethconf - Configure qeth devices” on page 305 for

more details on the qethconf command.

Example: In this example, there is only one range of IP address that can be taken

over by device hsi0.

qethconf ipa list

ipa add 192.168.10.0/24 hsi0

The following command adds a range of IP address that can be taken over by

device eth0.

qethconf ipa add 192.168.10.1/24 eth0

qethconf: Added 192.168.10.1/24 to /sys/class/net/eth0/device/ipa_takeover/add4.

qethconf: Use "qethconf ipa list" to check for the result

Listing the activated IP addresses now shows both ranges of addresses.

qethconf ipa list

ipa add 192.168.10.0/24 hsi0

ipa add 192.168.10.1/24 eth0

The following command deletes the range of IP address that can be taken over by

device eth0.

qethconf ipa del 192.168.10.1/24 eth0

qethconf: Deleted 192.168.10.1/24 from /sys/class/net/eth0/device/ipa_takeover/del4.

qethconf: Use "qethconf ipa list" to check for the result

Stage 3: Issuing a command to take over the address

Before you start:

v Both the device that is to take over the IP address and the device that is to

surrender the IP address must be enabled for IP takeover. This rule applies to

the devices on both OSA-Express and HiperSockets CHPIDs. (See “Stage 1:

Enabling a qeth group device for IP takeover” on page 121).

122 Device Drivers, Features, and Commands - November, 2006

v The IP address to be taken over must have been activated for IP takeover (see

“Stage 2: Activating and deactivating IP addresses for takeover” on page 122).

To complete taking over a specific IP address and remove it from the CHPID or

LPAR that previously held it, issue an ifconfig or equivalent command.

Example: To make a device hsi0 take over IP address 192.168.10.22 issue:

ifconfig hsi0 192.168.10.22

The IP address you are taking over must be different from the one that is already

set for your device. If your device already has the IP address it is to take over you

must issue two commands: First to set it to any free IP address and then to set it to

the address to be taken over.

Example: To make a device hsi0 take over IP address 192.168.10.22 if hsi0 is

already configured to have IP address 192.168.10.22 issue:

ifconfig hsi0 0.0.0.0

ifconfig hsi0 192.168.10.22

Be aware of the information in “Confirming that an IP address has been set” on

page 120 when using IP takeover.

Configuring a device for proxy ARP

This section describes how to configure for proxy ARP if the layer2 option (see

“MAC address handling for IPv4 with the layer2 option” on page 102) is not

enabled. If you have enabled the layer2 option, you can configure for proxy ARP as

you would in a distributed server environment.

Before you start: This section applies to qeth group devices that have been set up

as routers only.

The qeth device driver maintains a list of IP addresses for which a qeth group

device handles ARP and issues gratuitous ARP packets. See http://
www.sjdjweis.com/linux/proxyarp/ for more information on proxy ARP.

Use the qethconf command to display this list or to change the list by adding and

removing IP addresses (see “qethconf - Configure qeth devices” on page 305).

Be aware of the information in “Confirming that an IP address has been set” on

page 120 when working with proxy ARP.

Example

Figure 24 on page 124 shows an environment where proxy ARP is used.

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 123

http://www.sjdjweis.com/linux/proxyarp/
http://www.sjdjweis.com/linux/proxyarp/

G1, G2, and G3 are Linux guests (connected, for example, through a guest LAN to

a Linux router R), reached from GW (or the outside world) via R. R is the ARP

proxy for G1, G2, and G3. That is, R agrees to take care of packets destined for

G1, G2, and G3. The advantage of using proxy ARP is that GW does not need to

know that G1, G2, and G3 are behind a router.

To receive packets for 1.2.3.4, so that it can forward them to G1 1.2.3.4, R would

add 1.2.3.4 to its list of IP addresses for proxy ARP for the interface that connects it

to the OSA adapter.

qethconf parp add 1.2.3.4 eth0

qethconf: Added 1.2.3.4 to /sys/class/net/eth0/device/rxip/add4.

qethconf: Use "qethconf parp list" to check for the result

After issuing similar commands for the IP addresses 1.2.3.5 and 1.2.3.6 the proxy

ARP configuration of R would be:

qethconf parp list

parp add 1.2.3.4 eth0

parp add 1.2.3.5 eth0

parp add 1.2.3.6 eth0

Configuring a device for virtual IP address (VIPA)

This section describes how to configure for VIPA if the layer2 option (see “MAC

address handling for IPv4 with the layer2 option” on page 102) is not enabled. If

you have enabled the layer2 option, you can configure for VIPA as you would in a

distributed server environment.

Before you start:

v This section does not apply to HiperSockets.

v Virtual IP address (VIPA) can only be configured if the kernel has been compiled

with the common code configuration option CONFIG_DUMMY.

System z use VIPAs to protect against certain types of hardware connection failure.

You can assign VIPAs that are independent from particular adapter. VIPAs can be

built under Linux using dummy devices (for example, “dummy0” or “dummy1”).

The qeth device driver maintains a list of VIPAs that the OSA-Express adapter

accepts for each qeth group device. Use the qethconf utility to add or remove

VIPAs (see “qethconf - Configure qeth devices” on page 305).

For an example of how to use VIPA, see “Scenario: VIPA – minimize outage due to

adapter failure” on page 125.

Figure 24. Example of proxy ARP usage

124 Device Drivers, Features, and Commands - November, 2006

Be aware of “Confirming that an IP address has been set” on page 120 when

working with VIPAs.

Recovering a device

You can use the recover attribute of a qeth group device to recover it in case of

failure. For example, error messages in /var/log/messages might inform you of a

malfunctioning device. Issue a command of the form:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/recover

Example

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/recover

Scenario: VIPA – minimize outage due to adapter failure

This chapter describes how to use

v Standard VIPA

v Source VIPA (versions 1.x)

v Source VIPA 2 (version 2.0.0)

VIPA allows you to assign IP addresses that are not associated with a particular

adapter. This minimizes outage caused by adapter failure. Standard VIPA is usually

sufficient for applications, such as Web Server, that do not open connections to

other nodes. Source VIPA is used for applications that open connections to other

nodes. Source VIPA Extensions enable you to work with multiple VIPAs per

destination in order to achieve multipath load balancing.

Notes:

1. The VIPA functionality requires a kernel built with the CONFIG_DUMMY option.

2. See the information in “Confirming that an IP address has been set” on page

120 concerning possible failure when setting IP addresses for OSA-Express

features in QDIO mode (qeth driver).

3. The configuration file layout for Source VIPA has changed since the 1.x

versions. In the 2.0.0 version a policy is included. For details see the README

and the man pages provided with the package.

Standard VIPA

Purpose

VIPA is a facility for assigning an IP address to a system, instead of to individual

adapters. It is supported by the Linux kernel. The addresses can be in IPv4 or IPv6

format.

Usage

These are the main steps you must follow to set up VIPA in Linux:

1. Create a dummy device with a virtual IP address.

2. Ensure that your service (for example, the Apache Web server) listens to the

virtual IP address assigned above.

3. Set up routes to the virtual IP address, on clients or gateways. To do so, you

can use either:

v Static routing (shown in the example of Figure 25 on page 126).

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 125

v Dynamic routing. For details of how to configure routes, you must refer to the

documentation delivered with your routing daemon (for example, zebra or

gated).

If outage of an adapter occurs, you must switch adapters.

v To do so under static routing, you should:

1. Delete the route that was set previously.

2. Create an alternative route to the virtual IP address.

v To do so under dynamic routing, you should refer to the documentation delivered

with your routing daemon for details.

Example

This example assumes static routing is being used, and shows you how to:

1. Configure VIPA under static routing.

2. Switch adapters when an adapter outage occurs.

Figure 25 shows the network adapter configuration used in the example.

1. If the dummy component has not been compiled into the kernel, ensure that the

dummy module has been loaded. If necessary, load it by issuing:

modprobe dummy

2. Create a dummy interface with a virtual IP address, 9.164.100.100:

 # ifconfig dummy0 9.164.100.100

3. Enable the network devices for this VIPA so that it accepts packets for this IP

address.

 # qethconf vipa add 9.164.100.100 eth0

qethconf: Added 9.164.100.100 to /sys/class/net/eth0/device/vipa/add4.

qethconf: Use "qethconf vipa list" to check for the result

 # qethconf vipa add 9.164.100.100 eth1

qethconf: Added 9.164.100.100 to /sys/class/net/eth1/device/vipa/add4.

qethconf: Use "qethconf vipa list" to check for the result

For IPv6, the address is specified in IPv6 format:

Figure 25. Example of using Virtual IP Address (VIPA)

126 Device Drivers, Features, and Commands - November, 2006

qethconf vipa add 20020000000000000000000012345678 eth0

qethconf: Added 20020000000000000000000012355678 to /sys/class/net/eth0/device/vipa/add6.

qethconf: Use "qethconf vipa list" to check for the result

qethconf vipa add 20020000000000000000000012355678 eth1

qethconf: Added 20020000000000000000000012355678 to /sys/class/net/eth1/device/vipa/add6.

qethconf: Use "qethconf vipa list" to check for the result

4. Ensure that the addresses have been set:

qethconf vipa list

vipa add 9.164.100.100 eth0

vipa add 9.164.100.100 eth1

5. Ensure that your service (such as the Apache Web server) listens to the virtual

IP address.

6. Set up a route to the virtual IP address (static routing), so that VIPA can be

reached via the gateway with address 10.1.0.2.

 # route add -host 9.164.100.100 gw 10.1.0.2

Now we assume an adapter outage occurs. We must therefore:

1. Delete the previously-created route.

 # route delete -host 9.164.100.100

2. Create the alternative route to the virtual IP address.

route add -host 9.164.100.100 gw 10.2.0.2

Source VIPA

This version of Source VIPA has been superseded in October 2003 by Source VIPA

2 (version 2.0.0). If you use Source VIPA 2, read “Source VIPA 2” on page 129.

Purpose

Source VIPA provides a functionality specially required in high-performance

environments. It is a very flexible means for source address selection to arbitrary

applications.

Normally, IP packets are tagged with the IP address of the adapter through which

they leave the system. In case of an adapter failure, IP packets of outgoing sockets

cannot be routed correctly and thus become ″lost″ in the network. With Source

VIPA, they are tagged with the VIPA instead. This is done by dynamically linking the

Source VIPA shared object file to the application to be Source-VIPA-enabled before

linking the runtime library to it. This catches some socket calls and modifies them to

yield a Source VIPA effect. The result is a per-application configuration of Source

VIPA.

The Source VIPA solution does not affect kernel stability. Source VIPA is controlled

by a configuration file (usually /etc/src_vipa.conf) containing flexible rules when to

use Source VIPA, based on destination IP address ranges.

Note: This implementation of Source VIPA applies to IPv4 only.

An alternative but somewhat less flexible approach to Source VIPA is to use the ip

tool to modify the routing table:

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 127

ip route your_route_statement src S1.S2.S3.S4

Usage

Installation:

make

make starter

make install

Paths can be changed in the Makefile. Defaults are:

SRC_VIPA_PATH=/lib

SRC_VIPA_STARTER_PATH=/usr/local/bin

The starter script should be in the execution path when you start the application.

Configuration: /etc/src_vipa.conf, or the file pointed to by environment variable

SRC_VIPA_CONFIG_FILE, contains lines such as the following:

comment

D1.D2.D3.D4/MASK S1.S2.S3.S4

.INADDR_ANY P1-P2 S1.S2.S3.S4

.INADDR_ANY P S1.S2.S3.S4

D1.D2.D3.D4/MASK specifies a range of destination addresses and the number of bits

set in the subnet mask (MASK). As soon as a socket is opened and connected to

these destination addresses and the application does not do an explicit bind to a

source address, src_vipa does a bind to S1.S2.S3.S4. Instead of IP addresses in

dotted notation, host names can be used and will be resolved using DNS.

.INADDR_ANY P1-P2 S1.S2.S3.S4, or the same command with only one port P, will

associate sockets with IP addresses causing bind calls with INADDR_ANY as a local

address to be intercepted if the port the socket is bound to is between P1 and P2

(inclusive). In this case, INADDR_ANY will be replaced by S1.S2.S3.S4 (which can be

0.0.0.0).

All .INADDR_ANY statements will be read and evaluated in order of appearance. This

means that multiple .INADDR_ANY statements can be used to have bind calls

intercepted for every port outside a certain range. This is useful, for example, for

rlogin, which uses bind to bind to a local port but with INADDR_ANY as a source

address to use automatic source address selection.

The default behavior for all ports is that the kind of bind calls will not be modified.

Enabling an application: The command:

src_vipa.sh <application and parameters>

This enables the Source VIPA functionality for the application. The config file is read

once at the start of the application. It is also possible to change the starter script

and run multiple applications using different Source VIPA settings in separate files

pointed to by a SRC_VIPA_CONFIG_FILE environment variable defined and

exported prior to invoking the respective application.

Restrictions

LD_PRELOAD security prevents setuid executables to be run under src_vipa;

programs of this kind can only be run when the real UID is 0.

128 Device Drivers, Features, and Commands - November, 2006

Example

 The command:

src_vipa.sh appservd start

starts the application server with Source VIPA functionality. Packets leaving

’appservd’ are tagged with the source address 9.164.100.100, regardless of the

physical interface. In case of an outage, communication can still be maintained with

the originating application as long as one of the physical interfaces is functioning.

For example, if Switch 1 fails, Switch 2 can maintain the logical connection with

’appservd’.

Source VIPA 2

Purpose

Source VIPA 2 is particularly suitable for high-performance environments. It selects

one source address out of a range of source addresses when it replaces the source

address of a socket. The reason for using several source addresses lies in the

inability of some operating system kernels to do load balancing among several

connections with the same source and destination address over several interfaces.

To achieve load balancing, a policy has to be selected in the policy section of the

configuration file of Source VIPA 2 (/etc/src_vipa.conf). This policy section also

allows to specify several source addresses used for one destination. Source VIPA

then applies the source address selection according to the rules of the policy

selected in the configuration file.

This Source VIPA solution does not affect kernel stability. Source VIPA is controlled

by a configuration file containing flexible rules for when to use Source VIPA based

on destination IP address ranges.

Note: This implementation of Source VIPA applies to IPv4 only.

Usage

Installation:

Figure 26. Example of using source VIPA

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 129

make

make starter

make install

Paths can be changed in the Makefile. Defaults are:

SRC_VIPA_PATH=/lib

SRC_VIPA_STARTER_PATH=/usr/local/bin

The starter script should be in the execution path when you start the application.

Migration: If you migrate from an earlier version of Source VIPA and do not need

multiple VIPAs, the onevipa policy followed by your VIPA is the recommended

change (see “Policies”). Please check your syslog (usually in /var/log/messages)

for problems the first time you use the new version.

Configuration: With Source VIPA 2 the configuration file has changed: the policy

section was added. The default configuration file is /etc/src_vipa.conf.

/etc/src_vipa.conf or the file pointed to by the environment variable

SRC_VIPA_CONFIG_FILE, contains lines such as the following:

comment

D1.D2.D3.D4/MASK POLICY S1.S2.S3.S4 [T1.T2.T3.T4 [...]]

.INADDR_ANY P1-P2 POLICY S1.S2.S3.S4 [T1.T2.T3.T4 [...]]

.INADDR_ANY P POLICY S1.S2.S3.S4 [T1.T2.T3.T4 [...]]

D1.D2.D3.D4/MASK specifies a range of destination addresses and the number of bits

set in the subnet mask (MASK). As soon as a socket is opened and connected to

these destination addresses and the application does not do an explicit bind to a

source address, Source VIPA does a bind to one of the source addresses specified

(S, T, [...]) using the policy selected in the configuration file to distribute the source

addresses. See the policy section below for available load distribution policies.

Instead of IP addresses in dotted notation, hostnames can also be used and will be

resolved using DNS.

.INADDR_ANY P1-P2 POLICY S1.S2.S3.S4 or .INADDR_ANY P POLICY S1.S2.S3.S4

causes bind calls with .INADDR_ANY as a local address to be intercepted if the port

the socket is bound to is between P1 and P2 (inclusive). In this case, .INADDR_ANY

will be replaced by one of the source addresses specified (S, T, [...]), which can be

0.0.0.0.

All .INADDR_ANY statements will be read and evaluated in order of appearance. This

means that multiple .INADDR_ANY statements can be used to have bind calls

intercepted for every port outside a certain range. This is useful, for example, for

rlogin, which uses the bind command to bind to a local port but with .INADDR_ANY

as a source address to use automatic source address selection. See the policies

section below for available load distribution policies.

The default behavior for all ports is that the kind of bind calls will not be modified.

Policies: With Source VIPA Extensions you provide a range of dummy source

addresses for replacing the source addresses of a socket. The policy selected

determines which method is used for selecting the source addresses from the range

of dummy addresses..

onevipa

Only the first address of all source addresses specified is used as source

address.

130 Device Drivers, Features, and Commands - November, 2006

random

The source address used is selected randomly from all the specified source

addresses.

llr (local round robin)

The source address used is selected in a round robin manner from all the

specified source addresses. The round robin takes place on a

per-invocation base: each process is assigned the source addresses round

robin independently from other processes.

rr:ABC

Stands for round robin and implements a global round robin over all Source

VIPA instances sharing the same configuration file. All processes using

Source VIPA access an IPC shared memory segment to fulfil a global round

robin algorithm. This shared memory segment is destroyed when the last

running Source VIPA ends. However, if this process does not end gracefully

(for example, is ended by a kill command), the shared memory segment

(size: 4 bytes) can stay in the memory until it is removed by ipcrm. The tool

ipcs can be used to display all IPC resources and to get the key or id used

for ipcrm. ABC are UNIX® permissions in octal writing (for example, 700)

that are used to create the shared memory segment. This permission mask

should be as restrictive as possible. A process having access to this mask

can cause an imbalance of the round robin distribution in the worst case.

lc Attempts to balance the number of connections per source address. This

policy always associates the socket with the VIPA that is least in use. If the

policy cannot be parsed correctly, the policy is set to round robin per

default.

Enabling an application: The command:

src_vipa.sh <application and parameters>

enables the Source VIPA functionality for the application. The configuration file is

read once the application is started. It is also possible to change the starter script

and run multiple applications using different Source VIPA settings in separate files.

For this, a SRC_VIPA_CONFIG_FILE environment variable pointing to the separate

files has to be defined and exported prior to invoking the respective application.

Restrictions

LD_PRELOAD security prevents setuid executables to be run under Source VIPA;

programs of this kind can only be run when the real UID is 0. The ping utility is

usually installed with setuid permissions.

The maximum number of VIPAs per destination is currently defined as 8.

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 131

Example

 The entry in the Source VIPA configuration file:

9.0.0.0/8 lrr 9.164.100.100 9.164.100.200

sets up a Source VIPA 2 with a local round robin policy.

Scenario: Virtual LAN (VLAN) support

VLAN technology works according to IEEE Standard 802.1Q by logically

segmenting the network into different broadcast domains so that packets are

switched only between ports designated for the same VLAN. By containing traffic

originating on a particular LAN to other LANs within the same VLAN, switched

virtual networks avoid wasting bandwidth, a drawback inherent in traditional

bridged/switched networks where packets are often forwarded to LANs that do not

require them.

Building a Linux kernel with VLAN and OSA-Express support is a prerequisite for

using VLAN under Linux.

VLAN is not supported on Token Ring Interfaces of the OSA-Express adapter

running in QDIO mode.

Introduction to VLANs

VLANs increase traffic flow and reduce overhead by allowing you to organize your

network by traffic patterns rather than by physical location. In a conventional

network topology, such as that shown in the following figure, devices communicate

across LAN segments in different broadcast domains using routers. Although

routers add latency by delaying transmission of data while using more of the data

packet to determine destinations, they are preferable to building a single broadcast

domain, which could easily be flooded with traffic.

Figure 27. Example of using source VIPA 2

132 Device Drivers, Features, and Commands - November, 2006

|
|

By organizing the network into VLANs through the use of Ethernet switches, distinct

broadcast domains can be maintained without the latency introduced by multiple

routers. As the following figure shows, a single router can provide the interfaces for

all VLANs that appeared as separate LAN segments in the previous figure.

 The following figure shows how VLANs can be organized logically, according to

traffic flow, rather than being restricted by physical location. If workstations 1-3

communicate mainly with the small server, VLANs can be used to organize only

these devices in a single broadcast domain that keeps broadcast traffic within the

group. This reduces traffic both inside the domain and outside, on the rest of the

network.

Figure 28. Conventional routed network

Figure 29. Switched VLAN network

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 133

Configuring VLAN devices

VLANs are configured using the vconfig command. Refer to the vconfig man page

for details.

Information on the current VLAN configuration is available by listing the files in

/proc/net/vlan/*

with cat or more. For example:

bash-2.04# cat /proc/net/vlan/config

VLAN Dev name | VLAN ID

Name-Type: VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD bad_proto_recvd: 0

eth2.100 | 100 | eth2

eth2.200 | 200 | eth2

eth2.300 | 300 | eth2

bash-2.04# cat /proc/net/vlan/eth2.300

eth2.300 VID: 300 REORDER_HDR: 1 dev->priv_flags: 1

 total frames received: 10914061

 total bytes received: 1291041929

 Broadcast/Multicast Rcvd: 6

 total frames transmitted: 10471684

 total bytes transmitted: 4170258240

 total headroom inc: 0

 total encap on xmit: 10471684

Device: eth2

INGRESS priority mappings: 0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0

EGRESS priority Mappings:

bash-2.04#

Examples

VLANs are allocated in an existing interface representing a physical Ethernet LAN.

The following example creates two VLANs, one with ID 3 and one with ID 5.

 ifconfig eth1 9.164.160.23 netmask 255.255.224.0 up

 vconfig add eth1 3

 vconfig add eth1 5

Figure 30. VLAN network organized for traffic flow

134 Device Drivers, Features, and Commands - November, 2006

The vconfig commands have added interfaces ″eth1.3″ and ″eth1.5″, which you can

then configure:

 ifconfig eth1.3 1.2.3.4 netmask 255.255.255.0 up

 ifconfig eth1.5 10.100.2.3 netmask 255.255.0.0 up

The traffic that flows out of eth1.3 will be in the VLAN with ID=3 (and will not be

received by other stacks that listen to VLANs with ID=4).

The internal routing table will ensure that every packet to 1.2.3.x goes out via

eth1.3 and everything to 10.100.x.x via eth1.5. Traffic to 9.164.1xx.x will flow

through eth1 (without a VLAN tag).

To remove one of the VLAN interfaces:

 ifconfig eth1.3 down

 vconfig rem eth1.3

The following example illustrates the definition and connectivity test for a VLAN

comprising five different Linux systems, each connected to a physical Gigabit

Ethernet LAN or 10 Gigabit Ethernet via eth1:

(LINUX1: LPAR 64bit)

 vconfig add eth1 5

 ifconfig eth1.5 10.100.100.1 broadcast 10.100.100.255 netmask 255.255.255.0 up

(LINUX2: LPAR 31bit)

 vconfig add eth1 5

 ifconfig eth1.5 10.100.100.2 broadcast 10.100.100.255 netmask 255.255.255.0 up

(LINUX3: VM Guest 64bit)

 vconfig add eth1 5

 ifconfig eth1.5 10.100.100.3 broadcast 10.100.100.255 netmask 255.255.255.0 up

(LINUX4: VM Guest 31bit)

 vconfig add eth1 5

 ifconfig eth1.5 10.100.100.4 broadcast 10.100.100.255 netmask 255.255.255.0 up

(LINUX5: Intel)

 vconfig add eth1 5

 ifconfig eth1.5 10.100.100.5 broadcast 10.100.100.255 netmask 255.255.255.0 up

Test the connections:

 ping 10.100.100.[1 - 5] // Unicast-PING

 ping -I eth1.5 224.0.0.1 // Multicast-PING

 ping -b 10.100.100.255 // Broadcast-PING

Further information

More information on VLAN for Linux is available at

 http://scry.wanfear.com/~greear/vlan.html

HiperSockets Network Concentrator

This section describes how configure a HiperSockets Network Concentrator if the

layer2 option (see “MAC address handling for IPv4 with the layer2 option” on page

102) is not enabled.

Before you start: This section applies to IPv4 only.

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 135

The HiperSockets Network Concentrator connects systems to an external LAN

within one IP subnet using HiperSockets. HiperSockets Network Concentrator

connected systems appear as if they were directly connected to the LAN. This

helps to reduce the complexity of network topologies resulting from server

consolidation. HiperSockets Network Concentrator allows to migrate systems from

the LAN into a zSeries Server environment, or systems connected by a different

HiperSockets Network Concentrator into a zSeries Server environment, without

changing the network setup. Thus, HiperSockets Network Concentrator helps to

simplify network configuration and administration.

Design

A connector Linux system forwards traffic between the external OSA interface and

one or more internal HiperSockets interfaces. This is done via IPv4 forwarding for

unicast traffic and via a particular bridging code (xcec_bridge) for multicast traffic.

A script named ip_watcher.pl observes all IP addresses registered in the

HiperSockets network and sets them as Proxy ARP entries (see “Configuring a

device for proxy ARP” on page 123) on the OSA interfaces. The script also

establishes routes for all internal systems to enable IP forwarding between the

interfaces.

All unicast packets that cannot be delivered in the HiperSockets network are

handed over to the connector by HiperSockets. The connector also receives all

multicast packets to bridge them.

Setup

The setup principles for configuring the HiperSockets Network Concentrator on a

zSeries Linux system are as follows:

leaf nodes

The leaf nodes do not require a special setup. To attach them to the

HiperSockets network, their setup should be as if they were directly

attached to the LAN. They do not have to be Linux systems.

connector systems

In the following, HiperSockets Network Concentrator IP refers to the subnet

of the LAN that is extended into the HiperSockets net.

v If you want to support forwarding of all packet types, define the OSA

interface for traffic into the LAN as a multicast router (see “Setting up a

Linux router” on page 109).

If only unicast packages are to be forwarded, there is also the possibility

not to identify the OSA interface as multicast router: add the interface

name to the start_hsnc script and only unicast packets will be

forwarded.

v All HiperSockets interfaces involved must be set up as connectors: set

the route4 attributes of the corresponding devices to “primary_connector”

or to “secondary_connector”. Alternatively, you can add the OSA interface

name to the start script as a parameter. This option results in

HiperSockets Network Concentrator ignoring multicast packets, which are

then not forwarded to the HiperSockets interfaces.

v IP forwarding must be enabled for the connector partition. This can be

achieved either manually with the command

sysctl -w net.ipv4.ip_forward=1

136 Device Drivers, Features, and Commands - November, 2006

Alternatively, distribution-dependent configuration files can be used to

activate IP forwarding for the connector partition automatically after

booting.

v The network routes for the HiperSockets interface must be removed, a

network route for the HiperSockets Network Concentrator IP subnet has

to be established via the OSA interface. To achieve this, the IP address

0.0.0.0 can be assigned to the HiperSockets interface while an address

used in the HiperSockets Network Concentrator IP subnet is to be

assigned to the OSA interface. This sets the network routes up correctly

for HiperSockets Network Concentrator.

v To start HiperSockets Network Concentrator, run the script

start_hsnc.sh. You can specify an interface name as optional parameter.

This makes HiperSockets Network Concentrator use the specified

interface to access the LAN. There is no multicast forwarding in that

case.

v To stop HiperSockets Network Concentrator, use the command killall

ip_watcher.pl to remove changes caused by running HiperSockets

Network Concentrator.

Availability setups

If a connector system fails during operation, it can simply be restarted. If all the

startup commands are executed automatically, it will instantaneously be operational

again after booting. Two common availability setups are mentioned here:

One connector partition and one monitoring system

As soon as the monitoring system cannot reach the connector for a specific

timeout (for example, 5 seconds), it restarts the connector. The connector

itself monitors the monitoring system. If it detects (with a longer timeout

than the monitoring system, for example, 15 seconds) a monitor system

failure, it restarts the monitoring system.

Two connector systems monitoring each other

In this setup, there is an active and a passive system. As soon as the

passive system detects a failure of the active connector, it takes over

operation. In order to do this it needs to reset the other system to release

all OSA resources for the multicast_router operation. The failed system can

then be restarted manually or automatically, depending on the configuration.

The passive backup HiperSockets interface can either switch into

primary_connector mode during the failover, or it can be setup as

secondary_connector. A secondary_connector takes over the connecting

functionality, as soon as there is no active primary_connector. This setup

has a faster failover time than the first one.

 For further information about availability consult the general documentation of Linux

on zSeries on availability.

Hints

v The MTU of the OSA and HiperSockets link should be of the same size.

Otherwise multicast packets not fitting in the link’s MTU are discarded as there is

no IP fragmentation for multicast bridging. Warnings are printed to

/var/log/messages or a corresponding syslog destination.

v The script ip_watcher.pl prints error messages to the standard error descriptor

of the process.

v xcec-bridge logs messages and errors to syslog. On most distributions this

creates entries in /var/log/messages.

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 137

v Registering all internal addresses with the OSA adapter can take several

seconds for each address.

v To shut down the HiperSockets Network Concentrator functionality, simply issue

killall ip_watcher.pl. This removes all routing table and Proxy ARP entries

added while using HiperSockets Network Concentrator.

Restrictions

v With the current OSA and HiperSockets hardware design, broadcast packets that

are sent out of an interface are echoed back by the hardware of the originating

system. This makes it impossible to bridge broadcast traffic without causing

bridging loops. Therefore, broadcast bridging is currently disabled.

v Unicast packets are routed by the common Linux IPv4 forwarding mechanisms.

As bridging and forwarding are done at the IP Level, the IEEE 802.1q VLAN and

the IPv6 protocol are not supported.

v For restrictions regarding multicast and broadcast forwarding, visit the IBM

developerWorks Web site at:

ibm.com/developerworks/linux/linux390/perf/tuning_rec_networking.shtml.

v To use HiperSockets Network Concentrator the kernel patches and s390-bit tools

from the ″June 2003 stream″ on developerWorks as of 10/31/2003 are required.

Examples

Figure 31 shows a network environment where a Linux instance C acts as a

network concentrator that connects other operating system instances on a

HiperSockets LAN to an external LAN.

Setup for the network concentrator C:

The HiperSockets interface hsi0 (device bus-ID 0.0.a1c0) has IP address

10.20.30.51, and the netmask is 255.255.255.0. The default gateway is

10.20.30.1.

 Issue:

echo primary_connector > /sys/bus/ccwgroup/drivers/qeth/0.0.a1c0/route4

The OSA-Express CHPID in QDIO mode interface eth0 (with device bus-ID

0.0.a1c4) has IP address 10.20.30.11, and the netmask is 255.255.255.0.

The default gateway is 10.20.30.1.

Figure 31. HiperSockets network concentrator setup

138 Device Drivers, Features, and Commands - November, 2006

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_networking.shtml

Issue:

echo multicast_router > /sys/bus/ccwgroup/drivers/qeth/0.0.a1c4/route4

To enable IP forwarding issue:

sysctl -w net.ipv4.ip_forward=1

Tip: Refer to your distribution information on how to use configuration files

to automatically enable IP forwarding when booting.

 To remove the network routes for the HiperSockets interface issue:

route del -net 10.20.30.0 netmask 255.255.255.0 dev hsi0

To start the HiperSockets network concentrator run the script

start_hsnc.sh. Issue:

start_hsnc.sh &

Setup for G:

No special setup required. The HiperSockets interface has IP address

10.20.30.54, and the netmask is 255.255.255.0. The default gateway is

10.20.30.1.

Setup for workstation:

No special setup required. The network interface IP address is

10.20.30.120, and the netmask is 255.255.255.0. The default gateway is

10.20.30.1.

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 139

Figure 32 shows the example of Figure 31 on page 138 with an additional

mainframe. On the second mainframe a Linux instance D acts as a HiperSockets

network concentrator.

 The configuration of C, G, and the workstation remain the same as for Figure 31 on

page 138.

Setup for the network concentrator D:

The HiperSockets interface hsi0 has IP address 0.0.0.0.

 Assuming that the device bus-ID of the HiperSockets interface is 0.0.a1d0,

issue:

echo primary_connector > /sys/bus/ccwgroup/drivers/qeth/0.0.a1d0/route4

The OSA-Express CHPID in QDIO mode interface eth0 has IP address

10.20.30.50, and the netmask is 255.255.255.0. The default gateway is

10.20.30.1.

 D is not configured as a multicast router, it therefor only forwards unicast

packets.

 To enable IP forwarding issue:

sysctl -w net.ipv4.ip_forward=1

Tip: Refer to your distribution information on how to use configuration files

to automatically enable IP forwarding when booting.

 To start the HiperSockets network concentrator run the script

start_hsnc.sh. Issue:

Figure 32. Expanded HiperSockets network concentrator setup

140 Device Drivers, Features, and Commands - November, 2006

start_hsnc.sh &

Setup for H:

No special setup required. The HiperSockets interface has IP address

10.20.30.55, and the netmask is 255.255.255.0. The default gateway is

10.20.30.1.

Setting up for DHCP with IPv4

For connections through an OSA-Express adapter in QDIO mode, the OSA-Express

adapter offloads ARP, LLC header, and MAC address handling (see “MAC address

handling for IPv4” on page 98). Because a HiperSockets connection does not go

out on a physical network, there are no ARP, LLC headers, and MAC addresses for

packets in a HiperSockets LAN. The resulting problems for DHCP are the same in

both cases and the fixes for connections through the OSA-Express adapter also

apply to HiperSockets.

Dynamic Host Configuration Protocol (DHCP) is a TCP/IP protocol that allows

clients to obtain IP network configuration information (including an IP address) from

a central DHCP server. The DHCP server controls whether the address it provides

to a client is allocated permanently or is leased temporarily. DHCP specifications

are described by RFC 2131“Dynamic Host Configuration Protocol” and RFC 2132

“DHCP options and BOOTP Vendor Extensions”, which are available on the Internet

at: http://www.ietf.org/.

Two types of DHCP environments have to be taken into account:

v DHCP via OSA-Express adapters in QDIO mode

v DHCP in a z/VM guest LAN

For information on setting up DHCP for Linux for zSeries in a z/VM guest LAN

environment, refer to Redpaper Linux on IBM eServer zSeries and S/390: TCP/IP

Broadcast on z/VM Guest LAN, REDP-3596 at: ibm.com/redbooks/.

As an example of DHCP client and server that you can use, this book discusses the

dhcpcd client and server dhcp; the distribution you use may provide different DHCP

client and server programs. There are three possibilities to get the DHCP client

dhcpcd and server dhcp working properly via OSA-Express adapters in QDIO

mode:

v Enabling the qeth layer2 option (see “MAC address handling for IPv4 with the

layer2 option” on page 102). This is the preferred method.

v Enabling the qeth fake_ll option (see “Faking LLC headers” on page 100) on both

the client and the server side. This is the preferred method for environments that

do not support the layer2 option.

Required options for using DHCP on Linux for System z

The following option are required if you are using dhcpcd on Linux for System z

without the layer2 option:

v You need to run dhcpcd with option -B.

This option instructs the DHCP server to broadcast its response to the DHCP

client. Because the OSA-Express adapter in QDIO mode forwards packets to

Linux based on IP addresses, a DHCP client that requests an IP address could

not receive the response from the DHCP server without this option.

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 141

http://www.ietf.org/
http://www.ibm.com/redbooks/

v You need to run dhcpcd with option -I.

Specifies the client identifier string. On default dhcpcd uses the MAC address of

the network interface as default. Hence, without this option, all Linux guests that

share the same OSA-Express adapter in QDIO mode would also have the same

client identifier.

There are no special options you need for using dhcp on Linux for System z.

Setting up for tcpdump with IPv4

For connections through an OSA-Express adapter in QDIO mode, the OSA-Express

adapter off-loads ARP, LLC header, and MAC address handling (see “MAC address

handling for IPv4” on page 98). Because a HiperSockets connection does not go

out on a physical network, there are no ARP, LLC headers, and MAC addresses for

packets in a HiperSockets LAN. The resulting problems for tcpdump are the same

in both cases and the fixes for connections through the OSA-Express adapter also

apply to HiperSockets.

tcpdump uses the packet capture library libpcap. The libpcap library provides a high

level interface to packet capture systems. All packets on the network, even those

destined for other hosts, are accessible through this mechanism.

libpcap requires an Ethernet LLC header for the packets it captures. To make it

work properly in a Linux on System z environment you can do either:

v Enable the qeth layer2 option (for OSA Express only, see “MAC address handling

for IPv4 with the layer2 option” on page 102). This is the preferred method.

v Make some changes in the libpcap library.

You need to write your own patch that is suited to your environment. The following

sample patch is for illustration purposes only and not intended for you to use

directly. The sample patch for libpcap version 0.6.2. illustrates how you can do this:

142 Device Drivers, Features, and Commands - November, 2006

libpcap 0.6.2. sample patch

--- libpcap-0.6.2/pcap-linux.c Fri Jan 31 17:24:51 2003

+++ libpcap-0.6.2/pcap-linux.c.s390qdio Fri Jan 31 17:23:31 2003

@@ -310,6 +310,35 @@

 return -1;

 }

 }

+ /* IBM OSA-Express modifications

+ */

+#define IBM_SRC_MAC "IBMOSA"

+#define IBM_DST_MAC "eWorld"

+ do {

+ unsigned short enc_proto;

+ unsigned short proto = 0;

+ enc_proto = *((char*)handle->buffer +

+ sizeof(unsigned short));

+ if ((enc_proto == ETH_P_IP) ||

+ (enc_proto == ETH_P_IPV6))

+ proto = ETH_P_8021Q;

+ else if ((*((char*)handle->buffer) >= 0x45) &&

+ (*((char*)handle->buffer) <= 0x4f))

+ proto = ETH_P_IP;

+ else if (*((char*)handle->buffer) == 0x60)

+ proto = ETH_P_IPV6;

+ if (proto) {

+ memmove(((char*)handle->buffer+sizeof(struct ethhdr)),

+ handle->buffer,packet_len);

+ packet_len += 14;

+ struct ethhdr *hdr = (struct ethhdr *)handle->buffer;

+ memcpy(hdr->h_dest,IBM_DST_MAC,ETH_ALEN);

+ memcpy(hdr->h_source,IBM_SRC_MAC,ETH_ALEN);

+ hdr->h_proto = proto;

+ }

+ } while(0);

+#undef IBM_SRC_MAC

+#undef IBM_DST_MAC

 #ifdef HAVE_PF_PACKET_SOCKETS

 /*

@@ -552,7 +581,8 @@

 /*

 * We have a filter that’ll work in the kernel.

 */

- can_filter_in_kernel = 1;

+/*IBM QDIO device have to filter in the user land*/

+ can_filter_in_kernel = 0;

 break;

 }

 }

 The first part of the patch adds a fake LLC header to all network packets that do

not have one. The second part prevents filtering of network packets in the kernel so

that packets are filtered in user mode after a fake LLC header has been added.

There is no impact on other network device types, like LCS devices.

Setting up a Linux guest as a z/VM guest LAN sniffer

This topic describes how you can set up a Linux instance to act as a guest LAN

sniffer, for example, to make data on guest LAN traffic available to tools like

TCPDUMP or ETHEREAL. The guest LAN sniffer can be used on a guest that is

defined through a z/VM virtual switch. If the switch connects to a VLAN that

includes nodes outside z/VM, these external nodes are beyond the scope of the

sniffer.

For general information on VLAN and z/VM virtual switches, refer to Redpaper

Linux on IBM ERserver zSeries and S/390: VSWITCH and VLAN Features of z/VM

4.4, REDP-3719 at: ibm.com/redbooks/.

Before you start:

Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets 143

http://www.ibm.com/redbooks/

v You need z/VM 5.2 or later.

v You need class B authorization on z/VM.

v The guest LAN must be defined through a virtual switch.

v The Linux guest to be set up as a guest LAN sniffer must run as a guest of the

same z/VM as the guest LAN you want to investigate.

Linux setup:

Ensure that the qeth device driver has been compiled into the Linux kernel or that

the qeth device driver has been loaded as a module.

z/VM setup:

Ensure that the Linux guest is authorized for the switch and for promiscuous mode.

Perform the following steps from a CMS session on your z/VM:

1. Check if the Linux guest already has the required authorizations; issue the

following CP command:

q vswitch <switchname> promisc

where <switchname> is the name of the virtual switch. If the output lists the

Linux guest as authorized for promiscuous mode, no further setup is required.

2. If the output from step 1 does not list the Linux guest, check if the guest is

authorized for the virtual switch; issue the following CP command:

q vswitch <switchname> acc

where <switchname> is the name of the virtual switch.

If the output lists the Linux guest as authorized, you must temporarily revoke the

authorization for the switch before you can grant authorization for promiscuous

mode. Issue a CP command of this form:

set vswitch <switchname> revoke <userid>

where <switchname> is the name of the virtual switch and <userid> is the z/VM

user ID of the Linux guest.

3. Authorize the Linux guest for the switch and for promiscuous mode; issue a CP

command of this form:

set vswitch <switchname> grant <userid> promisc

where <switchname> is the name of the virtual switch and <userid> is the z/VM

user ID of the Linux guest.

For details on the CP commands used in this section, refer to z/VM CP Commands

and Utilities Reference, SC24-6081 at the IBM Publications Center (see “Finding

IBM books” on page xxi).

144 Device Drivers, Features, and Commands - November, 2006

Chapter 9. LAN channel station device driver

The LAN channel station device driver (LCS device driver) supports these Open

Systems Adapters (OSA) features in non-QDIO mode:

v OSA-2 Ethernet/Token Ring

v OSA-Express

– Fast Ethernet

– 1000Base-T Ethernet (z890 and z990)

– Token Ring

v OSA-Express2

– 1000Base-T Ethernet (System z9 only)

Features

The LCS device driver supports the following devices and functions:

v Auto detects whether the CHPID is connected to Token Ring or Ethernet

v Internet Protocol, version 4 (IPv4) only

What you should know about LCS

This section provides information about LCS group devices and interfaces.

LCS group devices

The LCS device driver requires two I/O subchannels for each LCS interface, a read

subchannel and a write subchannel. The corresponding bus-IDs must be configured

for control unit type 3088.

 The device bus-IDs that correspond to the subchannel pair are grouped as one

LCS group device. The following rules apply for the device bus-IDs:

read must be even.

write must be the device bus-ID of the read subchannel plus one.

LCS interface names

When an LCS group device is set online, the LCS device driver automatically

assigns an interface name to it. According to the feature used, the naming scheme

uses two base names:

eth<n> for Ethernet features

tr<n> for Token Ring features

Figure 33. I/O subchannel interface

© Copyright IBM Corp. 2000, 2006 145

where <n> is an integer that uniquely identifies the device. When the first device for

a base name is set online it is assigned 0, the second is assigned 1, the third 2,

and so on. Each base name is counted separately.

For example, the interface name of the first Ethernet feature that is set online is

“eth0”, the second “eth1”, and so on. When the first Token Ring feature is set

online, it is assigned the interface name “tr0”.

The LCS device driver shares the name space for Ethernet and Token Ring

interfaces with the qeth device driver. Each driver uses the name with the lowest

free identifier <n>, regardless of which device driver occupies the other names. For

example, if at the time the first LCS Ethernet feature is set online, there is already

one qeth Ethernet feature online, the qeth feature is named “eth0” and the LCS

feature is named “eth1”. See also “qeth interface names and device directories” on

page 97.

Building a kernel with the LCS device driver

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the LCS

device driver.

You need to select the option CONFIG_LCS if you want to work with LCS devices.

 The CONFIG_LCS option can be compiled into the kernel or as a separate module,

lcs.

Depending on the features you intend to support, you need to include at least one

the common code options CONFIG_TR and CONFIG_NET_ETHERNET. For

multicast support you also require the common code option

CONFIG_IP_MULTICAST.

Setting up the LCS device driver

There are no kernel or module parameters for the LCS device driver.

If you have compiled the LCS component as a separate module, you need to load it

before you can work with LCS devices. Load the lcs module with the modprobe

command to ensure that any other required modules are loaded in the correct

order:

modprobe lcs

Networking support

└─S/390 network device drivers

 └─Lan Channel Station Interface (CONFIG_LCS)

Figure 34. LCS kernel configuration menu option

146 Device Drivers, Features, and Commands - November, 2006

Working with the LCS device driver

This section describes typical tasks that you need to perform when working with

LCS devices.

v Creating an LCS group device

v Specifying a timeout for LCS LAN commands

v Setting a device online or offline

v Activating and deactivating an interface

Creating an LCS group device

Before you start: You need to know the device bus-IDs that correspond to the read

and write subchannel of your OSA card as defined in the IOCDS of your mainframe.

To define an LCS group device, write the device bus-IDs of the subchannel pair to

/sys/bus/ccwgroup/drivers/lcs/group. Issue a command of this form:

echo <read_device_bus_id>,<write_device_bus_id> > /sys/bus/ccwgroup/drivers/lcs/group

Result: The lcs device driver uses the device bus-ID of the read subchannel to

create a directory for a group device:

/sys/bus/ccwgroup/drivers/lcs/<read_device_bus_id>

This directory contains a number of attributes that determine the settings of the LCS

group device. The following sections describe how to use these attributes to

configure an LCS group device.

Example

Assuming that 0.0.d000 is the device bus-ID that corresponds to a read

subchannel:

echo 0.0.d000,0.0.d001 > /sys/bus/ccwgroup/drivers/lcs/group

This command results in the creation of the following directories in sysfs:

v /sys/bus/ccwgroup/drivers/lcs/0.0.d000

v /sys/bus/ccwgroup/devices/0.0.d000

v /sys/devices/cu3088/0.0.d000

Specifying a timeout for LCS LAN commands

Before you start: The LCS group device must be offline while you specify the

timeout.

You can specify a timeout for the interval that the LCS device driver waits for a

reply after issuing a LAN command to the LAN adapter. For older hardware the

replies may take a longer time. The default is 5 s.

To set a timeout issue a command of this form:

echo <timeout> > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/lancmd_timeout

where <timeout> is the timeout interval in seconds in the range from 1 to 60.

Chapter 9. LAN channel station device driver 147

Example

In this example, the timeout for a device 0.0.d000 is set to 10 s.

echo 10 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/lancmd_timeout

Setting a device online or offline

To set an LCS group device online, set the online device group attribute to “1”. To

set a LCS group device offline, set the online device group attribute to “0”. Issue a

command of this form:

echo <flag> > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/online

Setting a device online associates it with an interface name. Setting the device

offline preserves the interface name.

Read /var/log/messages or issue dmesg to find out which interface name has

been assigned. You will need to know the interface name to activate the network

interface.

For each online interface, there is a symbolic link of the form /sys/class/net/
<interface_name>/device in sysfs. You can confirm that you have found the correct

interface name by reading the link.

Example

To set an LCS device with bus ID 0.0.d000 online issue:

echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/online

dmesg

...

 lcs: LCS device tr0 without IPv6 support

 lcs: LCS device tr0 with Multicast support

...

The interface name that has been assigned to the LCS group device in the example

is tr0. To confirm that this is the correct name for our group device issue:

readlink /sys/class/net/tr0/device

../../../devices/lcs/0.0.d000

To set the device offline issue:

echo 0 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/online

Activating and deactivating an interface

Before you can activate an interface you need to have set the group device online

and found out the interface name assigned by the LCS device driver (see “Setting a

device online or offline”).

You activate or deactivate network devices with ifconfig or an equivalent command.

For details of the ifconfig command refer to the ifconfig man page.

148 Device Drivers, Features, and Commands - November, 2006

Examples

v This example activates an Ethernet interface:

ifconfig eth0 192.168.100.10 netmask 255.255.255.0

v This example deactivates the Ethernet interface:

ifconfig eth0 down

v This example reactivates an interface that had already been activated and

subsequently deactivated:

ifconfig eth0 up

Chapter 9. LAN channel station device driver 149

150 Device Drivers, Features, and Commands - November, 2006

Chapter 10. CTCMPC device driver

The CTCMPC device driver is required by Communications Server for Linux to

provide Channel-to-Channel (CTC) Multi-Path Channel (MPC) connections. Through

CTCMPC connections, Linux can be a communication peer for VTAM on traditional

mainframe operating systems.

This section describes how to set up the CTCMPC device driver. Visit

ibm.com/software/network/commserver/linux/ for more information on

Communications Server for Linux and on using CTCMPC connections.

Features

The CTCMPC device driver allows Communications Server for Linux to provide:

v ESCON CTC connections (standard CTC and basic CTC) between mainframes

in basic mode, LPARs or VM guests.

v Virtual CTC/A connections between VM guests of the same VM system.

v Connections to VTAM on traditional mainframe operating systems.

What you should know about CTCMPC

This section provides information on CTCMPC interfaces.

CTCMPC group devices

The CTCMPC device driver requires two I/O subchannels for each interface, a read

subchannel and a write subchannel. The device bus-IDs that correspond to the two

subchannels must be configured for control unit type 3088.

 The device bus-IDs that correspond to the subchannel pair are grouped as one

CTCMPC group device.

On the communication peer operating system instance, read and write subchannels

are reversed. That is, the write subchannel of the local interface is connected to the

read subchannel of the remote interface and vice-versa.

CTCMPC interfaces

When a CTCMPC group device is set online, the CTCMPC device driver

automatically assigns an interface name to it. The interface names are of the form

mpc<n> where <n> is an integer that identifies the device. When the first device is

set online it is assigned 0, the second is assigned 1, the third 2, and so on.

Figure 35. I/O subchannel interface

© Copyright IBM Corp. 2000, 2006 151

http://www.ibm.com/software/network/commserver/linux/

Building a kernel with the CTCMPC device driver

 This section is intended for those who want to build their own kernel.

You need to select the kernel configuration option CONFIG_MPC to be able to use

CTCMPC connections.

 The CTCMPC device driver can be compiled into the kernel or as a separate

module, ctcmpc.

Setting up the CTCMPC device driver

You do not need to specify kernel or module parameters for the CTCMPC device

driver. If the CTCMPC device driver has been compiled as a separate module, load

it with the modprobe command to ensure that any other required modules are

loaded:

modprobe ctcmpc

Working with the CTCMPC device driver

This section describes typical tasks that you need to perform when working with

CTCMPC devices.

v Creating a CTCMPC group device

v Setting a device online or offline

Refer to the Communications Server for Linux documentation for information on

how to configure and activate CTCMPC interfaces.

Creating a CTCMPC group device

Before you start: You need to know the device bus-IDs that correspond to the

local read and write subchannel of your CTCMPC connection as defined in your

IOCDS.

To define a CTCMPC group device, write the device bus-IDs of the subchannel pair

to /sys/bus/ccwgroup/drivers/ctcmpc/group. Issue a command of this form:

echo <read_device_bus_id>,<write_device_bus_id> > /sys/bus/ccwgroup/drivers/ctcmpc/group

Result: The CTCMPC device driver uses the device bus-ID of the read subchannel

to create a directory for a group device:

/sys/bus/ccwgroup/drivers/ctcmpc/<read_device_bus_id>

This directory contains a number of attributes that determine the settings of the

CTCMPC group device.

Networking support

 S/390 network device support

 └─CTCMPC device support (CONFIG_MPC)

Figure 36. CTCMPC kernel configuration menu option

152 Device Drivers, Features, and Commands - November, 2006

Example

Assuming that device bus-ID 0.0.2000 corresponds to a read subchannel:

echo 0.0.2000,0.0.2001 > /sys/bus/ccwgroup/drivers/ctcmpc/group

This command results in the creation of the following directories in sysfs:

v /sys/bus/ccwgroup/drivers/ctcmpc/0.0.2000

v /sys/bus/ccwgroup/devices/0.0.2000

v /sys/devices/ctcmpc/0.0.2000

Setting a device online or offline

To set a CTCMPC group device online, set the online device group attribute to “1”.

To set a CTCMPC group device offline, set the online device group attribute to “0”.

Issue a command of this form:

echo <flag> > /sys/bus/ccwgroup/drivers/ctcmpc/<device_bus_id>/online

Setting a device online associates it with an interface name. Setting the device

offline preserves the association with the interface name.

Read /var/log/messages or issue dmesg to find out which interface name has

been assigned. You will need to know the interface name to access the CTCMPC

group device.

For each online interface, there is a symbolic link of the form /sys/class/net/
<interface_name>/device in sysfs. You can confirm that you have found the correct

interface name by reading the link.

Example

To set a CTCMPC device with bus ID 0.0.2000 online issue:

echo 1 > /sys/bus/ccwgroup/drivers/ctcmpc/0.0.2000/online

dmesg

...

mpc0: read: ch-0.0.2000, write: ch-0.0.2001, proto: 4

...

The interface name that has been assigned to the CTCMPC group device in the

example is mpc0. To confirm that this is the correct name for our group device

issue:

readlink /sys/class/net/ctcmpc0/device

../../../devices/cu3088/0.0.2000

To set the same device offline issue:

echo 0 > /sys/bus/ccwgroup/drivers/mpc/0.0.2000/online

Chapter 10. CTCMPC device driver 153

154 Device Drivers, Features, and Commands - November, 2006

Part 4. z/VM virtual server integration

This section describes device drivers and features that help to effectively run and

manage a z/VM-based virtual Linux server farm.

v Chapter 11, “z/VM DCSS device driver”

v Chapter 12, “z/VM *MONITOR record reader device driver”

v Chapter 13, “Linux monitor stream support for z/VM”

v Chapter 14, “Monitor stream application support,” on page 181

v Chapter 15, “z/VM recording device driver”

v Chapter 16, “Watchdog device driver”

v Chapter 17, “z/VM CP interface device driver”

v Chapter 18, “Cooperative memory management”

Note

For prerequisites and restrictions for these device drivers and features, refer to

the kernel 2.6 October 2005 stream pages on developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_recommended.html

© Copyright IBM Corp. 2000, 2006 155

|

http://www.ibm.com/developerworks/linux/linux390/october2005_recommended.shtml

156 Device Drivers, Features, and Commands - November, 2006

Chapter 11. z/VM DCSS device driver

The z/VM discontiguous saved segments (DCSS) device driver provides disk-like

fixed block access to z/VM discontiguous saved segments.

Features

The DCSS device driver facilitates:

v Initializing and updating ext2 compatible file system images in z/VM saved

segments for use with the xip2 file system.

v Implementing a shared read-write RAM disk for Linux guests, for example, for a

file system that can be shared among multiple Linux images that run as guest

systems under the same z/VM.

What you should know about DCSS

This section provides information on the DCSS device names and nodes.

Important

DCSSs occupy spool space. Be sure that you have enough spool space

available (multiple times the DCSS size).

DCSS naming scheme

When the DCSS device driver is loaded, it dynamically allocates a major number to

DCSS devices. A different major number might be used when the device driver is

reloaded, for example when Linux is rebooted. Check the entry for “dcssblk” in

/proc/devices to find out which major number is used for your DCSSs.

The standard device names are of the form dcssblk<n>, where <n> is the

corresponding minor number. The first DCSS device that is added is assigned the

name dcssblk0, the second dcssblk1, and so on. When a DCSS is removed, its

device name and corresponding minor number are free and can be reassigned. A

DCSS that is added always receives the lowest free minor number.

Creating device nodes

User space programs access DCSS devices by device nodes. Your distribution

might create these device nodes for you or provide udev to create them (see

“Device nodes provided by udev” on page 4).

If no device nodes are created for you, you need to create them yourself, for

example, with the mknod command. Refer to the mknod man page for further

details.

Tip: Use the device names to construct your nodes (see “DCSS naming scheme”).

Example: Defining standard DCSS nodes

To create standard DCSS device nodes of the form /dev/<device_name> issue

commands of this form:

© Copyright IBM Corp. 2000, 2006 157

mknod /dev/dcssblk0 b <major> 0

mknod /dev/dcssblk1 b <major> 1

mknod /dev/dcssblk2 b <major> 2

...

Further information

v For information on DCSS see z/VM Saved Segments Planning and

Administration, SC24-6056

v For related z/VM information see CP Command and Utility Reference,

SC24-6008.

v For an example of how the xip2 file system and DCSS can be used see How to

use Execute-in-Place Technology with Linux on z/VM on developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

Building a kernel with the DCSS device driver

 This section is intended for those who want to build their own kernel.

To build a kernel with DCSS support you need to select option CONFIG_DCSSBLK

in the configuration menu:

 The DCSS support is available as a module, dcssblk, or built-in.

Setting up the DCSS device driver

Kernel parameters

This section describes how to configure the DCSS device driver if the DCSS block

device support has been compiled into the kernel. You configure the device driver

by adding parameters to the kernel parameter line.

Use the dcssblk.segments kernel parameter to load one or more DCSSs during the

boot process (for example, for use as swap devices).

DCSS kernel parameter syntax

��

dcssblk.segments=

�

 ,

<dcss>

(local)

��

Block devices

 DCSSBLK support (CONFIG_DCSSBLK)

Figure 37. DCSS kernel configuration menu option

158 Device Drivers, Features, and Commands - November, 2006

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.shtml

where <dcss> specifies the name of a DCSS and (local) sets the access mode to

exclusive-writable after the DCSS has been loaded. The specification for <dcss> is

converted from ASCII to uppercase EBCDIC.

Example

The following parameter in the kernel parameter line loads three DCSSs during the

boot process: DCSS1, DCSS2, and DCSS3. DCSS2 is accessed in

exclusive-writable mode and can be included in /etc/fstab and used as a swap

device.

dcssblk.segments=dcss1,dcss2(local),dcss3

Module parameters

This section describes how to load and configure the DCSS device driver if the

DCSS block device support has been compiled as a separate module.

Load the DCSS block device driver with modprobe or insmod. Use the segments

module parameter to load one or more DCSSs when the DCSS device driver is

loaded.

DCSS module parameter syntax

��

insmod

modprobe

dcssblk

segments=

�

 ,

<dcss>

(local)

��

where <dcss> specifies the name of a DCSS and (local) sets the access mode to

exclusive-writable after the DCSS has been loaded. The specification for <dcss> is

converted from ASCII to uppercase EBCDIC.

Example

The following command loads the DCSS device driver and three DCSSs: DCSS1,

DCSS2, and DCSS3. DCSS2 is accessed in exclusive-writable mode.

modprobe dcssblk segments=dcss1,dcss2(local),dcss3

Working with the DCSS device driver

This section describes typical tasks that you need to perform when working with

DCSS devices:

v Adding a DCSS

v Finding the minor number for a DCSS

v Setting the access mode

v Saving an updated DCSS

v Removing a DCSS

Adding a DCSS

Before you start:

v You need to have set up a DCSS on z/VM and know the name assigned to the

DCSS on z/VM.

Chapter 11. z/VM DCSS device driver 159

v You must have set the mem kernel parameter to cover the upper limit of the

DCSS.

v If you use the watchdog device driver, turn off the watchdog before adding or

saving a DCSS. Adding or saving a DCSS may result in a watchdog timeout, if it

is active.

Restrictions:

v You cannot concurrently access overlapping DCSSs.

v You cannot access a DCSS that overlaps with your guest virtual storage.

To add a DCSS device write the name of the DCSS to /sys/devices/dcssblk/add.

Issue a command of this form:

echo <name> > /sys/devices/dcssblk/add

where name is the name of the DCSS as defined to z/VM.

Example

To add a DCSS called “MYDCSS” issue:

echo MYDCSS > /sys/devices/dcssblk/add

Finding the minor number for a DCSS

When you add a DCSS, a minor number is assigned to it. Unless you use

dynamically created device nodes as provided by udev, you might need to know the

minor device number that has been assigned to the DCSS (see “DCSS naming

scheme” on page 157).

When you add a DCSS, a directory of this form is created in sysfs:

v /sys/devices/dcssblk/<name>

where <name> is the name of the DCSS.

This directory contains a symbolic link, block, that helps you to find out the standard

device name and minor number. The link is of the form ../../../block/dcssblk<n>,

where dcssblk<n> is the device name and <n> is the minor number.

Example

To find out the minor number assigned to a DCSS “MYDCSS” issue:

readlink /sys/devices/dcssblk/MYDCSS/block

../../../block/dcssblk0

In the example, the assigned minor number is “0”.

Setting the access mode

You might want to access the DCSS with write access to change the DCSS

content. There are two possible write access modes to the DCSS:

shared

In the shared mode, changes to the DCSS are immediately visible to all

guests that access the DCSS. Shared is the default.

160 Device Drivers, Features, and Commands - November, 2006

Note: Writing to a shared DCSS bears the same risks as writing to a

shared disk.

exclusive-writable

In the exclusive-writable mode you write to a private copy of the DCSS. The

private copy is writable, even if the original DCSS is read-only. The changes

in your private copy are invisible to other guests until you save the changes

(see “Saving an updated DCSS”).

 After saving the changes all guests that open the DCSS access the

changed copy. z/VM retains a copy of the original DCSS for those guests

that continue accessing it, until the last guest has stopped using it.

For either access mode the changes are volatile until they are saved (see “Saving

an updated DCSS”).

Set the access mode before you mount the DCSS. To set the access mode to

exclusive-writable set the DCSS device’s shared attribute to “0”. To reset the access

mode to shared set the DCSS device’s shared attribute to “1”.

Issue a command of this form:

echo <flag> > /sys/devices/dcssblk/<name>/shared

where <name> is the name of the DCSS.

You can read the shared attribute to find out the current access mode.

Example

To find out the current access mode of a DCSS “MYDCSS”:

cat /sys/devices/dcssblk/MYDCSS/shared

1

“1” means that the current access mode is shared. To set the access mode to

exclusive-writable issue:

echo 0 > /sys/devices/dcssblk/MYDCSS/shared

Saving an updated DCSS

If you use the watchdog device driver, turn off the watchdog before adding or

saving a DCSS. Adding or saving a DCSS may result in a watchdog timeout, if it is

active.

Do not place save requests before you have accessed the DCSS. To place a save

request for saving changes to a DCSS permanently on the spool disk write “1” to

the DCSS device’s save attribute.

Issue a command of this form:

echo 1 > /sys/devices/dcssblk/<name>/save

where <name> is the name of the DCSS.

Chapter 11. z/VM DCSS device driver 161

Saving is delayed until you close the device.

You can check if a save request is waiting to be performed by reading the contents

of the save attribute.

You can cancel a save request by writing “0” to the save attribute.

Example

To check if a save request exists for a DCSS “MYDCSS”:

cat /sys/devices/dcssblk/MYDCSS/save

0

The “0” means that no save request exists. To place a save request issue:

echo 1 > /sys/devices/dcssblk/MYDCSS/save

To purge an existing save request issue:

echo 0 > /sys/devices/dcssblk/MYDCSS/save

Removing a DCSS

Before you start: A DCSS device can only be removed when it is not in use.

To remove a DCSS device write the name of the DCSS to /sys/devices/dcssblk/
remove. Issue a command of this form:

echo <name> > /sys/devices/dcssblk/remove

where <name> is the name of the DCSS.

If you have created your own device nodes, you can keep the nodes for reuse. Be

aware that the major number of the device might change when you unload and

reload the DCSS device driver. When the major number of your device has

changed, existing nodes become unusable.

Example

To remove a DCSS “MYDCSS” issue:

echo MYDCSS > /sys/devices/dcssblk/remove

Changing the contents of a DCSS

The following scenario describes how you can use the DCSS block device driver to

change the contents of a DCSS.

Assumptions:

v Our Linux instance runs as a VM guest with class E user privileges.

v A DCSS has been set up and made accessible to our Linux guest.

v The DCSS does not overlap with our guest’s main storage and the mem

parameter has been set to cover the DCSS’s upper limit.

v There is only a single DCSS named “MYDCSS”.

162 Device Drivers, Features, and Commands - November, 2006

v The DCSS block device driver has been set up and is ready to be used.

Perform the following steps to change the contents of a DCSS:

1. Access the DCSS by adding it to the block device driver.

echo MYDCSS > /sys/devices/dcssblk/add

2. Ensure that there is a device node for the DCSS block device. If it is not

created for you, for example by udev, create it yourself.

v Find out the major number used for DCSS block devices. Read

/proc/devices:

cat /proc/devices

...

Block devices

...

254 dcssblk

...

The major number if our example is 254.

v Find out the minor number used for MYDCSS. If MYDCSS is the first DCSS

that has been added the minor is 0. To be sure you can read a symbolic link

that is created when the DCSS is added.

readlink /sys/devices/dcssblk/MYDCSS/block

../../../block/dcssblk0

The trailing 0 in the standard device name dcssblk0 indicates that the minor

number is, indeed, 0.

v Create the node with the mknod command:

mknod /dev/dcssblk0 b 254 0

3. Set the access mode to exclusive-write.

echo 1 > /sys/devices/dcssblk/MYDCSS/shared

4. Mount the file system in the DCSS on a spare mount point.

Example:

mount /dev/dcssblk0 /mnt

5. Update the data in the DCSS.

6. Create a save request to save the changes.

echo 1 > /sys/devices/dcssblk/MYDCSS/save

7. Unmount the file system.

umount /mnt

The changes to the DCSS are now saved. When the last VM guest stops

accessing the old version of the DCSS the old version is discarded. Each guest

that opens the DCSS accesses the updated copy.

8. Remove the device.

Chapter 11. z/VM DCSS device driver 163

|

echo MYDCSS > /sys/devices/dcssblk/remove

9. If you have created your own device node, you can optionally clean it up.

rm -f /dev/dcssblk0

164 Device Drivers, Features, and Commands - November, 2006

|

|
||

Chapter 12. z/VM *MONITOR record reader device driver

The z/VM *MONITOR record reader device driver gives monitoring software on

Linux access to z/VM guest data.

z/VM uses the z/VM monitor system service (*MONITOR) to collect monitor records

from agents on its guests. z/VM writes the records to a discontiguous saved

segment (DCSS). The z/VM *MONITOR record reader device driver uses IUCV to

connect to *MONITOR and accesses the DCSS as a character device.

Features

The z/VM *MONITOR record device driver supports the following devices and

functions:

v Read access to the z/VM *MONITOR DCSS.

v Reading *MONITOR records for z/VM 4.4 and later.

v Access to *MONITOR records as described on: ibm.com/vm/pubs/ctlblk.html

v Access to the records provided by the Linux monitor stream (see Chapter 13,

“Linux monitor stream support for z/VM,” on page 173).

What you should know about the z/VM *MONITOR record device driver

The data that is collected by *MONITOR depends on how you have set up the

service. The z/VM *MONITOR record device driver only reads data from the monitor

DCSS; it does not control the system service.

z/VM only supports a single monitor DCSS. All monitoring software that requires

monitor records from z/VM uses the same DCSS to read *MONITOR data. Usually,

a DCSS called ″MONDCSS″ is already defined and used by existing monitoring

software. If this is the case , you must also use MONDCSS. See “Making the DCSS

addressable for your Linux guest” on page 166 for information on how to check if

MONDCSS exists.

Further information

v Refer to Saved Segments Planning and Administration, SC24-6116 for general

information on DCSSs.

v Refer to z/VM Performance, SC24-6109 for information on how to create a

monitor DCSS.

v Refer to CP Command and Utility Reference, SC24-6081 for information on the

CP commands used in the context of DCSSs and for controlling the z/VM

monitor system service.

v For the layout of the monitor records visit ibm.com/vm/pubs/mon440/index.html

and refer to Chapter 13, “Linux monitor stream support for z/VM,” on page 173.

© Copyright IBM Corp. 2000, 2006 165

http://www.vm.ibm.com/pubs/ctlblk.html
http://www.ibm.com/vm/pubs/mon440/index.html

Building a kernel with the z/VM *MONITOR record device driver

 This section is intended for those who want to build their own kernel.

You need to select the kernel configuration option CONFIG_MONREADER to be

able to access the z/VM monitor DCSS.

 The z/VM *MONITOR record reader device driver can be compiled into the kernel

or as a separate module, monreader.

You also need IUCV support.

Setting up the z/VM *MONITOR record reader device driver

This section describes how to set up a Linux guest for accessing an existing

monitor DCSS with the z/VM *MONITOR record reader device driver.

Set up the monitor system service and the monitor DCSS on z/VM is beyond the

scope of this book. See “Further information” on page 165 for documentation on the

monitor system service, DCSS, and related CP commands.

Before you start: Some of the CP commands you need to use for setting up the

z/VM *MONITOR record reader device driver require class E authorization.

Providing the required USER DIRECT entries for your z/VM guest

The z/VM guest where your Linux instance is to run must be permitted to establish

an IUCV connection to the z/VM monitor system service. Ensure that the guest’s

entry in the USER DIRECT file includes the statement:

IUCV *MONITOR

If the DCSS is restricted you also need the statement:

NAMESAVE <dcss>

where <dcss> is the name of the DCSS that is used for the monitor records. You

can find out the name of an existing monitor DCSS by issuing the following

command from a CMS session with privilege class E:

#cp q monitor

Making the DCSS addressable for your Linux guest

You need to know the start and end address of the DCSS. You can find out this

information by issuing the following CP command from a CMS session with

privilege class E:

#cp q nss map

Character device drivers --->

 API for reading z/VM monitor service records (CONFIG_MONREADER)

Figure 38. z/VM *MONITOR record kernel configuration menu options

166 Device Drivers, Features, and Commands - November, 2006

the output gives you the start and end addresses of all defined DCSSs in units of 4

kilobyte pages:

00: FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP

...

00: 0011 MONDCSS CPDCSS N/A 09000 097FF SC R 00003 N/A N/A

...

Your guest storage must not overlap with the address range of the DCSS.

Depending on the start and end address of your DCSS you can do either:

v Define the guest storage as two or more discontiguous storage extents such that

a storage gap covers the entire DCSS address range

v Enable Linux to handle real memory addresses that are beyond the guest

storage (considered as real memory by Linux) to cover a DCSS that is located

above the guest storage

Defining the guest storage with storage gaps

From a CMS session, use the DEF STORE command to define your guest storage

as discontiguous storage extents. Ensure that the storage gap between the extents

covers your entire DCSS. Issue a command of this form:

DEF STOR CONFIG 0.<storage_gap_beginn> <storage_gap_end>.<storage above gap>

where:

<storage_gap_begin>

is the lower limit of the storage gap. The lower limit must be at least 64 MB and

at or below the lower limit of the DCSS.

<storage_gap_end>

is the upper limit of the storage gap. The upper limit must be above the upper

limit of the DCSS.

<storage above gap>

is the amount of storage above the storage gap. The total guest storage is

<storage_gap_beginn> + <storage above gap>.

All values can be suffixed with M to provide the values in megabyte. Refer to CP

Command and Utility Reference, SC24-6081 for more information on the DEF

STORE command.

Example: To make a DCSS that starts at 144 MB and ends at 152 MB accessible

to a z/VM guest with 256 MB guest storage:

DEF STORE CONFIG 0.140M 160M.116M

The storage gap in the example ranges from 140 MB to 160 MB and thus covers

the entire DCSS range. The total guest storage is 140 MB + 116 MB = 256 MB.

Extending the Linux address range

If your entire DCSS address range is above the guest storage you can use the

mem= Linux kernel parameter to make the DCSS accessible to the Linux guest.

Add the following to the kernel parameter line:

mem=<address>

where <address> is an address at or above the upper limit of the DCSS. Upper can

be in kilobyte or megabyte and must be suffixed with K or M, accordingly.

Chapter 12. z/VM *MONITOR record reader device driver 167

Example: To make a DCSS that starts at 144 MB and ends at 152 MB accessible

to a z/VM guest with 128 MB guest storage:

mem=160M

For a guest with guest storage 256 MB you would not be able to use this method

because then the guest storage would overlap with the DCSS.

Specifying the monitor DCSS name

By default, the z/VM *MONITOR record reader device driver assumes that the

monitor DCSS on z/VM is called MONDCSS. If you want to use a different DCSS

name you need to specify it. Proceed according to your distribution:

v If your device driver has been compiled into the kernel, specify the DCSS name

as a kernel parameter.

v If your device driver has been compiled as a separate module, specify the DCSS

name as a module parameter when you load the module.

Kernel parameter

This section describes how you can specify a DCSS name if the z/VM *MONITOR

record reader device driver has been compiled into the kernel.

You can specify a DCSS name by adding the mondcss parameter to the kernel

parameter line.

z/VM *MONITOR record reader device driver kernel parameter syntax

��
 monreader.mondcss=MONDCSS

monreader.mondcss=<dcss>

��

where <dcss> is the name of the DCSS that z/VM uses for the monitor records.

Example: To specify MYDCSS as the DCSS name add the following parameter to

the kernel parameter line:

mondcss=MYDCSS

The value is automatically converted to upper case.

Module parameter

This section describes how to load the z/VM *MONITOR record reader device driver

if it has been compiled as separate module. It also tells you how to specify a DCSS

name, if applicable.

Load the z/VM *MONITOR record reader device driver module with modprobe to

assure that any other required modules are also loaded. You need IUCV support if

you want to use the z/VM *MONITOR record reader device driver.

168 Device Drivers, Features, and Commands - November, 2006

z/VM *MONITOR record reader device driver module parameter syntax

��

modprobe

monreader
 mondcss=MONDCSS

mondcss=<dcss>

��

where <dcss> is the name of the DCSS that z/VM uses for the monitor records.

Example: To load the z/VM *MONITOR record device driver module and specify

MYDCSS as the DCSS issue:

modprobe monreader mondcss=mydcss

Assuring that the required device node exists

You need a device node for a miscellaneous character device to access the monitor

DCSS. Your distribution might create this device node for you (for example, by

using udev). To find out if there is already a device node issue:

find / -name monreader

If there is no device node, you need to create one. To find out the major and minor

number for your monitor device read the dev attribute of the device’s representation

in sysfs:

cat /sys/class/misc/monreader/dev

The value of the dev attribute is of the form <major>:<minor>.

To create issue a command of the form:

mknod <node> c <major> <minor>

where <node> is your device node.

Example:

To create a device node /dev/monreader:

cat /sys/class/misc/monreader/dev

10:63

mknod /dev/monreader c 10 63

In the example, the major number was 10 and the minor 63.

Working with the z/VM *MONITOR record device driver

This section describes how to work with the z/VM *MONITOR record reader device

driver.

v Opening and closing the character device

v Reading monitor records

Chapter 12. z/VM *MONITOR record reader device driver 169

Opening and closing the character device

Only one user can open the character device at any one time. Once you have

opened the device you need to close it to make it accessible to other users.

The open function can fail (return a negative value) with one of the following values

for errno:

EBUSY

The device has already been opened by another user.

EIO No IUCV connection to the z/VM monitor system service could be

established. An error message with an IPUSER SEVER code is printed into

syslog. Refer to z/VM Performance for details on the codes.

Once the device is opened, incoming messages are accepted and account for the

message limit. If you keep the device open indefinitely, expect to eventually reach

the message limit (with error code EOVERFLOW).

Reading monitor records

There are two alternative methods for reading:

v Non-blocking read in conjunction with polling

v Blocking read without polling

Reading from the device provides a 12-byte monitor control element (MCE),

followed by a set of one or more contiguous monitor records (similar to the output

of the CMS utility MONWRITE without the 4K control blocks). The MCE contains

information on:

v The type of the following record set (sample/event data)

v The monitor domains contained within it

v The start and end address of the record set in the monitor DCSS

The start and end address can be used to determine the size of the record set, the

end address is the address of the last byte of data. The start address is needed to

handle ″end-of-frame″ records correctly (domain 1, record 13), that is, it can be

used to determine the record start offset relative to a 4K page (frame) boundary.

See ″Appendix A: *MONITOR″ in z/VM Performance for a description of the monitor

control element layout. The layout of the monitor records can be found on:

ibm.com/vm/pubs/ctlblk.html

The layout of the data stream provided by the monreader device is as follows:

...

<0 byte read>

<first MCE> \

<first set of records> |...

... |- data set

<last MCE> |

<last set of records> /

<0 byte read>

...

There may be more than one combination of MCE and a corresponding record set

within one data set. The end of each data set is indicated by a successful read with

a return value of 0 (0 byte read). Received data is not to be considered valid unless

170 Device Drivers, Features, and Commands - November, 2006

http://www.vm.ibm.com/pubs/ctlblk.html

a complete record set is read successfully, including the closing 0-Byte read. You

are advised to always read the complete set into a user space buffer before

processing the data.

When designing a buffer, allow for record sizes up to the size of the entire monitor

DCSS, or use dynamic memory allocation. The size of the monitor DCSS will be

printed into syslog after loading the module. You can also use the (Class E

privileged) CP command Q NSS MAP to list all available segments and information

about them (see “Making the DCSS addressable for your Linux guest” on page

166).

Error conditions are indicated by returning a negative value for the number of bytes

read. In case of an error condition, the errno variable can be:

EIO Reply failed. All data read since the last successful read with 0 size is not

valid. Data will be missing. The application must decide whether to continue

reading subsequent data or to exit.

EFAULT

Copy to user failed. All data read since the last successful read with 0 size

is not valid. Data will be missing. The application must decide whether to

continue reading subsequent data or to exit.

EAGAIN

Occurs on a non-blocking read if there is no data available at the moment.

There is no data missing or damaged, retry or use polling for non-blocking

reads.

EOVERFLOW

Message limit reached. The data read since the last successful read with 0

size is valid but subsequent records might be missing.The application must

decide whether to continue reading subsequent data or to exit.

Chapter 12. z/VM *MONITOR record reader device driver 171

172 Device Drivers, Features, and Commands - November, 2006

Chapter 13. Linux monitor stream support for z/VM

z/VM is a convenient point for collecting VM guest performance data and statistics

for an entire server farm. Linux guests can export such data to z/VM by means of

“APPLDATA monitor records”. z/VM regularly collects these records. The records

are then available to z/VM performance monitoring tools.

A virtual CPU timer on the Linux guest to be monitored controls when data is

collected. The timer only accounts for busy time to avoid unnecessarily waking up

an idle guest. The monitor stream support comprises several modules. A base

module provides an intra-kernel interface and the timer function. The intra-kernel

interface is used by data gathering modules that collect actual data and determine

the layout of a corresponding APPLDATA monitor record (see “APPLDATA monitor

record layout” on page 176).

Building a kernel that is enabled for monitoring

 This section is intended for those who want to build their own kernel.

Figure 39 summarizes the kernel configuration menu options that are relevant to the

Linux monitor stream support for z/VM:

CONFIG_VIRT_TIMER

This option is a prerequisite for the Linux monitor stream support.

CONFIG_APPLDATA_BASE

This option provides the base component for the Linux monitor stream

support.

CONFIG_APPLDATA_MEM

This option provides monitoring for memory related data. It can be compiled

into the kernel or as a separate module, appldata_mem.

CONFIG_APPLDATA_OS

This option provides monitoring for operating system related data, for

example, CPU usage. It can be compiled into the kernel or as a separate

module, appldata_os.

CONFIG_APPLDATA_NET_SUM

This option provides monitoring for network related data. It can be compiled

into the kernel or as a separate module, appldata_net_sum.

Base setup

 Virtual CPU timer support (CONFIG_VIRT_TIMER)

 └─Linux - VM Monitor Stream, base infrastructure (CONFIG_APPLDATA_BASE)

 ├─Monitor memory management statistics (CONFIG_APPLDATA_MEM)

 ├─Monitor OS statistics (CONFIG_APPLDATA_OS)

 └─Monitor overall network statistics (CONFIG_APPLDATA_NET_SUM)

Figure 39. Linux monitor stream kernel configuration menu options

© Copyright IBM Corp. 2000, 2006 173

Setting up the monitor stream support

There are no kernel or module parameters for the monitor stream support. This

section describes how to load those components of the support that have been

compiled as separate modules and how to set up your VM guest for the monitor

stream support.

Loading data gathering modules

One or more of the data gathering components might have been compiled as

separate modules. Use the insmod or modprobe command to load any required

modules. Refer to the respective man pages command details.

Monitor stream support module parameter syntax

�� insmod

modprobe
 appldata_mem

appldata_os

appldata_net_sum

 ��

where appldata_mem, appldata_os, and appldata_net_sum are the modules for

gathering memory related data, operating system related data, and network related

data.

Enabling your VM guest for data gathering

To enable you Linux guest for data gathering ensure that the Linux guest directory

includes the option APPLMON.

Working with the monitor stream support

You control the monitor stream support through the procfs. You can set the timer

interval and switch on or off data collection. APPLDATA monitor records are

produced if both a particular data gathering module and the monitoring support in

general are switched on.

Switching on or off the monitoring support

You switch on or off the monitoring support by writing “1” (on) or “0” (off) to

/proc/sys/appldata/timer.

To read the current setting issue:

cat /proc/sys/appldata/timer

To switch on the monitoring support issue:

echo 1 > /proc/sys/appldata/timer

To switch off the monitoring support issue:

echo 0 > /proc/sys/appldata/timer

174 Device Drivers, Features, and Commands - November, 2006

Activating or deactivating individual data gathering modules

You can activate or deactivate the data gathering modules individually. Each data

gathering module has a procfs entry that contains a value “1” if the module is active

and “0” if the module is inactive. The entries are:

 /proc/sys/appldata/mem for the memory data gathering module

 /proc/sys/appldata/os for the CPU data gathering module

 /proc/sys/appldata/net_sum for the net data gathering module

To check if a module is active look at the content of the corresponding procfs entry.

To activate a data gathering module write “1” to the corresponding procfs entry. To

deactivate a data gathering module write “0” to the corresponding procfs entry.

Issue a command of this form:

echo <flag> > /proc/sys/appldata/<data_type>

where <data_type> is one of mem, os, or net_sum.

Note: An active data gathering module produces APPLDATA monitor records only if

the monitoring support is switched on (see “Switching on or off the

monitoring support” on page 174).

Example

To find out if memory data gathering is active issue:

cat /proc/sys/appldata/mem

0

In the example, memory data gathering is off. To activate memory data gathering

issue:

echo 1 > /proc/sys/appldata/mem

To deactivate the memory data gathering module issue:

echo 0 > /proc/sys/appldata/mem

Setting the sampling interval

You can set the time that lapses between consecutive data samples. The time you

set is measured by the virtual CPU timer. Because the virtual timer slows down as

the guest idles, the time sampling interval in real time can be considerably longer

than the value you set.

The value in /proc/sys/appldata/interval is the sample interval in milliseconds.

The default sample interval is 10 000 ms. To read the current value issue:

cat /proc/sys/appldata/interval

To set the sample interval to a different value write the new value (in milliseconds)

to /proc/sys/appldata/interval. Issue a command of this form:

Chapter 13. Linux monitor stream support for z/VM 175

|

echo <interval> > /proc/sys/appldata/interval

where <interval> is the new sample interval in milliseconds. Valid input must be

greater than 0 and less than 2³¹ - 1. Input values greater than 2³¹ - 1 produce

unpredictable results.

Example

To set the sampling interval to 20 s (20000 ms) issue:

echo 20000 > /proc/sys/appldata/interval

APPLDATA monitor record layout

This section describes the layout of the APPLDATA monitor records that can be

provided to z/VM. Each of the modules that can be installed with the base module

corresponds to a type of record:

v Memory data (see Table 21 on page 177)

v Processor data (see Table 22 on page 178)

v Networking (see Table 23 on page 179)

z/VM can identify the records by their unique product ID. The product ID is an

EBCDIC string of this form: “LINUXKRNL<record ID>260100”. The <record ID> is

treated as a byte value, not a string.

The records contain data of the following types:

u32 unsigned 4 byte integer

u64 unsigned 8 byte integer

Important

On 31-bit Linux systems, the u64 values are actually only 32-bit values. That

is, the lower 32 bit wrap around like 32-bit counters and the upper 32 bit are

always zero.

176 Device Drivers, Features, and Commands - November, 2006

|
|
|

|

Table 21. APPLDATA_MEM_DATA record (Record ID 0x01)

Offset Type Name Description

Decimal Hex

0 0x0 u64 timestamp TOD timestamp generated on the Linux side

after record update

8 0x8 u32 sync_count_1 After VM collected the record data,

sync_count_1 and sync_count_2 should be

the same. Otherwise, the record has been

updated on the Linux side while VM was

collecting the data. As a result, the data

might be inconsistent.

12 0xC u32 sync_count_2

16 0x10 u64 pgpgin Data read from disk (in KB)

24 0x18 u64 pgpgout Data written to disk (in KB)

32 0x20 u64 pswpin Pages swapped in

40 0x28 u64 pswpout Pages swapped out

48 0x30 u64 sharedram Shared RAM in KB, currently set to 0 by

Linux kernel (2.4 and 2.6)

56 0x38 u64 totalram Total usable main memory size in KB

64 0x40 u64 freeram Available memory size in KB

72 0x48 u64 totalhigh Total high memory size in KB

80 0x50 u64 freehigh Available high memory size in KB

88 0x58 u64 bufferram Memory reserved for buffers, free cache in

KB

96 0x60 u64 cached Size of used cache, without buffers in KB

104 0x68 u64 totalswap Total swap space size in KB

112 0x70 u64 freeswap Free swap space in KB

120 0x78 u64 pgalloc Page allocations

128 0x80 u64 pgfault Page faults (major+minor)

136 0x88 u64 pgmajfault Page faults (major only)

Chapter 13. Linux monitor stream support for z/VM 177

Table 22. APPLDATA_OS_DATA record (Record ID 0x02)

Offset Type

(size)

Name Description

Decimal Hex

0 0x0 u64 timestamp TOD timestamp generated on the Linux side

after record update.

8 0x8 u32 sync_count_1 After VM collected the record data,

sync_count_1 and sync_count_2 should be

the same. Otherwise, the record has been

updated on the Linux side while VM was

collecting the data. As a result, the data

might be inconsistent.

12 0xC u32 sync_count_2

16 0x10 u32 nr_cpus Number of virtual CPUs.

20 0x14 u32 per_cpu_size Size of the per_cpu_data for each CPU (=

36).

24 0x18 u32 cpu_offset Offset of the first per_cpu_data (= 52).

28 0x1C u32 nr_running Number of runnable threads.

32 0x20 u32 nr_threads Number of threads.

36 0x24 3 ×

u32

avenrun[3] Average number of running processes

during the last 1 (1st value), 5 (2nd value)

and 15 (3rd value) minutes. These values

are ″fake fix-point″, each composed of 10

bits integer and 11 bits fractional part. See

note 1 at the end of this table.

48 0x30 u32 nr_iowait Number of blocked threads (waiting for I/O).

52 0x34 See

note 2.

per_cpu_data Time spent in user, kernel, idle, nice, etc for

every CPU. See note 3 at the end of this

table.

52 0x34 u32 per_cpu_user Timer ticks spent in user mode.

56 0x38 u32 per_cpu_nice Timer ticks spent with modified priority.

60 0x3C u32 per_cpu_system Timer ticks spent in kernel mode.

64 0x40 u32 per_cpu_idle Timer ticks spent in idle mode.

68 0x44 u32 per_cpu_irq Timer ticks spent in interrupts.

72 0x48 u32 per_cpu_softirq Timer ticks spent in softirqs.

76 0x4C u32 per_cpu_iowait Timer ticks spent while waiting for I/O.

80 0x50 u32 per_cpu_steal Timer ticks ″stolen″ by hypervisor.

84 0x54 u32 cpu_id The number of this CPU.

Notes:

1. The following C-Macros are used inside Linux to transform these into values with two

decimal places:

#define LOAD_INT(x) ((x) >> 11)

#define LOAD_FRAC(x) LOAD_INT(((x) & ((1 << 11) - 1)) * 100)

2. nr_cpus * per_cpu_size

3. per_cpu_user through cpu_id are repeated for each CPU

178 Device Drivers, Features, and Commands - November, 2006

||

||
|
||

||

|||||
|

|||||
|
|
|
|
|

||||

|||||

|||||
|

|||||

|||||

|||||

|||
|
||
|
|
|
|
|

|||||

|||
|
||
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|

|
|

|
|

|

|
|

Table 23. APPLDATA_NET_SUM_DATA record (Record ID 0x03)

Offset Type Name Description

Decimal Hex

0 0x0 u64 timestamp TOD timestamp generated on the Linux side

after record update

8 0x8 u32 sync_count_1 After VM collected the record data,

sync_count_1 and sync_count_2 should be

the same. Otherwise, the record has been

updated on the Linux side while VM was

collecting the data. As a result, the data

might be inconsistent.

12 0xC u32 sync_count_2

16 0x10 u32 nr_interfaces Number of interfaces being monitored

20 0x14 u32 padding Unused. The next value is 64-bit aligned, so

these 4 byte would be padded out by

compiler

24 0x18 u64 rx_packets Total packets received

32 0x20 u64 tx_packets Total packets transmitted

40 0x28 u64 rx_bytes Total bytes received

48 0x30 u64 tx_bytes Total bytes transmitted

56 0x38 u64 rx_errors Number of bad packets received

64 0x40 u64 tx_errors Number of packet transmit problems

72 0x48 u64 rx_dropped Number of incoming packets dropped

because of insufficient space in Linux

buffers

80 0x50 u64 tx_dropped Number of outgoing packets dropped

because of insufficient space in Linux

buffers

88 0x58 u64 collisions Number of collisions while transmitting

Programming interfaces

The monitor stream support base module exports two functions:

v appldata _register_ops() to register data gathering modules

v appldata_unregister_ops() to undo the registration of data gathering modules

Both functions receive a pointer to a struct appldata_ops as parameter. Additional

data gathering modules that want to plug into the base module must provide this

data structure. You can find the definition of the structure and the functions in

arch/s390/appldata/appldata.h in the Linux source tree.

See “APPLDATA monitor record layout” on page 176 for an example of APPLDATA

data records that are to be sent to z/VM.

Tip: include the timestamp, sync_count_1, and sync_count_2 fields at the beginning

of the record as shown for the existing APPLDATA record formats.

Chapter 13. Linux monitor stream support for z/VM 179

180 Device Drivers, Features, and Commands - November, 2006

Chapter 14. Monitor stream application support

The monitor stream application support provides a programmatic interface to allow

applications to easily write application-specific monitor data (APPLDATA) to the

z/VM monitor stream. This character device enables writing of z/VM monitor

APPLDATA records.

Features

The monitor stream application support provides the following functions:

v An interface to the z/VM monitor stream.

v A means of writing z/VM monitor APPLDATA records.

What you should know about monitor stream application support

The monitor stream application support interacts with the z/VM monitor APPLDATA

facilities for performance monitoring. A better understanding of these z/VM facilities

might help when using this device driver.

Further information

v Refer to Saved Segments Planning and Administration, SC24-6116 for general

information on DCSSs.

v Refer to z/VM CP Programming Services, SC24-6084 for information on the

DIAG x’DC’ instruction.

v Refer to CP Command and Utility Reference, SC24-6081 for information on the

CP commands.

v Refer to z/VM Performance, SC24-6109 for information on monitor APPLDATA.

Building a kernel with monitor stream application support

 This section is intended for those who want to build their own kernel.

To build a kernel with monitor stream application support you need to select option

CONFIG_MONWRITER in the configuration menu:

 The monitor stream application support can be compiled into the kernel or as a

separate module, MONWRITER.

Setting up the monitor stream application support

This section describes the parameters that you can use to configure the monitor

stream application support.

Character device drivers

 API for writing z/VM monitor service records (CONFIG_MONWRITER)

© Copyright IBM Corp. 2000, 2006 181

|
|

|
|

|

|

|
|
|
|

|
|

|

|

|

|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

Kernel parameters

This section describes how to configure the monitor stream application support if it

has been compiled into the kernel. You configure the device driver by adding

parameters to the kernel parameter line.

Monitor stream application support kernel parameter syntax

��
 255

monwriter.max_bufs=

<NUMBUFS>

��

where NUMBUFS is the maximum number of monitor sample and configuration

data buffers that can exist in the Linux guest at one time. The default is 255.

Module parameters

This section describes how to load and configure those components that have been

compiled as separate modules.

Monitor stream application support module parameter syntax

��
 255

insmod

monwriter

max_bufs=

modprobe

<NUMBUFS>

��

where NUMBUFS is the maximum number of monitor sample and configuration

data buffers that can exist in the Linux guest at one time. The default is 255.

Example

If you have compiled the monitor stream application support as a separate module,

you need to load it before you can work with it. To load the monwriter module and

set the maximum number of buffers to NUMBUFS., use the following command:

modprobe monwriter max_bufs=NUMBUFS

Setting up the user

Before you begin:

v z/VM version 4.4 or later is required.

Set these options in the CP directory entry of the virtual machine in which the

application using this device driver will run:

v OPTION APPLMON

Issue the following CP commands in order to have CP collect the respective types

of monitor data:

v MONITOR SAMPLE ENABLE APPLDATA ALL

v MONITOR EVENT ENABLE APPLDATA ALL

182 Device Drivers, Features, and Commands - November, 2006

|

|
|
|
|

|

||||||||||||||||||

||||

|
|

|

|
|
|

|

||||||||||||||||||||||||||||

||||

|
|

|
|
|
|

|
||

|

|

|

|
|

|

|
|

|

|

You can either log in to the VM console in order to issue the CP commands (in

which case the commands would have to be preceded by #CP), or use the vmcp

command for issuing CP commands from your Linux guest.

Refer to CP Command and Utility Reference, SC24-6081 for information on the CP

MONITOR command.

Working with the monitor stream application support

This device driver writes to the z/VM monitor stream through the z/VM CP

instruction DIAG X'DC'. See z/VM CP Programming Services for more information

on the DIAG X'DC' instruction and the different monitor record types (sample,

config, event).

The application writes monitor data by passing a monwrite_hdr followed by monitor

data (except in the case of the STOP function, which requires no monitor data). The

monwrite_hdr, as described in monwriter.h, is filled in by the application and

includes the DIAG X'DC' function to be performed, the product identifier, the header

length, and the data length.

All records written to the z/VM monitor stream begin with a product identifier. This

device driver will use the product ID. The product ID is a 16-byte structure of the

form pppppppffnvvrrmm, where:

ppppppp

is a fixed ASCII string, for example, LNXAPPL.

ff is the application number (hexadecimal number). This number can be

chosen by the application, but to reduce the possibility of conflicts with

other applications, a request for an application number should be submitted

to the IBM z/VM Performance team at

www.ibm.com/vm/perf

n is the record number as specified by the application

vv, rr, and mm

can also be specified by the application. A possible use could be for

specifying version, release, and modification level information, allowing

changes to a certain record number when the layout has been changed,

without changing the record number itself.

The first seven bytes of the structure (LNXAPPL) will be filled in by the device

driver when it writes the monitor data record to the CP buffer. The last nine bytes

contain information that is supplied by the application on the write() call when

writing the data.

The monwrite_hdr structure that must be written before any monitor record data is

defined as follows:

/* the header the app uses in its write() data */

struct monwrite_hdr {

 unsigned char mon_function;

 unsigned short applid;

 unsigned char record_num;

 unsigned short version;

 unsigned short release;

 unsigned short mod_level;

 unsigned short datalen;

 unsigned char hdrlen;

}__attribute__((packed));

Chapter 14. Monitor stream application support 183

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

||
|
|
|

|

||

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

The following function code values are defined:

/* mon_function values */

#define MONWRITE_START_INTERVAL 0x00 /* start interval recording */

#define MONWRITE_STOP_INTERVAL 0x01 /* stop interval or config recording */

#define MONWRITE_GEN_EVENT 0x02 /* generate event record */

#define MONWRITE_START_CONFIG 0x03 /* start configuration recording */

Writing data

An application wishing to write APPLDATA must first issue open() to open the

device driver. The application then needs to issue write() calls to start or stop the

collection of monitor data and to write any monitor records to buffers that CP will

have access to.

Using the monwrite_hdr structure

The structure monwrite_hdr is used to pass DIAG x’DC’ functions and the

application-defined product information to the device driver on write() calls. When

the application calls write(), the data it is writing consists of one or more

monwrite_hdr structures, each followed by monitor data (except if it is a STOP

function, which is followed by no data).

The application can write to one or more monitor buffers. A new buffer is created by

the device driver for each record with a unique product identifier. To write new data

to an existing buffer, an identical monwrite_hdr should precede the new data on the

write() call.

The monwrite_hdr also includes fields for the header length (useful for calculating

the data offset from the beginning of the hdr) and the data length (length of the

following monitor data, if any.) See /include/asm-s390/monwriter.h for the definition

of monwrite_hdr.

Stopping data writing

When the application has finished writing monitor data, it needs to issue close() to

close the device driver.

184 Device Drivers, Features, and Commands - November, 2006

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

Chapter 15. z/VM recording device driver

The z/VM recording device driver can be used by Linux systems that run as z/VM

guests. The device driver enables the Linux guest to read from the CP recording

services and, thus, act as a z/VM wide control point.

The z/VM recording device driver uses the z/VM RECORDING command to collect

records and IUCV to transmit them to the Linux guest.

Features

The z/VM recording device driver supports the following devices and functions:

v Reading records from the CP error logging service, *LOGREC.

v Reading records from the CP accounting service, *ACCOUNT.

v Reading records from the CP diagnostic service, *SYMPTOM.

v Automatic and explicit record collection (see “Starting and stopping record

collection” on page 188).

What you should know about the z/VM recording device driver

The z/VM recording device driver is a character device driver that is grouped under

the IUCV category of device drivers (see “Device categories” on page 9). There is

one device for each recording service. The devices are created for you if the z/VM

recording device driver is included in the kernel or they are created when the z/VM

recording device driver is loaded as a module.

z/VM recording device nodes

Each recording service has a fixed minor number and a name that corresponds to

the name of the service as shown in Table 24:

 Table 24. Device names and minor numbers

z/VM recording service Standard device name Minor number

*LOGREC logrec 0

*ACCOUNT account 1

*SYMPTOM symptom 2

The major device number for the z/VM recording device driver is assigned

dynamically. Read the dev attribute of any one of the z/VM recording devices to find

out the major number. The dev attribute is of the form <major>:<minor>.

Example:

To read the dev attribute of the logrec device:

cat /sys/class/vmlogrdr/logrec/dev

254:0

While vmlogrdr registers its driver and device structures with the iucv bus, it also

needs to register a class and a class device under /sys/class. The dev attribute is

member of that class device. In the example, the major number 254 has been

assigned and the minor number is 0 as expected.

© Copyright IBM Corp. 2000, 2006 185

Creating device nodes for the z/VM recording devices

You access z/VM recording data through device nodes. The required device nodes

might be provided for you by udev or by your distribution.

If there are no device nodes, use a command of this form to create a node:

mknod -m 440 /dev/<file> c <major> <minor>

where:

<file>

is the file name that you assign to the device node.

<major>

is the major number that has been dynamically assigned to the z/VM recording

device driver (see “z/VM recording device nodes” on page 185).

<minor>

is the minor number of the recording service for which you are creating the

device node.

Example: Using the standard device names (see Table 24 on page 185) and

assuming that the major number 254 has been assigned to the z/VM recording

device driver you could create the device nodes like this:

mknod -m 440 /dev/logrec c 254 0

mknod -m 440 /dev/account c 254 1

mknod -m 440 /dev/symptom c 254 2

Reading records

The read function returns one record at a time. If there is no record, the read

function waits until a record becomes available.

Each record begins with a 4 byte field containing the length of the remaining record.

The remaining record contains the binary z/VM data followed by the four bytes

X’454f5200’ to mark the end of the record. Theses bytes build the zero terminated

ASCII string “EOR”, which is useful as an eye catcher.

 Figure 40 illustrates the structure of a complete record as returned by the device. If

the buffer assigned to the read function is smaller than the overall record size,

multiple reads are required to obtain the complete record.

The format of the z/VM data (*LOGREC) depends on the record type described in

the common header for error records HDRREC.

For more information on the z/VM record layout, refer to the CMS and CP Data

Areas and Control Blocks documentation at ibm.com/vm/pubs/ctlblk.html.

Figure 40. Record structure

186 Device Drivers, Features, and Commands - November, 2006

http://www.vm.ibm.com/pubs/ctlblk.html

Further information

For general information about CP recording system services refer to z/VM CP

Programming Services, SC24-6001.

Building a kernel with the z/VM recording device driver

 This section is intended for those who want to build their own kernel.

To build a Linux kernel that supports the z/VM recording device driver you need a

kernel that includes the IUCV device driver. You also need to select the

CONFIG_VMLOGRDR configuration menu option:

 The z/VM recording device driver can be compiled into the kernel or as a separate

module, vmlogrdr.

Setting up the z/VM recording device driver

This section provides information on the guest authorization you need to be able to

collect records and on how to load the device driver if it has been compiled as a

module.

Authorizing the Linux guest

The Linux guest must be authorized to use the z/VM RECORDING command.

Depending on the z/VM environment, this could be either of the following

authorization classes: A, B, C, E, or F.

The guest must also be authorized to connect to those IUCV services it needs to

use.

Loading the z/VM recording device driver

There are no kernel or module parameters for the z/VM recording device driver.

If you have compiled the z/VM recording device driver as a separate module, you

need to load it before you can work with z/VM recording devices. Load the vmlogrdr

module with the modprobe command to ensure that any other required modules are

loaded in the correct order:

modprobe vmlogrdr

Working with z/VM recording devices

This section describes typical tasks that you need to perform when working with

z/VM recording devices.

v Starting and stopping record collection

v Purging existing records

Character device drivers

 Support for the z/VM recording system services (CONFIG_VMLOGRDR)

Figure 41. z/VM recording kernel configuration menu option

Chapter 15. z/VM recording device driver 187

v Querying the VM recording status

v Opening and closing devices

v Reading records

Starting and stopping record collection

By default, record collection for a particular z/VM recording service begins when the

corresponding device is opened and stops when the device is closed.

You can use a device’s autorecording attribute to be able to open and close a

device without also starting or stopping record collection. You can use a device’s

recording attribute to start and stop record collection regardless of whether the

device is opened or not.

Be aware that you cannot start record collection if a device is open and there are

already existing records. Before you can start record collection for an open device

you must read or purge any existing records for this device (see “Purging existing

records” on page 189).

To be able to open a device without starting record collection and to close a device

without stopping record collection write “0” to the devices autorecording attribute. To

restore the automatic starting and stopping of record collection write “1” to the

devices autorecording attribute. Issue a command of this form:

echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/autorecording

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

To explicitly switch on record collection write “1” to the devices recording attribute.

To explicitly switch off record collection write “0” to the devices recording attribute.

Issue a command of this form:

echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/recording

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

You can read the both the autorecording and the recording attribute to find the

current settings.

Examples

v In this example, first the current setting of the autorecording attribute of the

logrec device is checked, then automatic recording is switched off:

cat /sys/bus/iucv/drivers/vmlogrdr/logrec/autorecording

1

echo 0 > /sys/bus/iucv/drivers/vmlogrdr/logrec/autorecording

v In this example record collection is started explicitly and later stopped for the

account device:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

...

echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

188 Device Drivers, Features, and Commands - November, 2006

To confirm whether recording is on or off, use the record_status attribute as

described in “Querying the VM recording status.”

Purging existing records

By default, existing records for a particular z/VM recording service are purged

automatically when the corresponding device is opened or closed.

You can use a device’s autopurge attribute to prevent records from being purged

when a device is opened or closed. You can use a device’s purge attribute to purge

records for a particular device at any time without having to open or close the

device.

To be able to open or close a device without purging existing records write “0” to

the devices autopurge attribute. To restore automatic purging of existing records

write “1” to the devices autopurge attribute. You can read the autopurge attribute to

find the current setting. Issue a command of this form:

echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/autopurge

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

To purge existing records for a particular device without opening or closing the

device write “1” to the devices purge attribute. Issue a command of this form:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/<device>/purge

where <device> is one of: logrec, symptom, or account.

Examples

v In this example, the setting of the autopurge attribute for the logrec device is

checked first, then automatic purging is switched off:

cat /sys/bus/iucv/drivers/vmlogrdr/logrec/autopurge

1

echo 0 > /sys/bus/iucv/drivers/vmlogrdr/logrec/autopurge

v In this example, the existing records for the symptom device are purged:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/symptom/purge

Querying the VM recording status

You can use the record_status attribute of the z/VM recording device driver

representation in sysfs to query the VM recording status.

Example

This example runs the vm cp command QUERY RECORDING and returns the

complete output of that command. This list will not necessarily have an entry for all

three services and there might be additional entries for other guests.

$ cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

This will result in output similar to the following:

Chapter 15. z/VM recording device driver 189

RECORDING COUNT LMT USERID COMMUNICATION

EREP ON 00000000 002 EREP ACTIVE

ACCOUNT ON 00001774 020 DISKACNT INACTIVE

SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

ACCOUNT OFF 00000000 020 LINUX31 INACTIVE

where the lines represent:

v The service

v The recording status

v The number of queued records

v The number of records that will result in a message to the operator

v The guest that is or was connected to that service and the current status of that

connection

A detailed description of the QUERY RECORDING command can be found in the

z/VM CP Command and Utility Reference, SC24-6008.

Opening and closing devices

You can open, read, and release the device. You cannot open the device multiple

times. Each time the device is opened it must be released before it can be opened

again.

You can use a device’s autorecord attribute (see “Starting and stopping record

collection” on page 188) to enable automatic record collection while a device is

open.

You can use a device’s autopurge attribute (see “Purging existing records” on page

189) to enable automatic purging of existing records when a device is opened and

closed.

Scenario: Connecting to the *ACCOUNT service.

This scenario demonstrates autorecording, turning autorecording off, purging

records, and starting recording.

1. Query the status of VM recording. As root, issue the following command:

 # cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

The results depend on the system, but should be similar to the following:

RECORDING COUNT LMT USERID COMMUNICATION

EREP ON 00000000 002 EREP ACTIVE

ACCOUNT ON 00001812 020 DISKACNT INACTIVE

SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

ACCOUNT OFF 00000000 020 LINUX31 INACTIVE

2. Open /dev/account with an appropriate application. This will connect the guest

to the *ACCOUNT service and start recording. The entry for *ACCOUNT on

guest LINUX31 will change to ACTIVE and ON:

190 Device Drivers, Features, and Commands - November, 2006

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

RECORDING COUNT LMT USERID COMMUNICATION

EREP ON 00000000 002 EREP ACTIVE

ACCOUNT ON 00001812 020 DISKACNT INACTIVE

SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

ACCOUNT ON 00000000 020 LINUX31 ACTIVE

3. Switch autopurge and autorecord off:

 # echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/autopurge

 # echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/autorecording

4. Close the device by ending the application that reads from it and check the

recording status. Note that while the connection is INACTIVE, RECORDING is

still ON:

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

RECORDING COUNT LMT USERID COMMUNICATION

EREP ON 00000000 002 EREP ACTIVE

ACCOUNT ON 00001812 020 DISKACNT INACTIVE

SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

ACCOUNT ON 00000000 020 LINUX31 INACTIVE

5. The next status check shows that some event created records on the

*ACCOUNT queue:

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

RECORDING COUNT LMT USERID COMMUNICATION

EREP ON 00000000 002 EREP ACTIVE

ACCOUNT ON 00001821 020 DISKACNT INACTIVE

SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

ACCOUNT ON 00000009 020 LINUX31 INACTIVE

6. Switch recording off:

echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

RECORDING COUNT LMT USERID COMMUNICATION

EREP ON 000000000 002 EREP ACTIVE

ACCOUNT ON 00001821 020 DISKACNT INACTIVE

SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

ACCOUNT OFF 00000009 020 LINUX31 INACTIVE

7. Try to switch it on again, and check whether it worked by checking the recording

status:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

RECORDING COUNT LMT USERID COMMUNICATION

EREP ON 000000000 002 EREP ACTIVE

ACCOUNT ON 00001821 020 DISKACNT INACTIVE

SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

ACCOUNT OFF 00000009 020 LINUX31 INACTIVE

Recording did not start, in the message logs you may find a message:

Chapter 15. z/VM recording device driver 191

vmlogrdr: recording response: HCPCRC8087I Records are queued for user LINUX31 on the

*ACCOUNT recording queue and must be purged or retrieved before recording can be turned on.

Note that this kernel message has priority ’debug’ so it might not be written to

any of your log files.

8. Now remove all the records on your *ACCOUNT queue either by starting an

application that reads them from /dev/account or by explicitly purging them:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/purge

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

RECORDING COUNT LMT USERID COMMUNICATION

EREP ON 00000000 002 EREP ACTIVE

ACCOUNT ON 00001821 020 DISKACNT INACTIVE

SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

ACCOUNT OFF 00000000 020 LINUX31 INACTIVE

9. Now we can start recording, check status again:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

RECORDING COUNT LMT USERID COMMUNICATION

EREP ON 00000000 002 EREP ACTIVE

ACCOUNT ON 00001821 020 DISKACNT INACTIVE

SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

ACCOUNT ON 00000000 020 LINUX31 INACTIVE

192 Device Drivers, Features, and Commands - November, 2006

Chapter 16. Watchdog device driver

The watchdog device driver provides Linux user space watchdog applications with

access to the z/VM watchdog timer.

Watchdog applications can be used to set up automated restart mechanisms for

Linux guests. Watchdog based restart mechanisms are an alternative to a

networked heartbeat in conjunction with STONITH (see “STONITH support (snipl for

STONITH)” on page 322).

A watchdog application that communicates directly with the z/VM control program

(CP) does not require a third operating system to monitor a heartbeat. The

watchdog device driver enables you to set up a restart mechanism of this form.

Features

The watchdog device driver provides:

v Access to the z/VM 5.1 watchdog timer.

v An API for watchdog applications (see “External programming interfaces” on

page 197).

Building a kernel with the watchdog device driver

 This section is intended for those who want to build their own kernel.

You need to select the kernel configuration option CONFIG_ZVM_WATCHDOG to

be able to use the watchdog device driver.

 The watchdog device driver can be compiled into the kernel or as a separate

module, vmwatchdog.

CONFIG_ZVM_WATCHDOG depends on the common code option

CONFIG_WATCHDOG.

What you should know about the watchdog device driver

The watchdog function comprises of the watchdog timer that runs on z/VM and a

watchdog application that runs on the Linux guest being controlled. While the Linux

guest operates satisfactory, the watchdog application reports a positive status to the

z/VM watchdog timer at regular intervals. The watchdog application uses a

miscellaneous character device to pass these status reports to the z/VM timer

(Figure 43 on page 194).

Character device drivers --->

 Watchdog Cards --->

 z/VM Watchdog Timer (CONFIG_ZVM_WATCHDOG)

Figure 42. Watchdog kernel configuration option

© Copyright IBM Corp. 2000, 2006 193

The watchdog application typically derives its status by monitoring, critical network

connections, file systems, and processes on the Linux guest. If a given time

elapses without a positive report being received by the watchdog timer, the

watchdog timer assumes that the Linux guest is in an error state. The watchdog

timer then triggers a predefined action from CP against the Linux guest. Examples

of possible actions are: shutting down Linux, rebooting Linux, or initiating a system

dump.

The default timeout is 60 seconds, the minimum timeout that can be set through the

IOCTL SETTIMEOUT is 15 seconds. The following IOCTLs are supported:

v WDIOC_GETSUPPORT

v WDIOC_SETOPTIONS (WDIOS_DISABLECARD, WDIOS_ENABLECARD)

v WDIOC_GETTIMEOUT

v WDIOC_SETTIMEOUT

v WDIOC_KEEPALIVE

Note: Loading or saving a DCSS can take a long time during which the virtual

machine does not respond, depending on the size of the DCSS. This may

cause a watchdog to timeout and restart the guest. You are advised not to

use the watchdog in combination with loading or saving DCSSs.

Your distribution might contain a watchdog application. You can also obtain a

watchdog application from:

http://www.ibiblio.org/pub/Linux/system/daemons/watchdog/

See also the generic watchdog documentation in your Linux kernel source tree

under Documentation/watchdog.

Setting up the watchdog device driver

This section describes the parameters that you can use to configure the watchdog

device driver and how to assure that the required device node exists.

Kernel parameters

This section describes how to configure the watchdog device driver by adding

parameters to the kernel parameter line if the watchdog support has been compiled

into the kernel.

Figure 43. Watchdog application and timer

194 Device Drivers, Features, and Commands - November, 2006

watchdog kernel parameter syntax

��
 vmwatchdog.cmd=″IPL″ vmwatchdog.conceal=0

vmwatchdog.cmd=<command>

vmwatchdog.conceal=<conceal_flag>

�

�
vmwatchdog.nowayout=<nowayout_flag>

 ��

where:

<command>

is the command to be issued by CP if the Linux guest fails. The default “IPL”

reboots the guest with the previous boot parameters.

 Instead of rebooting the same system, you could also boot from an alternate

IPL device (for example, a dump device). You can also specify multiple

commands to be issued, see “Examples” for details. For more information on

CP commands refer to z/VM CP Command and Utility Reference, SC24-6008.

 The specification for <command>:

v Can be up to 230 characters long

v Needs to be enclosed by quotes if it contains any blanks or newline

characters

v Is converted from ASCII to uppercase EBCDIC

<conceal_flag>

turns on and off the protected application environment where the guest is

protected from unexpectedly entering CP READ. “0” turns off the protected

environment, “1” enables it. The default is “0”.

 For details, refer to the “SET CONCEAL” section of z/VM CP Command and

Utility Reference, SC24-6008.

<nowayout_flag>

determines what happens when the watchdog device node is closed by the

watchdog application.

 If the flag is set to “1”, the z/VM watchdog timer keeps running and triggers the

command specified for <command> if no positive status report is received

within the given time interval. If the character "V" is written to the device and

the flag is set to “0”, the z/VM watchdog timer is stopped and the Linux guest

continues without the watchdog support.

 The default is determined by the common code kernel configuration option

CONFIG_WATCHDOG_NOWAYOUT.

Examples

The following kernel parameters determine that, on failure, the Linux guest is to be

IPLed from a device with devno 0xb1a0. The protected application environment is

not enabled. The watchdog application can close the watchdog device node after

writing ″V″ to it. As a result the watchdog timer becomes ineffective and does not

IPL the guest.

vmwatchdog.cmd="ipl b1a0" vmwatchdog.nowayout=0

Chapter 16. Watchdog device driver 195

The following example shows how to specify multiple commands to be issued. This

is true for both the built-in and module version, after booting the kernel or loading

the module.

echo -en "cmd1\ncmd2\ncmd3" | cat > /sys/module/vmwatchdog/parameters/cmd

To verify that your commands have been accepted, issue:

cat /sys/module/vmwatchdog/parameters/cmd

cmd1

cmd2

cmd3

Note that it is not possible to specify the multiple commands as kernel parameters

during boot time or module parameters while loading the module.

Module parameters

This section describes how to load and configure the watchdog device driver if it

has been compiled as separate module.

watchdog module parameter syntax

��
 cmd=″IPL CLEAR″

modprobe

vmwatchdog

cmd=<command>

�

�
 conceal=0

conceal=<conceal_flag>

nowayout=<nowayout_flag>

��

The variables have the same meaning as in “Kernel parameters” on page 194.

Example

The following command loads the watchdog module and determines that, on failure,

the Linux guest is to be IPLed from a device with devno 0xb1a0. The protected

application environment is not enabled. The watchdog application can close the

watchdog device node after writing ″V″ to it. As a result the watchdog timer

becomes ineffective and does not IPL the guest.

modprobe vmwatchdog cmd="ipl b1a0" nowayout=0

Assuring that a device node exists

The watchdog application on Linux needs a misc character device to communicate

with the z/VM watchdog timer. This device node is typically called /dev/vmwatchdog.

If your distribution does not create the device node for you (for example, with udev),

you need to create a node.

To check if there is already a node issue:

find / -name watchdog

196 Device Drivers, Features, and Commands - November, 2006

If your distribution provides the watchdog device driver as a separate module, be

sure to load the module before you check for the node.If there is no node, use

major number 10 and minor number 130 to create one. Issue

mknod /dev/watchdog c 10 130

External programming interfaces

 This section provides information for those who want to program watchdog

applications that work with the watchdog device driver.

For information on the API refer to the following files in the Linux source tree:

v /Documentation/watchdog/watchdog-api.txt

v inlcude/linux/watchdog.h

Chapter 16. Watchdog device driver 197

198 Device Drivers, Features, and Commands - November, 2006

Chapter 17. z/VM CP interface device driver

Using the z/VM CP interface device driver (vmcp), you can send control program

(CP) commands to the VM hypervisor and display VM’s response.

What you should know about the z/VM CP interface

The z/VM CP interface driver (vmcp) uses the CP diagnose X’08’ to send

commands to CP and to receive responses. The behavior is similar but not identical

to #cp on a 3270 console. There are two ways of using the z/VM CP interface

driver:

v As a device node (usually /dev/vmcp)

v As a user space tool (see “vmcp - Send CP commands to the VM hypervisor” on

page 328)

If vmcp is built as a module, you must load the module vmcp.ko before you can use

vmcp. If your system runs under VM, load the vmcp kernel module automatically.

The vmcp device driver only works under z/VM and does not load if the Linux

system runs in an LPAR. If your Linux guest runs under z/VM, you can advise the

startup scripts to load the vmcp kernel module automatically during boot, for

example:

v On SUSE SLES9 or SLES10 add ″vmcp″ to MODULES_LOADED_ON_BOOT in

/etc/sysconfig/kernel.

v On RedHat RHEL4, you can add ″modprobe vmcp″ to the /etc/rc.local.

For any other distribution, refer to the documentation.

The vmcp tool can coexist with the cpint package.

Differences between vmcp and a 3270 console

Most CP commands behave identically with vmcp and on a 3270 console. However,

some commands show a different behavior:

v Diagnose X’08’ (see CP Programming Services, SC24-6084-02) requires you to

specify a response buffer in conjunction with the command. As the size of the

response is not known beforehand the default response buffer used by vmcp

might be too small to hold the full response and as a result the response is

truncated.

v On a 3270 console the CP command is executed on virtual CPU 0. The vmcp

device driver uses the CPU that is scheduled by the Linux kernel. For CP

commands that depend on the CPU number (like trace) you should specify the

CPU, for example: cpu 3 trace count.

v Some CP commands do not return specific error or status messages through

diagnose X’08’. These messages are only returned on a 3270 console. For

example, the command vmcp link user1 1234 123 mw might return the message

″DASD 123 LINKED R/W″ in a 3270 console. This message will not appear when

using vmcp. For details, see the z/VM help system or CP Commands and Utilities

Reference, SC24-6081.

© Copyright IBM Corp. 2000, 2006 199

|
|
|
|

|
|
|
|

|
|

|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

http://publibz.boulder.ibm.com/epubs/pdf/hcse5b11.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse4b11.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse4b11.pdf

Creating device nodes

User space programs access vmcp devices through device nodes. Your distribution

might create these device nodes for you or provide udev to create them (see

“Device nodes provided by udev” on page 4).

If no device nodes are created for you, you need to create them yourself, for

example, with the mknod command. Refer to the mknod man page for further

details.

The /dev/vmcp device node is a character device node (major number 10) with a

dynamic minor number. During load, a sysfs folder called class/misc/vmcp/ is

created, which contains the dev file for getting the major and minor number of

vmcp.

You can use the vmcp device node directly from an application using open, write (to

issue the command), read (to get the response), ioctl (to get and set status) and

close. The following ioctls are supported:

 Table 25. The vmcp ioctls

Name Code definition Description

VMCP_GETCODE _IOR (0x10, 1, int) Queries the return code of VM.

VMCP_SETBUF _IOW(0x10, 2, int) Sets the buffer size (the device driver has a

default of 4 KB; /sbin/vmcp calls this ioctl to

set it to 8 KB instead).

VMCP_GETSIZE _IOR(0x10, 3, int) Queries the size of the response.

Building a kernel with the z/VM CP interface

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the vmcp

device driver.

You need to select the kernel configuration option CONFIG_VMCP to be able to

build a kernel with user space access to CP commands.

 The vmcp device driver can be compiled into the kernel or as a separate module. In

case of a modular build, the module vmcp.ko must be loaded before vmcp can be

used.

Setting up the z/VM CP interface

There are no kernel or module parameters for the vmcp device driver.

If you have compiled the vmcp component as a separate module, you need to load

the module vmcp.ko before you can work with vmcp. As vmcp does not depend on

other modules you can use insmod or modprobe to load vmcp:

modprobe vmcp

Character device drivers

 Support for the z/VM CP interface (VM only) (CONFIG_VMCP)

200 Device Drivers, Features, and Commands - November, 2006

|

Chapter 18. Cooperative memory management

The cooperative memory management (CMM) allows an external entity, such as the

z/VM resource monitor VMRM, to reduce the memory size of a Linux system. CMM

allocates pages to a special page pool. The diagnose 0x10 (or X'10' on the

mainframe) is used to indicate to z/VM that the pages in the page pool are out of

use. z/VM can then immediately reuse these pages for other guests. There are two

ways to grow and shrink the size of the page pool; a /proc based interface and the

special message interface which is used by VMRM.

Building a kernel with cooperative memory management

 This section is intended for those who want to build their own kernel. To build a

kernel with support for cooperative memory management you need to select option

CONFIG_CMM in the configuration menu:

 The cooperative memory management support is available as a module, cmm, or

built-in. Note that the special message interface to CMM depends on the

configuration setting of the special message support CONFIG_SMSGIUCV:

Setting up cooperative memory management

This section describes how to set up a Linux guest to participate in the cooperative

memory management under z/VM.

Kernel parameters

This section describes how to configure cooperative memory management if it has

been compiled into the kernel. You configure cooperative memory management by

adding parameters to the kernel parameter line.

Base setup --->

 Cooperative memory management (CONFIG_CMM)

 └─ /proc interface to cooperative memory management (CONFIG_CMM_PROC)

 IUCV special message interface to cooperative memory management (CONFIG_CMM_IUCV)

Figure 44. CMM kernel configuration menu option

Networking support --->

 S/390 network device drivers

 IUCV support (VM only)

 └─ IUCV special message support (VM only) (CONFIG_SMSGIUCV)

Figure 45. IUCV special message support kernel configuration menu option

© Copyright IBM Corp. 2000, 2006 201

|
|
|
|

|
|
|

|
|
|
|

|
|
|

Cooperative memory management kernel parameter syntax

��
 VMRMSVM

cmm.sender=

<guest name>

��

where:

<guest name>

is the name of the z/VM guest that is allowed to send messages to the module

through the special messages interface. The default guest name is VMRMSVM.

This is used if the parameter is omitted.

Loading the cooperative memory management module

The cooperative memory management module might have been compiled as a

module. Use the insmod or modprobe command to load the module. Refer to the

respective man pages for command details.

cooperative memory management module parameter syntax

��

insmod

modprobe

 VMRMSVM

cmm

sender=

<guest name>

��

where <guest name> is the name of the z/VM guest that is allowed to send

messages to the module through the special messages interface. The default guest

name is VMRMSVM. This is used if the parameter is omitted.

Example

To load the cooperative memory management module and allow the guest TESTID

to send messages:

modprobe cmm sender=TESTID

The setup of the external resource manager that is supposed to send messages to

the cooperative memory management module is beyond the scope of this book.

Further information

For more information on VMRM, see the chapter on VMRM in z/VM V5R1.0

Performance, SC24-6109.

202 Device Drivers, Features, and Commands - November, 2006

Working with cooperative memory management

This section describes typical tasks that you need to perform when working with

cooperative memory management.

To read the current size of the static page pool:

cat /proc/sys/vm/cmm_pages

To set the target size of the static page pool:

echo <pages>> /proc/sys/vm/cmm_pages

To read the current size of the timed page pool:

cat /proc/sys/vm/cmm_timed_pages

To add a number of pages to the target size of the static page pool

echo <pages>> /proc/sys/vm/cmm_timed_pages

To read the release rate of the timed page pool

cat /proc/sys/vm/cmm_timeout

The result is a pair of numbers ″<pages> <seconds>″. The pages from the timed

page pool are freed with a rate of <pages>/<seconds>.

To set the release rate of the timed page pool

echo "<pages> <seconds>" > /proc/sys/vm/cmm_timeout

Chapter 18. Cooperative memory management 203

204 Device Drivers, Features, and Commands - November, 2006

Part 5. Generic features

This part describes:

v Chapter 19, “Console device drivers”

v Chapter 20, “Generic cryptographic device driver”

v Chapter 21, “Channel measurement facility”

v Chapter 22, “Control program identification”

v Chapter 23, “OSA-Express SNMP subagent support”

v Chapter 25, “Data execution protection for user processes”

v Chapter 24, “IPL parameter interface”

It also provides a summary of the System z-specific kernel configuration options

you can find in the Linux kernel configuration menu. Some of these options provide

additional features that are not otherwise described in this book.

v Chapter 26, “Other features kernel builders should know about,” on page 251

Note

For prerequisites and restrictions for these device drivers and features refer to

the kernel 2.6 October 2005 stream pages on developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_recommended.html

© Copyright IBM Corp. 2000, 2006 205

http://www.ibm.com/developerworks/linux/linux390/october2005_recommended.shtml

206 Device Drivers, Features, and Commands - November, 2006

Chapter 19. Console device drivers

The Linux on System z console device drivers support devices for basic Linux

control, for example, for booting Linux.

The control device can be a 3270 terminal or an IBM mainframe’s hardware

console. The device driver accesses the hardware console through the service-call

logical processor (SCLP) interface.

If Linux is running as a VM guest or on a P/390, the control device can also be a

3215 terminal.

Note that “terminal” and “console” have special meanings in Linux, which should not

be confused with the System z usage.

The Hardware Management Console (HMC) is a Web application that provides

access to the System z9 or zSeries Service Element (SE) which is in overall control

of the mainframe hardware.

A mainframe terminal is any device which gives a user access to applications

running on the mainframe. This could be a real device such as a 3215 linked to the

system through a controller, or it can be a terminal emulator on a networked device.

The Linux console and the Linux terminals are different applications which both run

on System z terminals. Linux terminals are devices through which users interact

with Linux and Linux applications. The Linux console is a device that handles user

interactions with the Linux kernel. The Linux console traffic is directed to one of the

Linux terminals.

In this chapter, we use console and terminal to refer to a Linux console or terminal,

unless indicated otherwise.

Console features

The console device drivers support the following devices and functions:

v Supports an SCLP console

v Supports a 3215 terminal for the United States code page (037)

v Supports a 3270 terminal

v Provides a line mode or full-screen mode typewriter terminal

v Provides Linux console output on a designated terminal

What you should know about console devices

This section provides information on console device names and nodes, on different

modes of console devices, and considerations when running the console in specific

environments.

Console modes

The console can be a line-mode terminal or a full-screen mode terminal.

© Copyright IBM Corp. 2000, 2006 207

On a full-screen mode terminal, pressing any key immediately results in data being

sent to the TTY routines. Also, terminal output can be positioned anywhere on the

screen. This allows for advanced interactive capability when using terminal based

applications.

On a line-mode terminal, the user first types a full line and then presses Enter to let

the system know that a line has been completed. The device driver then issues a

read to get the completed line, adds a new line and hands over the input to the

generic TTY routines.

Console device names

Table 26 summarizes the supported console devices, with their names, and device

numbers:

 Table 26. Supported console devices

Device driver Device name Major Minor

Line-mode hardware console ttyS0 4 64

Full-screen mode hardware console ttyS1 4 65

3215 terminal ttyS0 4 64

3270 terminal tty3270 227 0

Note: The specifications for the line-mode hardware console and the 3215 device

are identical. The device name and numbers are assigned to whatever

device is present or to the device you specify with the conmode parameter

(see “conmode parameter” on page 214). You cannot have both devices

simultaneously.

You require a device node to make a console device available to other programs

(see “Assuring device nodes” on page 215).

Using the hardware console

The following applies to both the line-mode terminal and the full-screen mode

terminal on the hardware console:

v There can only be one active terminal session on an HMC.

v Security hint: Always end a terminal session by explicitly logging off (for example,

type “exit” and press Enter). Simply closing the terminal window leaves the

session active and the next user opening the window resumes the existing

session without a logon.

v Slow performance of the hardware console is often due to a busy console or

increased network traffic.

The following applies to the full-screen mode terminal only:

v Output that is written by Linux while the terminal window is closed is not

displayed. Therefore, a newly opened terminal window is always blank. For most

applications, like login or shell prompts, it is sufficient to press Enter to obtain a

new prompt.

v The terminal window only shows 24 lines and does not provide a scroll bar. To

scroll up press Shift+PgUp, to scroll down press Shift+PgDn.

208 Device Drivers, Features, and Commands - November, 2006

Magic sysrequest function

This section applies to systems where the common code kernel option

CONFIG_MAGIC_SYSRQ has been activated only.

The two characters “^-” followed by a third character invoke the magic sysrequest

function. The various debugging and emergency functions that can be performed

are specified by the third character.

This feature can be switched on or off during runtime by echoing “1” (on) or “0” (off)

to /proc/sys/kernel/sysrq. The possible sequences are:

 Table 27. Magic sysrequest commands

Enter To

^-b Re-IPL immediately.

^-s Emergency sync all file systems.

^-u Emergency remount all mounted file systems

read-only.

^-t Show task info.

^-m Show memory.

^- followed by a digit (0 to 9) Set the console log level.

^-e Terminate all tasks.

^-i Kill all tasks except init.

Console special characters on line-mode terminals

The line-mode console does not have a control key. That makes it impossible to

enter control characters directly. To be able to enter at least some of the more

important control characters, the character “^” has a special meaning in the

following cases:

 Table 28. Control characters

For the key

combination

Type this Usage

Ctrl+C ^c Cancel the process that is currently running in the

foreground of the terminal.

Ctrl+D ^d Generate an end of file (EOF) indication.

Ctrl+Z ^z Stop a process.

n/a ^n Suppresses the automatic generation of a new line. This

makes it possible to enter single characters, for example

those characters that are needed for yes/no answers in the

ext2 file system utilities.

If you are running under VM using the hardware console emulation, you will have to

use the CP VINPUT command to simulate the Enter and Spacebar keys.

The Enter key is simulated by entering:

#CP VINPUT VMSG \n

The Spacebar key is simulated by entering two blanks followed by “\n”:

Chapter 19. Console device drivers 209

#CP VINPUT VMSG \n

VM console line edit characters

When running under VM, the control program (CP) defines five characters as line

editing symbols. Use the CP QUERY TERMINAL command to see the current

settings. The defaults for these depend on the terminal emulator you are using, and

can be reassigned by the CP system operator or by yourself using the CP

TERMINAL command to change the setting of LINEND, TABCHAR, CHARDEL, LINEDEL or

ESCAPE. Table 29 shows the most commonly used settings:

 Table 29. Line edit characters

Character Symbol Usage

LINEND The end of line character allows you to enter several logical lines at

once.

| TABCHAR The logical tab character.

@ CHARDEL The character delete symbol deletes the preceding character.

[or ¢ LINEDEL The line delete symbol deletes everything back to and including the

previous LINEND symbol or the start of the input. “[” is common for

ASCII terminals and “¢” for EBCDIC terminals.

″ ESCAPE The escape character allows you to enter a line edit symbol as a

normal character.

To enter the line edit symbols # | @ [" (or # | @ ¢ ") you need to type the

character pairs "# "| "@ "["" (or "# "| "@ "¢ ""). In particular, to enter the quote

character you must type it twice.

Example

If you type the character string:

#CP HALT#CP ZIPL 190[#CP IPL 1@290 PARM vmpoff=""MSG OP REBOOT"#IPL 290""

the actual commands received by CP are:

CP HALT

CP IPL 290 PARM vmpoff="MSG OP REBOOT#IPL 290"

Using VInput

VINPUT is a VM CP command. It can be abbreviated to VI but must not be

confused with the Linux command vi.

If you use the hardware console driver running under VM (as a line-mode terminal,

full-screen mode is not supported), it is important to consider how the input is

handled. Instead of writing into the suitable field within the graphical user interface

at the service element or HMC, you have to use the VINPUT command provided by

VM. The following examples are written at the input line of a 3270 terminal or

terminal emulator (for example, x3270).

If you are in the CP READ mode, omit the leading “#CP” from the commands.

Priority and non-priority commands

VINPUT commands require a VMSG (non-priority) or PVMSG (priority) specification.

Operating systems that honour this specification process priority commands with a

higher priority than non-priority commands.

210 Device Drivers, Features, and Commands - November, 2006

The hardware console driver is capable to accept both if supported by the hardware

console within the specific machine or virtual machine.

Linux does not distinguish priority and non-priority commands.

Example: The specifications:

#CP VMSG LS -L

and

#CP PVMSG LS -L

are equivalent.

Case conversion

All lowercase characters are converted by VM to uppercase. To compensate for

this, the console device driver converts all input to lowercase.

Linux and bash are case sensitive and require some specifications with uppercase

characters. To allow uppercase characters to be passed to Linux, the hardware

console uses an escape character “%” under VM to distinguish between uppercase

and lowercase characters. Characters enclosed by two “%” are treated as

uppercase.

This behavior and the escape character “%” are adjustable at build-time by editing

the driver sources.

Examples: If you type VInput VMSG echo $PATH, the device driver gets ECHO $PATH

and converts it into echo $path.

v The first line is your input line, the second the line processed by CP and the third

the command processed by bash:

#cp vinput vmsg ls -l

CP VINPUT VMSG LS -L

ls -l

v The following input would result in a bash command with a variable $path that is

not defined in lowercase:

#cp vinput vmsg echo $PATH

CP VINPUT VMSG ECHO $PATH

echo $path

...

To obtain the correct bash command enclose a the uppercase string with the

conversion escape character:

#cp vinput vmsg echo $%PATH%

CP VINPUT VMSG ECHO $%PATH%

echo $PATH

...

Chapter 19. Console device drivers 211

Using the escape character

To include the escape character in the command passed to Linux, you need to type

it twice. If you are using the standard settings according to “VM console line edit

characters” on page 210, you need to specify two quotes to pass a single quote to

Linux.

Example: The following command passes an string in quotes to be echoed.

#cp vinput pvmsg echo ""%H%ello, here is ""$0

CP VINPUT PVMSG ECHO "%H%ELLO, HERE IS "$0

echo "Hello, here is "$0

Hello, here is -bash

In the example, $0 resolves to the name of the current process.

Using the end of line character

To include the end of line character in the command passed to Linux, you need to

specify it with a leading escape character. If you are using the standard settings

according to “VM console line edit characters” on page 210, you need to specify ″#

to pass # to Linux.

If you specify the end of line character without a leading escape character, VM CP

interprets it as an end of line character that ends the VINPUT command.

Example: In this example a number sign is intended to mark the begin of a

comment in the bash command but is misinterpreted as the beginning of a second

command:

#cp vinput pvmsg echo ""%N%umber signs start bash comments"" #like this one

CP VINPUT PVMSG ECHO "%N%UMBER SIGNS START BASH COMMENTS"

LIKE THIS ONE

HCPCMD001E Unknown CP command: LIKE

...

The escape character prevents the number sign from being interpreted as an end of

line character:

#cp vinput pvmsg echo ""%N%umber signs start bash comments"" "#like this one

VINPUT PVMSG ECHO "%N%UMBER SIGNS START BASH COMMENTS" #LIKE THIS ONE

echo "Number signs start bash comments" #like this one

Number signs start bash comments

Console 3270 emulation

If you are accessing the VM console from Linux by using the x3270 emulator, add

the following settings to the .Xdefaults file to get the correct code translation:

 ! X3270 keymap and charset settings for Linux

 x3270.charset: us-intl

 x3270.keymap: circumfix

 x3270.keymap.circumfix: :<key>asciicircum: Key("^")\n

Further information

For more information on VINPUT refer to z/VM CP Command and Utility Reference,

SC24-6008.

212 Device Drivers, Features, and Commands - November, 2006

Building a kernel with the console device drivers

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the console

device drivers.

Figure 46 summarizes the kernel configuration menu options that are relevant to the

console device drivers:

CONFIG_TN3270

Allows an IBM 3270 line-mode terminal to run a Linux system console.

CONFIG_TN3270_CONSOLE

Prints kernel errors and kernel warnings to the IBM 3270 line-mode terminal

in addition to the normal output.

CONFIG_TN3215

Allows an IBM 3215 line-mode terminal to run a Linux system console.

CONFIG_TN3215_CONSOLE

Prints kernel errors and kernel warnings to the IBM 3215 line-mode terminal

in addition to the normal output.

CONFIG_SCLP

Includes support for the IBM SCLP interface to the service element. This

option is required to enable Linux to respond to “signal quiesce” requests.

CONFIG_SCLP_TTY

Allows an SCLP line-mode terminal to run a Linux system console.

CONFIG_SCLP_CONSOLE

Prints kernel errors and kernel warnings to the SCLP line-mode hardware

console in addition to the normal output on the TTY device.

CONFIG_SCLP_VT220_TTY

Allows an SCLP VT220-compatible terminal in full-screen mode to run a

Linux system console.

CONFIG_SCLP_VT220_CONSOLE

Prints kernel errors and kernel warnings to the full-screen hardware console

in addition to the normal output on the TTY device.

 All console device driver components are compiled into the kernel.

Character device drivers

 Support for locally attached 3270 tubes (CONFIG_TN3270)

 └─Support for console on (CONFIG_TN3270_CONSOLE)

 3270 line mode terminal

 Support for locally attached 3215 tubes (CONFIG_TN3215)

 └─Support for console on (CONFIG_TN3215_CONSOLE)

 3215 line mode terminal

 Support for SCLP (CONFIG_SCLP)

 ├─Support for SCLP line mode terminal (CONFIG_SCLP_TTY)

 │ └─Support for console on (CONFIG_SCLP_CONSOLE)

 │ SCLP line mode terminal

 └─Support for SCLP VT220-compatible terminal (CONFIG_SCLP_VT220_TTY)

 └─Support for console on (CONFIG_SCLP_VT220_CONSOLE)

 SCLP VT220-compatible terminal

Figure 46. Console kernel configuration menu options

Chapter 19. Console device drivers 213

Setting up the console device drivers

This section describes the kernel parameters, commands, and /etc/inittab entries

that you can use to configure the console device drivers. Because all console

device driver components are compiled into the kernel, there are no module

parameters.

Console kernel parameter syntax

There are three kernel parameters for the console:

conmode to override the default console of an environment.

condev to define a 3215 device to a P/390.

console to activate a console and designate a preferred console.

Console kernel parameter syntax

��

conmode=

hwc

3270

3215

condev=<cuu>
 �

�
 console=ttyS0

console=<name1>

console=<name2>

��

Note: If you specify multiple parameter=value pairs, separate them with a

blank.

 where:

<cuu>

is the device ’Control Unit and Unit’ number, and may be expressed in

hexadecimal form (preceded by 0x) or in decimal form.

<name1>

is the standard name of the active console (ttyS0 | ttyS1).

<name2>

is the standard name of the second console if both are to be active (ttyS0 |

ttyS1). If both consoles are specified, this is the preferred console.

conmode parameter

The device drivers for the 3215 terminal, for the 3270 terminal, and for the

hardware console can be compiled into the Linux kernel. If more than one driver is

present, the default console device driver is chosen at runtime according to the

environment:

214 Device Drivers, Features, and Commands - November, 2006

Table 30. Default console device driver

LPAR or native hardware console device driver or 3270 device driver

VM 3215 or 3270 console device driver, depending on the

guest’s console settings (the CONMODE field in the output

of #CP QUERY TERMINAL).

P/390 3215 console device driver

Use the conmode parameter to override the default.

Example: To use the hardware console in a z/VM environment specify:

 conmode=hwc

condev parameter

This kernel parameter applies only to the 3215 console device driver if used on a

P/390. This supplies the device driver with the device number of the 3215 device.

The reason that this parameter is needed is that there is no guaranteed method of

recognizing a 3215 device attached to a P/390.

Example: To instruct the device driver to use device number 0x001F for the 3215

terminal specify:

 condev=0x001f

or:

 condev=31

console parameter

The console parameter applies only if there is more than one console device

available (for example, when using the SCLP console device driver).

Only active consoles receive Linux operating system messages and only one

console can be the preferred console. The preferred console is used as initial input

and output device, beginning at the stage of the boot process when the ’init’-script

is called. Messages issued by programs that are run at this stage are therefore only

displayed on the preferred console. On default, ttyS0 is active and used as the

preferred console.

Use the console parameter to activate ttyS1 instead of ttyS0, or to activate both

ttyS0 and ttyS1 and designate one of them as the preferred console.

Examples:

v To activate the full-screen console device driver instead of the line-mode console

driver, add the following line to the kernel command line:

 console=ttyS1

v To activate both consoles, provide a specification for both drivers, for example:

 console=ttyS0 console=ttyS1

The last statement determines the preferred console, ttyS1 in the example.

Assuring device nodes

User space programs access console devices by device nodes. If your distribution

does not create these device nodes early in the boot process, Linux will not boot

and you will not have a command prompt from where you can create the nodes

yourself.

Chapter 19. Console device drivers 215

In this case, you can create the nodes from a support system that has access to

the failed system’s devices. For example, you can use the following commands to

create the nodes:

mknod /dev/ttyS0 c 4 64

mknod /dev/ttyS1 c 4 65

mknod /dev/tty3270 c 227 0

Setting up a line-mode terminal

The line-mode terminals are primarily intended for booting Linux. The preferred user

access to a running Linux on System z is through a networked terminal emulation

such as telnet or ssh. The 3215 and 3270 console device drivers always provide a

line-mode terminal. The hardware console device driver can provide a line-mode

terminal or a VT220-like full-screen mode terminal.

Tip: If the terminal does not provide the expected output, ensure that dumb is

assigned to the TERM environment variable. For example, issue the following

command on the bash shell:

export TERM=dumb

Setting up a full-screen mode terminal

The full-screen terminal, can be used for full-screen text editors, such as vi, and

terminal-based full-screen system administration tools. Only the hardware console

device driver can provide a VT220-like full-screen mode terminal.

Tip: If the terminal does not provide the expected output, ensure that linux is

assigned to the TERM environment variable. For example, issue the following

command on the bash shell:

export TERM=linux

To set TERM=linux at startup add a line of this form to the /etc/inittab file:

<id>:2345:respawn:/sbin/agetty -L 9600 ttyS1 linux

where <id> is a unique identifier for the entry in the inittab file.

Be sure not to provide multiple entries for ttyS1. For more details see the man page

for the inittab file.

Enabling a terminal for user log-ins

To allow user log-ins from a terminal, add a line of this form to the /etc/inittab

file:

<id>:2345:respawn:/sbin/mingetty <dev> --noclear

where:

<id> is a unique identifier for the entry in the inittab file.

<dev> is the device name (see Table 26 on page 208).

Your Linux system’s /etc/inittab file might already have an entry for a terminal.

Be sure not to provide multiple entries for the same device. See Table 26 on page

208 for the device node names. If an existing entry uses a different name and you

216 Device Drivers, Features, and Commands - November, 2006

are not sure how it maps to the names of Table 26, you can comment it out and

replace it. When referring to the device node in a command or parameter, always

use the names of Table 26.

For more details see the man page for the inittab file.

Example

To enable a device ttyS0 for user log-ins specify, for example:

1:2345:respawn:/sbin/mingetty ttyS0 --noclear

Setting a TTY device online or offline

You can use the chccwdev command (“chccwdev - Set a CCW device online” on

page 269) to set a TTY device online or offline. Alternatively, you can write “1” to

the device’s online attribute to set it online, or “0” to set it offline.

Note: Setting a CCW device online and offline in this context is only useful with

additional TTYs attached through the 3270 TTY device driver and not for the

console device.

Examples

v To set a TTY device ttyS0 online issue:

chccwdev -e ttyS0

or

echo 1 > /sys/bus/ccw/drivers/3270/ttyS0/online

v To set a TTY device ttyS0 online issue offline issue:

chccwdev -d ttyS0

or

echo 0 > /sys/bus/ccw/drivers/3270/ttyS0/online

Chapter 19. Console device drivers 217

218 Device Drivers, Features, and Commands - November, 2006

Chapter 20. Generic cryptographic device driver

Some cryptographic processing in Linux can be off-loaded from the CPU and

performed by dedicated coprocessors. Several of these coprocessors are available

offering a range of performance and features. The generic cryptographic device

driver (zcrypt) is required when one or more of these devices is available in the

hardware.

Features

The cryptographic device driver supports a range of hardware and software

functions:

Supported devices

The coprocessors supported are:

v PCI Cryptographic Coprocessor (PCICC)

v PCI Cryptographic Accelerator (PCICA)

v PCI-X Cryptographic Coprocessor (PCIXCC) - see below

v Crypto Express2 Coprocessor (CEX2C)

v Crypto Express2 Accelerator (CEX2A)

PCIXCC coprocessors are further distinguished by their licensed internal code (LIC)

level:

v PCIXCC (MCL3) as of LIC EC J12220 level 29

v PCIXCC (MCL2) with a LIC prior to EC J12220 level 29

Note: When Linux is running under VM and an accelerator card (PCICA or CEX2A)

is present any cryptographic coprocessor cards will be hidden. For VM

guests all cards are supported as of z/VM 5.1.

Supported facilities

The cryptographic device driver supports these cryptographic operations:

v Encryption using the Rivest-Shamir-Adleman (RSA) exponentiation operation

using either a modulus-exponent (Mod-Expo) or Chinese-Remainder Theorem

(CRT) key.

v Decryption using the counterpart of the operation and key used for encryption.

Elements of zcrypt

This section provides information on the software you need to use zcrypt and the

use it makes of cryptographic hardware.

Software components

To run programs that use the zcrypt device driver for encryption, you need:

v the device driver module or modules (see “Building a kernel with the zcrypt

device driver” on page 221),

v the libica library, unless applications call the device driver directly

(the libica library can also perform generation of public/private key pairs,

encryption, decryption, signing and signature verification through software),

v and the openCryptoki library if applications use the PKCS #11 API.

© Copyright IBM Corp. 2000, 2006 219

|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|

|

|

|
|
|

|

|

|
|
|

|

|

|
|

|

|

|
|

|

|
|

|

The openCryptoki library requires the libica library. Applications can either call the

libica library directly or use it indirectly through the openCryptoki PKCS #11 API.

Applications can also interface directly to the z90crypt driver module. Figure 47

illustrates the software relationships:

 In Figure 47 “Application x” is an application that uses the PKCS #11 API,

“Application y” uses the libica library, and “Application z” uses the z90crypt interface

directly (see “External programming interfaces” on page 227).

See “Setting up the zcrypt device driver” on page 222 for information on how to set

up the different components.

Dependencies

If you are running Linux under VM then z/VM 5.1 is required.

For the newer cards (CEX2A and CEX2C) you require a System z9 or later.

For the cryptographic functions you should use the libica library. This library is part

of the openCryptoki project (see “The libica library” on page 225).

Hardware restrictions

If you have a PCICC only, or are attempting to use a CRT key on a system with

PCIXCC (MCL2) only, you need to ensure that your data is PKCS-1.2 padded. In

this case, the zcrypt device driver or the cryptographic hardware might change the

padding. If the padding is not done correctly, the cryptographic operations are

performed in software.

If you have at least one PCICA, PCIXCC (MCL3), CEX2C, or CEX2A, or if you are

only using Mod-Expo keys with a PCIXCC (MCL2), you do not need to ensure

PKCS-1.2 padding. In this case the padding remains unchanged.

Performance considerations

Polling thread

This driver can run in two modes: with or without polling thread. When running with

polling thread one CPU with no outstanding workload is constantly polling the

cryptographic cards for finished cryptographic requests. The polling thread will sleep

when no cryptographic requests are currently being processed. This mode will

utilize the cryptographic cards as much as possible at the cost of blocking one CPU

during cryptographic operations. Without polling thread the cryptographic cards are

z90crypt

libica

openCryptoki

(pkcs#11)

Application x Application y Application z

Figure 47. zcrypt device driver interfaces

220 Device Drivers, Features, and Commands - November, 2006

|

|
|
|

|
|
|
|

|
|
|

|

|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

polled at a much lower rate, resulting in higher latency and reduced throughput for

cryptographic requests but without a notable CPU load.

Load balancing

To maximize performance the driver uses a load balancing algorithm to distribute

requests across all available AP bus devices1. The algorithm uses a list holding all

AP bus devices sorted by increasing utilization. A new request will be submitted to

the AP bus device with the lowest utilization. The increased load will move this

device further towards the end of the device list after a re-sort. When a device

processed a request it will move up towards the beginning of the device list. To take

in account different processing speeds per device type each device has a speed

rating assigned which is also used to calculate the device utilization.

The zcrypt device driver assigns work to cryptographic devices according to device

type in the following order of preference:

1. CEX2A

2. PCICA

3. PCIXCC

4. CEX2C

5. PCICC

Further information

v For information on RSA–PKCS 1.2-padding visit http://www.rsasecurity.com/
rsalabs/pkcs/pkcs-1/.

v For information on how to set up cryptographic hardware on your mainframe

refer to zSeries Crypto Guide Update, SG24-6870.

v For CP commands related to cryptographic devices refer to z/VM CP Command

and Utility Reference, SC24-6008.

Building a kernel with the zcrypt device driver

 This section describes the options you must select in the Linux configuration menu

to include the zcrypt device driver.

You need to select the option CONFIG_ZCRYPT to include the cryptographic

device driver.

 The CONFIG_ZCRYPT option controls whether the driver is compiled into the

kernel or built as a separate module.

The device driver can be compiled as multiple kernel modules or a monolithic

kernel module. The default is to create multiple modules. You need to select the

option CONFIG_ZCRYPT_MONOLITHIC to build the monolith.

1. See “The sysfs interface” on page 225

Cryptographic devices

 Support for PCI-attached cryptographic adapters (CONFIG_ZCRYPT)

Figure 48. zcrypt kernel configuration menu option

Chapter 20. Generic cryptographic device driver 221

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|
|

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/

If configured as multiple kernel modules the following modules will be built:

ap.ko AP bus module

zcrypt_api.ko

request router module

zcrypt_cex2a.ko

card driver for CEX2A cards

zcrypt_pcica.ko

card driver for PCICA cards

zcrypt_pcicc.ko

card driver for PCICC cards

zcrypt_pcixcc.ko

card driver for PCIXCC and CEX2C cards

If configured as monolithic kernel module a single module will be built:

v z90crypt.ko (this name is used for backward compatibility).

Setting up the zcrypt device driver

This section describes the zcrypt kernel parameters and the z90crypt module, and

how to install additional components required by the device driver.

This section also describes how to create the required device node. It further

describes how to set up the cryptographic devices on your LPAR, and where

applicable, VM, to make it available to your Linux instance.

Kernel parameters

This section describes how to configure the zcrypt device driver if zcrypt has been

compiled into the kernel. You can configure the device driver by adding the

parameters to the kernel parameter line.

The driver supports two kernel parameters: domain and poll_thread. domain is an

integer argument and sets the cryptographic domain index to be used by the

devices. If not set the domain index with the maximum number of devices will be

used. poll_thread is a integer argument and enables a polling thread to increase

cryptographic performance (see also “Polling thread” on page 220). The default

value is 1, which means the polling thread is enabled.

You need to specify the domain parameter only if you are running Linux in an LPAR

for which multiple cryptographic domains have been defined.

Cryptographic devices

 Support for monolithic cryptographic device driver (CONFIG_ZCRYPT_MONOLITHIC)

Figure 49. zcrypt monolithic configuration menu option

222 Device Drivers, Features, and Commands - November, 2006

|

|

|

|

|

|

|
|

|

|

|
|
|
|
|
|

zcrypt kernel parameter syntax

��
 domain=-1

domain=<domain>

 poll_thread=1

poll_thread=0

��

where <domain> is an integer in the range from 0 to 15 that identifies the

cryptographic domain for the Linux instance and <poll_thread> is 1 (enabled) or 0

(disabled).

The specification “domain=-1” causes the device driver to attempt to autodetect the

domain to use, which will be the one with the most devices attached. This is the

default.

Example

The following kernel parameter line specification makes the zcrypt device driver

operate within the cryptographic domain “7” with poll_thread enabled:

domain=7 poll_thread=1

Module parameters

If zcrypt is not compiled into the kernel it can be compiled as a single monolithic

module or as a set of discrete modules. See “Building a kernel with the zcrypt

device driver” on page 221 for details.

Monolithic module parameters

This section describes how to load and configure the zcrypt device driver if it has

been compiled as a separate monolithic module.

z90crypt module syntax

��

modprobe

z90crypt

insmod

 domain=-1

domain=<domain>

 poll_thread=1

poll_thread=0

��

where <domain> is an integer in the range from 0 to 15 that identifies the

cryptographic domain for the Linux instance and <poll_thread> is 1 (enabled) or 0

(disabled). Omit the domain parameter if only one cryptographic domain is defined

for the LPAR where your Linux instance runs.

The specification “domain=-1” causes the device driver to attempt to autodetect the

domain to use, which will be the one with the most devices attached. This is the

default.

Refer to the respective man page for details on modprobe or insmod.

Examples:

v This example loads the zcrypt device driver module if Linux runs in an LPAR with

only one cryptographic domain:

Chapter 20. Generic cryptographic device driver 223

||

|
|

|

|
|

|

|
|
|

||

|
|

|

|

modprobe z90crypt

v This example loads the zcrypt device driver module and makes zcrypt operate

within the cryptographic domain “1”:

modprobe z90crypt domain=1

Discrete module parameters

This section describes how to load and configure the zcrypt device driver if it has

been compiled as discrete modules.

To load the AP bus module:

ap module syntax

��

modprobe

ap

insmod

 domain=-1

domain=<domain>

 poll_thread=1

poll_thread=0

��

where the parameters are the same as those described in “Monolithic module

parameters” on page 223.

All other modules required will be loaded automatically.

Note: To support automatic load of card driver modules the following rule has to be

added to udev:

ACTION=="add", SUBSYSTEM=="ap", MODALIAS=="*", \ RUN+="/sbin/modprobe $modalias"

To unload the zcrypt device driver you must unload all modules manually:

Unload module syntax

�� modprobe -r zcrypt_cex2a zcrypt_pcixcc zcrypt_pcicc zcrypt_pcica zcrypt_api ap ��

It is important to list them in the order given. You can also use rmmod but in this

case you must only unload modules which have actually been loaded. For example:

rmmod zcrypt_pcicc zcrypt_pcica zcrypt_api ap

may be used if only the PCICC and PCICA modules are loaded.

Examples:

v This example loads the discrete zcrypt device driver module ap if Linux runs in

an LPAR with only one cryptographic domain:

modprobe ap

v This example loads the discrete zcrypt device driver module ap to operate within

the cryptographic domain “1”:

224 Device Drivers, Features, and Commands - November, 2006

|
|

|
||

|
|
|

|
|

|

|||||||||||||||||||||||||||||||||||

||||

|
|

|

|
|
|

|
|

|

|||||||
||||

|
|

|

|

|

|
|

|
||

|
|

modprobe ap domain=1

The libica library

You can obtain the libica library from the SourceForge Web site at:

http://sourceforge.net/projects/opencryptoki

You can find the release details with the module under the Files category.

Both a 31-bit and a 64-bit version are available. The 64-bit version includes the

31-bit compatibility code.

The openCryptoki library

You can obtain the openCryptoki library from the SourceForge Web site at:

http://sourceforge.net/projects/opencryptoki

You can find the release details with the module on the Files category.

To be able to configure openCryptoki (with pkcsconf) user root must be a member

of group pkcs11.

The sysfs interface

The zcrypt cryptographic driver utilizes the device model introduced with the Linux

2.6 kernel series. It introduces a new bus called "AP" which can be found under

/sys/bus/ap.

The following attributes are defined at AP bus level:

/sys/bus/ap/ap_domain

Read-only attribute representing the domain index used for all AP devices.

/sys/bus/ap/config_time

Read-write attribute representing the interval in seconds for re-scanning the

AP bus for new or gone devices.

/sys/bus/ap/poll_thread

Read-write attribute indicating whether a polling thread is to be used to

increase cryptographic performance. By writing 0 or 1 to this attribute the

poll thread can be disabled or enabled. (See “Polling thread” on page 220).

For each cryptographic adapter a new directory in /sys/bus/ap/devices is created

using the following naming convention: cardxx where xx is the device index for each

device. The valid device index range is hex 00 to hex 3f. For example device 0x1a

can be found under /sys/bus/ap/devices/card1a. Within each device directory the

following attributes can be found:

depth Read-only attribute representing the input queue length for this device.

hwtype

Read-only attribute representing the hardware type for this device. The

following values are defined:

3 PCICC cards,

4 PCICA cards,

5 PCIXCC cards,

Chapter 20. Generic cryptographic device driver 225

|
||

|

|

|
|
|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

||

|
|
|

||

||

||

http://sourceforge.net/projects/opencryptoki
http://sourceforge.net/projects/opencryptoki

6 CEX2A cards,

7 CEX2C cards.

modalias

Read-only attribute representing an internally used device bus-ID.

online Read-write attribute representing the online status for this AP device.

Writing 0 or 1 to this attribute sets this device offline or online.

request_count

Read-only attribute representing the number of requests already processed

by this device.

type Read-only attribute representing the type of this device. The following types

are defined:

v PCICC

v PCICA

v PCIXCC_MCL2

v PCIXCC_MCL3

v CEX2C

v CEX2A

Debugging messages

By defining a macro called ZCRYPT_DEBUG at compile time debugging messages

can be enabled.

Setting up for the 31-bit compatibility mode

31-bit applications can access the 64-bit zcrypt driver by using the 31-bit

compatibility mode.

Assuring that you have a device node

User space programs address cryptographic devices through a single device node.

Both the major and minor number can be dynamic, depending on your Linux

distribution and configuration. To provide the node you need either udev or hotplug

support.

Using udev

If udev support is enabled (see “Device nodes provided by udev” on page 4),

z90crypt is assigned to the miscellaneous devices. The major device number is

then that of the misc devices. You can find it as the value for the entry “misc” in

/proc/devices.

The minor number is dynamically assigned and you can find it in /proc/misc as the

value for the entry “z90crypt”.

If the device node /dev/z90crypt is not created for you, you can create it yourself

by issuing a command of this form:

mknod /dev/z90crypt c <misc_major> <dynamic_minor>

226 Device Drivers, Features, and Commands - November, 2006

||

||

|
|

||
|

|
|
|

||
|

|

|

|

|

|

|

|

|
|

|
|

|
|
|
|

Checking hardware status, activating and deactivating devices under

zcrypt

Cryptographic devices in general are not directly accessed by users but through

user programs. The functions of checking hardware status, activating devices, and

deactivating them, are performed by program calls to the sysfs interface. See “The

sysfs interface” on page 225 for more details.

Examples

v To set a cryptographic device with bus device 0x3e online issue:

echo 1 > /sysfs/bus/ap/devices/card3e/online

v To set a cryptographic device with bus device 0x3e offline issue:

echo 0 > /sysfs/bus/ap/devices/card3e/online

v To check the online status of the cryptographic device with bus ID 0x3e issue:

cat /sysfs/bus/ap/devices/card3e/online

The value is ’1’ if device is online or ’0’ otherwise.

External programming interfaces

 This section provides information for those who want to circumvent libica and

directly access the zcrypt device driver.

Refer to include/asm-s390/zcrypt.h in the Linux kernel source tree for different

structures that you might want to use.

Outline of a decryption program

The following steps are required:

1. Get a device handle for zcrypt.

Example:

dh= open("/dev/zcrypt", 0_RDWR)

2. Create and load one of the following structures

v ica_rsa_modexpo (see “The ica_rsa_modexpo structure” on page 228)

v ica_rsa_modexpo_crt (see “The ica_rsa_modexpo_crt structure” on page

228)

Both structures are defined in zcrypt.h. In the structure, you define the private

key to be used and set the input buffer pointer to the data you want to decrypt

and the output buffer pointer for the decrypted data.

3. Invoke ioctl to activate zcrypt:

<rc>= ioctl(dh, <function code>, <structure pointer>)

where:

<function code> is ICARSAMODEXPO for structure type

ica_rsa_modexpo or ICARSACRT for structure

type ica_rsa_modexpo_crt

Chapter 20. Generic cryptographic device driver 227

|

|

|
|
|
|

|

|

|
||

|

|
||

|

|
||

|

|
|
|

|

|

|

|

|

|

|

<structure pointer> is a pointer to the structure you created, of the

type ica_rsa_modexpo or ica_rsa_modexpo_crt

<rc> is the variable for the return code

Example:

myrc = ioctl(dh, ICARSAMODEXPO, &mycryptmex);

4. Obtain the decrypted and decoded data from the output buffer in the structure.

The ica_rsa_modexpo structure

The ica_rsa_modexpo structure is defined in the zcrypt header file, zcrypt.h.

The (private) key consists of the exponent in *b_key and the modulus in

*n_modulus. Both of these are hexadecimal representations of large numbers. The

length L of *n_modulus must be in the range 64 – 256.

Both the input data and the exponent b_key must be of the same length L as the

modulus. If they are shorter than the modulus, they must be padded on the left with

zeroes. The output data length must be at least L.

The ica_rsa_modexpo_crt structure

The ica_rsa_modexpo_crt structure is defined in the zcrypt header file, zcrypt.h.

The ica_rsa_modexpo_crt structure is similar to the ica_rsa_modexpo structure but

has been defined so that the Chinese Remainder Theorem (CRT) can be used in

decryption. zcrypt performs better if the CRT definition is used. The key-definition

fields are all in hexadecimal representation. They have these meanings and

limitations:

v *bp_key and *bq_key are the prime factors of the modulus. In zcrypt the modulus

is (*bp_key) × (*bq_key). The resulting length L of the modulus, in hexadecimal

representation, must be found before these fields are defined.

v *np_prime and *nq_prime are exponents used for *bp_key and *bq_key

respectively.

v *u_mult_inv is a coefficient used in the zcrypt implementation of decryption by

CRT.

v *bp_key, *np_prime, and *u_mult_inv must all be of length 8 + L/2

v *bq_key and *nq_prime must both be of length L/2

The input data length must be L, and the output data length must be at least L

Querying the hardware status

There is an ioctl interface for checking on underlying hardware in zcrypt. There are

a number of ioctls for each status needed. These ioctls are defined in the header

file zcrypt.h. When control returns, you will have the information you requested.

Example:

<rc> = ioctl(<dh>, Z90STAT_PENDINGQ_COUNT, &<int_variable>);

where:

<rc> is the variable for the ioctl return code

<dh> is the variable for the zcrypt device handle

228 Device Drivers, Features, and Commands - November, 2006

||
|

|

|

|

|

|

|

|

|

|

<int_variable> is the variable you want to use for the returned information; in the

example the number of requests sent to the devices awaiting the

reply.

Returns from ioctl

0 means everything went well and the result is in your output buffer.

A return code of -1 indicates that an error has occurred and that an error code is

also returned. For a list of possible error codes returned in errno refer to

/usr/include/asm/errno.h

Chapter 20. Generic cryptographic device driver 229

|
|
|

|
|
|

230 Device Drivers, Features, and Commands - November, 2006

Chapter 21. Channel measurement facility

The System z architecture provides a channel measurement facility to collect

statistical data about I/O on the channel subsystem. Data collection can be enabled

for all CCW devices. User space applications can access this data through the

sysfs.

Features

The channel measurement facility provides the following features:

v Basic channel measurement format for concurrently collecting data on up to 4096

devices.

v Extended channel measurement format for concurrently collecting data on an

unlimited number of devices.

v Data collection for all channel-attached devices, except those using QDIO (that

is, except qeth and SCSI-over-Fibre channel attached devices)

Building a kernel with the channel measurement facility

 This section is intended for those who want to build their own kernel.

The channel measurement facility is always included in the Linux 2.6 kernel. You do

not need to select any options.

If you want to access DASD data with applications written for the kernel 2.4 DASD

channel measurement facility, see “the CONFIG_DASD_CMB option” on page 36

for required options.

Setting up the channel measurement facility

You can configure the channel measurement facility by adding parameters to the

kernel parameter file.

Channel measurement facility kernel parameters

��
 cmf.format=-1

cmf.format=

0

1

 cmf.maxchannels=1024

cmf.maxchannels=<no_channels>

��

Note: If you specify both parameter=value pairs, separate them with a blank.

 where:

cmf.format

defines the format, “0” for basic and “1” for extended, of the channel

measurement blocks. The default, “-1”, uses the extended format for z990 and

later mainframes and the basic format for earlier mainframes.

cmf.maxchannels=<no_channels>

limits the number of devices for which data measurement can be enabled

© Copyright IBM Corp. 2000, 2006 231

concurrently with the basic format. The maximum for <no_channels> is 4096.

For the extended format, there is no limit and any value you specify is ignored.

Working with the channel measurement facility

This section describes typical tasks you need to perform when working with the

channel measurement facility.

v Enabling, resetting, and switching off data collection

v Reading data

Enabling, resetting, and switching off data collection

Before you start: You need root authority to enable data collection.

Use a device’s cmb_enable attribute to enable, reset, or switch off data collection.

To enable data collection, write “1” to the cmb_enable attribute. If data collection

has already been enabled, this resets all collected data to zero.

Issue a command of this form:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/cmb_enable

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

When data collection is enabled for a device, a subdirectory /sys/bus/ccw/devices/
<device_bus_id>/cmb is created that contains several attributes. These attributes

contain the collected data (see “Reading data”).

To switch off data collection issue a command of this form:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/cmb_enable

When data collection for a device is switched off, the subdirectory

/sys/bus/ccw/devices/<device_bus_id>/cmb and its content are deleted.

Example

In this example, data collection for a device /sys/bus/ccw/devices/0.0.b100 is

already active and reset:

cat /sys/bus/ccw/devices/0.0.b100/cmb_enable

1

echo 1 > /sys/bus/ccw/devices/0.0.b100/cmb_enable

Reading data

While data collection is enabled for a device, the directories that represent it in

sysfs contain a subdirectory, cmb, with several read-only attributes. These attributes

hold the collected data. To read one of the attributes issue a command of this form:

cat /sys/bus/ccw/devices/<device-bus-id>/cmb/<attribute>

where /sys/bus/ccw/devices/<device-bus-id> is the directory that represents the

device, and <attribute> the attribute to be read. Table 31 on page 233 summarizes

the available attributes.

232 Device Drivers, Features, and Commands - November, 2006

Table 31. Attributes with collected I/O data

Attribute Value

ssch_rsch An integer representing the ssch rsch count

value.

sample_count An integer representing the sample count

value.

avg_device_connect_time An integer representing the average device

connect time, in nanoseconds, per sample.

avg_function_pending_time An integer representing the average function

pending time, in nanoseconds, per sample.

avg_device_disconnect_time An integer representing the average device

disconnect time, in nanoseconds, per sample.

avg_control_unit_queuing_time An integer representing the average control

unit queuing time, in nanoseconds, per

sample.

avg_initial_command_response_time An integer representing the average initial

command response time, in nanoseconds,

per sample.

avg_device_active_only_time An integer representing the average device

active only time, in nanoseconds, per sample.

avg_device_busy_time An integer representing the average value

device busy time, in nanoseconds, per

sample.

avg_utilization A percent value representing the fraction of

time that has been spent in device connect

time plus function pending time plus device

disconnect time during the measurement

period.

avg_sample_interval An integer representing the average time, in

nanoseconds, between two samples during

the measurement period. Can be “-1” if no

measurement data has been collected.

Example

To read the avg_device_busy_time attribute for a device /sys/bus/ccw/devices/
0.0.b100:

cat /sys/bus/ccw/devices/0.0.b100/avg_device_busy_time

21

Chapter 21. Channel measurement facility 233

234 Device Drivers, Features, and Commands - November, 2006

Chapter 22. Control program identification

This section applies to Linux instances in LPAR mode only.

If your Linux instance runs in LPAR mode, you can use the control program

identification (CPI) module, sclp_cpi, to assign a name to your Linux instance. The

system name is used, for example, to identify the Linux instance on the HMC.

Building a kernel with CPI support

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the CPI

support.

Figure 50 summarizes the kernel configuration menu options that are relevant to the

CPI support:

CONFIG_SCLP

This option includes support for the IBM SCLP interface to the service

element. It is required for CPI.

CONFIG_SCLP_CPI

This option allows control program identification through the SCLP interface.

Compile it as a separate module, sclp_cpi.

Assigning a name to your Linux instance

You provide the name as a parameter when you load the CPI module.

CPI module parameter syntax

�� insmod sclp_cpi system_name=<system>

modprobe
 ��

where:

<system> is an 8-character system name. The specification is converted to

uppercase.

Be sure to specify the system name correctly. You cannot change the name after

you have loaded the module. A different name can be specified when loading

sclp_cpi after a reboot.

Character device drivers

 Support for SCLP (CONFIG_SCLP)

 └─Control-Program Identification (CONFIG_SCLP_CPI)

Figure 50. CPI kernel configuration menu options

© Copyright IBM Corp. 2000, 2006 235

Example

To assign system name “LNXA” to a Linux instance running in LPAR mode issue:

insmod sclp_cpi system_name=LNXA

236 Device Drivers, Features, and Commands - November, 2006

Chapter 23. OSA-Express SNMP subagent support

The OSA-Express Simple Network Management Protocol (SNMP) subagent

(osasnmpd) supports management information bases (MIBs) for the following

OSA-Express features in QDIO mode only:

v OSA-Express

– Fast Ethernet

– 1000Base-T Ethernet

– Gigabit Ethernet

– Token Ring

– ATM (running Ethernet LAN emulation)

v OSA-Express2

– Gigabit Ethernet

– 10 Gigabit Ethernet

– 1000Base-T Ethernet (System z9 only)

This subagent capability through the OSA-Express features is also called Direct

SNMP to distinguish it from another method of accessing OSA SNMP data through

OSA/SF, a package for monitoring and managing OSA features that does not run

on Linux.

See “osasnmpd – Start OSA-Express SNMP subagent” on page 301 for information

on the osasnmpd command itself.

To use the osasnmpd subagent you need:

v An OSA-Express feature running in QDIO mode with the latest textual MIB file for

the appropriate LIC level (recommended)

v The qeth device driver for OSA-Express (QDIO) and HiperSockets

v The osasnmpd subagent from s390-tools

v One of:

– net-snmp package 5.1.x or higher

– ucd-snmp package 4.2.x (recommended 4.2.3 or higher)

What you need to know about osasnmpd

The osasnmpd subagent requires a master agent to be installed on a Linux system.

You get the master agent from either the net-snmp or the ucd-snmp package. The

subagent uses the Agent eXtensibility (AgentX) protocol to communicate with the

master agent.

net-snmp/ucd-snmp is an Open Source project that is owned by the Open Source

Development Network, Inc. (OSDN). For more information on net-snmp/ucd-snmp

visit:

http://net-snmp.sourceforge.net/

When the master agent (snmpd) is started on a Linux system, it binds to a port

(default 161) and awaits requests from SNMP management software. Subagents

can connect to the master agent to support MIBs of special interest (for example,

OSA-Express MIB). When the osasnmpd subagent is started, it retrieves the MIB

© Copyright IBM Corp. 2000, 2006 237

|
|

http://net-snmp.sourceforge.net/

objects of the OSA-Express features currently present on the Linux system. It then

registers with the master agent the object IDs (OIDs) for which it can provide

information.

An OID is a unique sequence of dot-separated numbers (for example,

.1.3.6.1.4.1.2) that represents a particular information. OIDs form a hierarchical

structure. The longer the OID, that is the more numbers it is made up of, the more

specific is the information that is represented by the OID. For example,

.1.3.6.1.4.1.2 represents all IBM-related network information while

..1.3.6.1.4.1.2.6.188 represents all OSA-Express-related information.

A MIB corresponds to a number of OIDs. MIBs provide information on their OIDs

including textual representations the OIDs. For example, the textual representation

of .1.3.6.1.4.1.2 is .iso.org.dod.internet.private.enterprises.ibm.

The structure of the MIBs might change when updating the OSA-Express licensed

internal code (LIC) to a newer level. If MIB changes are introduced by a new LIC

level, you need to download the appropriate MIB file for the LIC level (see

“Downloading the IBM OSA-Express MIB” on page 239), but you do not need to

update the subagent. Place the updated MIB file in a directory that is searched by

the master agent.

 Example: This example shows the processes running after the snmpd master

agent and the osasnmpd subagent have been started. When you start osasnmpd, a

daemon called osasnmpd-2.6 starts. In the example, PID 687 is the SNMP master

agent and PID 729 is the OSA-Express SNMP subagent process:

ps -ef | grep snmp

USER PID

root 687 1 0 11:57 pts/1 00:00:00 snmpd

root 729 659 0 13:22 pts/1 00:00:00 osasnmpd-2.6

When the master agent receives an SNMP request for an OID that has been

registered by a subagent, the master agent uses the subagent to collect any

requested information and to perform any requested operations. The subagent

returns any requested information to the master agent. Finally, the master agent

returns the information to the originator of the request.

Figure 51. OSA-Express SNMP agent flow

238 Device Drivers, Features, and Commands - November, 2006

Setting up osasnmpd

This section describes the following setup tasks you need to perform if you want to

use the osasnmpd subagent:

v Downloading the IBM OSA-Express MIB

v Configuring access control

Downloading the IBM OSA-Express MIB

Perform the following steps to download the IBM OSA-Express MIB. The MIB file is

valid only for hardware that supports the OSA-Express adapter.

1. Go to ibm.com/servers/resourcelink/

A user ID and password are required. You can apply for a user ID if you do not

yet have one.

2. Sign in.

3. Select “Library” from the left-hand navigation area.

4. Under “Library shortcuts”, select “Open Systems Adapter (OSA) Library”.

5. Follow the link for “OSA-Express Direct SNMP MIB module”.

6. Select and download the MIB for your LIC level.

7. Rename the MIB file to the name specified in the MIBs definition line and use

the extension .txt.

Example: If the definition line in the MIB looks like this:

==>IBM-OSA-MIB DEFINITIONS ::= BEGIN

Rename the MIB to IBM-OSA-MIB.txt.

8. Place the MIB into /usr/share/snmp/mibs.

If you want to use a different directory, be sure to specify the directory in the

snmp.conf configuration file (see step 10 on page 241).

Result: You can now make the OID information from the MIB file available to the

master agent. This allows you to use textual OIDs instead of numeric OIDs when

using master agent commands.

See also the FAQ (How do I add a MIB to the tools?) for the master agent package

at

http://net-snmp.sourceforge.net/FAQ.html

Configuring access control

During subagent startup or when network interfaces are added or removed, the

subagent has to query OIDs from the interfaces group of the standard MIB-II. To

start successfully, the subagent requires at least read access to the standard MIB-II

on the local node.

This section gives an example of how you can use the snmpd.conf and snmp.conf

configuration files to assign access rights using the View-Based Access Control

Mechanism (VACM). The following access rights are assigned on the local node:

v General read access for the scope of the standard MIB-II

v Write access for the scope of the OSA-Express MIB

v Public local read access for the scope of the interfaces MIB

Chapter 23. OSA-Express SNMP subagent support 239

http://www.ibm.com/servers/resourcelink/
http://net-snmp.sourceforge.net/FAQ.html

The example is intended for illustration purposes only. Depending on the security

requirements of your installation, you might need to define your access differently.

Refer to the snmpd man page for a more information on how you can assign

access rights to snmpd.

 1. Refer to your distribution documentation to find out where you can find a

template for snmpd.conf and where you need to place it. Some of the possible

locations are:

v /usr/local/share/snmp

v /etc/snmp

v /usr/share/snmp

 2. Open snmpd.conf with your preferred text editor.

 3. Find the security name section and include a line of this form to map a

community name to a security name:

com2sec <security-name> <source> <community-name>

where:

<security-name>

is given access rights through further specifications within snmpd.conf.

<source>

is the IP-address or DNS-name of the accessing system, typically a

Network Management Station.

<community-name>

is the community string used for basic SNMP password protection.

Example:

sec.name source community

com2sec osasec default osacom

com2sec pubsec localhost public

 4. Find the group section. Use the security name to define a group with different

versions of the master agent for which you want to grant access rights. Include

a line of this form for each master agent version:

group <group-name> <security-model> <security-name>

where:

<group-name>

is a group name of your choice.

<security-model>

is the security model of the SNMP version.

<security-name>

is the same as in step 3.

Example:

groupName securityModel securityName

group osagroup v1 osasec

group osagroup v2c osasec

group osagroup usm osasec

group osasnmpd v2c pubsec

Group “osasnmpd” with community “public” is required by osasnmpd to

determine the number of network interfaces.

 5. Find the view section and define your views. A view is a subset of all OIDs.

Include lines of this form:

view <view-name> <included|excluded> <scope>

240 Device Drivers, Features, and Commands - November, 2006

where:

<view-name>

is a view name of your choice.

<included|excluded>

indicates whether the following scope is an inclusion or an exclusion

statement.

<scope>

specifies a subtree in the OID tree.

Example:

name incl/excl subtree mask(optional)

view allview included .1

view osaview included .1.3.6.1.4.1.2

view ifmibview included interfaces

view ifmibview included system

View “allview” encompasses all OIDs while “osaview” is limited to IBM OIDs.

The numeric OID provided for the subtree is equivalent to the textual OID

“.iso.org.dod.internet.private.enterprises.ibm” View “ifmibview” is required by

osasnmpd to determine the number of network interfaces.

Tip: Specifying the subtree with a numeric OID leads to better performance

than using the corresponding textual OID.

 6. Find the access section and define access rights. Include lines of this form:

access <group-name> "" any noauth exact <read-view> <write-view> none

where:

<group-name>

is the group you defined in step 4 on page 240.

<read-view>

is a view for which you want to assign read-only rights.

<write-view>

is a view for which you want to assign read-write rights.

Example:

group context sec.model sec.level prefix read write notif

access osagroup "" any noauth exact allview osaview none

access osasnmpd "" v2c noauth exact ifmibview none none

The access line of the example gives read access to the “allview” view and

write access to the “osaview”. The second access line gives read access to

the “ifmibview”.

 7. Also include the following line to enable the AgentX support:

master agentx

By default, AgentX support is compiled into the net-snmp master agent 5.1.x

and, as of version 4.2.2, also into the ucd-snmp master agent.

 8. Save and close snmpd.conf.

 9. Open snmp.conf with your preferred text editor.

10. Include a line of this form to specify the directory to be searched for MIBs:

mibdirs +<mib-path>

Example:

mibdirs +/usr/share/snmp/mibs

11. Include a line of this form to make the OSA-Express MIB available to the

master agent:

Chapter 23. OSA-Express SNMP subagent support 241

mibs +<mib-name>

where <mib-name> is the stem of the MIB file name you assigned in

“Downloading the IBM OSA-Express MIB” on page 239.

Example:

mibs +IBM-OSA-MIB

12. Define defaults for the version and community to be used by the snmp

commands. Add lines of this form:

defVersion <version>

defCommunity <community-name>

where <version> is the SNMP protocol version and <community-name> is the

community you defined in step 3 on page 240.

Example:

defVersion 2c

defCommunity osacom

These default specifications simplify issuing master agent commands.

13. Save and close snmp.conf.

Working with the osasnmpd subagent

This section describes the following tasks:

v Starting the osasnmpd subagent

v Checking the log file

v Issuing queries

v Stopping osasnmpd

Starting the osasnmpd subagent

You start the osasnmpd subagent using the osasnmpd command:

osasnmpd

The osasnmpd subagent starts a daemon called osasnmpd-2.6.

For command options see “osasnmpd – Start OSA-Express SNMP subagent” on

page 301.

If you restart the master agent, you must also restart the subagent. When the

master agent is started, it does not look for already running subagents. Any running

subagents must also be restarted to be register with the master agent.

Checking the log file

Warnings and messages are written to the log file of either the master agent or the

OSA-Express subagent. It is good practise to check these files at regular intervals.

Example: This example assumes that the default subagent log file is used. The

lines in the log file show the messages after a successful OSA-Express subagent

initialization.

242 Device Drivers, Features, and Commands - November, 2006

cat /var/log/osasnmpd.log

IBM OSA-E NET-SNMP 5.1.x subagent version 1.3.0

Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.2.1.10.7.2.

Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.1.

Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.3.

Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.4.

Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.8.

OSA-E microcode level is 611 for interface eth0

Initialization of OSA-E subagent successful...

Issuing queries

This section provides some examples of what SNMP queries might look like. For

more comprehensive information on the master agent commands refer to the

snmpcmd man page.

The commands can use either numeric or textual OIDs. While the numeric OIDs

might provide better performance, the textual OIDs are more meaningful and give a

hint on which information is requested.

The query examples in this section gather information on an interface, eth0, for

which the lsqeth (see “lsqeth - List qeth based network devices” on page 295)

output looks like this:

lsqeth eth0

Device name : eth0

 card_type : OSD_100

 cdev0 : 0.0.f200

 cdev1 : 0.0.f201

 cdev2 : 0.0.f202

 chpid : 6B

 online : 1

 portname : OSAPORT

 portno : 0

 route4 : no

 route6 : no

 checksumming : sw checksumming

 state : UP (LAN ONLINE)

 priority_queueing : always queue 0

 detach_state : 0

 fake_ll : 0

 fake_broadcast : 0

 buffer_count : 16

 add_hhlen : 0

 layer2 : 0

The CHPID for the eth0 of our example is 0x6B.

v To list the ifIndex and interface description relation (on one line):

snmpget -v 2c -c osacom localhost interfaces.ifTable.ifEntry.ifDescr.6

interfaces.ifTable.ifEntry.ifDescr.6 = eth0

Using this GET request you can see that eth0 has the ifIndex 6 assigned.

v To find the CHPID numbers for your OSA devices:

snmpwalk -OS -v 2c -c osacom localhost .1.3.6.1.4.1.2.6.188.1.1.1.1

IBM-OSA-MIB::ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B

IBM-OSA-MIB::ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A

IBM-OSA-MIB::ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

Chapter 23. OSA-Express SNMP subagent support 243

The first line of the command output, with index number 6, corresponds to

CHPID 0x6B of our eth0 example. The example assumes that the community

osacom has been authorized as described in “Configuring access control” on

page 239.

If you have provided defaults for the SNMP version and the community (see step

12 on page 242), you can omit the -v and -c options:

snmpwalk -OS localhost .1.3.6.1.4.1.2.6.188.1.1.1.1

IBM-OSA-MIB::ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B

IBM-OSA-MIB::ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A

IBM-OSA-MIB::ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

You can obtain the same output by substituting the numeric OID

.1.3.6.1.4.1.2.6.188.1.1.1.1 with its textual equivalent:

.iso.org.dod.internet.private.enterprises.ibm.ibmProd.ibmOSAMib.ibmOSAMibObjects.ibmOSAExpChannelTable.ibmOSAExpChannelEntry.ibmOSAExpChannelNumber

You can shorten this somewhat unwieldy OID to the last element,

ibmOsaExpChannelNumber:

snmpwalk -OS localhost ibmOsaExpChannelNumber

IBM-OSA-MIB::ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B

IBM-OSA-MIB::ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A

IBM-OSA-MIB::ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

v To find the port type for the interface with index number 6:

snmpwalk -OS localhost .1.3.6.1.4.1.2.6.188.1.4.1.2.6

IBM-OSA-MIB::ibmOsaExpEthPortType.6 = INTEGER: fastEthernet(81)

fastEthernet(81) corresponds to card type OSD_100.

Using the short form of the textual OID:

snmpwalk -OS localhost ibmOsaExpEthPortType.6

IBM-OSA-MIB::ibmOsaExpEthPortType.6 = INTEGER: fastEthernet(81)

Specifying the index, 6 in the example, limits the output to the interface of

interest.

Stopping osasnmpd

The subagent can be stopped by sending either a SIGINT or SIGTERM signal to

the thread. Avoid stopping the subagent with kill -9 or with kill -SIGKILL. These

commands do not allow the subagent to unregister the OSA-Express MIB objects

from the SNMP master agent. This can cause problems when restarting the

subagent.

If you have saved the subagent PID to a file when you started it, you can consult

this file for the PID (see 301). Otherwise you can issue a ps command to find it out.

Example: The osasnmpd subagent starts a daemon called osasnmpd-2.6. To stop

osasnmpd, issue the kill command for either the daemon or its PID:

ps -ef | grep snmp

USER PID

root 687 1 0 11:57 pts/1 00:00:00 snmpd

root 729 659 0 13:22 pts/1 00:00:00 osasnmpd-2.6

killall osasnmpd-2.6

kill 729

244 Device Drivers, Features, and Commands - November, 2006

Chapter 24. IPL parameter interface

Use the IPL parameter sysfs interface to derive the IPL device. You can use this

information to set the IPL device online and later use it, for example, for installation

purposes.

The IPL parameter interface is always part of the kernel and is not configurable.

Working with the IPL parameter interface

For the IPL parameters, a sysfs userspace interface is available:

/sys/firmware/ipl/ipl_type

The /sys/firmware/ipl/ipl_type ASCII file contains the device type from which the

kernel was booted. The following values are possible:

ccw The IPL device is a CCW device.

fcp The IPL device is an FCP device.

unknown

The IPL device is not known.

Depending on the IPL type, additional files might reside in /sys/firmware/ipl/.

Example

If the device is CCW, the additional file device will be present. It contains the bus

ID of the IPL device, for example:

cat /sys/firmware/ipl/device

0.0.1234

If the device is FCP, a number of additional files are present (also see Chapter 5,

“SCSI-over-Fibre Channel device driver,” on page 49 for details):

device Contains the bus ID of the FCP adapter used for IPL, for example:

cat /sys/firmware/ipl/device

0.0.50dc

wwpn Contains the WWPN used for IPL, for example:

cat /sys/firmware/ipl/wwpn

0x5005076300c20b8e

lun Contains the LUN used for IPL, for example:

cat /sys/firmware/ipl/lun

0x5010000000000000

br_lba Contains the logical block address of the boot record on the boot device

(usually 0).

bootprog

Contains the boot program number.

scp_data

Contains operating system specific parameters.

binary_parameter

Contains all of the above information in binary format.

© Copyright IBM Corp. 2000, 2006 245

Setting the IPL device online

You can set the IPL device online using chccwdev, for example:

chccwdev -e 0.0.50dc

246 Device Drivers, Features, and Commands - November, 2006

Chapter 25. Data execution protection for user processes

The data execution protection feature, similarly to the NX feature on other

architectures, provides data execution protection for user processes. The data

execution protection prevents, for example, stack overflow exploits and generally

makes a system insensitive to buffer-overflow attacks in user space. The feature

also allows you to switch the addressing modes of kernel and user space. The

switch of the addressing modes is a prerequisite to enable the execute protection.

Features

The data execution protection feature provides the following functions:

v Switch the kernel/user space addressing modes

v Data execution protection for user processes

What you should know about the data execution protection feature

This feature is implemented in software, with some hardware support on IBM

System z9-109 EC and BC hardware. The hardware support is an instruction that

allows copying data between arbitrary address spaces. Without this hardware

support, a manual page-table walk is used for kernel-user-copy functions. This has

a negative performance impact if you enable the feature through kernel parameter.

Selecting the config options will not have this negative effect.

Building a kernel with the data execution protection feature

 This section is intended for those who want to build their own kernel. It describes

the options you must select in the Linux configuration menu to include the data

execution protection feature.

You need to select the kernel configuration option S390_SWITCH_AMODE and

S390_EXEC_PROTECT to enable the execute-protection option.

Note: This feature will only be active if the kernel parameter noexec is also

specified. Otherwise, the config options will have no effect.

 The S390_SWITCH_AMODE config option will be automatically selected if you

chose the S390_EXEC_PROTECT option. If you only select

S390_SWITCH_AMODE, you also need to specify the kernel parameter

switch_amode to switch the addressing modes. Otherwise the config option will have

no effect.

Base setup

 Switch kernel/user addressing modes (S390_SWITCH_AMODE)

 Data execution protection (S390_EXEC_PROTECT)

© Copyright IBM Corp. 2000, 2006 247

|
|
|

|
|

|

|

|
|
|
|
|
|

|
|

|

|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

Setting up the data execution protection feature

To enable the data execution protection, configure the kernel with the

S390_EXEC_PROTECT config option and add the kernel parameter noexec to your

parmfile or zipl.conf. This will also switch the addressing modes of kernel and user

space. Specifying noexec=off or no parameter at all will disable the feature (this is

the default).

A kernel message will indicate the status of the execute protection at boot time, for

example like this (without z9-109 EC or BC hardware support it will say “mvcos not

available”):

...

We are running under VM (64 bit mode)

S390 execute protection active, mvcos available

Detected 4 CPUs

...

To enable only the addressing mode switch, configure the kernel with the

S390_SWITCH_AMODE config option and add the kernel parameter switch_amode

to your parmfile or zipl.conf. A kernel message will indicate the status of the

addressing mode switch at boot time, for example like this (with z9-109 EC/BC

hardware support it will say “mvcos available”):

...

We are running under VM (64 bit mode)

S390 address spaces switched, mvcos not available

Detected 4 CPUs

...

Working with the data execution protection feature

This section describes typical tasks that you need to perform when working with the

data execution protection feature.

v Enabling and disabling stack execution protection

Enabling and disabling stack execution protection

To prevent stack overflow exploits, the stack of a binary or shared library must be

marked as not executable. Do this with the execstack user-space tool (part of the

prelink package) which sets, clears, or queries the executable stack flag of ELF

binaries and shared libraries (GNU_STACK).

Example

Set and query the executable stack flag (stack is executable):

$ execstack -s /usr/bin/find

$ execstack -q /usr/bin/find

X /usr/bin/find

248 Device Drivers, Features, and Commands - November, 2006

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|

|
|
|
|
|

|
|

|
|
|
|||||

Example

Clear and query the executable stack flag (stack is not executable):

$ execstack -c /usr/bin/find

$ execstack -q /usr/bin/find

- /usr/bin/find

 To determine the presence of the flag, use the readelf command, which is part of

the binutils package. To change the flag, however, you need the execstack utility.

Example

Set and query the executable stack flag (stack is executable, note the "RWE"

meaning "read/write/execute"):

$ execstack -s /usr/bin/find

$ readelf -a /usr/bin/find | grep GNU_STACK -A 1

 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

 0x0000000000000000 0x0000000000000000 RWE 8

Example

Clear and query the executable stack flag (stack is not executable, note the

"RW" meaning "read/write"):

$ execstack -c /usr/bin/find

$ readelf -a /usr/bin/find | grep GNU_STACK -A 1

 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

 0x0000000000000000 0x0000000000000000 RW 8

Chapter 25. Data execution protection for user processes 249

|

|
|

|
|
|
|||||

|
|
|

|
|
|

|
|
|
|
|||||
|

|
|
|

|
|
|
|
|||||

|

250 Device Drivers, Features, and Commands - November, 2006

Chapter 26. Other features kernel builders should know about

 This section is intended for those who want to build their own kernel. It summarizes

the System z-specific kernel configuration options, including those options that do

not correspond to a particular device driver or feature.

The options described in this section are sorted into two groups:

v “General architecture-specific options”

v “Device driver-related options” on page 258

For each group there is an overview of the options in the order in which you find

them in the kernel configuration menu (see Figure 52 on page 252 and Figure 54

on page 259). Each overview is followed by an alphabetically sorted list of the

options with a description.

Dependencies between options

Simple dependencies, where an option depends on another option that directly

precedes it in the configuration menu, are shown in the overviews (Figure 52 on

page 252 and Figure 54 on page 259). The dependent option is shown indented

and graphically joined (└─) to the option it depends on. Options that have more

complex dependencies are marked with an asterisk (*).

The option descriptions that follow the overviews include more detailed information

on the dependencies. This more detailed information is provided in boolean format

as it appears in the Kconfig files in the Linux source tree, with the CONFIG_ prefix

omitted.

Common code options are not included in this summary. Refer to the Linux source

tree for descriptions of common code options. To locate the description of an option

in the Linux source tree, open a command prompt and change the working current

directory at the root of the Linux source tree. Issue a command of this form:

grep -rl --include=’Kconfig’ ’^config <OPTION>’ *

where <option> is the option you are looking for.

Note: In the Kconfig files, the options do not have a the CONFIG_ prefix. Be sure

to omit the CONFIG_ when searching for the option.

Example: To locate the Kconfig file with the description of the common code kernel

configuration option CONFIG_EXPERIMENTAL issue:

grep -rl --include=’Kconfig’ ’^config EXPERIMENTAL’ *

init/Kconfig

General architecture-specific options

Figure 52 on page 252 provides an overview of the general architecture-specific

options in the order in which you find them in the kernel configuration menu. The

following pages provide explanations for each option in alphabetical order. For

device driver-specific options see “Device driver-related options” on page 258.

© Copyright IBM Corp. 2000, 2006 251

(CONFIG_S390)

 ...

Base setup --->

 --- Processor type and features ---

 Symmetric multi-processing support (CONFIG_SMP)

 ├─ Maximum number of CPUs (2-64) (CONFIG_NR_CPUS)

 └─ Support for hot-pluggable CPUs (CONFIG_HOTPLUG_CPU)

 (CONFIG_DEFAULT_MIGRATION_COST)

 IEEE FPU emulation

 Kernel support for 31 bit ELF binaries (CONFIG_BINFMT_ELF32)

 --- Code generation options ---

 Processor type (selection)

 • S/390 model G5 and G6 (CONFIG_MARCH_G5)

 • IBM eServer zSeries model z800 and z900 (CONFIG_MARCH_Z900)

 • IBM eServer zSeries model z890 and z990 (CONFIG_MARCH_Z990)

 Pack kernel stack (CONFIG_PACK_STACK)

 └─ Use 4kb/8kb for kernel stack instead of 8kb/16kb (CONFIG_SMALL_STACK)

 Detect kernel stack overflow (CONFIG_CHECK_STACK)

 └─ Size of the guard area (128-1024) (CONFIG_STACK_GUARD)

 Emit compiler warnings for function with broken stack usage (CONFIG_WARN_STACK)

 └─ Maximum frame size considered safe (128-2048) (CONFIG_WARN_STACK_SIZE)

 ...

 --- I/O subsystem configuration ---

 Process warning machine checks (CONFIG_MACHCHK_WARNING)

 QDIO support (CONFIG_QDIO)

 ├─ Performance statistics in /proc (CONFIG_QDIO_PERF_STATS)

 └─ Extended debugging information (CONFIG_QDIO_DEBUG)

 --- Misc ---

 Preemptible Kernel (CONFIG_PREEMPT)

 Builtin IPL record support (CONFIG_IPL)

 └─ IPL method generated into head.S (selection)

 • tape (CONFIG_IPL_TAPE)

 • vm_reader (CONFIG_IPL_VM)

 ...

 Show crashed user process info (CONFIG_PROCESS_DEBUG)

 Pseudo page fault support (CONFIG_PFAULT)

 VM shared kernel support (CONFIG_SHARED_KERNEL)

 Cooperative memory management (CONFIG_CMM)

 └─ /proc interface to cooperative memory management (CONFIG_CMM_PROC)

 └─ IUCV special message interface to cooperative memory management (CONFIG_CMM_IUCV)*

 Virtual CPU timer support (CONFIG_VIRT_TIMER)

 └─ Base user process accounting on virtual cpu timer (CONFIG_VIRT_CPU_ACCOUNTING)

 └─ Linux - VM Monitor Stream, base infrastructure (CONFIG_APPLDATA_BASE)*

 ├─ Monitor memory management statistics (CONFIG_APPLDATA_MEM)

 ├─ Monitor OS statistics (CONFIG_APPLDATA_OS)

 └─ Monitor overall network statistics (CONFIG_APPLDATA_NET_SUM)

 No HZ timer ticks in idle (CONFIG_NO_IDLE_HZ)

 └─ HZ timer in idle off by default (CONFIG_NO_IDLE_HZ_INIT)

 s390 hypervisor file system support (CONFIG_S390_HYPFS_FS)

 ...

Figure 52. General architecture-specific kernel configuration menu options. The └─ symbols indicate dependencies on

preceding options. Options with more complex dependencies are marked with an asterisk (*).

252 Device Drivers, Features, and Commands - November, 2006

|

The following is an alphabetically sorted list with details on the general

architecture-specific options summarized in Figure 52 on page 252. For device

driver specific options see “Device driver-related options” on page 258.

CONFIG_APPLDATA_BASE

This provides a kernel interface for creating and updating z/VM APPLDATA

monitor records. The monitor records are updated at certain time intervals,

once the timer is started. Writing 1 or 0 to /proc/appldata/timer starts(1) or

stops(0) the timer, i.e. enables or disables monitoring on the Linux side. A

custom interval value (in seconds) can be written to /proc/appldata/interval.

 Defaults are 60 seconds interval and timer off. The /proc entries can also

be read from, showing the current settings.

 Depends on PROC_FS && VIRT_TIMER=y.

 PROC_FS is a common code option.

CONFIG_APPLDATA_MEM

This provides memory management related data to the Linux - VM Monitor

Stream, like paging/swapping rate, memory utilisation, etc. Writing 1 or 0 to

/proc/appldata/memory creates(1) or removes(0) a z/VM APPLDATA monitor

record, i.e. enables or disables monitoring this record on the z/VM side.

 Default is disabled. The /proc entry can also be read from, showing the

current settings.

 This can also be compiled as a module, which will be called

appldata_mem.o.

 Depends on APPLDATA_BASE.

CONFIG_APPLDATA_NET_SUM

This provides network related data to the Linux - VM Monitor Stream,

currently there is only a total sum of network I/O statistics, no per-interface

data. Writing 1 or 0 to /proc/appldata/net_sum creates(1) or removes(0) a

z/VM APPLDATA monitor record, i.e. enables or disables monitoring this

record on the z/VM side.

 Default is disabled. This can also be compiled as a module, which will be

called appldata_net_sum.o.

 Depends on APPLDATA_BASE.

Instrumentation Support --->

 ...

 Profiling support (CONFIG_PROFILING)

 └─ OProfile system profiling (CONFIG_OPROFILE)

 Statisics infrastructure (CONFIG_STATISTICS)*

 ...

Cryptographic options --->

 ...

 SHA1 digest algorithm (s390) (CONFIG_CRYPTO_SHA1_S390)

 ...

 SHA256 digest algorithm (s390) (CONFIG_CRYPTO_SHA256_S390)

 ...

 DES and Triple DES cipher algorithms (s390) (CONFIG_CRYPTO_DES_S390)

 ...

 AES cipher algorithms (s390) (CONFIG_CRYPTO_AES_S390)

Figure 53. General architecture-specific kernel configuration menu options 2 of 2. The └─ symbols indicate

dependencies on preceding options. Options with more complex dependencies are marked with an asterisk (*).

Chapter 26. Other features kernel builders should know about 253

|

CONFIG_APPLDATA_OS

This provides OS related data to the Linux - VM Monitor Stream, like CPU

utilisation, etc. Writing 1 or 0 to /proc/appldata/os creates(1) or removes(0)

a z/VM APPLDATA monitor record, i.e. enables or disables monitoring this

record on the z/VM side.

 Default is disabled. This can also be compiled as a module, which will be

called appldata_os.o.

 Depends on APPLDATA_BASE.

CONFIG_BINFMT_ELF32

This allows you to run 32-bit Linux/ELF binaries on your zSeries in 64 bit

mode. Everybody wants this; say Y.

CONFIG_CHECK_STACK

This option enables the compiler option -mstack-guard and -mstack-size if

they are available. If the compiler supports them it will emit additional code

to each function prolog to trigger an illegal operation if the kernel stack is

about to overflow.

 Say N if you are unsure.

CONFIG_CMM

Select this option, if you want to enable the kernel interface to reduce the

memory size of the system. This is accomplished by allocating pages of

memory and put them ″on hold″. This only makes sense for a system

running under VM where the unused pages will be reused by VM for other

guest systems. The interface allows an external monitor to balance memory

of many systems. Everybody who wants to run Linux under VM should

select this option.

CONFIG_CMM_IUCV

Select this option to enable the special message interface to the

cooperative memory management.

 Depends on CMM && (SMSGIUCV=y || CMM=SMSGIUCV).

CONFIG_CMM_PROC

Select this option to enable the /proc interface to the cooperative memory

management.

 Depends on CMM.

CONFIG_CRYPTO_AES_S390

This is the s390 hardware accelerated implementation of the AES cipher

algorithms (FIPS-197). AES uses the Rijndael algorithm.

 Rijndael appears to be consistently a very good performer in both hardware

and software across a wide range of computing environments regardless of

its use in feedback or non-feedback modes. Its key setup time is excellent,

and its key agility is good. Rijndael’s very low memory requirements make it

very well suited for restricted-space environments, in which it also

demonstrates excellent performance. Rijndael’s operations are among the

easiest to defend against power and timing attacks.

 On s390 the System z9-109 currently only supports the key size of 128 bit.

 Depends on CRYPTO && S390.

 CRYPTO is a common code option.

CONFIG_CRYPTO_DES_S390

DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).

254 Device Drivers, Features, and Commands - November, 2006

Depends on CRYPTO && S390.

 CRYPTO is a common code option.

CONFIG_CRYPTO_SHA1_S390

This is the s390 hardware accelerated implementation of the SHA-1 secure

hash standard (FIPS 180-1/DFIPS 180-2).

 Depends on CRYPTO && S390.

 CRYPTO is a common code option.

CONFIG_CRYPTO_SHA256_S390

This is the s390 hardware accelerated implementation of the SHA256

secure hash standard (DFIPS 180-2).

 This version of SHA implements a 256 bit hash with 128 bits of security

against collision attacks.

 Depends on CRYPTO && S390.

 CRYPTO is a common code option.

CONFIG_DEFAULT_MIGRATION_COST

No helptext found.

CONFIG_HOTPLUG_CPU

Say Y here to be able to turn CPUs off and on. CPUs can be controlled

through /sys/devices/system/cpu/cpu#. Say N if you want to disable CPU

hotplug.

 Depends on SMP.

CONFIG_IPL

If you want to use the produced kernel to IPL directly from a device, you

have to merge a bootsector specific to the device into the first bytes of the

kernel. You will have to select the IPL device.

CONFIG_IPL_TAPE | CONFIG_IPL_VM

Select ″tape″ if you want to IPL the image from a Tape.

 Select ″vm_reader″ if you are running under VM/ESA and want to IPL the

image from the emulated card reader.

 Depends on IPL.

CONFIG_MACHCHK_WARNING

Select this option if you want the machine check handler on IBM S/390 or

zSeries to process warning machine checks (e.g. on power failures). If

unsure, say ″Y″.

CONFIG_MARCH_G5 | CONFIG_MARCH_Z900 | CONFIG_MARCH_Z990

Select MARCH_G5 to build a 31 bit kernel that works on all S/390 and

zSeries machines. MARCH_G5 is not available if option 64BIT is selected.

 Select MARCH_Z900 to optimize for zSeries machines. This will enable

some optimizations that are not available on older 31 bit only CPUs.

 Select MARCH_Z990 to enable optimizations for model z890/z990. This will

be slightly faster but does not work on older machines such as the z900.

 CONFIG_NO_IDLE_HZ

Switches the regular HZ timer off when the system is going idle. This helps

z/VM to detect that the Linux system is idle. VM can then ″swap-out″ this

guest which reduces memory usage. It also reduces the overhead of idle

systems.

Chapter 26. Other features kernel builders should know about 255

The HZ timer can be switched on/off via /proc/sys/kernel/hz_timer.

hz_timer=0 means HZ timer is disabled. hz_timer=1 means HZ timer is

active.

CONFIG_NO_IDLE_HZ_INIT

The HZ timer is switched off in idle by default. That means the HZ timer is

already disabled at boot time.

 Depends on NO_IDLE_HZ.

CONFIG_NR_CPUS

This allows you to specify the maximum number of CPUs which this kernel

will support. The maximum supported value is 64 and the minimum value

which makes sense is 2.

 This is purely to save memory - each supported CPU adds approximately

sixteen kilobytes to the kernel image.

 Depends on SMP.

CONFIG_OPROFILE

OProfile is a profiling system capable of profiling the whole system, include

the kernel, kernel modules, libraries, and applications.

 If unsure, say N.

 Depends on PROFILING.

CONFIG_PACK_STACK

This option enables the compiler option -mkernel-backchain if it is available.

If the option is available the compiler supports the new stack layout which

dramatically reduces the minimum stack frame size. With an old compiler a

non-leaf function needs a minimum of 96 bytes on 31 bit and 160 bytes on

64 bit. With -mkernel-backchain the minimum size drops to 16 byte on 31

bit and 24 byte on 64 bit.

 Say Y if you are unsure.

CONFIG_PFAULT

Select this option, if you want to use PFAULT pseudo page fault handling

under VM. If running native or in LPAR, this option has no effect. If your VM

does not support PFAULT, PAGEEX pseudo page fault handling will be

used. Note that VM 4.2 supports PFAULT but has a bug in its

implementation that causes some problems. Everybody who wants to run

Linux under VM != VM4.2 should select this option.

CONFIG_PREEMPT

This option reduces the latency of the kernel when reacting to real-time or

interactive events by allowing a low priority process to be preempted even if

it is in kernel mode executing a system call. This allows applications to run

more reliably even when the system is under load.

 Say N if you are unsure.

CONFIG_PROCESS_DEBUG

Say Y to print all process fault locations to the console. This is a debugging

option; you probably do not want to set it unless you are an S390 port

maintainer.

CONFIG_PROFILING

Say Y here to enable profiling support mechanisms used by profilers such

as readprofile or OProfile.

256 Device Drivers, Features, and Commands - November, 2006

CONFIG_STATISTICS

The statistics infrastructure provides a debug-fs based user interface for

statistics of kernel components, that is, usually device drivers. Statistics are

available for components that have been instrumented to feed data into the

statistics infrastructure. This feature is useful for performance

measurements or performance debugging. If in doubt, say ″N″.

 Depends on the common code option DEBUG_FS.

CONFIG_QDIO

This driver provides the Queued Direct I/O base support for IBM

mainframes.

 For details please refer to the documentation provided by IBM at

http://www.software.ibm.com/developerworks/opensource/linux390

To compile this driver as a module, choose M here: the module will be

called qdio.

 If unsure, say Y.

CONFIG_QDIO_DEBUG

Say Y here to get extended debugging output in /sys/kernel/debug/s390dbf/
qdio... Warning: this option reduces the performance of the QDIO module.

 If unsure, say N.

 Depends on QDIO.

CONFIG_QDIO_PERF_STATS

Say Y here to get performance statistics in /proc/qdio_perf

 If unsure, say N.

 Depends on QDIO.

CONFIG_S390_HYPFS_FS

This is a virtual file system intended to provide accounting information in an

S/390 hypervisor environment.

CONFIG_SHARED_KERNEL

Select this option, if you want to share the text segment of the Linux kernel

between different VM guests. This reduces memory usage with lots of

guests but greatly increases kernel size. You should only select this option

if you know what you are doing and want to exploit this feature.

CONFIG_SMALL_STACK

If you say Y here and the compiler supports the -mkernel-backchain option

the kernel will use a smaller kernel stack size. For 31 bit the reduced size is

4kb instead of 8kb and for 64 bit it is 8kb instead of 16kb. This allows to run

more thread on a system and reduces the pressure on the memory

management for higher order page allocations.

 Say N if you are unsure.

 Depends on PACK_STACK.

CONFIG_SMP

This enables support for systems with more than one CPU. If you have a

system with only one CPU, like most personal computers, say N. If you

have a system with more than one CPU, say Y.

 If you say N here, the kernel will run on single and multiprocessor

machines, but will use only one CPU of a multiprocessor machine. If you

Chapter 26. Other features kernel builders should know about 257

|
|
|
|
|
|

|

|
|
|

say Y here, the kernel will run on many, but not all, singleprocessor

machines. On a singleprocessor machine, the kernel will run faster if you

say N here.

 See also the <file:Documentation/smp.txt> and the SMP-HOWTO available

at <http://www.tldp.org/docs.html#howto>.

 Even if you don’t know what to do here, say Y.

CONFIG_STACK_GUARD

This allows you to specify the size of the guard area at the lower end of the

kernel stack. If the kernel stack points into the guard area on function entry

an illegal operation is triggered. The size needs to be a power of 2. Please

keep in mind that the size of an interrupt frame is 184 bytes for 31 bit and

328 bytes on 64 bit. The minimum size for the stack guard should be 256

for 31 bit and 512 for 64 bit.

 Depends on CHECK_STACK.

CONFIG_VIRT_CPU_ACCOUNTING

Select this option to use CPU timer deltas to do user process accounting.

 Depends on VIRT_TIMER.

CONFIG_VIRT_TIMER

This provides a kernel interface for virtual CPU timers. Default is disabled.

CONFIG_WARN_STACK

This option enables the compiler options -mwarn-framesize and

-mwarn-dynamicstack. If the compiler supports these options it will generate

warnings for function which either use alloca or create a stack frame bigger

then CONFIG_WARN_STACK_SIZE.

 Say N if you are unsure.

CONFIG_WARN_STACK_SIZE

This allows you to specify the maximum frame size a function may have

without the compiler complaining about it.

 Depends on WARN_STACK.

Device driver-related options

Figure 54 on page 259 provides an overview of the device driver-related options in

the order in which you find them in the kernel configuration menu. The following

pages provide explanations for each option in alphabetical order. For

architecture-specific options see “General architecture-specific options” on page

251.

258 Device Drivers, Features, and Commands - November, 2006

--- S/390 block device drivers ---

 XPRAM disk support (CONFIG_BLK_DEV_XPRAM)*

 DCSSBLK support (CONFIG_DCSSBLK)

 Support for DASD devices (CONFIG_DASD)

 ├─ Profiling support for dasd devices (CONFIG_DASD_PROFILE)

 ├─ Support for ECKD Disks (CONFIG_DASD_ECKD)

 ├─ Support for FBA Disks (CONFIG_DASD_FBA)

 ├─ Support for DIAG access to Disks (CONFIG_DASD_DIAG)

 ├─ Extended error reporting (EER) (CONFIG_DASD_EER)

 └─ Compatibility interface for DASD channel measurement blocks (CONFIG_DASD_CMB)

 ...

Character device drivers --->

 Watchdog Cards --->

 --- Watchdog Device Drivers ---

 ...

 z/VM Watchdog Timer (CONFIG_ZVM_WATCHDOG)*

 ...

 --- S/390 character device drivers ---

 Support for locally attached 3270 terminals (CONFIG_TN3270)

 ├─ Support for tty input/output on 3270 terminals (CONFIG_TN3270_TTY)

 ├─ Support for fullscreen applications on 3270 terminals (CONFIG_TN3270_FS)

 └─ Support for console on 3270 terminal (CONFIG_TN3270_CONSOLE)*

 Support for 3215 line mode terminal (CONFIG_TN3215)

 └─ Support for console on 3215 line mode terminal (CONFIG_TN3215_CONSOLE)

 Support for SCLP (CONFIG_SCLP)

 ├─ Support for SCLP line mode terminal (CONFIG_SCLP_TTY)

 │ └─ Support for console on SCLP line mode terminal (CONFIG_SCLP_CONSOLE)

 ├─ Support for SCLP VT220-compatible terminal (CONFIG_SCLP_VT220_TTY)

 │ └─ Support for console on SCLP VT220-compatible terminal (CONFIG_SCLP_VT220_CONSOLE)

 └─ Control-Program Identification (CONFIG_SCLP_CPI)

 S/390 tape device support (CONFIG_S390_TAPE)

 --- S/390 tape interface support ---

 ├─ Support for tape block devices (CONFIG_S390_TAPE_BLOCK)

 --- S/390 tape hardware support ---

 └─ Support for 3480/3490 tape hardware (CONFIG_S390_TAPE_34XX)

 Support for 3590 tape hardware (CONFIG_S390_TAPE_3590)*

 Support for the z/VM recording system services (VM only) (CONFIG_VMLOGRDR)*

 Support for the z/VM CP interface (VM only) (CONFIG_VMCP)

 API for reading z/VM monitor service records (CONFIG_MONREADER)*

 API for writing z/VM monitor service records (CONFIG_MONWRITER)

Cryptographic devices --->

 Support for PCI-attached cryptographic adapters (CONFIG_ZCRYPT)

 Support for monolithic cryptographic device driver (CONFIG_ZCRYPT_MONOLITHIC)

Network device support --->

 ...

 S/390 network device drivers (Depends on NETDEVICES && S390) --->

 Lan Channel Station Interface (CONFIG_LCS)*

 CTC device support (CONFIG_CTC)*

 IUCV support (VM only) (CONFIG_IUCV)

 ├─ IUCV network device support (VM only) (CONFIG_NETIUCV)

 └─ IUCV special message support (VM only) (CONFIG_SMSGIUCV)

 CLAW device support (CONFIG_CLAW)*

 MPC SNA device support (CONFIG_MPC)*

 Gigabit Ethernet device support (CONFIG_QETH)*

 --- Gigabit Ethernet default settings ---

 IPv6 support for gigabit ethernet (CONFIG_QETH_IPV6)*

 VLAN support for gigabit ethernet (CONFIG_QETH_VLAN)*

 Performance statistics in /proc (CONFIG_QETH_PERF_STATS)*

Figure 54. Kernel configuration menu options. The └─ symbols indicate dependencies on preceding options. Options

with more complex dependencies are marked with an asterisk (*).

Chapter 26. Other features kernel builders should know about 259

|
|

The following is an alphabetically sorted list with details on the device driver-related

options summarized in Figure 54 on page 259. For architecture-specific options see

“General architecture-specific options” on page 251.

CONFIG_BLK_DEV_XPRAM

Select this option if you want to use your expanded storage on S/390 or

zSeries as a disk. This is useful as a _fast_ swap device if you want to

access more than 2G of memory when running in 31 bit mode. This option

is also available as a module which will be called xpram. If unsure, say ″N″.

 Depends on S390.

CONFIG_CLAW

This driver supports channel attached CLAW devices. CLAW is Common

Link Access for Workstation. Common devices that use CLAW are

RS/6000s, Cisco Routers (CIP) and 3172 devices. To compile as a module

choose M here: The module will be called claw.ko to compile into the kernel

choose Y

 Depends on the common code option NETDEVICES.

Note: The CLAW device driver is deprecated.

CONFIG_CTC

Select this option if you want to use channel-to-channel networking on IBM

S/390 or zSeries. This device driver supports real CTC coupling using

ESCON. It also supports virtual CTCs when running under VM. It will use

the channel device configuration if this is available. This option is also

available as a module which will be called ctc.ko. If you do not know what it

is, it’s safe to say ″Y″.

 Depends on the common code option NETDEVICES.

Note: The CTC device driver is deprecated.

CONFIG_DASD

Enable this option if you want to access DASDs directly utilizing S/390s

channel subsystem commands. This is necessary for running natively on a

single image or an LPAR.

CONFIG_DASD_CMB

This driver provides an additional interface to the channel measurement

facility, which is normally accessed though sysfs, with a set of ioctl functions

specific to the dasd driver. This is only needed if you want to use

applications written for linux-2.4 dasd channel measurement facility

interface.

 Depends on DASD.

CONFIG_DASD_DIAG

Select this option if you want to use Diagnose250 command to access

disks under VM. If you are not running under VM or unsure what it is, say

″N″.

 Depends on DASD.

CONFIG_DASD_ECKD

ECKD devices are the most commonly used devices. You should enable

this option unless you are very sure to have no ECKD device.

 Depends on DASD.

260 Device Drivers, Features, and Commands - November, 2006

CONFIG_DASD_EER

This driver provides a character device interface to the DASD extended

error reporting. This is only needed if you want to use applications written

for the EER facility.

 Depends on DASD.

CONFIG_DASD_FBA

Select this option to be able to access FBA devices. It is safe to say ″Y″.

 Depends on DASD.

CONFIG_DASD_PROFILE

Enable this option if you want to see profiling information in

/proc/dasd/statistics.

 Depends on DASD.

CONFIG_DCSSBLK

Support for dcss block device

CONFIG_IUCV

Select this option if you want to use inter-user communication under VM or

VIF. If unsure, say ″Y″ to enable a fast communication link between VM

guests. At boot time the user ID of the guest needs to be passed to the

kernel. Note that both kernels need to be compiled with this option and both

need to be booted with the user ID of the other VM guest.

CONFIG_LCS

Select this option if you want to use LCS networking on IBM S/390 or

zSeries. This device driver supports Token Ring (IEEE 802.5), FDDI (IEEE

802.7) and Ethernet. This option is also available as a module which will be

called lcs.ko. If you do not know what it is, it’s safe to say ″Y″.

 Depends on NETDEVICES && (NET_ETHERNET || TR || FDDI).

 NETDEVICES, NET_ETHERNET, TR, and FDDI are common code options.

CONFIG_MONREADER

Character device driver for reading z/VM monitor service records

 Depends on IUCV.

CONFIG_MONWRITER

Character device driver for writing z/VM monitor service records

CONFIG_MPC

This driver supports channel-to-channel MPC SNA devices. MPC is a SNA

protocol device used by Comm Server for Linux. If you don’t have Comm

Server for Linux you don’t need the device. To compile as a module choose

M here: The module will be called ctcmpc.ko to compile into the kernel

choose Y If you do not need SNA MPC device just say N

 Depends on the common code option NETDEVICES.

CONFIG_NETIUCV

Select this option if you want to use inter-user communication vehicle

networking under VM or VIF. It enables a fast communication link between

VM guests. Using ifconfig a point-to-point connection can be established to

the Linux for zSeries and S7390 system running on the other VM guest.

This option is also available as a module which will be called netiucv.ko. If

unsure, say ″Y″.

 Depends on IUCV && NETDEVICES.

Chapter 26. Other features kernel builders should know about 261

|
|
|
|

|

NETDEVICES is a common code option.

Note: The NETIUCV device driver is deprecated.

CONFIG_QETH

This driver supports the IBM S/390 and zSeries OSA Express adapters in

QDIO mode (all media types), HiperSockets interfaces and VM GuestLAN

interfaces in QDIO and HIPER mode.

 For details please refer to the documentation provided by IBM at

http://www.software.ibm.com/developerworks/opensource/linux390

To compile this driver as a module, choose M here: the module will be

called qeth.ko.

 Depends on NETDEVICES && IP_MULTICAST && QDIO.

 NETDEVICES and IP_MULTICAST are common code options.

CONFIG_QETH_IPV6

If CONFIG_QETH is switched on, this option will include IPv6 support in the

qeth device driver.

 Depends on (QETH = IPV6) || (QETH && IPV6 = ’y’).

 IPV6 is a common code option.

CONFIG_QETH_PERF_STATS

When switched on, this option will add a file in the proc-fs

(/proc/qeth_perf_stats) containing performance statistics. It may slightly

impact performance, so this is only recommended for internal tuning of the

device driver.

 Depends on QETH.

CONFIG_QETH_VLAN

If CONFIG_QETH is switched on, this option will include IEEE 802.1q

VLAN support in the qeth device driver.

 Depends on (QETH = VLAN_8021Q) || (QETH && VLAN_8021Q = ’y’).

 VLAN_8021Q is a common code option.

CONFIG_S390_TAPE

Select this option if you want to access channel-attached tape devices on

IBM S/390 or zSeries. If you select this option you will also want to select at

least one of the tape interface options and one of the tape hardware

options in order to access a tape device. This option is also available as a

module. The module will be called tape390 and include all selected

interfaces and hardware drivers.

CONFIG_S390_TAPE_34XX

Select this option if you want to access IBM 3480/3490 magnetic tape

subsystems and 100% compatibles. It is safe to say ″Y″ here.

 Depends on S390_TAPE.

CONFIG_S390_TAPE_3590

Select this option if you want to access IBM 3590 magnetic tape

subsystems and 100% compatibles. It is safe to say ″Y″ here.

 Depends on S390_TAPE.

262 Device Drivers, Features, and Commands - November, 2006

CONFIG_S390_TAPE_BLOCK

Select this option if you want to access your channel-attached tape devices

using the block device interface. This interface is similar to CD-ROM

devices on other platforms. The tapes can only be accessed read-only

when using this interface. Have a look at file:Documentation/s390/TAPE

for further information about creating volumes for and using this interface. It

is safe to say ″Y″ here.

 Depends on S390_TAPE.

CONFIG_SCLP

Include support for the SCLP interface to the service element.

CONFIG_SCLP_CONSOLE

Include support for using an IBM HWC line-mode terminal as the Linux

system console.

 Depends on SCLP_TTY.

CONFIG_SCLP_CPI

This option enables the hardware console interface for system identification.

This is commonly used for workload management and gives you a nice

name for the system on the service element. Please select this option as a

module since built-in operation is completely untested. You should only

select this option if you know what you are doing, need this feature and

intend to run your kernel in LPAR.

 Depends on SCLP.

CONFIG_SCLP_TTY

Include support for IBM SCLP line-mode terminals.

 Depends on SCLP.

CONFIG_SCLP_VT220_CONSOLE

Include support for using an IBM SCLP VT220-compatible terminal as a

Linux system console.

 Depends on SCLP_VT220_TTY.

CONFIG_SCLP_VT220_TTY

Include support for an IBM SCLP VT220-compatible terminal.

 Depends on SCLP.

CONFIG_SMSGIUCV

Select this option if you want to be able to receive SMSG messages from

other VM guest systems.

 Depends on IUCV.

CONFIG_TN3215

Include support for IBM 3215 line-mode terminals.

CONFIG_TN3215_CONSOLE

Include support for using an IBM 3215 line-mode terminal as a Linux

system console.

 Depends on TN3215.

CONFIG_TN3270

Include support for IBM 3270 terminals.

Chapter 26. Other features kernel builders should know about 263

CONFIG_TN3270_CONSOLE

Include support for using an IBM 3270 terminal as a Linux system console.

Available only if 3270 support is compiled in statically.

 Depends on TN3270=y && TN3270_TTY=y.

CONFIG_TN3270_FS

Include support for fullscreen applications on an IBM 3270 terminal.

 Depends on TN3270.

CONFIG_TN3270_TTY

Include support for using an IBM 3270 terminal as a Linux tty.

 Depends on TN3270.

CONFIG_VMCP

Select this option if you want to be able to interact with the control program

on z/VM

CONFIG_VMLOGRDR

Select this option if you want to be able to receive records collected by the

z/VM recording system services, eg. from *LOGREC, *ACCOUNT or

*SYMPTOM. This driver depends on the IUCV support driver.

 Depends on IUCV.

CONFIG_ZVM_WATCHDOG

IBM S/390 and zSeries machines running under z/VM 5.1 or later provide a

virtual watchdog timer to their guest that cause a user define Control

Program command to be executed after a timeout.

 To compile this driver as a module, choose M here. The module will be

called vmwatchdog.

 Depends on WATCHDOG && S390.

 WATCHDOG is a common code option.

CONFIG_ZCRYPT

Select this option if you want to use a PCI-attached cryptographic adapter

like the PCI Cryptographic Accelerator (PCICA) or the PCI Cryptographic

Coprocessor (PCICC).

CONFIG_ZCRYPT_MONOLITHIC

Select this option if you want to build a monolithic cryptographic kernel

module. The monolithic kernel module is called z90crypt.ko.

264 Device Drivers, Features, and Commands - November, 2006

|
|
|
|

|
|
|

Part 6. Commands and kernel parameters

This part describes commands for configuring and booting Linux on System z. It

also describes kernel parameters that are not specific to a particular device driver.

Device driver-specific kernel parameters are described in the “Setting up” section of

the respective device driver chapter.

Note

For prerequisites and restrictions refer to the kernel 2.6 October 2005 stream

pages on developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_recommended.html

© Copyright IBM Corp. 2000, 2006 265

http://www.ibm.com/developerworks/linux/linux390/october2005_recommended.shtml

266 Device Drivers, Features, and Commands - November, 2006

Chapter 27. Useful Linux commands

This chapter describes commands to configure and work with the Linux on System

z device drivers and features.

v chccwdev

v dasdfmt

v dasdview

v fdasd

v lscss

v lsdasd

v lsqeth

v lstape

v lszfcp

v osasnmpd

v qetharp

v qethconf

v san_disc

v scsi_logging_level

v snipl

v tape390_display

v tunedasd

v vmcp

v zipl

You can obtain these commands on developerWorks at:

ibm.com/developerworks/linux/linux390/index.shtml.

snipl is provided as a separate package under “Useful add-ons”.

san_disc is provided with the zfcp HBA API library.

All other commands are included in the s390-tools package for the Linux 2.6

October 2005 stream.

Note: For tools related to taking and analyzing system dumps, see Linux on

System z9 and zSeries Using the Dump Tools.

Generic command options

The following options are supported by all commands described in this section and,

for simplicity, have been omitted from some of the syntax diagrams:

-h or --help

to display help information for the command.

--version

to display version information for the command.

The syntax for these options is:

© Copyright IBM Corp. 2000, 2006 267

|

http://www.ibm.com/developerworks/linux/linux390/index.shtml

Common command options

�� <command> Other command options

-h

--help

--version

 ��

where command can be any of the commands described in this section.

See “Understanding syntax diagrams” on page xix for general information on

reading syntax diagrams.

chccwdev

268 Device Drivers, Features, and Commands - November, 2006

chccwdev - Set a CCW device online

Scenario

This command is used to set CCW devices (See “Device categories” on page 9)

online or offline.

Format

chccwdev syntax

��

�

 ,

chccwdev

-e

<device_bus_id>

-d

<from_device_bus_id>-<to_device_bus_id>

-f

-a <name> = <value>

��

Where:

-e or --online

sets the device online.

-d or --offline

sets the device offline.

-f or --forceonline

forces a boxed device online, if this is supported by the device driver.

-a or --attribute <name>=<value>

sets the attribute specified in <name> to the given <value>. When <name> is

“online”, attribute will have the same effect as using the -e or -d options.

<device_bus_id>

identifies the device to be set online or offline. <device_bus_id> is a device

number with a leading “0.n.”, where n is the subchannel set ID. Input will be

converted to lower case.

<from_device_bus_id>-<to_device_bus_id>

identifies a range of devices. Note that if not all devices in the given range

exist, the command will be limited to the existing ones. If you specify a range

with no existing devices, you will get an error message.

Examples

v To set a CCW device 0.0.b100 online issue:

chccwdev -e 0.0.b100

v Alternatively, using -a to set a CCW device 0.0.b100 online, issue:

chccwdev -a online=1 0.0.b100

v To set all CCW devices in the range 0.0.b200 through 0.0.b2ff online issue:

chccwdev -e 0.0.b200-0.0.b2ff

v To set a CCW device 0.0.b100 and all CCW devices in the range 0.0.b200

through 0.0.b2ff offline issue:

chccwdev

Chapter 27. Useful Linux commands 269

chccwdev -d 0.0.b100,0.0.b200-0.0.b2ff

v To set several CCW devices in different ranges and different subchannel sets

offline, issue:

chccwdev -a online=0 0.0.1000-0.0.1100,0.1.7000-0.1.7010,0.0.1234,0.1.4321

chccwdev

270 Device Drivers, Features, and Commands - November, 2006

dasdfmt - Format a DASD

Scenario

This tool is used to give a low-level format to ECKD-type direct access storage

devices (DASD). Note that this is a software format. To give a hardware format to

raw DASD you must use another System z9 or zSeries device support facility such

as ICKDSF, either in stand-alone mode or through another operating system.

dasdfmt uses an ioctl call to the DASD driver to format tracks. A blocksize (hard

sector size) can be specified. Remember that the formatting process can take quite

a long time (hours for large DASD). Use the -p option to monitor the progress.

 CAUTION:

As on any platform, formatting irreversibly destroys data on the target disk.

Be sure not to format a disk with vital data unintentionally.

Before you start: You must have root permissions.

Format

dasdfmt syntax

��

 (1)

-d cdl

-l (default)

dasdfmt

-b <blocksize>

-d ldl

-l <volser>

-L

-k

�

� <node>

-p

-y

-F

-v

-t

10

-m

<hashstep>

 ��

Notes:

1 If neither the -l option nor the -k option are specified, a VOLSER is

generated from the device number through which the volume is

accessed.

Where:

-b <block_size> or --blocksize=<block_size>

One of the following block sizes in bytes: 512, 1024, 2048, or 4096.

 If you do not specify a value for the block size, you are prompted. You can

then press Enter to accept 4096 or specify a different value.

 Tip: Set <block_size> to 1024 or higher (ideally 4096) because the ext2fs

file system uses 1 KB blocks and 50% of capacity is unusable if the DASD

block size is 512 bytes.

<node>

Specifies the device node of the device to be formatted, for example,

/dev/dasdzzz. See “DASD naming scheme” on page 30 for more details on

device nodes).

dasdfmt

Chapter 27. Useful Linux commands 271

-d <disklayout> or --disk_layout=<disklayout>

Formats the device with the compatible disk layout (cdl) or the Linux disk

layout (ldl).

-L or --no_label

Valid for -d ldl only, where it suppresses the default LNX1 label.

-l <volser> or --label=<volser>

Specifies the volume serial number (see “VOLSER” on page 27) to be

written to the disk. If the VOLSER contains special characters, it must be

enclosed in single quotes. In addition, any ’$’ character in the VOLSER

must be preceded by a backslash (’\’).

-k or --keep_serial

Keeps the volume serial number when writing the volume 5 Label (see

“VOLSER” on page 27). This is useful, for example, if the volume serial

number has been written with a VM tool and should not be overwritten.

-p or --progressbar

Prints a progress bar. Do not use this option if you are using a line-mode

terminal console driver (for example, a 3215 terminal device driver or a

line-mode hardware console device driver).

-m <hashstep> or --hashmarks=<hashstep>

Prints a hash mark (#) after every <hashstep> cylinders are formatted.

<hashstep> must be in the range 1 to 1000. The default is 10.

 The -m option is useful where the console device driver is not suitable for

the progress bar (-p option).

-y Starts formatting immediately without prompting for confirmation.

-F or --force

Formats the device without checking if it is mounted.

-v Prints out extra information messages.

-t or --test

Runs the command in test mode. Analyzes parameters and prints out what

would happen, but does not modify the disk.

-V or --version

Prints the version number of dasdfmt and exits.

-h or --help

Prints out an overview of the syntax. Any other parameters are ignored.

Examples

v To format a 100 cylinder VM minidisk with the standard Linux disk layout and a

4 KB blocksize with device node /dev/dasdc:

dasdfmt

272 Device Drivers, Features, and Commands - November, 2006

dasdfmt -b 4096 -d ldl -p /dev/dasdc

Drive Geometry: 100 Cylinders * 15 Heads = 1500 Tracks

I am going to format the device /dev/dasdc in the following way:

 Device number of device : 0x192

 Labelling device : yes

 Disk label : LNX1

 Disk identifier : 0X0192

 Extent start (trk no) : 0

 Extent end (trk no) : 1499

 Compatible Disk Layout : no

 Blocksize : 4096

--->> ATTENTION! <<---

All data of that device will be lost.

Type "yes" to continue, no will leave the disk untouched: yes

Formatting the device. This may take a while (get yourself a coffee).

cyl 100 of 100 |##| 100%

Finished formatting the device.

Rereading the partition table... ok

#

v To format the same disk with the compatible disk layout (using the default value

of the -d option).

dasdfmt -b 4096 -p /dev/dasdc

Drive Geometry: 100 Cylinders * 15 Heads = 1500 Tracks

I am going to format the device /dev/dasdc in the following way:

 Device number of device : 0x192

 Labelling device : yes

 Disk label : VOL1

 Disk identifier : 0X0192

 Extent start (trk no) : 0

 Extent end (trk no) : 1499

 Compatible Disk Layout : yes

 Blocksize : 4096

--->> ATTENTION! <<---

All data of that device will be lost.

Type "yes" to continue, no will leave the disk untouched: yes

Formatting the device. This may take a while (get yourself a coffee).

cyl 100 of 100 |##| 100%

Finished formatting the device.

Rereading the partition table... ok

#

dasdfmt

Chapter 27. Useful Linux commands 273

dasdview - Display DASD structure

Scenario

dasdview displays this DASD information on the system console:

v The volume label.

v VTOC details (general information, and FMT1, FMT4, FMT5 and FMT7 labels).

v The content of the DASD, by specifying:

– Starting point

– Size

You can display these values in hexadecimal, EBCDIC, and ASCII format.

If you specify a start point and size, you can also display the contents of a disk

dump.

(See “The IBM label partitioning scheme” on page 26 for further information on

partitioning.)

Before you start: You need root permissions.

Format

dasdview syntax

��

dasdview
 -b 0 -s 128 -1

<node>

-b <begin>

-s <size>

-2

-i

-x

-j

-l

-t <spec>

��

 Where:

-b <begin> or --begin=<begin>

Display disk content on the console, starting from <begin>. The content of

the disk are displayed as hexadecimal numbers, ASCII text and EBCDIC

text. If <size> is not specified (see below), dasdview will take the default

size (128 bytes). You can specify the variable <begin> as:

<begin>[k|m|b|t|c]

The default for <begin> is 0.

 dasdview displays a disk dump on the console using the DASD driver. The

DASD driver might suppress parts of the disk, or add information that is not

relevant. This might occur, for example, when displaying the first two tracks

of a disk that has been formatted as cdl. In this situation, the DASD driver

will pad shorter blocks with zeros, in order to maintain a constant blocksize.

All Linux applications (including dasdview) will process according to this

rule.

 Here are some examples of how this option can be used:

dasdview

274 Device Drivers, Features, and Commands - November, 2006

-b 32 (start printing at Byte 32)

 -b 32k (start printing at kByte 32)

 -b 32m (start printing at MByte 32)

 -b 32b (start printing at block 32)

 -b 32t (start printing at track 32)

 -b 32c (start printing at cylinder 32)

-s <size> or --size=<size>

Display a disk dump on the console, starting at <begin>, and continuing for

size = <size>). The content of the dump are displayed as hexadecimal

numbers, ASCII text, and EBCDIC text. If a start value (begin) is not

specified, dasdview will take the default. You can specify the variable

<size> as:

size[k|m|b|t|c]

The default for <size> is 128 bytes.

 Here are some examples of how this option can be used:

 -s 16 (use a 16 Byte size)

 -s 16k (use a 16 kByte size)

 -s 16m (use a 16 MByte size)

 -s 16b (use a 16 block size)

 -s 16t (use a 16 track size)

 -s 16c (use a 16 cylinder size)

-1 Display the disk dump using format 1 (as 16 Bytes per line in hexadecimal,

ASCII and EBCDIC). A line number is not displayed. You can only use

option -1 together with -b or -s.

 Option -1 is the default.

-2 Display the disk dump using format 2 (as 8 Bytes per line in hexadecimal,

ASCII and EBCDIC). A decimal and hexadecimal byte count are also

displayed. You can only use option -2 together with -b or -s.

-i or --info

Display basic information such as device node, device bus-id, device type,

or geometry data.

-x or --extended

Display the information obtained by using -i option, but also open count,

subchannel identifier, and so on.

-j Print volume serial number (volume identifier).

-l or --label

Display the volume label.

-t <spec> or --vtoc=<spec>

Display the VTOC’s table-of-contents, or a single VTOC entry, on the

console. The variable <spec> can take these values:

info Display overview information about the VTOC, such as a list of the

data set names and their sizes.

f1 Display the contents of all format 1 data set control blocks

(DSCBs).

f4 Display the contents of all format 4 DSCBs.

f5 Display the contents of all format 5 DSCBs.

f7 Display the contents of all format 7 DSCBs.

all Display the contents of all DSCBs.

<node>

Specifies the device node of the device for which you want to display

dasdview

Chapter 27. Useful Linux commands 275

information, for example, /dev/dasdzzz. See “DASD naming scheme” on

page 30 for more details on device nodes).

-h or --help

Display short usage text on console. To view the man page, enter man

dasdview.

-v or --version

Display version number on console, and exit.

dasdview

276 Device Drivers, Features, and Commands - November, 2006

Examples

v To display basic information about a DASD:

dasdview -i -f /dev/dasdzzz

This displays:

--- general DASD information --

device node : /dev/dasdzzz

busid : 0.0.0193

type : ECKD

device type : hex 3390 dec 13200

--- DASD geometry ---

number of cylinders : hex 64 dec 100

tracks per cylinder : hex f dec 15

blocks per track : hex c dec 12

blocksize : hex 1000 dec 4096

dasdview

Chapter 27. Useful Linux commands 277

v To include extended information:

dasdview -x -f /dev/dasdzzz

This displays:

--- general DASD information --

device node : /dev/dasdzzz

busid : 0.0.0193

type : ECKD

device type : hex 3390 dec 13200

--- DASD geometry ---

number of cylinders : hex 64 dec 100

tracks per cylinder : hex f dec 15

blocks per track : hex c dec 12

blocksize : hex 1000 dec 4096

--- extended DASD information ---

real device number : hex 452bc08 dec 72530952

subchannel identifier : hex e dec 14

CU type (SenseID) : hex 3990 dec 14736

CU model (SenseID) : hex e9 dec 233

device type (SenseID) : hex 3390 dec 13200

device model (SenseID) : hex a dec 10

open count : hex 1 dec 1

req_queue_len : hex 0 dec 0

chanq_len : hex 0 dec 0

status : hex 5 dec 5

label_block : hex 2 dec 2

FBA_layout : hex 0 dec 0

characteristics_size : hex 40 dec 64

confdata_size : hex 100 dec 256

characteristics : 3990e933 900a5f80 dff72024 0064000f

 e000e5a2 05940222 13090674 00000000

 00000000 00000000 24241502 dfee0001

 0677080f 007f4a00 1b350000 00000000

configuration_data : dc010100 4040f2f1 f0f54040 40c9c2d4

 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30509

 dc000000 4040f2f1 f0f54040 40c9c2d4

 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30500

 d4020000 4040f2f1 f0f5c5f2 f0c9c2d4

 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f3050a

 f0000001 4040f2f1 f0f54040 40c9c2d4

 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30500

 00000000 00000000 00000000 00000000

 00000000 00000000 00000000 00000000

 00000000 00000000 00000000 00000000

 00000000 00000000 00000000 00000000

 00000000 00000000 00000000 00000000

 00000000 00000000 00000000 00000000

 800000a1 00001e00 51400009 0909a188

 0140c009 7cb7efb7 00000000 00000800

dasdview

278 Device Drivers, Features, and Commands - November, 2006

v To display volume label information:

dasdview -l -f /dev/dasdzzz

This displays:

--- volume label --

volume label key : ascii ’åÖÖñ’

 : ebcdic ’VOL1’

 : hex e5d6d3f1

volume label identifier : ascii ’åÖÖñ’

 : ebcdic ’VOL1’

 : hex e5d6d3f1

volume identifier : ascii ’ðçðñùó’

 : ebcdic ’0X0193’

 : hex f0e7f0f1f9f3

security byte : hex 40

VTOC pointer : hex 0000000101

 (cyl 0, trk 1, blk 1)

reserved : ascii ’@@@@@’

 : ebcdic ’ ’

 : hex 4040404040

CI size for FBA : ascii ’@@@@’

 : ebcdic ’ ’

 : hex 40404040

blocks per CI (FBA) : ascii ’@@@@’

 : ebcdic ’ ’

 : hex 40404040

labels per CI (FBA) : ascii ’@@@@’

 : ebcdic ’ ’

 : hex 40404040

reserved : ascii ’@@@@’

 : ebcdic ’ ’

 : hex 40404040

owner code for VTOC : ascii ’@@@@@@@@@@@@@@’

 ebcdic ’ ’

 hex 40404040 40404040 40404040 4040

reserved : ascii ’@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@’

 ebcdic ’ ’

 hex 40404040 40404040 40404040 40404040

 40404040 40404040 40404040 40

dasdview

Chapter 27. Useful Linux commands 279

v To display partition information:

dasdview -t info -f /dev/dasdzzz

This displays:

--- VTOC info ---

The VTOC contains:

 3 format 1 label(s)

 1 format 4 label(s)

 1 format 5 label(s)

 0 format 7 label(s)

Other S/390 and zSeries operating systems would see the following data sets:

 +--+--------------+--------------+

 | data set | start | end |

 +--+--------------+--------------+

 | LINUX.V0X0193.PART0001.NATIVE | trk | trk |

 | data set serial number : ’0X0193’ | 2 | 500 |

 | system code : ’IBM LINUX ’ | cyl/trk | cyl/trk |

 | creation date : year 2001, day 317 | 0/ 2 | 33/ 5 |

 +--+--------------+--------------+

 | LINUX.V0X0193.PART0002.NATIVE | trk | trk |

 | data set serial number : ’0X0193’ | 501 | 900 |

 | system code : ’IBM LINUX ’ | cyl/trk | cyl/trk |

 | creation date : year 2001, day 317 | 33/ 6 | 60/ 0 |

 +--+--------------+--------------+

 | LINUX.V0X0193.PART0003.NATIVE | trk | trk |

 | data set serial number : ’0X0193’ | 901 | 1499 |

 | system code : ’IBM LINUX ’ | cyl/trk | cyl/trk |

 | creation date : year 2001, day 317 | 60/ 1 | 99/ 14 |

 +--+--------------+--------------+

dasdview

280 Device Drivers, Features, and Commands - November, 2006

v To display VTOC information:

dasdview -t f4 -f /dev/dasdzzz

This displays:

--- VTOC format 4 label ---

DS4KEYCD : 04...

DS4IDFMT : dec 244, hex f4

DS4HPCHR : 0000000105 (cyl 0, trk 1, blk 5)

DS4DSREC : dec 7, hex 0007

DS4HCCHH : 00000000 (cyl 0, trk 0)

DS4NOATK : dec 0, hex 0000

DS4VTOCI : dec 0, hex 00

DS4NOEXT : dec 1, hex 01

DS4SMSFG : dec 0, hex 00

DS4DEVAC : dec 0, hex 00

DS4DSCYL : dec 100, hex 0064

DS4DSTRK : dec 15, hex 000f

DS4DEVTK : dec 58786, hex e5a2

DS4DEVI : dec 0, hex 00

DS4DEVL : dec 0, hex 00

DS4DEVK : dec 0, hex 00

DS4DEVFG : dec 48, hex 30

DS4DEVTL : dec 0, hex 0000

DS4DEVDT : dec 12, hex 0c

DS4DEVDB : dec 0, hex 00

DS4AMTIM : hex 0000000000000000

DS4AMCAT : hex 000000

DS4R2TIM : hex 0000000000000000

res1 : hex 0000000000

DS4F6PTR : hex 0000000000

DS4VTOCE : hex 01000000000100000001

 typeind : dec 1, hex 01

 seqno : dec 0, hex 00

 llimit : hex 00000001 (cyl 0, trk 1)

 ulimit : hex 00000001 (cyl 0, trk 1)

res2 : hex 00000000000000000000

DS4EFLVL : dec 0, hex 00

DS4EFPTR : hex 0000000000 (cyl 0, trk 0, blk 0)

res3 : hex 000000000000000000

dasdview

Chapter 27. Useful Linux commands 281

v To print the contents of a disk to the console starting at block 2 (volume label):

dasdview -b 2b -s 128 -f /dev/dasdzzz

This displays:

+--+------------------+------------------+

| HEXADECIMAL | EBCDIC | ASCII |

| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |

+--+------------------+------------------+

| E5D6D3F1 E5D6D3F1 F0E7F0F1 F9F34000 | VOL1VOL10X0193?. | ??????????????@. |

| 00000101 40404040 40404040 40404040 | | |

| 40404040 40404040 40404040 40404040 | ???????????????? | @@@@@@@@@@@@@@@@ |

| 40404040 40404040 40404040 40404040 | ???????????????? | @@@@@@@@@@@@@@@@ |

| 40404040 40404040 40404040 40404040 | ???????????????? | @@@@@@@@@@@@@@@@ |

| 40404040 88001000 10000000 00808000 | ????h........... | @@@@?........... |

| 00000000 00000000 00010000 00000200 | | |

| 21000500 00000000 00000000 00000000 | ?............... | !............... |

+--+------------------+------------------+

v To display the contents of a disk on the console starting at block 14 (first FMT1

DSCB) using format 2:

dasdview -b 14b -s 128 -2 -f /dev/dasdzzz

This displays:

 +---------------+---------------+----------------------+----------+----------+

 | BYTE | BYTE | HEXADECIMAL | EBCDIC | ASCII |

 | DECIMAL | HEXADECIMAL | 1 2 3 4 5 6 7 8 | 12345678 | 12345678 |

 +---------------+---------------+----------------------+----------+----------+

 | 57344 | E000 | D3C9D5E4 E74BE5F0 | LINUX.V0 | ?????K?? |

 | 57352 | E008 | E7F0F1F9 F34BD7C1 | X0193.PA | ?????K?? |

 | 57360 | E010 | D9E3F0F0 F0F14BD5 | RT0001.N | ??????K? |

 | 57368 | E018 | C1E3C9E5 C5404040 | ATIVE??? | ?????@@@ |

 | 57376 | E020 | 40404040 40404040 | ???????? | @@@@@@@@ |

 | 57384 | E028 | 40404040 F1F0E7F0 | ????10X0 | @@@@???? |

 | 57392 | E030 | F1F9F300 0165013D | 193.???? | ???.?e?= |

 | 57400 | E038 | 63016D01 0000C9C2 | ??_?..IB | c?m?..?? |

 | 57408 | E040 | D440D3C9 D5E4E740 | M?LINUX? | ?@?????@ |

 | 57416 | E048 | 40404065 013D0000 | ??????.. | @@@e?=.. |

 | 57424 | E050 | 00000000 88001000 |h.?. |?.?. |

 | 57432 | E058 | 10000000 00808000 | ?....??. | ?....??. |

 | 57440 | E060 | 00000000 00000000 | | |

 | 57448 | E068 | 00010000 00000200 | .?....?. | .?....?. |

 | 57456 | E070 | 21000500 00000000 | ?.?..... | !.?..... |

 | 57464 | E078 | 00000000 00000000 | | |

 +---------------+---------------+----------------------+----------+----------+

dasdview

282 Device Drivers, Features, and Commands - November, 2006

v To see what is at block 1234 (in this example there is nothing there):

dasdview -b 1234b -s 128 -f /dev/dasdzzz

This displays:

+--+------------------+------------------+

| HEXADECIMAL | EBCDIC | ASCII |

| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |

+--+------------------+------------------+

| 00000000 00000000 00000000 00000000 | | |

| 00000000 00000000 00000000 00000000 | | |

| 00000000 00000000 00000000 00000000 | | |

| 00000000 00000000 00000000 00000000 | | |

| 00000000 00000000 00000000 00000000 | | |

| 00000000 00000000 00000000 00000000 | | |

| 00000000 00000000 00000000 00000000 | | |

| 00000000 00000000 00000000 00000000 | | |

+--+------------------+------------------+

v To try byte 0 instead:

dasdview -b 0 -s 64 -f /dev/dasdzzz

This displays:

+--+------------------+------------------+

| HEXADECIMAL | EBCDIC | ASCII |

| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |

+--+------------------+------------------+

| C9D7D3F1 000A0000 0000000F 03000000 | IPL1............ | ????............ |

| 00000001 00000000 00000000 40404040 | | |

| 40404040 40404040 40404040 40404040 | ???????????????? | @@@@@@@@@@@@@@@@ |

| 40404040 40404040 40404040 40404040 | ???????????????? | @@@@@@@@@@@@@@@@ |

+--+------------------+------------------+

dasdview

Chapter 27. Useful Linux commands 283

fdasd – Partition a DASD

Scenario

The compatible disk layout allows you to split DASD into several partitions. Use

fdasd to manage partitions on a DASD. You can use fdasd to create, change and

delete partitions, and also to change the volume serial number.

v fdasd checks that the volume has a valid volume label and VTOC. If either is

missing or incorrect, fdasd recreates it.

v Calling fdasd with a node, but without options, enters interactive mode. In

interactive mode, you are given a menu through which you can display DASD

information, add or remove partitions, or change the volume identifier.

v Your changes are not written to disk until you type the “write”option on the menu.

You may quit without altering the disk at any time prior to this. The items written

to the disk will be the volume label, the “format 4” DSCB, a “format 5” DSCB,

sometimes a “format 7” DSCB depending on the DASD size, and one to three

“format 1” DSCBs.

Note: To partition a SCSI disk, use fdisk rather than fdasd.

Before you start:

v You must have root permissions.

v The disk must be formatted with dasdfmt with the (default) -d cdl option.

For more information on partitions see “The IBM label partitioning scheme” on page

26.

Attention: Careless use of fdasd can result in loss of data.

Format

fdasd syntax

�� fdasd

-s

-r
 partitioning options ��

partitioning options:

 -h

-v

<node>

(1)

-a

-k

-l <volser>

-c <conf_file>

-i

-p

Notes:

1 If neither the -l option nor the -k option are specified, a VOLSER is

generated from the device number through which the volume is

accessed.

fdasd

284 Device Drivers, Features, and Commands - November, 2006

Where:

-h or --help

Displays help on command line arguments.

-v or --version

Displays the version of fdasd.

-s or --silent

Suppresses messages.

-r or --verbose

Prints additional messages that are normally suppressed.

-a or --auto

Auto-create one partition using the whole disk in non-interactive mode.

-k or --keep_serial

Keeps the volume serial number when writing the volume 5 Label (see

“VOLSER” on page 27). This is useful, for example, if the volume serial

number has been written with a VM tool and should not be overwritten.

-l <volser> or --label=<volser>

Specifies the volume serial number (see “VOLSER” on page 27).

 A volume serial consists of one through six alphanumeric characters or the

following special characters: $, #, @, %. All other characters are ignored.

Avoid using special characters in the volume serial. This may cause

problems accessing a disk by VOLSER. If you must use special characters,

enclose the VOLSER in single quotation marks. In addition, any ’$’

character in the VOLSER must be preceded by a backslash (’\’).

 For example, specify:

-l ’a@b\$c#’

to get:

A@B$C#

VOLSER is interpreted as an ASCII string and is automatically converted to

uppercase, padded with blanks and finally converted to EBCDIC before

being written to disk.

 Do not use the following reserved volume serials:

v SCRTCH

v PRIVAT

v MIGRAT

v Lnnnnn (L followed by a five digit number)

These are used as keywords by other operating systems (OS/390).

 Omitting this parameter causes fdasd to prompt for it, if it is needed.

-c <conf_file> or --config <conf_file>

This option enables you to create several partitions in non-interactive mode,

controlled by the plain text configuration file <conf_file>.

 For each partition you want to create, add one line of the following format to

<conf_file>:

[x,y]

fdasd

Chapter 27. Useful Linux commands 285

where x is the first track and y is the last track of that partition. You can use

the keyword first for the first possible track on disk and, correspondingly,

the keyword last for the last possible track on disk.

 The following sample configuration file allows you to create three partitions:

[first,1000]

[1001,2000]

[2001,last]

-i or --volser

Prints the volume serial number and exits.

-p or --table

Prints the partition table and exits.

<node>

Is the device node of the DASD you want to partition, for example,

/dev/dasdzzz. See “DASD naming scheme” on page 30 for more details on

device nodes.

Processing

fdasd menu

If you call fdasd in the interactive mode (that is, with just a node), the following

menu appears:

Command action

 m print this menu

 p print the partition table

 n add a new partition

 d delete a partition

 v change volume serial

 t change partition type

 r re-create VTOC and delete all partitions

 u re-create VTOC re-using existing partition sizes

 s show mapping (partition number - data set name)

 q quit without saving changes

 w write table to disk and exit

Command (m for help):

Menu commands:

m

Re-displays the fdasd command menu.

p Displays the following information about the DASD:

v Number of cylinders

v Number of tracks per cylinder

v Number of blocks per track

v Block size

v Volume label

v Volume identifier

v Number of partitions defined

and the following information about each partition (including the free space

area):

v Linux node

v Start track

fdasd

286 Device Drivers, Features, and Commands - November, 2006

v End track

v Number of tracks

v Partition id

v Partition type (1 = filesystem, 2 = swap)

n Adds a new partition to the DASD. You will be asked to give the start track and

the length or end track of the new partition.

d Deletes a partition from the DASD. You will be asked which partition to delete.

v Changes the volume identifier. You will be asked to enter a new volume

identifier. See “VOLSER” on page 27 for the format.

t Changes the partition type. You will be asked to identify the partition to be

changed. You will then be asked for the new partition type (Linux native or

swap). Note that this type is a guideline; the actual use Linux makes of the

partition depends on how it is defined with the mkswap or mkxxfs tools. The main

function of the partition type is to describe the partition to other operating

systems so that, for example, swap partitions can be skipped by backup

programs.

r Recreates the VTOC and thereby deletes all partitions.

u Recreates all VTOC labels without removing all partitions. Existing partition sizes

will be reused. This is useful to repair damaged labels or migrate partitions

created with older versions of fdasd.

s Displays the mapping of partition numbers to data set names. For example:

Command (m for help): s

device : /dev/dasdzzz

volume label ...: VOL1

volume serial ..: 0X0193

WARNING: This mapping may be NOT up-to-date,

 if you have NOT saved your last changes!

/dev/dasdzzz1 - LINUX.V0X0193.PART0001.NATIVE

/dev/dasdzzz2 - LINUX.V0X0193.PART0002.NATIVE

/dev/dasdzzz3 - LINUX.V0X0193.PART0003.NATIVE

q Quits fdasd without updating the disk. Any changes you have made (in this

session) will be discarded.

w Writes your changes to disk and exits. After the data is written Linux will reread

the partition table.

Examples

Example using the menu

This section gives an example of how to use fdasd to create two partitions on a VM

minidisk, change the type of one of the partitions, save the changes and check the

results.

In this example, we will format a VM minidisk with the compatible disk layout. The

minidisk has device number 193.

1. Call fdasd, specifying the minidisk:

fdasd /dev/dasdzzz

fdasd

Chapter 27. Useful Linux commands 287

fdasd reads the existing data and displays the menu:

reading volume label: VOL1

reading vtoc : ok

Command action

 m print this menu

 p print the partition table

 n add a new partition

 d delete a partition

 v change volume serial

 t change partition type

 r re-create VTOC and delete all partitions

 u re-create VTOC re-using existing partition sizes

 s show mapping (partition number - data set name)

 q quit without saving changes

 w write table to disk and exit

Command (m for help):

2. Use the p option to verify that no partitions have yet been created on this

DASD:

Command (m for help): p

Disk /dev/dasdzzz:

 cylinders : 100

 tracks per cylinder ..: 15

 blocks per track: 12

 bytes per block: 4096

 volume label: VOL1

 volume serial: 0X0193

 max partitions : 3

 ------------------------------- tracks -------------------------------

 Device start end length Id System

 2 1499 1498 unused

3. Define two partitions, one by specifying an end track and the other by specifying

a length. (In both cases the default start tracks are used):

Command (m for help): n

First track (1 track = 48 KByte) ([2]-1499):

Using default value 2

Last track or +size[c|k|M] (2-[1499]): 700

You have selected track 700

Command (m for help): n

First track (1 track = 48 KByte) ([701]-1499):

Using default value 701

Last track or +size[c|k|M] (701-[1499]): +400

You have selected track 1100

4. Check the results using the p option:

fdasd

288 Device Drivers, Features, and Commands - November, 2006

Command (m for help): p

Disk /dev/dasdzzz:

 cylinders : 100

 tracks per cylinder ..: 15

 blocks per track: 12

 bytes per block: 4096

 volume label: VOL1

 volume serial: 0X0193

 max partitions : 3

 ------------------------------- tracks -------------------------------

 Device start end length Id System

 /dev/dasdzzz1 2 700 699 1 Linux native

 /dev/dasdzzz2 701 1100 400 2 Linux native

 1101 1499 399 unused

5. Change the type of a partition:

Command (m for help): t

Disk /dev/dasdzzz:

 cylinders : 100

 tracks per cylinder ..: 15

 blocks per track: 12

 bytes per block: 4096

 volume label: VOL1

 volume serial: 0X0193

 max partitions : 3

 ------------------------------- tracks -------------------------------

 Device start end length Id System

 /dev/dasdzzz1 2 700 699 1 Linux native

 /dev/dasdzzz2 701 1100 400 2 Linux native

 1101 1499 399 unused

change partition type

partition id (use 0 to exit):

Enter the ID of the partition you want to change; in this example partition 2:

partition id (use 0 to exit): 2

6. Enter the new partition type; in this example type 2 for swap:

current partition type is: Linux native

 1 Linux native

 2 Linux swap

new partition type: 2

7. Check the result:

fdasd

Chapter 27. Useful Linux commands 289

Command (m for help): p

Disk /dev/dasdzzz:

 cylinders : 100

 tracks per cylinder ..: 15

 blocks per track: 12

 bytes per block: 4096

 volume label: VOL1

 volume serial: 0X0193

 max partitions : 3

 ------------------------------- tracks -------------------------------

 Device start end length Id System

 /dev/dasdzzz1 2 700 699 1 Linux native

 /dev/dasdzzz2 701 1100 400 2 Linux swap

 1101 1499 399 unused

8. Write the results to disk using the w option:

Command (m for help): w

writing VTOC...

rereading partition table...

#

Example using options

You can partition using the -a or -c option without entering the menu mode. This is

useful for partitioning using scripts, if you need to partition several hundred DASDs,

for example.

With the -a parameter you can create one large partition on a DASD:

fdasd -a /dev/dasdzzz

auto-creating one partition for the whole disk...

writing volume label...

writing VTOC...

rereading partition table...

This will create a partition as follows:

 Device start end length Id System

 /dev/dasdzzz1 2 1499 1498 1 Linux native

Using a configuration file you can create several partitions. For example, the

following configuration file, config, creates three partitions:

[first,500]

[501,1100]

[1101,last]

Submitting the command with the -c option creates the partitions:

fdasd -c config /dev/dasdzzz

parsing config file ’config’...

writing volume label...

writing VTOC...

rereading partition table...

This creates partitions as follows:

fdasd

290 Device Drivers, Features, and Commands - November, 2006

Device start end length Id System

 /dev/dasdzzz1 2 500 499 1 Linux native

 /dev/dasdzzz2 501 1100 600 2 Linux native

 /dev/dasdzzz3 1101 1499 399 3 Linux native

fdasd

Chapter 27. Useful Linux commands 291

lscss - List subchannels

Scenario

This command is used to gather subchannel information from sysfs and display it in

a summary format.

Format

lscss syntax

��

�

 lscss

-s

,

-t

<devicetype>

/

<model>

 ��

Where:

-s or --short

strips the “0.n.” from the device bus IDs in the command output.

-t or --devtype

limits the output to information on the specified device types and, if provided,

the specified model.

<devicetype>

specifies a device type.

<model>

is a specific model of the specified device type.

Examples

v This command lists all subchannels:

 # lscss

 Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs

 --

 0.0.5C44 0.0.0000 3390/0A 3990/E9 yes C0 C0 FF 40410000 00000000

 0.0.5C45 0.0.0001 3390/0A 3990/E9 yes C0 C0 FF 40410000 00000000

 0.0.F5B4 0.0.0002 1732/01 1731/01 yes 80 80 FF 71000000 00000000

 0.0.F5B5 0.0.0003 1732/01 1731/01 yes 80 80 FF 71000000 00000000

 0.0.F5B6 0.0.0004 1732/01 1731/01 yes 80 80 FF 71000000 00000000

 0.0.0191 0.0.0005 3390/0A 3990/E9 C0 C0 FF 40410000 00000000

 0.0.0009 0.0.0006 0000/00 3215/00 80 80 FF 00000000 00000000

 0.0.000C 0.0.0007 0000/00 2540/00 80 80 FF 00000000 00000000

 0.0.000D 0.0.0008 0000/00 2540/00 80 80 FF 00000000 00000000

 0.0.000E 0.0.0009 0000/00 1403/00 80 80 FF 00000000 00000000

 0.0.0190 0.0.000A 3390/0A 3990/E9 C0 C0 FF 40410000 00000000

 0.0.019D 0.0.000B 3390/0A 3990/E9 C0 C0 FF 40410000 00000000

 0.0.019E 0.0.000C 3390/0A 3990/E9 C0 C0 FF 40410000 00000000

 0.0.0592 0.0.000D 3390/0A 3990/E9 C0 C0 FF 40410000 00000000

 0.0.0480 0.0.000E 3480/04 3480/01 80 80 FF 10000000 00000000

 0.0.0A38 0.0.000F 3590/11 3590/50 80 80 FF 10000000 00000000

v This command lists subchannels with an attached 3480 model 04 or 3590 tape

device and strips the “0.n.” from the device and subchannel bus-IDs in the

command output:

lscss

292 Device Drivers, Features, and Commands - November, 2006

lscss -s -t 3480/04,3590

 Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs

 --

 0480 000E 3480/04 3480/01 80 80 FF 10000000 00000000

 0A38 000F 3590/11 3590/50 80 80 FF 10000000 00000000

lscss

Chapter 27. Useful Linux commands 293

lsdasd - List DASD devices

Scenario

This command is used to gather information on DASD devices from sysfs and

display it in a summary format.

Format

lsdasd syntax

�� lsdasd

-a

-s

-v

<device_bus_id>
 ��

Where:

-a or --offline

includes devices that are currently offline.

-s or --short

strips the “0.n.” from the device bus IDs in the command output.

-v or --verbose

prints additional messages while the command is running.

<device_bus_id>

limits the output to information on the specified device only.

Examples

v The following command lists all DASD (the sample output shows only five):

lsdasd

0.0.b104(ECKD) at (94: 0) is dasda : active at blocksize: 4096, 601020 blocks, 2347 MB

0.0.b105(ECKD) at (94: 4) is dasdb : active at blocksize: 4096, 601020 blocks, 2347 MB

0.0.b106(ECKD) at (94: 8) is dasdc : active at blocksize: 4096, 601020 blocks, 2347 MB

0.0.b107(ECKD) at (94:12) is dasdd : active at blocksize: 4096, 601020 blocks, 2347 MB

0.0.b108(ECKD) at (94:16) is dasde : active at blocksize: 4096, 601020 blocks, 2347 MB

v The following command shows information only for the DASD with device

number 0xb106 and strips the “0.n.” from the bus IDs in the output:

lsdasd -s 0.0.b106

b106(ECKD) at (94: 8) is dasdc : active at blocksize: 4096, 601020 blocks, 2347 MB

lsdasd

294 Device Drivers, Features, and Commands - November, 2006

lsqeth - List qeth based network devices

Scenario

This command is used to gather information on qeth-based network devices from

sysfs and display it in a summary format.

Before you start: To be able to use this command you must also have installed

qethconf (see “qethconf - Configure qeth devices” on page 305). You install

qethconf and lsqeth with the same packet.

Format

lsqeth syntax

�� lsqeth

-p

<interface>

-c

 ��

Where:

-p or --proc

displays the interface information in the same format as cat /proc/qeth. This

option can generate input to tools that expect qeth information in /proc/qeth

format.

-c or --ccw

displays the interface information in the /etc/ccwgroup.conf format. This option

can capture a current qeth configuration in a format that conforms to the

/etc/ccwgroup.conf syntax. If your distribution uses /etc/ccwgroup.conf,

adding this information to it makes the configuration persistent across reboots.

<interface>

limits the output to information on the specified interface only.

lsqeth

Chapter 27. Useful Linux commands 295

Examples

v The following command lists information on interface eth0 in the default format:

lsqeth eth0

Device name : eth0

 card_type : OSD_100

 cdev0 : 0.0.f5a2

 cdev1 : 0.0.f5a3

 cdev2 : 0.0.f5a4

 chpid : B5

 online : 1

 portname :

 portno : 0

 route4 : no

 route6 : no

 checksumming : sw checksumming

 state : UP (LAN ONLINE)

 priority_queueing : always queue 2

 detach_state : 0

 fake_ll : 0

 fake_broadcast : 0

 buffer_count : 16

 add_hhlen : 0

v The following command lists information on all qeth-based interfaces in

/proc/qeth format:

lsqeth -c

devices CHPID interface cardtype port chksum prio-q’ing rtr4 rtr6 fsz cnt

-------------------------- ----- ---------- -------------- ---- ------ ---------- ---- ---- ----- -----

0.0.833f/0.0.8340/0.0.8341 xFE hsi0 HiperSockets 0 sw always_q_2 no no n/a 16

0.0.f5a2/0.0.f5a3/0.0.f5a4 xB5 eth0 OSD_100 0 sw always_q_2 no no n/a 16

0.0.fba2/0.0.fba3/0.0.fba4 xB0 eth1 OSD_100 0 sw always_q_2 no no n/a 16

v The following command lists information on all qeth-based interfaces in

/etc/ccwgroup.conf format:

lsqeth -c

Definitions for HiperSockets interface hsi0

group qeth 0.0.833f 0.0.8340 0.0.8341

Definitions for OSD_100 interface eth0

group qeth 0.0.f5a2 0.0.f5a3 0.0.f5a4

Definitions for OSD_100 interface eth1

group qeth 0.0.fba2 0.0.fba3 0.0.fba4

ipa_takeover/add4 10.0.0.4/24

ipa_takeover/add6 fe80:0000:0000:0000:0000:0000:0000:0001/10

lsqeth

296 Device Drivers, Features, and Commands - November, 2006

lstape - List tape devices

Scenario

This command is used to gather information on tape devices from sysfs (see

“Displaying tape information” on page 83) and display it in a summary format.

Format

lstape syntax

��

�

 lstape

-s

,

-t

<devicetype>

--online

--offline

 �

�

�

 ,

(1)

<device_bus_id>

��

Notes:

1 specify the first device bus-ID with a leading blank.

Where:

-s or --shortid

strips the “0.n.” from the device bus-IDs in the command output.

-t or --type

limits the output to information on the specified type or types of tape devices

only.

--online | --offline

limits the output to information on online or offline tape devices only.

<device_bus_id>

limits the output to information on the specified tape device or devices only.

-h or --help

prints a short help text.

Examples

v This command displays information on all available tapes.

lstape

TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState

0 0.0.0132 3590/50 3590/11 auto IN_USE --- LOADED

1 0.0.0110 3490/10 3490/40 auto UNUSED --- UNLOADED

2 0.0.0133 3590/50 3590/11 auto IN_USE --- LOADED

3 0.0.012a 3480/01 3480/04 auto UNUSED --- UNLOADED

N/A 0.0.01f8 3480/01 3480/04 N/A OFFLINE --- N/A

v This command limits the output to tapes of type 3480 and 3490.

lstape

Chapter 27. Useful Linux commands 297

lstape -t 3480,3490

TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState

1 0.0.0110 3490/10 3490/40 auto UNUSED --- UNLOADED

3 0.0.012a 3480/01 3480/04 auto UNUSED --- UNLOADED

N/A 0.0.01f8 3480/01 3480/04 N/A OFFLINE --- N/A

v This command limits the output to those tapes of type 3480 and 3490 that are

currently online.

lstape -t 3480,3490 --online

TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState

1 0.0.0110 3490/10 3490/40 auto UNUSED --- UNLOADED

3 0.0.012a 3480/01 3480/04 auto UNUSED --- UNLOADED

v This command limits the output to the tape with device bus-ID 0.0.012a and

strips the “0.n.” from the device bus-ID in the output.

lstape -s 0.0.012a

TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState

3 012a 3480/01 3480/04 auto UNUSED --- UNLOADED

lstape

298 Device Drivers, Features, and Commands - November, 2006

lszfcp - List zfcp devices

Scenario

This command is used to gather information on zfcp adapters, ports, units, and their

associated class devices from sysfs and to display it in a summary format.

Format

lszfcp syntax

��

�

lszfcp

-H

-P

-D

-a

-V

-b

<device_bus_id>

-p

<port_name>

-l

<lun_id>

��

Where:

-H or --hosts

shows information about hosts.

-P or --ports

shows information about ports.

-D or --devices

shows information about SCSI devices.

-b or --busid <device_bus_id>

limits the output to information on the specified device.

-p or --wwpn <port_name>

limits the output to information on the specified port name.

-l or --lun <lun_id>

limits the output to information on the specified LUN.

-a or --attributes

shows all attributes (implies -V).

-V or --verbose

shows sysfs paths of associated class and bus devices.

-v or --version

prints version information.

-h or --help

prints a short help text.

Examples

v This command displays information on all available hosts, ports, and SCSI

devices.

lszfcp

Chapter 27. Useful Linux commands 299

lszfcp -H -D -P

0.0.3d0c host0

0.0.500c host1

...

0.0.3c0c host5

0.0.3d0c/0x500507630300c562 rport-0:0-0

0.0.3d0c/0x50050763030bc562 rport-0:0-1

0.0.3d0c/0x500507630303c562 rport-0:0-2

0.0.500c/0x50050763030bc562 rport-1:0-0

...

0.0.3c0c/0x500507630303c562 rport-5:0-2

0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:0

0.0.3d0c/0x500507630300c562/0x4010403300000000 0:0:0:1

0.0.3d0c/0x50050763030bc562/0x4010403200000000 0:0:1:0

0.0.3d0c/0x500507630303c562/0x4010403200000000 0:0:2:0

0.0.500c/0x50050763030bc562/0x4010403200000000 1:0:0:0

...

0.0.3c0c/0x500507630303c562/0x4010403200000000 5:0:2:0

v This command limits the output to the SCSI device with device bus-ID 0.0.03d0c:

lszfcp -D -b 0.0.3d0c

0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:0

0.0.3d0c/0x500507630300c562/0x4010403300000000 0:0:0:1

0.0.3d0c/0x50050763030bc562/0x4010403200000000 0:0:1:0

0.0.3d0c/0x500507630303c562/0x4010403200000000 0:0:2:0

lszfcp

300 Device Drivers, Features, and Commands - November, 2006

osasnmpd – Start OSA-Express SNMP subagent

Scenario

The osasnmpd command is used to start the OSA-Express Simple Network

Management Protocol (SNMP) subagent (osasnmpd).

See Chapter 23, “OSA-Express SNMP subagent support,” on page 237 for

information on SNMP agent and osasnmpd subagent setup and usage.

Format

osasnmpd syntax

��
 -l /var/log/osasnmpd.log

osasnmpd

-l <logfile>

-A

-L

�

�
 -x /var/agentx/master

-f

-P <pidfile>

-x <agentx_socket>

��

-l or --logfile <logfile>

specifies a file for logging all subagent messages and warnings, including

stdout and stderr. If no path is specified, the log file is created in the current

directory. The default log file is /var/log/osasnmpd.log.

-L or --stderrlog

print messages and warnings to stdout/stderr.

-A or --append

appends to an existing log file rather than replacing it.

-f or --nofork

prevents forking from the calling shell.

-P or --pidfile <pidfile>

saves the process ID of the subagent in a file <pidfile>. If a path is not

specified, the current directory is used.

-x or --sockaddr <agentx_socket>

specifies the socket to be used for the AgentX connection. The default

socket is /var/agentx/master.

 The socket can either be a UNIX domain socket path, or the address of a

network interface. If a network address of the form inet-addr:port is

specified, the subagent uses the specified port. If a net address of the form

inet-addr is specified, the subagent uses the default AgentX port, 705. The

AgentX sockets of the snmpd daemon and osasnmpd must match.

-h or --help

displays help information for the command.

-v or --version

displays version information for the command.

osasnmpd

Chapter 27. Useful Linux commands 301

|
|

Examples

To start the osasnmpd subagent with all default settings:

osasnmpd

osasnmpd

302 Device Drivers, Features, and Commands - November, 2006

qetharp - Query and purge OSA and HiperSockets ARP data

Scenario

The qetharp command is used to query and purge address data such as MAC and

IP addresses from the ARP cache of the OSA and HiperSockets hardware. You

cannot use this command in conjunction with the layer2 option. For z/VM guest LAN

and VSWITCH interfaces in non-layer2 mode, note that only the --query option is

supported.

Format

qetharp parameters

�� qetharp -q <interface>

-n

-a <interface>

-i <ip_address>

-m <mac_address>

-d <interface>

-i <ip_address>

-p <interface>

 ��

The meanings of the parameters of this command are as follows:

-q or --query

Shows the address resolution protocol (ARP) information found in the ARP

cache of the OSA or HiperSockets, which depends on interface. If it is an

OSA device, it shows the ARP entries stored in the OSA feature’s ARP

cache, otherwise, the ones from the HiperSockets ARP cache. If the IP

address is an IPv4 address, qetharp tries to determine the symbolic host

name. If it fails, the IP address will be shown. In case of IPv6, there is

currently no attempt to determine host names, so that the IP address will be

shown directly.

-n or --numeric

Shows numeric addresses instead of trying to determine symbolic host

names. This option can only be used in conjunction with the -q option.

<interface>

The qeth interface to which the command applies.

-a or --add

Adds a static ARP entry to the OSA adapter card.

<ip_address>

IP address to be added to the OSA adapter card.

-d or --delete

Deletes a static ARP entry from the OSA adapter card.

<mac_address>

MAC address to be added to the OSA adapter card.

-p or --purge

Flushes the ARP cache of the OSA, causing the hardware to regenerate

the addresses. This option works only with OSA devices. qetharp returns

immediately.

qetharp

Chapter 27. Useful Linux commands 303

|
|
|

-v or --verbose

Shows version information and exits

-h or --help

Shows usage information and exits

Examples

v Show all ARP entries of the OSA defined as eth0:

qetharp -q eth0

v Show all ARP entries of the OSA defined as eth0, without resolving host names:

qetharp -nq eth0

v Flush the OSA’s ARP cache for eth0:

qetharp -p eth0

v Add a static entry for eth0 and IP address 1.2.3.4 to the OSA’s ARP cache, using

MAC address aa:bb:cc:dd:ee:ff:

qetharp -a eth0 -i 1.2.3.4 -m aa:bb:cc:dd:ee:ff

v Delete the static entry for eth0 and IP address 1.2.3.4 from the OSA’s ARP

cache, using MAC address aa:bb:cc:dd:ee:ff:

qetharp -d eth0 -i 1.2.3.4

qetharp

304 Device Drivers, Features, and Commands - November, 2006

qethconf - Configure qeth devices

Scenario

The qethconf configuration tool is a bash shell script that simplifies configuring qeth

devices (see Chapter 8, “qeth device driver for OSA-Express (QDIO) and

HiperSockets,” on page 95) for:

v IP address takeover

v VIPA (virtual IP address)

v Proxy ARP

You cannot use this command in conjunction with the layer2 option.

From the arguments that are specified, qethconf assembles the corresponding

function command and redirects it to the respective sysfs attributes. You can also

use qethconf to list the already defined entries.

Format

qethconf syntax

�� qethconf ipa add <ip_address>/<mask_bits> <interface>

del

inv4

inv6

list

vipa

add

<ip_address>

<interface>

parp

del

list

list_all

 ��

The meanings of the parameters of this command are as follows:

ipa

Configure qeth for IP address takeover (IPA).

vipa

Configure qeth for virtual IP address (VIPA).

parp

Configure qeth for proxy ARP.

add

Add an IP address or address range.

del

Delete an IP address or address range.

inv4

Invert the selection of address ranges for IPv4 address takeover. This makes

the list of IP addresses that has been specified with qethconf add and

qethconf del an exclusion list.

inv6

Invert the selection of address ranges for IPv6 address takeover. This makes

the list of IP addresses that has been specified with qethconf add and

qethconf del an exclusion list.

list

List existing definitions for specified qeth function.

qethconf

Chapter 27. Useful Linux commands 305

list_all

List existing definitions for IPA, VIPA, and proxy ARP.

<ip_address>

IP address. Can be specified in one of these formats:

v IP version 4 format, for example, 192.168.10.38

v IP version 6 format, for example, FE80::1:800:23e7:f5db

v 8- or 32-character hexadecimals prefixed with -x, for example, -xc0a80a26

<mask_bits>

Number of bits that are set in the network mask. Allows you to specify an

address range.

 Example: A <mask_bits> of 24 corresponds to a network mask of

255.255.255.0.

<interface>

Name of the interface associated with the specified address or address range.

Examples

v List existing proxy ARP definitions:

qethconf parp list

parp add 1.2.3.4 eth0

v Assume responsibility for packages destined for 1.2.3.5:

qethconf parp add 1.2.3.5 eth0

qethconf: Added 1.2.3.5 to /sys/class/net/eth0/device/rxip/add4.

qethconf: Use "qethconf parp list" to check for the result

Confirm the new proxy ARP definitions:

qethconf parp list

parp add 1.2.3.4 eth0

parp add 1.2.3.5 eth0

v Configure eth0 for IP address takeover for all addresses that start with

192.168.10:

qethconf ipa add 192.168.10.0/24 eth0

qethconf: Added 192.168.10.0/24 to /sys/class/net/eth0/device/ipa_takeover/add4.

qethconf: Use "qethconf ipa list" to check for the result

Display the new IP address takeover definitions:

qethconf ipa list

ipa add 192.168.10.0/24 eth0

v Configure VIPA for eth1:

qethconf vipa add 10.99.3.3 eth1

qethconf: Added 10.99.3.3 to /sys/class/net/eth1/device/vipa/add4.

qethconf: Use "qethconf vipa list" to check for the result

Display the new VIPA definitions:

qethconf

306 Device Drivers, Features, and Commands - November, 2006

qethconf vipa list

vipa add 10.99.3.3 eth1

v List all existing IPA, VIPA, and proxy ARP definitions.

qethconf list_all

parp add 1.2.3.4 eth0

parp add 1.2.3.5 eth0

ipa add 192.168.10.0/24 eth0

vipa add 10.99.3.3 eth1

qethconf

Chapter 27. Useful Linux commands 307

san_disc - Discover ports and LUNs in Fibre Channel SANs

Scenario

Use the san_disc command to discover ports and scan LUNs in Fibre Channel

Storage Area Networks (SANs). The tool depends on HBA API which is defined in

FC-HBA. Some commands only work for a switched fabric topology.

Format

san_disc syntax

��

�

san_disc

-c <cmd>

-a

<ID>

-d

<DID>

-p

<name>

-r

<revision>

-V

��

Where:

-a or --adapter-id <ID>

specifies the ID of an adapter for commands PORT_LIST, GA_NXT, RNID,

REPORT_LUNS. Valid adapter IDs are returned by the HBA_LIST command.

-d or --did <DID>

specifies the destination ID for the GA_NXT command. The destination ID is a

3-byte hexadecimal value, for example, 0x65013f.

-p or --port-name <name>

specifies the WWPN for the RNID and REPORT_LUNS commands. The port

name is an 8-byte hexadecimal value, for example, 0x500500ab0012cd00.

-r or --revision <revision>

specifies the revision used for Generic Service Requests. The default value 1

corresponds to FC-GS-2. Other possible values are 2 for FC-GS-3 and 3 for

FCGS- 4. Set the revision if a switch does not support FC-GS-2, but a later

version of FCGS.

-V or --verbose

generates verbose output. Currently this option affects only the output of the

GA_NXT and PORT_LIST commands. When you use this option, an additional

column in the output shows the associated type of a port.

-v or --version

Prints the version number of san_disc and exits.

-h or --help

Prints out an overview of the syntax.

-c or --command <cmd>

specifies the command to be executed. See below for detailed command

specification.

san_disc

308 Device Drivers, Features, and Commands - November, 2006

The san_disc command provides some Generic Service, Extended Link Service,

and SCSI commands. A list of the supported commands and their required

arguments is as follows:

Generic service commands

GA_NXT (Get All Next)

Arguments: -c GA_NXT -a <ID> -d <DID>

 Return name server objects for the next registered port identifier greater than

<DID> for the zone to whihc the specified adapter belongs.

 Arguments: -c GA_NXT -a <ID> -d <DID> -V The same as above, but

additionally an RNID ELS command is sent to the port to detect its associated

type. The associated type is displayed in an additional column. If the port does

not respond to the RNID ELS command the associated type is empty.

Extended link service commands

RNID (Request Node Identification Data)

Arguments: -c RNID -a <ID> -p <name>

 Display information from the RNID payload (with General Topology Discovery

format) for the specified remote port on the specified adapter.

SCSI commands

REPORT_LUNS (Report Logical Unit Numbers)

Arguments: -c REPORT_LUNS -a <ID> -p <name>

 Generate a list of available logical unit numbers for the specified remote port on

the specified adapter.

Other commands

HBA_LIST (List Available Host Bus Adapters)

Arguments: -c HBA_LIST

 Generate a list of available host bus adapters. For each adapter an ID, port

name, and node name of the adapter port, the serial number and a

vendor-specific ID are given. The vendor ID is converted to a bus ID which is

needed on Linux for zSeries to unambiguously identify a virtual adapter. This is

because WWPN and WWNN might be the same for virtual adapters sharing the

same physical adapter.

PORT_LIST (List Registered Ports)

Arguments: -c PORT_LIST -a <ID>

 Generate a list of ports registered at the nameserver directory service of the

fabric to which the specified adapter is connected. A remote port can only be

discovered if it is in the same zone as the adapter port.

 Arguments: -c PORT_LIST -a <ID> -V

 Same as above, but additionally an RNID ELS command is sent to each port to

detect the associated type of that port. The associated type is displayed in an

additional column. If the port does not respond to the RNID ELS command the

associated type is empty.

Scenario

This scenario shows how to configure an adapter and port using san_disc.

1. Load the zfcp_hbaapi module:

san_disc

Chapter 27. Useful Linux commands 309

modprobe zfcp_hbaapi

2. Check for available FC adapters:

san_disc -c HBA_LIST

 Number of Adapters: 6

 No. Port WWN Node WWN SerialNumber Busid

 1 (adapter unavailable)

 2 (adapter unavailable)

 3 (adapter unavailable)

 4 (adapter unavailable)

 5 (adapter unavailable)

 6 (adapter unavailable)

This shows that there are no adapters available.

3. Set an adapter online:

chccwdev 0.0.3d0c --online

Check again for available FC adapters:

san_disc -c HBA_LIST

 Number of Adapters: 6

 No. Port WWN Node WWN SerialNumber Busid

 1 (adapter unavailable)

 2 (adapter unavailable)

 3 (adapter unavailable)

 4 (adapter unavailable)

 5 (adapter unavailable)

 6 0x5005076401c08f98 0x5005076400cd6aad IBM020000000D6AAD 0.0.3d0c

4. Check for available ports on adapter 6 (0.0.3d0c):

san_disc -c PORT_LIST -a 6

 No. Port WWN Node WWN DID Type

 1 0x5005076401408f98 0x5005076400cd6aad 0x650513 N_Port

 2 0x500507640140863c 0x5005076400cd6aad 0x650613 N_Port

 3 0x50050764010087ef 0x5005076400cd6aad 0x650713 N_Port

 4 0x50050764014087f0 0x5005076400cd6aad 0x650913 N_Port

...

 22 0x500507630300c562 0x5005076303ffc562 0x652113 N_Port

...

 75 0x5005076401202fd8 0x5005076400c1ab8a 0x683f13 N_Port

 76 0x5005076401808f99 0x5005076400c1ab8a 0x684013 N_Port

 77 0x50050763031b0104 0x5005076303ffc104 0x684113 N_Port

 78 0x5005076300c393cb 0x5005076300c093cb 0x684213 N_Port

 79 0x50050764012022e4 0x5005076400c1ab8a 0x684313 N_Port

 80 0x5005076401408f98 0x5005076400cd6aad 0x650513 N_Port

5. Configure a port:

echo 0x500507630300c562 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_add

6. Scan for available LUNs on adapter 6 (0.0.3d0c), port 0x500507630300c562:

san_disc

310 Device Drivers, Features, and Commands - November, 2006

san_disc -c REPORT_LUNS -a 6 -p 0x500507630300c562

 Number of LUNs: 268

 No. LUN

 1 0x4010400000000000

 2 0x4010400100000000

 3 0x4010400200000000

 4 0x4010400300000000

 5 0x4010400400000000

...

 267 0x4011401900000000

 268 0x4011401a00000000

san_disc

Chapter 27. Useful Linux commands 311

scsi_logging_level - Set and get the SCSI logging level

Scenario

This command is used to create, set, or get the SCSI logging level.

The SCSI logging feature is controlled by a 32 bit value -- the SCSI logging level.

This value is divided into 3-bit fields describing the log level of a specific log area.

Due to the 3-bit subdivision, setting levels or interpreting the meaning of current

levels of the SCSI logging feature is not trivial. The scsi_logging_level script helps

with both tasks.

Format

scsi_logging_level syntax

��

�

scsi_logging_level

-s

-a

<level>

-g

-E

<level>

-c

-T

<level>

-S

<level>

-M

<level>

--mlqueue

<level>

--mlcomplete

<level>

-L

<level>

--llqueue

<level>

--llcomplete

<level>

-H

<level>

--hlqueue

<level>

--hlcomplete

<level>

-I

<level>

��

Where:

-a or --all <level>

specifies value for all SCSI_LOG fields.

-E or --error <level>

specifies SCSI_LOG_ERROR.

-T or --timeout <level>

specifies SCSI_LOG_TIMEOUT.

-S or --scan <level>

specifies SCSI_LOG_SCAN.

-M or --midlevel <level>

specifies SCSI_LOG_MLQUEUE and SCSI_LOG_MLCOMPLETE.

--mlqueue <level>

specifies SCSI_LOG_MLQUEUE.

--mlcomplete <level>

specifies SCSI_LOG_MLCOMPLETE.

scsi_logging_level

312 Device Drivers, Features, and Commands - November, 2006

-L or --lowlevel <level>

specifies SCSI_LOG_LLQUEUE and SCSI_LOG_LLCOMPLETE.

--llqueue <level>

specifies SCSI_LOG_LLQUEUE.

--llcomplete <level>

specifies SCSI_LOG_LLCOMPLETE.

-H or --highlevel <level>

specifies SCSI_LOG_HLQUEUE and SCSI_LOG_HLCOMPLETE.

--hlqueue <level>

specifies SCSI_LOG_HLQUEUE.

--hlcomplete <level>

specifies SCSI_LOG_HLCOMPLETE.

-I or --ioctl <level>

specifies SCSI_LOG_IOCTL.

-v or --version

prints version information.

-h or --help

prints help text.

-s or --set

creates and sets the logging level as specified on the command line.

-g or --get

gets the current logging level.

-c or --create

creates the logging level as specified on the command line.

 You can specify several SCSI_LOG fields by using several options. When multiple

options specify the same SCSI_LOG field the most specific option has precedence.

Examples

v This command prints the logging word of the SCSI logging feature and each

logging level.

#> scsi_logging_level -g

Current scsi logging level:

dev.scsi.logging_level = 0

SCSI_LOG_ERROR=0

SCSI_LOG_TIMEOUT=0

SCSI_LOG_SCAN=0

SCSI_LOG_MLQUEUE=0

SCSI_LOG_MLCOMPLETE=0

SCSI_LOG_LLQUEUE=0

SCSI_LOG_LLCOMPLETE=0

SCSI_LOG_HLQUEUE=0

SCSI_LOG_HLCOMPLETE=0

SCSI_LOG_IOCTL=0

v This command sets all logging levels to 3:

scsi_logging_level

Chapter 27. Useful Linux commands 313

#> scsi_logging_level -s -a 3

New scsi logging level:

dev.scsi.logging_level = 460175067

SCSI_LOG_ERROR=3

SCSI_LOG_TIMEOUT=3

SCSI_LOG_SCAN=3

SCSI_LOG_MLQUEUE=3

SCSI_LOG_MLCOMPLETE=3

SCSI_LOG_LLQUEUE=3

SCSI_LOG_LLCOMPLETE=3

SCSI_LOG_HLQUEUE=3

SCSI_LOG_HLCOMPLETE=3

SCSI_LOG_IOCTL=3

v This command sets SCSI_LOG_HLQUEUE=3, SCSI_LOG_HLCOMPLETE=2

and assigns all other SCSI_LOG fields the value 1.

scsi_logging_level --hlqueue 3 --highlevel 2 --all 1 -s

New scsi logging level:

dev.scsi.logging_level = 174363209

SCSI_LOG_ERROR=1

SCSI_LOG_TIMEOUT=1

SCSI_LOG_SCAN=1

SCSI_LOG_MLQUEUE=1

SCSI_LOG_MLCOMPLETE=1

SCSI_LOG_LLQUEUE=1

SCSI_LOG_LLCOMPLETE=1

SCSI_LOG_HLQUEUE=3

SCSI_LOG_HLCOMPLETE=2

SCSI_LOG_IOCTL=1

scsi_logging_level

314 Device Drivers, Features, and Commands - November, 2006

snipl – Simple network IPL (Linux image control for LPAR and VM)

Scenario

snipl (simple network IPL) is a command line tool for remotely controlling Linux

images using either:

v Basic System z support element (SE) functions for systems running in LPAR

mode, or

v Basic z/VM system management functions for systems running as a z/VM guest

(z/VM 4.4 or higher).

Note: Be aware that incautious use of snipl can result in loss of data.

LPAR mode

In LPAR mode, snipl allows you to:

v Load an LPAR.

v Send and retrieve operating system messages.

v Activate, reset, or deactivate an LPAR for I/O-fencing purposes.

Using snipl in LPAR mode allows you to overcome the limitations of the SE

graphical interface when snipl is used for I/O-fencing from within a clustered

environment of Linux systems that run in LPAR mode.

snipl uses the network management application programming interfaces (API)

provided by the SE, which establishes an SNMP network connection and uses the

SNMP protocol to send and retrieve data. The API is called “hwmcaapi”. It has to be

available as shared library.

To establish a connection (using a valid community):

v In the SE SNMP configuration task, configure the IP address of the initiating

system and the community.

v In the SE settings task, configure SNMP support.

v In your firewall settings, ensure that UDP port 161 and TCP port 3161 are

enabled.

If snipl in LPAR mode repeatedly reports a timeout, the target SE is most likely

inaccessible or not configured properly. For details on how to configure the SE,

refer to zSeries Application Programming Interfaces, SB10-7030, or S/390

Application Programming Interfaces, SC28-8141, which is obtainable from the

following Web site:

 ibm.com/servers/resourcelink/

z/VM mode

In z/VM mode, snipl allows you to remotely control basic z/VM system

management functions. You can:

v Activate, reset, or deactivate an image for I/O-fencing purposes.

snipl in z/VM mode uses the system management application programming

interfaces (APIs) of z/VM (version 4.4 or higher). To communicate with the z/VM

host, snipl establishes a network connection and uses the RPC protocol to send

and retrieve data.

To establish a connection to the VM host, the VSMSERVE server must be

configured and the vmsapi service must be registered on the target VM host. Also,

snipl

Chapter 27. Useful Linux commands 315

http://www.ibm.com/servers/resourcelink/

there has to be an account for the specified user ID on the host. If snipl in VM

mode repeatedly reports ″RPC: Port mapper failure - RPC timed out″, it is most

likely that the target z/VM host is inaccessible, or the service is not registered, or

the configuration of the VSMSERVE server is not correct.

Note: The configuration of VSMSERVE requires DIRMAINT authorization.

For details about configuration of the VSMSERVE server on z/VM refer to z/VM:

Systems Management Application Programming, SC24-6063 obtainable from the

following Web site:

 ibm.com/vm/

snipl

316 Device Drivers, Features, and Commands - November, 2006

http://www.vm.ibm.com/

Usage

Command line syntax (LPAR mode)

snipl command (LPAR mode)

��

snipl

�

<image_name>

-L <ip_address>

�

�

-p public

-p <community>

-P

 (1)

-f <defaultfile>

-f <filename>

�

�
 --timeout 10000

--timeout <timeout>

�

�
(2)

--profilename <defaultprofile>

-a

-F

--profilename <filename>

-d

-F

-r

-F

-l

loadparms

-x

--msgtimeout 5000

-i

--msgtimeout <interval>

 ��

loadparms:

-F

-A <load_address>

--parameters_load <string>
 �

�
 --load_timeout 60

--load_timeout <timeout>

--noclear

--storestatus

Notes:

1 See description of the -f option.

2 See description of the --profilename option.

snipl

Chapter 27. Useful Linux commands 317

Command line syntax (VM mode)

snipl command (VM mode)

��

snipl

�

<image_name>

-V <ip_address>

�

�
-u <userid>

-p <password>

-P

-f <filename>
 �

� -a

-d

-F

-r

-x

 ��

Options and Parameters

<image_name>

Specifies the name of the targeted LPAR or z/VM guest. This parameter is

required for --activate, --deactivate, --reset, --load, and --dialog. If the same

command is to be performed on more than one image of a given server,

more than one <image_name> can be specified. Exception: A --dialog can

only be started with one image.

-V <ip_address> or --vmserver <ip_address>

Specifies the server to be of type VM. Use this option if the system is

running in VM mode. Also specifies the IP-address/host-name of targeted

VM-host. This option can also be defined in the configuration file and thus

may also be omitted.

-L <ip_address> or --lparserver <ip_address>

Specifies the server to be of type LPAR. Use this option if the system is

running in LPAR mode. Specifies the IP-address/hostname of targeted SE.

This option can also be defined in the configuration file and thus may also

be omitted.

-u <userid> or --userid <userid>

VM only: Specifies the userid used to access the VM-host. If none is given,

the configuration file can be used to determine the userid for a given

IP-address or VM-guest-name.

-p <community> | <password> or --password <community> | <password>

v For LPAR mode, the option specifies the <community> (HMC term for

password) of the initiating host system. The default for <community> is

“public”. The value entered here must match the entry contained in the

SNMP configuration settings on the SE.

v For VM mode, specifies the password for the given user ID.

snipl

318 Device Drivers, Features, and Commands - November, 2006

If no password is given, the configuration file can be used to determine the

password for a given IP address, LPAR, or VM guest name.

-P or --promptpassword

Lets snipl prompt for a password in protected entry mode.

-f <filename> or --configfilename <filename>

Specifies the name of a configuration file containing HMC/SE IP-addresses

together with their community (=password) and VM IP-address together with

their userid and password followed by a list of controlled LPARnames or

VM-guest-names. Default user-specific filename is $HOME/.snipl.conf and

default system-wide filename is /etc/snipl.conf. Without available

configuration file all required options have to be specified with the

command. The structure of the configuration file is described below.

-x or --listimages

Lists all available images for the specified server.

v For VM this may be specified with image, server, server+user or

image+user according to the uniqueness in the configuration file. In case

of VM the returned list is retrieved from the configuration file only.

v For LPAR just the server name is used to retrieve the actual images. The

information is directly retrieved from the SE.

-a or --activate

Issues an activate command for the targeted LPAR or VM guest.

-d or --deactivate

Issues a deactivate command for the target LPAR or VM guest.

-r or --reset

Issues a reset command for the targeted LPAR(s) or VM guest(s).

-l or --load

LPAR only: Issues a load command for the target LPAR.

-i or --dialog

LPAR only: This option starts an operating system message dialog with the

targeted LPAR. It allows the user to enter arbitrary commands, which are

sent to the targeted LPAR. In addition, dialog starts a background process,

which continuously retrieves operating system messages. The output of this

polling process is sent to stdout. The operating system messages dialog is

aborted by pressing CTRL-D. This also kills the polling process. After the

dialog is terminated, snipl exits.

-t <timeout> or --timeout <timeout>

LPAR only: Specifies the timeout in milliseconds for general management

API calls. The default is 10000 ms.

-m <interval> or --msgtimeout <interval>

LPAR only: Specifies – in conjunction with --dialog – the interval in

milliseconds for management API calls that retrieve operating system

messages. The default value is set to 5000 ms.

-F or --force

Forces the imageoperation.

v VM: in conjunction with --deactivate non graceful deactivation of the

image.

v LPAR: In conjunction with --activate, --deactivate, --reset and --load

allows unconditional execution of the command regardless of the state of

the image.

snipl

Chapter 27. Useful Linux commands 319

--profilename <filename>

LPAR only: In conjunction with --activate the option specifies the profile

name used on the activate command for LPAR mode. If none is provided,

the HMC/SE default profile name for the given image is used.

-A <loadaddress> or --address_load <loadaddress>

LPAR only: In conjunction with --load specifies the load address in 4

hexadecimal digits. If none is provided, the address of the previous load is

used as load address.

--parameters_load <string>

LPAR only: In conjunction with --load specifies a parameter string for

loading. If none is given, the parameter string of the previous load is used.

This parameter is used for instance for IPL of z/OS and z/VM.

--noclear

LPAR only: In conjunction with --load denies memory clearing before

loading. The memory is cleared by default.

--load_timeout <timeout>

LPAR only: In conjunction with --load specifies the maximum time for load

completion, in seconds. The value must be between 60 and 600 seconds.

The default value is 60 seconds.

--storestatus

LPAR only: In conjunction with --load requests status before loading. The

status is not stored by default.

-v or --version

Prints version of snipl and exits.

-h or --help

Prints usage and exits.

Structure of the configuration file

A configuration file contains a list of addresses (IP-addresses of an SE or a z/VM

host), and the host type (LPAR vs. VM). The configuration file also contains a list of

image names available for control on the subswitch.

v For LPAR, the list of image names can also be retrieved from the SE.

v For z/VM the list can only be retrieved by users with appropriate z/VM access

rights. Therefore, a local list must be available.

The following is an example for the structure of the snipl configuration file:

Server = <IP-address>

type = <host-type>

password = <password>

image = <imagename>

image = <imagename>

image = <imagename>

Server = <IP-address>

type = <host-type>

user = <username>

password = <password>

image = <imagename>

image = <imagename>

image = <imagename>

image = <imagename>

Blanks and n/ are separators. The keywords are not case-sensitive.

snipl

320 Device Drivers, Features, and Commands - November, 2006

snipl command examples

LPAR mode: Activate:

snipl LPARLNX1 -L 9.164.70.100 -a -P

Enter password: Warning : No default configuration file could be found/opened.

processing......

LPARLNX1: acknowledged.

LPAR mode: Load: Load using configuration file:

snipl LPARLNX1 -f xcfg -l -A 5119

processing......

LPARLNX1: acknowledged.

z/VM mode: Activate using configuration file:

snipl -f xcfg -a vmlnx2 vmlnx1

* ImageActivate : Image vmlnx1 Request Successful

* ImageActivate : Image vmlnx2 Image Already Active

Connection errors and exit codes

If a connection error occurs (e.g.timeout, or communication failure), snipl sends an

error code of the management API and a message to stderr. For

v snipl --vmserver the shell exit code is set to ″1000 + error code″

v snipl --lparserver the shell exit code is set to ″2000 + error code″

Return codes like

LPARLNX1: not acknowledged – command was not successful – rc is 135921664

are described in “Appendix B” of the HWMCAAPI document zSeries Application

Programming Interfaces, SB10–7030. You can obtain this publication from the

following Web site: ibm.com/servers/resourcelink/.

Additionally, the following snipl error codes exist. They are accompanied by a short

message on stderr:

1 An unknown option is specified.

2 An option with an invalid value is specified.

3 An option is specified more than once.

4 Conflicting options are specified.

5 No command option is specified.

6 Server is not specified and cannot be determined.

7 No image is specified.

8 User-ID is not specified and cannot be determined.

9 Password is not specified and cannot be determined.

10 A specified image name does not exist on the server used.

20 An error occurred while processing the configuration file.

22 Operation --dialog: More than one image name is specified.

30 An error occurred while loading one of the libraries libhwmcaapi.so or

libvmsmapi.so

40 Operation --dialog encounters a problem while starting another process.

snipl

Chapter 27. Useful Linux commands 321

http://www.ibm.com/servers/resourcelink/

41 Operation --dialog encounters a problem with stdin attribute setting.

50 Response from HMC/SE is cannot be interpreted.

60 Response buffer is too small for HMC/SE response.

90 A storage allocation failure occurred.

If no error occurs, a shell exit code of 0 is returned upon completion of snipl.

Recovery

Currently, snipl does not

v recover connection failures.

v recover errors in API call execution.

In these cases, it is sufficient to restart the tool. Should the problem persist, a

networking failure is most likely. In this case, increase the timeout values for snipl

--lparserver.

STONITH support (snipl for STONITH)

The STONITH implementation is part of the Heartbeat framework of the High

Availability Project (http://linux-ha.org/) and STONITH is generally used as part

of this framework. It can also be used independently, however. A general description

of the STONITH technology can be found at: http://linux-ha.org/stonith.html.

The STONITH support for snipl can be regarded as a driver for one or more virtual

power switches controlling a set of Linux images located on LPARs or z/VM

instances as z/VM guests. A single LPAR or z/VM host can be seen as a VPS

subswitch. STONITH requires the availability of a list of the controllable images by a

switch. For this Linux Image Control VPS, the set of controlled images is retrieved

from different locations depending on access rights and configuration.

The format of the snipl for STONITH configuration file corresponds with the

configuration file format of snipl, see “Structure of the configuration file” on page

320.

Before you start: The setup requirements for using the STONITH plug-in differ,

depending on the environment into which you want to implement it.

v snipl for STONITH in LPAR mode:

The SE must be configured to allow the initiating host system to access the

network management API. Direct communication with the HMC is not supported.

For details, refer to either of these publications, as applicable:

 zSeries Application Programming Interfaces, SB10-7030

 S/390 Application Programming Interfaces, SC28-8141

You can obtain these publications from the following Web site:

ibm.com/servers/resourcelink/

v snipl for STONITH in VM mode:

To communicate with the z/VM host, snipl establishes a network connection and

uses the Remote Procedure Call (RPC) protocol to send and retrieve data.

Communication with z/VM requires prior configuration of the VSMSERVE server

on z/VM. For details, refer to:

 z/VM: Systems Management Application Programming, SC24–6063

You can obtain this publication from the following Web site: ibm.com/vm/

snipl

322 Device Drivers, Features, and Commands - November, 2006

http://linux-ha.org/
http://linux-ha.org/stonith.html
http://www.ibm.com/servers/resourcelink/
http://www.vm.ibm.com/

tape390_display - display messages on tape devices and load tapes

Scenario

This command is used to display messages on a physical tape device’s display

unit, optionally in conjunction with loading a tape.

Format

tape390_display syntax

��
 -t standard

tape390_display

<message1>

<node>

-l

-t

load

-b

unload

<message1>

<message2>

(1)

reload

noop

��

Notes:

1 With reload, two messages must be specified and option -b is not

permitted.

where:

-l or --load

instructs the tape unit to load the next indexed tape from the automatic tape

loader (if installed); ignored if there is no loader installed or if the loader is

not in “system” mode. The loader “system” mode allows the operating

system to handle tape loads.

-t or --type

The possible values have the following meanings:

standard

displays the message or messages until the physical tape device

processes the next tape movement command.

load displays the message or messages until a tape is loaded; if a tape

is already loaded, the message is ignored.

unload

displays the message or messages while a tape is loaded; if no

tape is loaded, the message is ignored.

reload displays the first message while a tape is loaded and the second

message when the tape is removed. If no tape is loaded, the first

message is ignored and the second message is displayed

immediately. The second message is displayed until the next tape is

loaded.

noop is intended for test purposes only. It accesses the tape device but

does not display the message or messages.

-b or --blink

causes <message1> to be displayed repeatedly for 2 seconds with a

half-second pause in between.

tape390_display

Chapter 27. Useful Linux commands 323

<message1>

is the first or only message to be displayed. The message can be up to 8

byte.

<message2>

is a second message to be displayed alternately with the first, at 2 second

intervals. The message can be up to 8 byte.

<node>

is a device node of the target tape device

-h or --help

prints help text

Notes:

1. Symbols that can be displayed include:

Alphabetic characters:

A through Z (uppercase only) and spaces. Lowercase letters are

converted to uppercase.

Numeric characters:

0 1 2 3 4 5 6 7 8 9

Special characters:

@ $ # , . / ’ () * & + - = % : _ < > ? ;

 The following are included in the 3490 hardware reference but might not

display on all devices: | ¢

2. If only one message is defined, it remains displayed until the tape device driver

next starts to move or the message is updated.

3. If the messages contain spaces or shell-sensitive characters, they must be

enclosed in quotation marks.

Examples

The following examples assume that you are using standard devices nodes and not

device nodes created by udev:

v Alternately display “BACKUP” and “COMPLETE” at two second intervals until

device /dev/ntibm0 processes the next tape movement command:

tape390_display BACKUP COMPLETE /dev/ntibm0

v Display the message “REM TAPE” while a tape is in the physical tape device

followed by the message“NEW TAPE” until a new tape is loaded:

tape390_display --type reload "REM TAPE" "NEW TAPE" /dev/ntibm0

v Attempts to unload the tape and load a new tape automatically, the messages

are the same as in the previous example:

tape390_display -l -t reload "REM TAPE" "NEW TAPE" /dev/ntibm0

tape390_display

324 Device Drivers, Features, and Commands - November, 2006

tunedasd - Adjust DASD performance

Scenario

tunedasd is used to:

v Display and reset DASD performance statistics

v Query and set a DASD’s cache mode

v Reserve and release DASD

v Breaking the lock of a known DASD (for accessing a boxed DASD while booting

Linux see “Accessing DASD by force” on page 42)

Before you start:

v You must have root permissions.

v For the performance statistics:

– Your kernel needs to have been compiled with the kernel configuration option

CONFIG_DASD_PROFILE (see “Building a kernel with the DASD device

driver” on page 35).

– Data gathering must have been switched on by writing “on” to

/proc/dasd/statistics.

Format

tunedasd syntax

��

�

 -h

tunedasd

-g

<node>

-c <mode>

-n <cylinders>

-S

-L

-O

-R

-P

-I <row>

��

Where:

<node>

Specifies a device node for the DASD to which the command is to be

applied.

-g or --get_cache

Gets the current caching mode of the storage controller. This option applies

to ECKD only.

-c <mode> or --cache <mode>

Sets the caching mode on the storage controller to <mode>. This option

applies to ECKD only.

 Today’s ECKD devices support the following behaviors):

normal for normal cache replacement.

tunedasd

Chapter 27. Useful Linux commands 325

bypass to bypass cache.

inhibit to inhibit cache.

sequential for sequential access.

prestage for sequential prestage.

record for record access.

 For details, refer to IBM TotalStorage Enterprise Storage Server

System/390 Command Reference 2105 Models E10, E20, F10, and F20,

SC26-7295.

-n <cylinders> or --no_cyl <cylinders>

Specifies the number of cylinders to be cached. This option applies to

ECKD only.

-S or --reserve

Reserves the device. This option applies to ECKD only.

-L or --release

Releases the device. This option applies to ECKD only.

-O or --slock

Unconditionally reserves the device. This option applies to ECKD only.

Note: This option is to be used with care as it breaks any existing reserve

by another operating system.

-R or --reset_prof

reset the profile information of the device.

-P or --profile

Prints a usage profile of the device.

-I <row> or --profile_item <row>

Prints the usage profile item specified by <row>. <row> can be one of:

reqs number of DASD I/O requests

sects number of 512 byte sectors

sizes histogram of sizes

total histogram of I/O times

totsect histogram of I/O times per sector

start histogram of I/O time till ssch

irq histogram of I/O time between ssch and irq

irqsect histogram of I/O time between ssch and irq per sector

end histogram of I/O time between irq and end

queue number of requests in the DASD internal request queue at

enqueueing

-v or --version

displays version information.

-h or --help

displays help information.

Examples

v This example first queries the current setting for the cache mode of a DASD with

device node /dev/dasdzzz and then sets it to 1 cylinder “prestage”.

tunedasd

326 Device Drivers, Features, and Commands - November, 2006

tunedasd -g /dev/dasdzzz

normal (0 cyl)

tunedasd -c prestage -n 2 /dev/dasdzzz

Setting cache mode for device </devdasdzzz>...

Done.

tunedasd -g /dev/dasdzzz

prestage (2 cyl)

v In this example two device nodes are specified. The output is printed for each

node in the order in which the nodes where specified.

tunedasd -g /dev/dasdzzz /dev/dasdzzy

prestage (2 cyl)

normal (0 cyl)

v The following command prints the usage profile of a DASD.

tunedasd -P /dev/dasdzzz

19617 dasd I/O requests

with 4841336 sectors(512B each)

 __<4 ___8 __16 __32 __64 _128 _256 _512 __1k __2k __4k __8k _16k _32k _64k 128k

 _256 _512 __1M __2M __4M __8M _16M _32M _64M 128M 256M 512M __1G __2G __4G _>4G

Histogram of sizes (512B secs)

 0 0 441 77 78 87 188 18746 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Histogram of I/O times (microseconds)

 0 0 0 0 0 0 0 0 235 150 297 18683 241 3 4 4

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Histogram of I/O times per sector

 0 0 0 18736 333 278 94 78 97 1 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Histogram of I/O time till ssch

 19234 40 32 0 2 0 0 3 40 53 128 85 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Histogram of I/O time between ssch and irq

 0 0 0 0 0 0 0 0 387 208 250 18538 223 3 4 4

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Histogram of I/O time between ssch and irq per sector

 0 0 0 18803 326 398 70 19 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Histogram of I/O time between irq and end

 18520 735 246 68 43 4 1 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

of req in chanq at enqueuing (1..32)

 0 19308 123 30 25 130 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v The following command prints a row of the usage profile of a DASD. The output

is on a single line as indicated by the (cont...) (... cont) in the illustration:

tunedasd -P -I irq /dev/dasdzzz

 0| 0| 0| 0| 0| 0| 0| 0| 503| 271|(cont...)

 (... cont) 267| 18544| 224| 3| 4| 4| 0| 0| 0|(cont...)

 (... cont) 0| 0| 0| 0| 0| 0| 0| 0| 0|(cont...)

 (... cont) 0| 0| 0| 0|

tunedasd

Chapter 27. Useful Linux commands 327

vmcp - Send CP commands to the VM hypervisor

Scenario

vmcp is used to:

v Send control program (CP) commands to the VM hypervisor.

v Display VM’s response.

The vmcp command expects the command line as a parameter and returns the

response to stdout. Error messages are written to stderr.

You can use vmcp as a device node (usually /dev/vmcp, see Chapter 17, “z/VM CP

interface device driver,” on page 199) or as a user space tool. In both cases, the

vmcp module must be loaded or compiled in the kernel. Distributors should consider

providing a boot script that automatically loads the module if the guest runs under

z/VM.

The vmcp tool can coexist with the cpint package.

Before you start:

v You must have root permissions.

v Ensure that vmcp is loaded by issuing: modprobe vmcp

Format

vmcp syntax

�� vmcp -h

-v

8 KB

<command>

-k

-b

 ��

Where:

-h or --help

displays help information.

-v or --version

displays version information.

-k or --keepcase

Converts the first word of the command to uppercase. Without this option,

the complete command line is replaced by uppercase characters.

-b <size> or --buffer <size>

Specifies the buffer size in bytes for VM’s response. Valid values are from

4096 (or 4k) up to 1048756 (or 1M). By default, vmcp allocates an 8192

byte (8k) buffer. You can use k and M to specify kilo- and megabytes.

<command>

Specifies the command you want to send to CP.

vmcp

328 Device Drivers, Features, and Commands - November, 2006

If the command completes successfully, vmcp returns 0. Otherwise, vmcp returns

one of the following values:

1. CP returned a non-zero response code.

2. The specified buffer was not large enough to hold CP’s response. The

command was executed, but the response was truncated. You can use the

--buffer option to increase the response buffer.

3. Linux reported an error to vmcp. See the error message for details.

4. The options passed to vmcp were erroneous. See the error messages for

details.

Examples

v To get your user ID issue:

vmcp query userid

v To attach the device 1234 to your guest, issue:

vmcp attach 1234 *

v If you add the following line to /etc/sudoers:

ALL ALL=NOPASSWD:/sbin/vmcp indicate

every user on the system can run the indicate command using:

sudo vmcp indicate

v If you need a larger response buffer, use the --buffer option:

vmcp --buffer=128k q 1-ffff

vmcp

Chapter 27. Useful Linux commands 329

zipl – zSeries initial program loader

Scenario

zipl can be used to prepare a device for one of the following purposes:

v Booting Linux (as a Linux program loader)

v Dumping

For more information on the dump tools that zipl installs and on using the dump

functions, refer to Linux on System z9 and zSeries Using the Dump Tools.

v Loading a data file to initialize a discontiguous saved segment (DCSS)

You can simulate a zipl command to test a configuration before you apply the

command to an actual device (see “dry-run” on page 332).

zipl supports the following devices:

v Enhanced Count Key Data (ECKD) DASDs with fixed block Linux disk layout (ldl)

v ECKD DASDs with z/OS-compliant compatible disk layout (cdl)

v Fixed Block Access (FBA) DASDs

v Magnetic tape subsystems compatible with IBM3480, IBM3490, or IBM3590 (boot

and dump devices only)

v SCSI with PC-BIOS disk layout

Usage

zipl base functions

The zipl base functions can be invoked with one of the following options on the

command line or in a configuration file:

 Table 32. zipl base functions

Base function Command line

short option

Command line

long option

Configuration

file option

Install a boot loader

See “Preparing a boot device” on

page 333 for details.

-i --image image=

Prepare a DASD or tape dump

device

See “Preparing a DASD or tape

dump device” on page 335 for

details.

-d --dumpto dumpto=

Prepare a SCSI dump device

See “Preparing a dump device on

a SCSI disk” on page 337 for

details.

-D --dumptofs dumptofs=

Prepare a device to load a file to

initialize discontiguous named

saved segments

See “Installing a loader to initialize

a discontiguous named saved

segment (DCSS)” on page 339 for

details.

-s --segment segment=

zipl

330 Device Drivers, Features, and Commands - November, 2006

Table 32. zipl base functions (continued)

Base function Command line

short option

Command line

long option

Configuration

file option

Install a menu configuration

See “Installing a menu

configuration” on page 348 for

details.

-m --menu (None)

zipl modes

zipl operates in one of two modes:

Command-line mode

 If a zipl command is issued with a base function other than installing a

menu configuration (see “Installing a menu configuration” on page 348), the

entire configuration must be defined using command-line parameters.

Configuration-file mode

If a zipl command is issued either without a base function or to install a

menu configuration, a configuration file is accessed.

zipl syntax overview

�� zipl parameters when omitting base function

-V

--dry-run

-i

i_parameters

-D

D_parameters

-s

s_parameters

-d

d_parameters

-m

m_parameters

 ��

parameters when omitting base function:

 (1)

-c /etc/zipl.conf

-c <config_file>

 (2)

[default]

<configuration>

�

�
(3)

(4)

-n

-P <parameters>

-a

Notes:

1 You can change the default configuration file with the ZIPLCONF

environment variable.

2 If no configuration is specified, zipl uses the configuration specified in the

[defaultboot] section of the configuration file (see “Configuration file

structure” on page 343).

3 In conjunction with a boot configuration or with a SCSI dump

configuration only.

4 In conjunction with a boot configuration or a menu configuration only.

zipl

Chapter 27. Useful Linux commands 331

Where:

-c <config_file>

specifies the configuration file to be used.

<configuration>

specifies a single configuration section in a configuration file.

-P <parameters>

 can optionally be used to provide:

kernel parameters

in conjunction with a boot configuration section. See “How kernel

parameters from different sources are combined” on page 335 for

information on how kernel parameters specified with the -P option are

combined with any kernel parameters specified in the configuration file.

SCSI system dumper parameters

in conjunction with a SCSI dump configuration section. See “How SCSI

system dumper parameters from different sources are combined” on

page 339 for information on how parameters specified with the -P

option are combined with any parameters specified in the configuration

file.

 If you provide multiple parameters, separate them with a blank and enclose

them within single quotes (') or double quotes (").

-a in conjunction with a boot configuration section, adds kernel image, kernel

parameter file, and initial RAM disk to the bootmap file. Use this option when

these files are spread across multiple disks to ensure that they are available at

IPL time. Specifying this option significantly increases the size of the bootmap

file created in the target directory.

-n suppresses confirmation prompts that require operator responses to allow

unattended processing (for example, when processing DASD or tape dump

configuration sections).

-V provides verbose command output.

--dry-run

simulates a zipl command. Use this option to test a configuration without

overwriting data on your device.

 During simulation, zipl performs all command processing and issues error

messages where appropriate. Data is temporarily written to the target directory

and is cleared up when the command simulation is completed.

-v displays version information.

-h displays help information.

The basic functions and their parameters are described in detail in the following

sections.

See “” on page 340 for a summary of the short and long command line options and

their configuration file equivalents.

Examples:

v To process the default configuration in the default configuration file

(/etc/zipl.conf, unless specified otherwise with the environment variable

ZIPLCONF) issue:

zipl

332 Device Drivers, Features, and Commands - November, 2006

zipl

v To process the default configuration in a configuration file /etc/myxmp.conf issue:

zipl -c /etc/myxmp.conf

v To process a configuration [myconf] in the default configuration file issue:

zipl myconf

v To process a configuration [myconf] in a configuration file /etc/myxmp.conf issue:

zipl -c /etc/myxmp.conf myconf

v To simulate processing a configuration [myconf] in a configuration file

/etc/myxmp.conf issue:

zipl -dry-run -c /etc/myxmp.conf myconf

Preparing a boot device

zipl command line syntax for preparing a boot device

��

zipl
 ,0x10000

-i <image>

,<image_addr>

-t <directory>

-T <tape_node>

�

�
,0x800000

-r <ramdisk>

,<initrd_addr>

 �

�
,0x1000

-p <parmfile>

,<parm_addr>

-P <parameters>

-a
 ��

To prepare a device as a boot device you must specify:

The location <image>

of the Linux kernel image on the file system.

A target <directory> or <tape_node>

zipl installs the boot loader code on the device containing the specified

directory <directory> or to the specified tape device <tape_node>.

Optionally, you can also specify:

A kernel image address <image_addr>

to which the kernel image is loaded at IPL time. The default address is

0x10000.

The RAM disk location <ramdisk>

of an initial RAM disk image (initrd) on the file system.

zipl

Chapter 27. Useful Linux commands 333

A RAM disk image address <initrd_addr>

to which the RAM disk image is loaded at IPL time. The default address is

0x800000.

Kernel parameters

to be used at IPL time. If you provide multiple parameters, separate them

with a blank and enclose them within single quotes (') or double quotes (").

 You can specify parameters <parameters> directly on the command line.

Instead or in addition, you can specify a location <parmfile> of a kernel

parameter file on the file system. See “How kernel parameters from different

sources are combined” on page 335 for a discussion of how zipl combines

multiple kernel parameter specifications.

A parameter address <parm_addr>

to which the kernel parameters are loaded at IPL time. The default address

is 0x1000.

An option -a

to add the kernel image, kernel parameter file, and initial RAM disk to the

bootmap file. Use this option when these files are spread across multiple

disks to ensure that they are available at IPL time. This option is available

on the command line only. Specifying this option significantly increases the

size of the bootmap file created in the target directory.

See “” on page 340 for a summary of the parameters including the long options you

can use on the command line.

Figure 55 summarizes how you can specify a boot configuration within a

configuration file section. Required specifications are shown in bold. See “” on page

343 for a more comprehensive discussion of the configuration file.

Example: The following command identifies the location of the kernel image as

/boot/mnt/image-2, identifies the location of an initial RAM disk as

/boot/mnt/initrd, specifies a kernel parameter file /boot/mnt/parmf-2, and writes

the required boot loader code to /boot. At IPL time, the initial RAM disk is to be

loaded to address 0x900000 rather than the default address 0x800000. Kernel

image, initial RAM disk and the kernel parameter file are to be copied to the

bootmap file on the target directory /boot rather than being referenced.

zipl -i /boot/mnt/image-2 -r /boot/mnt/initrd,0x900000 -p /boot/mnt/parmf-2 -t /boot -a

An equivalent section in a configuration file might look like this:

[<section_name>]

image=<image>,<image_addr>

ramdisk=<ramdisk>,<initrd_addr>

parmfile=<parmfile>,<parm_addr>

parameters=<parameters>

Next line for devices other than tape only

target=<directory>

Next line for tape devices only

tape=<tape_node>

Figure 55. zipl syntax for preparing a boot device — configuration file mode

zipl

334 Device Drivers, Features, and Commands - November, 2006

[boot2]

image=/boot/mnt/image-2

ramdisk=/boot/mnt/initrd,0x900000

paramfile=/boot/mnt/parmf-2

target=/boot

There is no configuration file equivalent for option -a. To use this option for a boot

configuration in a configuration file it needs to be specified with the zipl command

that processes the configuration.

If the configuration file is called /etc/myxmp.conf:

zipl -c /etc/myxmp.conf boot2 -a

How kernel parameters from different sources are combined: zipl allows for

multiple sources of kernel parameters when preparing boot devices.

In command-line mode there are two possible sources of kernel parameters that are

processed in the order:

1. Kernel parameter file (specified with the -p or --parmfile option)

2. Parameters specified on the command line (specified with the -P or

--parameters option)

In configuration file mode there are three possible sources of kernel parameters that

are processed in the order:

1. Kernel parameter file (specified with the parmfile= option)

2. Parameters specified in the configuration section (specified with the

parameters= option)

3. Parameters specified on the command line (specified with the -P or

--parameters option)

Parameters from different sources are concatenated and passed to the kernel in

one string. At IPL time, the combined kernel parameter string is loaded to address

0x1000, unless an alternate address is provided with a parameter file specification.

Preparing a DASD or tape dump device

zipl command line syntax for preparing a DASD or tape dump device

�� zipl -d <dump_device>

,<size>

-n
 ��

To prepare a DASD or tape dump device you must specify:

The device node <dump_device>

of the DASD partition or tape device to be prepared as a dump device. zipl

deletes all data on the partition or tape and installs the boot loader code

there.

zipl

Chapter 27. Useful Linux commands 335

Notes:

1. If the dump device is an ECKD disk with fixed-block layout (ldl), a dump

overwrites the dump utility. You must reinstall the dump utility before you

can use the device for another dump.

2. If the dump device is a tape, FBA disk, or ECKD disk with the

compatible disk layout (cdl), you do not need to reinstall the dump utility

after every dump.

 Optionally, you can also specify:

An option -n

to suppress confirmation prompts to allow unattended processing (for

example, from a script). This option is available on the command line only.

A limit <size>

for the amount of memory to be dumped. The value is a decimal number

that can optionally be suffixed with K for kilobytes, M for megabytes, or G

for gigabytes. The value is rounded to the next megabyte boundary.

 If you limit the dump size below the amount of memory used by the system

to be dumped, the resulting dump is incomplete.

DASD or tape dump devices are not formatted with a file system so no target

directory can be specified. Refer to Linux on System z9 and zSeries Using the

Dump Tools for details on how to process these dumps.

See “” on page 340 for a summary of the parameters including the long options you

can use on the command line.

Figure 56 summarizes how you can specify a DASD or tape dump configuration in

a configuration file. See “” on page 343 for a more comprehensive discussion of the

configuration file.

Example: The following command prepares a DASD partition /dev/dasdc1 as a

dump device and suppresses confirmation prompts that require an operator

response:

zipl -d /dev/dasdc1 -n

An equivalent section in a configuration file might look like this:

[dumpdasd]

dumpto=/dev/dasdc1

There is no configuration file equivalent for option -n. To use this option for a DASD

or tape dump configuration in a configuration file it needs to be specified with the

zipl command that processes the configuration.

If the configuration file is called /etc/myxmp.conf:

[<section_name>]

dumpto=<dump_device>,<size>

Figure 56. zipl syntax for preparing a DASD or tape dump device — configuration file mode

zipl

336 Device Drivers, Features, and Commands - November, 2006

zipl -c /etc/myxmp.conf dumpdasd -n

Preparing a dump device on a SCSI disk

Before you start: At least one partition, the target partition, must be available to

zipl.

zipl command line syntax for preparing a SCSI dump device

�� zipl -D <dump_partition>

,<size>
 -t <directory> �

�
-P <parameters>

-p <parmfile>
 ��

The target partition contains the target directory and is accessed to load the SCSI

system dumper tool at IPL time. Dumps are written as files to a dump partition.

The dump and target partition can but need not be the same partition. Preferably,

dump and target partition are two separate partitions.

The target and dump partitions must be formatted with a file system supported by

the SCSI Linux system dumper tool. Unlike DASD and tape, creating a dump

device on SCSI disk does not destroy the contents of the target partition. Refer to

Linux on System z9 and zSeries Using the Dump Tools for more details.

To prepare a SCSI disk as a dump device, you must specify:

The dump partition <dump_partition>

to which the dumps are written.

A target <directory>

to which the SCSI system dumper components are written. zipl uses the

target directory to determine the dump device (target partition).

 Optionally, you can also specify:

SCSI system dumper parameters

You can specify parameters <parameters> directly on the command line.

Instead or in addition, you can specify a location <parmfile> of a parameter

file on the file system. See “How SCSI system dumper parameters from

different sources are combined” on page 339 for a discussion of how

multiple parameter specifications are combined.

dump_dir=/<directory>

Path to the directory (relative to the root of the dump partition)

where the dump file is to be written. This directory is specified with

a leading slash. The directory must exist when the dump is initiated.

 Example: If the dump partition is mounted as /dumps, and the

parameter “dump_dir=/mydumps” is defined, the dump directory

would be accessed as “/dumps/mydumps”.

 The default is “/” (the root directory of the partition).

zipl

Chapter 27. Useful Linux commands 337

dump_compress=gzip|none

Dump compression option. Compression can be time-consuming on

slower systems with a large amount of memory.

 The default is “none”.

dump_mode=interactive|auto

Action taken if there is no room on the file system for the new

dump file. “interactive” prompts the user to confirm that the dump

with the lowest number is to be deleted. “auto” automatically

deletes this file.

 The default is “interactive”.

If you provide multiple parameters, separate them with a blank and enclose

them within single quotes (') or double quotes (").

A limit <size>

for the amount of memory to be dumped. The value is a decimal number

that can optionally be suffixed with K for kilobytes, M for megabytes, or G

for gigabytes. The value is rounded to the next megabyte boundary.

 If you limit the dump size below the amount of memory used by the system

to be dumped, the resulting dump is incomplete.

See “” on page 340 for a summary of the parameters including the long options you

can use on the command line.

Figure 57 summarizes how you can specify a SCSI dump configuration in a

configuration file. Required specifications are shown in bold. See “” on page 343 for

a more comprehensive discussion of the configuration file.

Example: The following command prepares a SCSI partition /dev/sda2 as a dump

device and a directory /boot as the target directory. Dumps are to be written to a

directory mydumps, relative to the mount point, there is to be no compression and

automatic deletion of the oldest dump if there is not enough space to for the new

dump.

zipl -D /dev/sda2 -P ’dumpdir=/mydumps dump_compress=none dump_mode=auto’ -t /boot

An equivalent section in a configuration file might look like this:

[dumpscsi]

dumptofs=/dev/sda2

parmeters=’dumpdir=/mydumps dump_compress=none dump_mode=auto’

target=/boot

In both the command line and configuration file examples the parameter

specifications “dump_compress=none dump_mode=auto” could be omitted because

they correspond to the defaults.

[<section_name>]

dumptofs=<dump_partition>

parmfile=<parmfile>,<parm_addr>

parameters=<parameters>

target=<directory>

Figure 57. zipl syntax for preparing a SCSI dump device — configuration file mode

zipl

338 Device Drivers, Features, and Commands - November, 2006

If the configuration file is called /etc/myxmp.conf, the zipl command that processes

the configuration would be:

zipl -c /etc/myxmp.conf dumpscsi

How SCSI system dumper parameters from different sources are combined:

 zipl allows for multiple sources of SCSI system dumper parameters.

In command-line mode there are two possible sources of parameters that are

processed in the order:

1. Parameter file (specified with the -p or --parmfile option)

2. Parameters specified on the command line (specified with the -P or

--parameters option)

In configuration file mode there are three possible sources of parameters that are

processed in the order:

1. Parameter file (specified with the parmfile= option)

2. Parameters specified in the configuration section (specified with the

parameters= option)

3. Parameters specified on the command line (specified with the -P or

--parameters option)

Parameters from different sources are concatenated and passed to the SCSI

system dumper in one string. If the same parameter is specified in multiple sources,

the value that is encountered last is honored. At IPL time, the combined parameter

string is loaded to address (0x1000).

Installing a loader to initialize a discontiguous named saved

segment (DCSS)

zipl command line syntax for loading a DCSS

�� zipl -s <segment_file>,<seg_addr> -t <directory> ��

To prepare a device for loading a data file to initialize discontiguous named saved

segments, you must specify:

The source file <segment_file>

to be loaded at IPL time.

The segment address <seg_addr>

to which the segment is to be written at IPL time.

A target <directory>

zipl installs the boot loader code on the device containing the specified

directory <directory>.

 After the segment has been loaded, the system is put into the disabled wait state.

No Linux instance is started.

See “” on page 340 for a summary of the parameters including the long options you

can use on the command line.

zipl

Chapter 27. Useful Linux commands 339

Figure 58 summarizes how you can specify a file to be loaded to a DCSS within a

configuration file section. See “” on page 343 for a more comprehensive discussion

of the configuration file.

Example: The following command prepares a device for loading a file

/boot/segment to a DCSS at address 0x40000000 when IPLed. The boot loader

code is written to /boot:

zipl -s /boot/segment,0x40000000 -t /boot

An equivalent section in a configuration file might look like this:

[segment]

segment=/boot/segment,0x40000000

target=/boot

If the configuration file is called /etc/myxmp.conf, the zipl command that processes

the configuration would be:

zipl -c /etc/myxmp.conf segment

This section provides an overview of the options and how to specify them on the

command line or in the configuration file.

 Command line short option

Command line long option

Configuration file option

Explanation

-c <config_file>

--config=<config_file>

n/a

Specifies the configuration file. You can change the default configuration file

/etc/zipl.conf with the environment variable ZIPLCONF.

<configuration>

n/a

n/a

Specifies a configuration section to be read and processed from the

configuration file.

-i <image>[,<image_addr>]

--image=<image>[,<image_addr>]

image=<image>[,<image_addr>]

Specifies the location of the Linux kernel image on the file system and,

optionally, in memory after IPL. The default memory address is 0x10000.

See “Preparing a boot device” on page 333 for details.

-r <ramdisk>[,<initrd_addr>]

--ramdisk=<ramdisk>[,<initrd_addr>

ramdisk=<ramdisk>[,<initrd_addr>

Specifies the location of the initial RAM disk (initrd) on the file system and,

optionally, in memory after IPL. The default memory address is 0x800000.

[<section_name>]

segment=<segment_file>,<seg_addr>

target=<directory>

Figure 58. zipl syntax for loading a DCSS — configuration file mode

zipl

340 Device Drivers, Features, and Commands - November, 2006

Command line short option

Command line long option

Configuration file option

Explanation

-p <parmfile>[,<parm_addr>]

--parmfile=<parmfile>[,<parm_addr>]

parmfile=<parmfile>[,<parm_addr>]

In conjunction with a boot configuration, specifies the location of a kernel

parameter file.

In conjunction with a SCSI dump configuration, specifies the location of a

parameter file with SCSI system dumper parameters (see “Preparing a dump

device on a SCSI disk” on page 337).

You can specify multiple sources of kernel or SCSI system dumper

parameters. See “How SCSI system dumper parameters from different

sources are combined” on page 339 and “How kernel parameters from

different sources are combined” on page 335 for more information.

The optional <parm_addr> specifies the memory address where the

combined kernel parameter list is to be loaded at IPL time. This specification

is ignored for SCSI dump configuration, SCSI system dumper parameters

are always loaded to the default address 0x1000.

-P <parameters>

--parameters=<parameters>

parameters=<parameters>

In conjunction with a boot configuration, specifies kernel parameters.

In conjunction with a SCSI dump configuration, specifies SCSI system

dumper parameters (see “Preparing a dump device on a SCSI disk” on page

337)

Individual parameters are single keywords or have the form key=value,

without spaces. If you provide multiple parameters, separate them with a

blank and enclose them within single quotes (') or double quotes (").

You can specify multiple sources of kernel or SCSI system dumper

parameters. See “How SCSI system dumper parameters from different

sources are combined” on page 339 and “How kernel parameters from

different sources are combined” on page 335 for more information.

-d <dump_device>[,<size>]

--dumpto=<dump_device>[,<size>]

dumpto=<dump_device>[,<size>]

Specifies the DASD partition or tape device to which a dump is to be written

after IPL.

The optional size specification limits the amount of memory to be dumped.

The value is a decimal number that can optionally be suffixed with K for

kilobytes, M for megabytes, or G for gigabytes. The value is rounded to the

next megabyte boundary. If you limit the dump size below the amount of

memory used by the system to be dumped, the resulting dump is

incomplete. If no limit is provided, all of the available physical memory is

dumped.

See “Preparing a DASD or tape dump device” on page 335 and Linux on

System z9 and zSeries Using the Dump Tools for details.

zipl

Chapter 27. Useful Linux commands 341

Command line short option

Command line long option

Configuration file option

Explanation

-D <dump_partition>[,<size>] or

--dumptofs=<dump_partition>[,<size>]

dumptofs=<dump_partition>[,<size>]

Specifies the partition to which a SCSI dump file is to be written. This

partition must be formatted with a file system supported by the SCSI Linux

system dumper tool (for example, ext2 or ext3). The dump partition must be

on the same physical SCSI disk as the target partition. It can but need not

be the partition that also contains the target directory (target partition).

The optional size specification limits the amount of memory to be dumped.

The value is a decimal number that can optionally be suffixed with K for

kilobytes, M for megabytes, or G for gigabytes. The value is rounded to the

next megabyte boundary. If you limit the dump size below the amount of

memory used by the system to be dumped, the resulting dump is

incomplete. If no limit is provided, all of the available physical memory is

dumped.

See “Preparing a dump device on a SCSI disk” on page 337 and Linux on

System z9 and zSeries Using the Dump Tools for details.

-s <segment_file>,<seg_addr> or

--segment=<segment_file>,<seg_addr>

segment=<segment_file>,<seg_addr>

Specifies the segment file to load at IPL time and the memory location for

the segment.

See “Installing a loader to initialize a discontiguous named saved segment

(DCSS)” on page 339 for details.

-t <directory>

--target=<directory>

Specifies the target directory where zipl creates boot-relevant files. The boot

loader is installed on the disk containing the target directory. For a SCSI

dump device, this partition must have been formatted with a file system

supported by the SCSI system dumper (for example, ext2 or ext3).

-T <tape_node>

--tape=<tape_node>

tape=<tape_node>

Specifies the tape device where zipl installs the boot loader code.

-m <menu_name>

--menu=<menu_name>

n/a

Specifies the name of the menu that defines a menu configuration in the

configuration file (see “Menu configurations” on page 344).

-n

--noninteractive

n/a

Suppresses all confirmation prompts (for example, when preparing a DASD

or tape dump device).

-a

--add-files

n/a

Causes kernel image , kernel parameter file, and initial RAM disk to be

added to the bootmap file in the target directory rather than being referenced

from this file.

Use this option when these files are spread across multiple disks to ensure

that they are available at IPL time. Specifying this option significantly

increases the size of the bootmap file created in the target directory.

-V

--verbose

n/a

Provides more detailed command output.

-v

--version

n/a

Prints version information.

zipl

342 Device Drivers, Features, and Commands - November, 2006

Command line short option

Command line long option

Configuration file option

Explanation

-h

--help

n/a

Displays help information.

If you call zipl in configuration file mode without specifying a configuration file, the

default /etc/zipl.conf is used. You can change the default configuration file with

the environment variable ZIPLCONF.

Configuration file structure

A configuration file contains:

[defaultboot]

a default section that defines what is to be done if the configuration file is called

without a section specification.

[<configuration>]

one or more sections that describe IPL configurations.

:<menu_name>

optionally, one or more menu sections that describe menu configurations.

A configuration file section consists of a section identifier and one or more option

lines. Option lines are valid only as part of a section. Blank lines are permitted, and

lines beginning with ’#’ are treated as comments and ignored. Option specifications

consist of keyword=value pairs. There can but need not be blanks before and after

the equal sign (=) of an option specification.

Default section

The default section consists of the section identifier [defaultboot] followed by a

single option line. The option line specifies one of these mutually exclusive options:

default=<section_name>

where <section_name> is one of the IPL configurations described in the

configuration file. If the configuration file is called without a section specification,

an IPL device is prepared according to this IPL configuration.

defaultmenu=<menu_name>

where <menu_name> is the name of a menu configuration described in the

configuration file. If the configuration file is called without a section specification,

IPL devices are prepared according to this menu configuration.

Examples:

v This default specification points to a boot configuration “boot1” as the default.

[defaultboot]

default=boot1

v This default specification points to a menu configuration with a menu “menu1” as

the default.

[defaultboot]

defaultmenu=menu1

zipl

Chapter 27. Useful Linux commands 343

IPL configurations

An IPL configuration has a section identifier that consists of a section name within

square brackets and is followed by one or more option lines. Each configuration

includes one of the following mutually exclusive options that determine the type of

IPL configuration:

image=<image>

Defines a boot configuration. See “Preparing a boot device” on page 333 for

details.

dumpto=<dump_device>

Defines a DASD or tape dump configuration. See “Preparing a DASD or tape

dump device” on page 335 for details.

dumptofs=<dump_partition>

Defines a SCSI dump configuration. See “Preparing a dump device on a SCSI

disk” on page 337 for details.

segment=<segment_file>

Defines a DCSS load configuration. See “Installing a loader to initialize a

discontiguous named saved segment (DCSS)” on page 339 for details.

Menu configurations

For DASD and SCSI devices, you can define a menu configuration. A menu

configuration has a section identifier that consists of a menu name with a leading

colon. The identifier is followed by one or more lines with references to IPL

configurations in the same configuration file and one or more option lines.

target=<directory>

specifies a device where a boot loader is installed that handles multiple IPL

configurations. For menu configurations, the target options of the referenced IPL

configurations are ignored.

<i>=<configuration>

specifies a menu item. A menu includes one and more lines that specify the

menu items.

 <configuration> is the name of an IPL configuration that is described in the

same configuration file. You can specify multiple boot configurations. For SCSI

target devices, you can also specify one or more SCSI dump configurations.

You cannot include DASD dump configurations as menu items.

 <i> is the configuration number. The configuration number sequentially numbers

the menu items beginning with “1” for the first item. When initiating an IPL from

a menu configuration, you can specify the configuration number of the menu

item you want to use.

default=<n>

specifies the configuration number of one of the configurations in the menu to

define it as the default configuration. If this option is omitted, the first

configuration in the menu is the default configuration.

prompt=<flag>

in conjunction with a DASD target device, determines whether the menu is

displayed when an IPL is performed. Menus cannot be displayed for SCSI

target devices.

 For prompt=1 the menu is displayed, for prompt=0 it is suppressed. If this

option is omitted, the menu is not displayed. Independent of this parameter, the

operator can force a menu to be displayed by specifying “prompt” in place of a

configuration number for an IPL configuration to be used.

zipl

344 Device Drivers, Features, and Commands - November, 2006

If the menu of a menu configuration is not displayed, the operator can either

specify the configuration number of an IPL configuration or the default

configuration is used.

timeout=<seconds>

in conjunction with a DASD target device and a displayed menu, specifies the

time in seconds, after which the default configuration is IPLed, if no

configuration has been specified by the operator. If this option is omitted or if “0”

is specified as the timeout, the menu stays displayed indefinitely on the

operator console and no IPL is performed until the operator specifies an IPL

configuration.

Example: Figure 59 on page 346 shows a sample configuration file that defines

multiple configuration sections and two menu configurations.

zipl

Chapter 27. Useful Linux commands 345

The following commands assume that the configuration file of our sample is the

default configuration file.

[defaultboot]

defaultmenu=menu1

First boot configuration (DASD)

[boot1]

ramdisk=/boot/initrd

parameters=’root=/dev/ram0 ro’

image=/boot/image-1

target=/boot

Second boot configuration (SCSI)

[boot2]

image=/boot/mnt/image-2

ramdisk=/boot/mnt/initrd,0x900000

parmfile=/boot/mnt/parmf-2

target=/boot

Third boot configuration (DASD)

[boot3]

image=/boot/mnt/image-3

ramdisk=/boot/mnt/initrd

parmfile=/boot/mnt/parmf-3

target=/boot

Configuration for dumping to tape

[dumptape]

dumpto=/dev/rtibm0

Configuration for dumping to DASD

[dumpdasd]

dumpto=/dev/dasdc1

Configuration for dumping to SCSI disk

Separate IPL and dump partitions

[dumpscsi]

target=/boot

dumptofs=/dev/sda2

parameters="dump_dir=/mydumps dump_compress=none dump_mode=auto"

Menu containing the SCSI boot and SCSI dump configurations

:menu1

1=dumpscsi

2=boot2

target=/boot

default=2

Menu containing two DASD boot configurations

:menu2

1=boot1

2=boot3

target=/boot

default=1

prompt=1

timeout=30

Configuration for initializing a DCSS

[segment]

segment=/boot/segment,0x800000

target=/boot

Figure 59. /etc/zipl.conf example

zipl

346 Device Drivers, Features, and Commands - November, 2006

v Call zipl to use the default configuration file settings:

zipl

Result: zipl reads the default option from the [defaultboot] section and selects

the :menu1 section. It then installs a menu configuration with a boot configuration

and a SCSI dump configuration.

v Call zipl to install a menu configuration (see also “Installing a menu

configuration” on page 348):

zipl -m menu2

Result: zipl selects the :menu2 section. It then installs a menu configuration with

two DASD boot configurations. “Example for a DASD menu configuration on VM”

on page 369 and “Example for a DASD menu configuration (LPAR)” on page 375

illustrate what this menu looks like when it is displayed.

v Call zipl to install a boot loader for boot configuration [boot2]:

zipl boot2

Result: zipl selects the [boot2] section. It then installs a boot loader that will load

copies of /boot/mnt/image-2, /boot/mnt/initrd, and /boot/mnt/parmf-2.

v Call zipl to prepare a tape that can be IPLed for a tape dump:

zipl dumptape

Result: zipl selects the [dumptape] section and prepares a dump tape on

/dev/rtibm0.

v Call zipl to prepare a DASD dump device:

zipl dumpdasd -n

Result: zipl selects the [dumpdasd] section and prepares the dump device

/dev/dasdc1. Confirmation prompts that require an operator response are

suppressed.

v Call zipl to prepare a SCSI dump device:

mount /dev/sda1 /boot

mount /dev/sda2 /dumps

mkdir /dumps/mydumps

zipl dumpscsi

umount /dev/sda1

umount /dev/sda2

Result: zipl selects the [dumpscsi] section and prepares the dump device

/dev/sda1. The associated dump file will be created uncompressed in directory

/mydumps on the dump partition. If space is required, the lowest-numbered dump

file in the directory will be deleted.

v Call zipl to install a loader to initialize named saved segments:

zipl segment

zipl

Chapter 27. Useful Linux commands 347

Result: zipl installs segment loader that will load the contents of file

/boot/segment to address 0x800000 at IPL time and then put the processor into

the disabled wait state.

Installing a menu configuration

To prepare a menu configuration you need a configuration file that includes at least

one menu.

zipl syntax for installing a menu configuration

��

zipl

-m <menu_name>

 (1)

-c /etc/zipl.conf

-c <config_file>

-a

��

Notes:

1 You can change the default configuration file with the ZIPLCONF

environment variable.

Where:

-m or --menu

specifies the menu that defines the menu configuration in the configuration file.

<config_file>

specifies the configuration file where the menu configuration is defined. The

default, /etc/zipl.conf, can be changed with the ZIPLCONF environment

variable.

-a or --add-files

specifies that the kernel image file, parmfile, and initial RAM disk image are

added to the bootmap files in the respective target directories rather than being

referenced. Use this option if the files are spread across disks to ensure that

the files are available at IPL time. Specifying this option significantly increases

the size of the bootmap file created in the target directory.

Example: Using the example of a configuration file in “Example” on page 345, you

could install a menu configuration with:

zipl -m menu1

zipl

348 Device Drivers, Features, and Commands - November, 2006

Chapter 28. Selected kernel parameters

There are two different ways of passing parameters to Linux:

v Passing parameters to your kernel at startup time (the parameter line)

v Configuring your boot loader to always pass those parameters

The kernel can only handle a parameter line file that is no larger than 896 bytes.

Device driver-specific kernel parameters are described in the setting up section of

the respective device driver chapter. The following parameters affect Linux on

System z in particular and are beyond the scope of an individual device driver:

v additional_cpus

v cio_ignore

v cio_msg

v ipldelay

v maxcpus

v mem

v noinitrd

v possible_cpus

v ramdisk_size

v ro

v root

v vmhalt

v vmpoff

© Copyright IBM Corp. 2000, 2006 349

additional_cpus

Usage

Specifies the number of CPUs that Linux can add to the system. For example, if

there were two CPUs present at IPL, then specifying additional_cpus=1 will set the

number of possible CPUs to three. If the possible_cpus parameter is set,

additional_cpus is ignored. See also “maxcpus” on page 356 and “possible_cpus”

on page 359.

Format

additional_cpus syntax

�� additional_cpus=<number> ��

Examples

 additional_cpus=1

additional_cpus

350 Device Drivers, Features, and Commands - November, 2006

cio_ignore

Usage

When a Linux on System z instance boots, it senses and analyses all available

devices. You can use the cio_ignore kernel parameter to specify a list of devices

that are to be ignored. The following applies to ignored devices:

v Ignored devices are not sensed and analyzed. The device cannot be used unless

it has been analyzed.

v Ignored devices are not represented in sysfs.

v Ignored devices do not occupy storage in the kernel.

v The subchannel to which an ignored device is attached is treated as if no device

were attached.

See also “Changing the list of devices to be ignored” on page 352.

Format

cio_ignore syntax

��

�

 cio_ignore= all

<device_spec>

,

,

<device_spec>

!

 ��

<device_spec>:

 <device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

Where:

all states that all devices are to be ignored.

<device_bus_id>

is a device bus ID of the form “0.n.dddd”, where n is the subchannel set ID, and

dddd a device number.

<from_device_bus_id>-<to_device_bus_id>

are two device bus IDs that specify the first and the last device in a range of

devices.

! makes the following term an exclusion statement. This operator is used to

exclude individual devices or ranges of devices from a preceding more general

specification of devices.

Examples

v This example specifies that all devices in the range 0.0.b100 through 0.0.b1ff,

and the device 0.0.a100 are to be ignored.

cio_ignore=0.0.b100-0.0.b1ff,0.0.a100

v This example specifies that all devices are to be ignored.

cio_ignore=all

cio_ignore

Chapter 28. Selected kernel parameters 351

|
|

v This example specifies that all devices but the range 0.0.b100 through 0.0.b1ff,

and the device 0.0.a100 are to be ignored.

 cio_ignore=all,!0.0.b100-0.0.b1ff,!0.0.a100

v This example specifies that all devices in the range 0.0.1000 through 0.0.1500

are to be ignored, except for those in the range 0.0.1100 through 0.0.1120.

cio_ignore=0.0.1000-0.0.1500,!0.0.1100-0.0.1120

This is equivalent to the following specification:

cio_ignore=0.0.1000-0.0.10ff,0.0.1121-0.0.1500

v This example specifies that all devices in range 0.0.1000 through 0.0.1100 as

well as all devices in range 0.1.7000 through 0.1.7010, plus device 0.0.1234 and

device 0.1.4321 are to be ignored.

cio_ignore=0.0.1000-0.0.1100, 0.1.7000-0.1.7010, 0.0.1234, 0.1.4321

Changing the list of devices to be ignored

When Linux boots, it senses the available devices and analyses them. You can use

the cio_ignore kernel parameter (see “cio_ignore” on page 351) to provide a list of

devices that are to be excluded from sensing and analyzing.

After booting Linux you can display the list of devices to be ignored by issuing:

cat /proc/cio_ignore

You can add devices to this list or remove devices from the list:

v When you remove a device from the list, the device is sensed and analyzed and,

where possible, the corresponding device driver is informed. The device then

becomes available to the system.

v When you add a device that has already been sensed and analyzed, there is no

immediate effect. However, if such a device disappears with a machine check, it

is ignored when it reappears.

To remove devices from the list of devices to be ignored issue a command of this

form:

echo free <device_list> > /proc/cio_ignore

To add devices to the list of devices to be ignored issue a command of this form:

echo add <device_list> > /proc/cio_ignore

In these commands, <device_list> follows this syntax:

cio_ignore

352 Device Drivers, Features, and Commands - November, 2006

<device_list>:

 all

<device_spec>

�

,

,

<device_spec>

!

<device_spec>:

 <device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

Where the keywords and variables have the same meaning as in “Format” on page

351.

Examples:

v This command removes all devices from the list of devices to be ignored.

echo free all > /proc/cio_ignore

v This command adds all devices in the range 0.0.b100 through 0.0.b1ff and

device 0.0.a100 to the list of devices to be ignored.

echo add 0.0.b100-0.0.b1ff,0.0.a100 > /proc/cio_ignore

v This command lists the ranges of devices that are ignored by common I/O:

cat /proc/cio_ignore

0.0.0000-0.0.a0ff

0.0.a101-0.0.b0ff

0.0.b200-0.0.ffff

v This command removes all devices in the range 0.0.b100 through 0.0.b1ff and

device 0.0.a100 from the list of devices to be ignored.

echo free 0.0.b100-0.0.b1ff,0.0.a100 > /proc/cio_ignore

v This command removes the device with bus ID 0.0.c104 from the list of devices

to be ignored.

echo free 0.0.c104 > /proc/cio_ignore

v This command adds the device with bus ID 0.0.c104 to the list of devices to be

ignored.

echo add 0.0.c104 > /proc/cio_ignore

cio_ignore

Chapter 28. Selected kernel parameters 353

cio_msg

Usage

Specifies whether I/O messages are to be sent to the console on boot-up.

These messages are usually suppressed (cio_msg=no) because on large machines

with many attached devices the I/O layer generates a large number of these

messages which can flood the console for a significant period of time. If you do

need those messages (for example for debugging), you can switch them on

manually using cio_msg=yes.

Format

cio_msg syntax

��
 cio_msg=no

cio_msg=yes

��

Examples

This example switches I/O messages to the console on boot:

 cio_msg=yes

cio_msg

354 Device Drivers, Features, and Commands - November, 2006

ipldelay

Usage

When you do a power on reset (POR), some activation and loading is done. This

can cause Linux not to find the OSA-2 card. If you have problems with your OSA-2

card after booting, you might want to insert a delay to allow the POR, microcode

load and initialization to take place in the OSA-2 card. The recommended delay

time is two minutes. For example, 30s means a delay of thirty seconds between the

boot and the initialization of the OSA-2 card, 2m means a delay of two minutes. The

value <time> must be a number followed by either s or m.

Format

ipldelay syntax

�� ipldelay=<time> m

s
 ��

Examples

This example delays the initialization of the card by 2 minutes:

 ipldelay=2m

This example delays the initialization of the card by 30 seconds:

 ipldelay=30s

ipldelay

Chapter 28. Selected kernel parameters 355

maxcpus

Usage

Restricts the number of CPUs that Linux can use at IPL. For example, if there are

four CPUs then specifying maxcpus=2 will cause the kernel to use only two CPUs.

See also “additional_cpus” on page 350 and “possible_cpus” on page 359.

Format

maxcpus syntax

�� maxcpus=<number> ��

Examples

 maxcpus=2

maxcpus

356 Device Drivers, Features, and Commands - November, 2006

mem

Usage

Restricts memory usage to the size specified. The specified size must be suffixed

either with M for megabyte or K for kilobyte.

Format

mem syntax

�� mem=<size> M

K
 ��

Examples

 mem=64M

Restricts the memory Linux can use to 64 MB.

 mem=123456K

Restricts the memory Linux can use to 123456 KB.

mem

Chapter 28. Selected kernel parameters 357

noinitrd

Usage

The noinitrd statement is required when the kernel was compiled with initial RAM

disk support enabled. This command bypasses using the initial ramdisk.

This can be useful if the kernel was used with a RAM disk for the initial startup, but

the RAM disk is not required when booted from a DASD.

Format

noinitrd syntax

�� noinitrd ��

noinitrd

358 Device Drivers, Features, and Commands - November, 2006

possible_cpus

Usage

Specifies the number of maximum possible and usable CPUs that Linux can add to

the system. If the possible_cpus parameter is set, the additional_cpus parameter is

ignored. See also “additional_cpus” on page 350 and “maxcpus” on page 356.

Format

possible_cpus syntax

�� possible_cpus=<number> ��

Examples

 possible_cpus=8

possible_cpus

Chapter 28. Selected kernel parameters 359

ramdisk_size

Usage

Specifies the size of the ramdisk in kilobytes.

Format

ramdisk_size syntax

�� ramdisk_size=<size> ��

Examples

 ramdisk_size=32000

ramdisk_size

360 Device Drivers, Features, and Commands - November, 2006

ro

Usage

Mounts the root file system read-only.

Format

ro syntax

�� ro ��

ro

Chapter 28. Selected kernel parameters 361

root

Usage

Tells Linux what to use as the root when mounting the root file system.

Format

root syntax

�� root=<rootdevice> ��

Examples

This example makes Linux use /dev/dasda1 when mounting the root file system:

 root=/dev/dasda1

root

362 Device Drivers, Features, and Commands - November, 2006

vmhalt

Usage

Specifies a command to be issued to CP after a system halt. This command is only

applicable if the system runs as a VM guest.

Format

vmhalt syntax

�� vmhalt=<COMMAND> ��

Examples

This example specifies that an initial program load of CMS should follow the Linux

“halt” command:

 vmhalt="I CMS"

Note: The command must be entered in uppercase.

vmhalt

Chapter 28. Selected kernel parameters 363

vmpoff

Usage

Specifies a command to be issued to CP after a system power off. This command

is only applicable if the system runs as a VM guest.

Format

vmpoff syntax

�� vmpoff=<COMMAND> ��

Examples

This example specifies that CP should clear the guest machine after the Linux

“power off” or “halt -p” command:

 vmpoff="SYSTEM CLEAR"

Note: The command must be entered in uppercase.

vmpoff

364 Device Drivers, Features, and Commands - November, 2006

Appendix A. Booting Linux

This chapter provides a general overview of how to boot Linux in an LPAR or as a

z/VM guest.

IPL and booting

On System z, you usually start booting Linux by performing an Initial Program Load

(IPL). Figure 60 summarizes the main steps.

 The IPL process accesses the IPL device and loads the Linux boot loader code to

the mainframe memory. The boot loader code then gets control and loads the Linux

kernel. At the end of the boot process Linux gets control.

If your Linux instance is to run in an LPAR, you can circumvent the IPL and use the

service element (SE) to copy the Linux kernel to the mainframe memory (see

“Loading Linux from a CD-ROM or from an FTP server” on page 376).

Apart from starting a boot process, an IPL can also be used for:

v Writing out system storage (dumping)

Refer to Linux on System z9 and zSeries Using the Dump Tools for more

information on dumps.

v Loading a discontiguous saved segment (DCSS)

Refer to How to use Execute-in-Place Technology with Linux on z/VM for more

information on DCSSs.

You can find the latest copies of these documents on developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_documentation.html

Figure 60. IPL and boot process

© Copyright IBM Corp. 2000, 2006 365

http://www.ibm.com/developerworks/linux/linux390/october2005_documentation.shtml

The zipl tool allows you to prepare DASD, SCSI, and tape devices as IPL devices

for booting Linux, for dumping, or for loading a DCSS. See “zipl – zSeries initial

program loader” on page 330 for more information on zipl.

Control point and boot medium

The control point from where you can start the boot process depends on the

environment where your Linux is to run. If your Linux is to run in LPAR mode, the

control point is the mainframe’s Support Element (SE) or an attached Hardware

Management Console (HMC). If your Linux is to run as a VM guest, the control

point is the control program (CP) of the hosting z/VM.

The media that can be used as boot devices also depend on where Linux is to run.

Table 33 provides an overview of the possibilities:

 Table 33. Boot media

DASD tape SCSI VM reader CD-ROM/FTP

VM guest U U U U

LPAR U U U U

DASDs, tapes on channel-attached tape devices, and SCSI disks that are attached

through an FCP channel can be used for both LPAR and VM guests. The VM

reader is available only in a VM environment.

If your Linux runs in LPAR mode, you can also boot from a CD-ROM drive on the

SE or HMC, or you can obtain the boot data from a remote FTP server.

Menu configurations

If you use zipl to prepare a DASD or SCSI boot device, you can define a menu

configuration. A boot device with a menu configuration can hold the code for

multiple boot configurations. For SCSI devices, the menu can also include one or

more SCSI system dumpers.

Each boot and dump configuration in a menu is associated with a configuration

number. At IPL time, you can specify a configuration number to select the

configuration to be used.

For menu configurations on DASD, you can display a menu with the configuration

numbers (see “Example for a DASD menu configuration on VM” on page 369 and

“Example for a DASD menu configuration (LPAR)” on page 375). For menu

configurations on SCSI devices, you need to know the configuration numbers

without being able to display the menus.

See “Menu configurations” on page 344 for information on how to define menu

configurations.

Boot data

Generally, you need the following to boot Linux:

v A kernel image

v Boot loader code

v Kernel parameters

366 Device Drivers, Features, and Commands - November, 2006

v An initial RAM disk image

For sequential I/O boot devices (VM reader and tape) the order in which this data is

provided is significant. For random access devices there is no required order.

Kernel image

You can obtain the kernel image from a Linux 2.6 distribution for System z.

Alternatively, you can compile your own kernel. You can find the System z specific

patches and OCO modules on developerWorks at:

ibm.com/developerworks/linux/linux390/october2005_recommended.html

Important

Be aware that both compiling your own kernel or recompiling an existing

distribution usually means that you have to maintain your kernel yourself.

Boot loader code

A kernel image is usually compiled to contain boot loader code for a particular boot

device. For example, there are Linux configuration menu options to compile boot

loader code for tape or for the VM reader into the kernel image.

If your kernel image does not include any boot loader code or if you want to boot a

kernel image from a device that does not correspond to the included boot loader

code, you can provide alternate boot loader code separate from the kernel image.

You can use zipl to prepare boot devices with separate DASD, SCSI, or tape boot

loader code. You can then boot from DASD, SCSI, or tape regardless of the boot

loader code in the kernel image.

Kernel parameters

The kernel parameters are in form of an ASCII text string of up to 895 characters. If

the boot device is tape or the VM reader, the string can also be encoded in

EBCDIC.

Individual kernel parameters are single keywords or keyword/value pairs of the form

keyword=<value> with no blank. Blanks are used to separate consecutive

parameters.

If you use the zipl command to prepare your boot device, you can provide kernel

parameters on the command line, in a parameter file, and in a zipl configuration

file. See “zipl – zSeries initial program loader” on page 330 or refer to the zipl and

zipl.conf man pages for details.

If you are using a menu configuration on a DASD boot device, you can display the

menu and provide additional kernel parameters as you select a boot configuration.

The following kernel parameters are typically used for booting Linux on System z:

conmode=<mode>, condev=<cuu>, and console=<name>

to set up the Linux console. See “Console kernel parameter syntax” on page

214 for details.

Appendix A. Booting Linux 367

http://www.ibm.com/developerworks/linux/linux390/october2005_recommended.shtml

dasd=<devices>

to set specific DASDs online during the boot process. You need to specify this

parameter if a DASD is required for the boot process (for example, as the boot

device).

noinitrd

to suppress an initial RAM disk. Specify this parameter if your boot

configuration includes an initial RAM disk but you do not want to use it.

ramdisk_size=<size>

to specify the size of the initial RAM disk.

ro to mount the root file system read-only.

root=<rootdevice>

to specify the device to be mounted as the root file system.

zfcp.device=<device_bus_id>,<wwpn>,<fcp_lun>

is required if a SCSI device is required for IPL (for example, as the root disk).

See “Device driver kernel parameters” on page 54 for details.

Initial RAM disk image

An initial RAM disk holds files, programs, or modules that are not included in the

kernel image but are required for booting.

For example, booting from DASD requires the DASD device driver. If you want to

boot from DASD but the DASD device driver has not been compiled into your

kernel, you need to provide the DASD device driver module on an initial RAM disk.

If your image contains all files, programs, and modules that are needed for booting,

you do not need an initial RAM disk.

Distributions often provide specific RAM disk images to go with their kernel images.

Booting a z/VM Linux guest

You boot a z/VM Linux guest by issuing CP commands from a guest CMS session.

This section provides summary information for booting Linux in a VM guest. For

more detailed information on z/VM guest environments for Linux refer to Redpaper

Building Linux Systems under IBM VM at ibm.com/redbooks/redpapers/pdfs/
redp0120.pdf.

Using tape

Before you start:

v You need a tape that is prepared as a boot device.

A tape boot device must contain the following in the specified order:

1. Tape boot loader code (optional — required only if the kernel image has not

been compiled for booting from tape)

The tape boot loader code is included in the s390-tools package on

developerWorks.

2. Tape mark

3. Kernel image

4. Tape mark

5. Kernel parameters (optional)

6. Tape mark

7. Initial RAM disk (optional)

368 Device Drivers, Features, and Commands - November, 2006

http://www.ibm.com/redbooks/redpapers/pdfs/redp0120.pdf
http://www.ibm.com/redbooks/redpapers/pdfs/redp0120.pdf

8. Tape mark

9. Tape mark

All tape marks are required even if an optional item is omitted. For example, if you

do not provide an initial RAM disk image, the end of the boot information is marked

with three consecutive tape marks. zipl prepared tapes conform to this layout.

Perform these steps to start the boot process:

1. Establish a CMS session with the VM guest where you want to boot Linux.

2. Ensure that the boot device is accessible to your VM guest.

3. Ensure that the correct tape is inserted and rewound.

4. Issue a command of this form:

#cp i <devno>

where <devno> is the device number of the boot device as seen by the guest.

Using DASD

Before you start:

v You need a DASD boot device prepared with zipl (see “Preparing a boot device”

on page 333).

Perform these steps to start the boot process:

1. Establish a CMS session with the VM guest where you want to boot Linux.

2. Ensure that the boot device is accessible to your VM guest.

3. Issue a command of this form:

#cp i <devno> loadparm <n>

where:

i <devno>

specifies the device number of the boot device as seen by the guest.

loadparm <n>

is applicable to menu configurations only. Omit this parameter if you are not

working with a menu configuration.

 Configuration number “0” specifies the default configuration. Depending on

the menu configuration, omitting this option might display the menu or select

the default configuration. Specifying “prompt” instead of a configuration

number forces the menu to be displayed.

 Displaying the menu allows you to specify additional kernel parameters (see

“Example for a DASD menu configuration on VM”). These additional kernel

parameters are appended to the parameters you might have provided in a

parameter file. The combined parameter string must not exceed 895 bytes.

 See “Menu configurations” on page 344 for more details on menu

configurations.

Example for a DASD menu configuration on VM

This example illustrates how menu2 in the sample configuration file in Figure 59 on

page 346 displays on the VM console:

Appendix A. Booting Linux 369

00: zIPL v1.3.0 interactive boot menu

00:

00: 0. default (boot1)

00:

00: 1. boot1

00: 2. boot3

00:

00: Note: VM users please use ’#cp vi vmsg <input>’

00:

00: Please choose (default will boot in 30 seconds):

You choose a configuration by specifying its configuration number. For example, to

boot configuration boot3, issue:

#cp vi vmsg 2

You can also specify additional kernel parameters by appending them to this

command. For example:

#cp vi vmsg 2 maxcpus=1 mem=64m

Using SCSI

Before you start:

v You need a SCSI boot device prepared with zipl (see “Preparing a boot device”

on page 333).

Perform these steps to start the boot process:

1. Establish a CMS session with the VM guest where you want to boot Linux.

2. Ensure that the FCP channel that provides access to the SCSI boot disk is

accessible to your VM guest.

3. Specify the SCSI boot disk’s target port and LUN for the LOADDEV

environment variable. In conjunction with a menu configuration, you can also

specify the boot configuration (boot program in VM terminology) to be used.

Issue a command of this form:

#cp set loaddev portname <wwpn> lun <lun> bootprog <n>

where:

<wwpn>

is the world wide port name (WWPN) of the target port. Specify the WWPN

in hexadecimal format with a blank separating the first 8 from the final 8

digits.

<lun>

is the LUN of the SCSI boot disk. Specify the LUN in hexadecimal format

with a blank separating the first 8 from the final 8 digits.

<n>

in conjunction with a menu configuration, <n> is the configuration number

that identifies which boot configuration is to be used. Omitting the bootprog

parameter or specifying the value “0” selects the menu’s default

configuration.

370 Device Drivers, Features, and Commands - November, 2006

See “Menu configurations” on page 344 for more details on menu

configurations.

Examples:

v For a WWPN 0x5005076300c20b8e and a LUN 0x5241000000000000:

#cp set loaddev portname 50050763 00c20b8e lun 52410000 00000000

v To select a configuration with configuration number “2” from a menu

configuration for a WWPN 0x5005076300c20b8e and a LUN

0x5242000000000000:

#cp set loaddev portname 50050763 00c20b8e lun 52420000 00000000 bootprog 2

4. Issue a command of this form:

Example:

#cp i <devno>

where <devno> is the device number of the FCP channel that provides access

to the SCSI boot disk.

Using the VM reader

This section provides a summary of how to boot Linux from a VM reader. For more

details refer to Redpaper Building Linux Systems under IBM VM at

ibm.com/redbooks/redpapers/pdfs/redp0120.pdf.

Before you start:

You need the following files, all in record format “fixed 80”:

v Linux kernel image with built-in VM reader boot loader code

v Kernel parameters (optional)

v Initial RAM disk image (optional)

Proceed like this to boot Linux from a VM reader:

1. Establish a CMS session with the guest where you want to boot Linux.

2. Transfer the kernel image, kernel parameters, and the initial RAM disk image to

your guest. You can obtain the files from a shared minidisk or use:

v The VM send file facility.

v An FTP file transfer in binary mode.

Files that are sent to your reader contain a file header that you need to remove

before you can use them for booting. Receive files that you obtain through your

VM reader to a minidisk.

3. Set up the reader as a boot device.

a. Ensure that your reader is empty.

b. Direct the output of the punch device to the reader. Issue:

#cp spool pun * rdr

c. Use the punch device to transfer each of the required files to the reader. Be

sure to use the “no header” option to omit the file headers.

 First transfer the kernel image.

 Second transfer the kernel parameters.

 Third transfer the initial RAM disk image, if present.

Appendix A. Booting Linux 371

http://www.ibm.com/redbooks/redpapers/pdfs/redp0120.pdf

For each file, issue a command of this form:

#cp pun <file_name> <file_type> <file_mode> (noh

d. Optionally, ensure that the contents of the reader remain fixed.

#cp change rdr all keep nohold

If you omit this step, all files are deleted from the reader during the IPL that

follows.

4. Issue the IPL command:

#cp i 000c clear

where 0x000c is the device number of the reader.

Booting Linux in LPAR mode

You can boot Linux in LPAR mode from a Hardware Management Console (HMC)

or Support Element (SE). The following description refers to an HMC, but the same

steps also apply to an SE.

Booting from DASD, tape, or SCSI

Before you start:

v You need a boot device prepared with zipl (see “Preparing a boot device” on

page 333).

v For booting from a SCSI boot device, you need to have the SCSI IPL feature

(FC9904) installed.

Perform these steps to boot from a DASD, tape, or SCSI boot device:

1. Click the Groups icon in the “Views” area of the HMC to display the “Groups

Work Area” (Figure 61 on page 373).

372 Device Drivers, Features, and Commands - November, 2006

2. Click the Images icon in the “Groups Work Area” to display the “CPC Images

Work Area” with all defined images (Figure 62).

3. Select the image you want to boot.

4. Click the Load icon in the task area to display the Load panel.

5. Proceed according to your boot device.

Figure 61. Groups Work Area on the HMC

Figure 62. CPC Images Work Area on the HMC

Appendix A. Booting Linux 373

For booting from tape:

a. Select Load type “Normal”.

b. Type the device number of the tape boot device in the Load address field.

For booting from DASD:

a. Select Load type “Normal” (see Figure 63).

b. Type the device number of the DASD boot device in the Load address

field.

c. If the boot configuration is part of a zipl created menu configuration, type

the configuration number that identifies your DASD boot configuration within

the menu in the Load parameter field.

Configuration number “0” specifies the default configuration. Depending on

the menu configuration, omitting this option might display the menu or select

the default configuration. Specifying “prompt” instead of a configuration

number forces the menu to be displayed.

Displaying the menu allows you to specify additional kernel parameters (see

“Example for a DASD menu configuration (LPAR)” on page 375). These

additional kernel parameters are appended to the parameters you might

have provided in a parameter file. The combined parameter string must not

exceed 895 bytes.

See “Menu configurations” on page 344 for more details on menu

configurations.

For booting from a SCSI disk:

a. Select Load type “SCSI”.

Figure 63. Load panel for booting from DASD or tape

374 Device Drivers, Features, and Commands - November, 2006

b. Type the device number of the FCP channel through which the SCSI disk is

accessed in the Load address field.

c. Type the WWPN of the SCSI disk in the World wide port name field.

d. Type the LUN of the SCSI disk in the Logical unit number field.

e. If the boot configuration is part of a zipl created menu configuration, type

the configuration number that identifies your SCSI boot configuration within

the menu in the Boot program selector field. Configuration number “0”

specifies the default configuration.

See “Menu configurations” on page 344 for more details on menu

configurations.

f. Leave the fields Load parameter, Boot record logical block address, and

OS specific load parameters blank.

6. Click OK to start the boot process.

Check the output on the preferred console (see “console parameter” on page 215)

to monitor the boot progress.

Example for a DASD menu configuration (LPAR)

This example illustrates how menu2 in the sample configuration file in Figure 59 on

page 346 displays on the hardware console:

zIPL v1.3.0 interactive boot menu

0. default (boot1)

1. boot1

2. boot3

Please choose (default will boot in 30 seconds):

Figure 64. Load panel with SCSI feature enabled — for booting from a SCSI disk

Appendix A. Booting Linux 375

You choose a configuration by specifying the configuration number. For example, to

boot configuration boot3, issue:

2

You can also specify additional kernel parameters by appending them to this

command. For example:

2 maxcpus=1 mem=64m

Loading Linux from a CD-ROM or from an FTP server

You can use the SE to copy the Linux kernel image directly to your LPARs memory.

This process bypasses IPL and does not require a boot loader. The SE performs

the tasks that are normally done by the boot loader code. When the Linux kernel

has been loaded, Linux is started using restart PSW.

As a source, you can use the SE’s CD-ROM drive or any device on a remote

system that you can access through FTP from your SE. If you access the SE

remotely from an HMC, you can also use the CD-ROM drive of the system where

your HMC runs.

Before you start: You need installation data that includes a special file with

installation information (with extension “ins”) either:

v On a CD-ROM that is inserted in the SE’s CD-ROM drive or in the CD-ROM

drive of the system where the HMC runs

v In the file system of an FTP server to which you have access

The “ins-file” contains a mapping of the location of installation data in the file

system of the CD-ROM or FTP server and the memory locations where the data is

to be copied.

The following description is based on accessing the SE remotely from an HMC. If

you are working directly from an SE, skip step 4.

 1. Click the Groups icon in the “Views” area of the HMC to display the “Groups

Work Area” (Figure 65 on page 377).

376 Device Drivers, Features, and Commands - November, 2006

2. Click the Images icon in the “Groups Work Area” to display the “Defined CPCs

Work Area” with all defined images (Figure 66).

 3. Select the image you want to IPL.

Figure 65. Groups Work Area on the HMC

Figure 66. Defined CPCs Work Area on the HMC

Appendix A. Booting Linux 377

4. If you are working from an HMC, click the “Single Object Operation” icon

(Figure 66 on page 377). This gives you remote access to the SE that controls

the image (Figure 67).

Skip this step if you are working directly form the SE.

 5. Click the “Load from CD-ROM or Server” icon in the Task Area to display the

“Load from CD-ROM or Server” panel (Figure 68 on page 379).

Figure 67. Images Work Area on the SE

378 Device Drivers, Features, and Commands - November, 2006

6. Specify the source of the code to be loaded.

For loading from a CD-ROM drive:

a. Select the radio button for the CD-ROM you want to use. Select either of:

v Hardware Management Console CD-ROM for the CD-ROM drive on

the system where the HMC runs

v Local CD-ROM for the SE’s CD-ROM drive

The CD-ROM drive for the HMC is not available if you are working directly

from the SE.

b. Type the path for the directory where the “ins-file” resides in the File

location field. You can leave this field blank if the “ins-file” is located in the

root directory of the file system on the CD-ROM.

For loading from an FTP server:

a. Select the FTP Source radio button.

b. Type the IP address or host name of the FTP server where the install code

resides in the Host computer entry field.

c. Type your user ID for the FTP server in the User ID entry field.

d. Type your password for the FTP server in the Password entry field.

e. If required by your FTP server, type your account information in the

Account entry field.

f. Type the path for the directory where the “ins-file” resides in the file location

entry field. You can leave this field blank if the file resides in the FTP

server’s root directory.

 7. Click Continue to display the “Select the software to load” panel (Figure 69 on

page 380).

Figure 68. Load from CD-ROM or Server panel

Appendix A. Booting Linux 379

8. Select the “ins-file” to be used.

 9. Click Continue to start loading Linux.

10. When the load process has completed click the PSW Restart icon.

At this point distribution-specific configuration scripts take over, if present.

Figure 69. Select the software to load panel

380 Device Drivers, Features, and Commands - November, 2006

Appendix B. Linux diagnose code use

Linux on System z issues several diagnose instructions to the hypervisor (LPAR or

z/VM). Table 34 lists all diagnoses which are used by the Linux kernel or a kernel

module.

 Table 34. Linux diagnoses

Number Description Linux use z/VM LPAR

0x008 VM/CP command

console interface

v The vmcp command

v The 3215 and 3270 console

drivers

v The z/VM recording device

driver (vmlogrdr)

v smsgiucv

X

0x010 Release pages CMM X

0x044 Voluntary time-slice

end

In the kernel for spinlock and

udelay

X X

0x060 Virtual storage size SALIPL specific boot code. X

0x064 Allows Linux to attach

a DCSS

The DCSS block device driver

(dcssblk), xip, and the

MONITOR record device driver

(monreader).

X

0x09c Voluntary time slice

yield

Spinlock. X

0x0dc Monitor stream The APPLDATA monitor record

and the MONITOR stream

application support (monwriter).

X

0x204 LPAR Hypervisor

data

The hypervisor file system

(hypfs).

X

0x210 Retrieve device

information

The common I/O layer and the

DASD driver DIAG access

method.

X

0x224 CPU type name table The hypervisor file system

(hypfs).

X

0x250 Block I/O The DASD driver DIAG access

method.

X

0x258 Page-reference

services

In the kernel, for pfault. X

0x288 Virtual machine time

bomb

The watchdog device driver. X

0x308 Re-ipl Re-ipl and dump code. X

Linux can fail if you change the privilege class of these diagnoses using the MODIFY

diag command in z/VM.

© Copyright IBM Corp. 2000, 2006 381

|

|

|
|
|

||

|||||

||
|
|
|
|
|
|
|

||

|||||

||
|
|
|
||

|||||

||
|
|
|
|
|

||

||
|
|||

|||
|
|

||

||
|
|
|
||

||
|
|
|
|

||

|||
|
||

|||
|
||

||
|
|||

||
|
|||

|||||
|

|
|

382 Device Drivers, Features, and Commands - November, 2006

Appendix C. Avoiding common pitfalls

This chapter lists some common problems and describes how to avoid them.

Ensuring correct channel path status

Before you perform a planned task on a path like:

v Pulling out or plugging in a cable on a path.

v Configuring a path off or on at the SE.

ensure that you have varied the path offline using:

echo off > /sys/devices/css0/chp0.<chpid>/status

After the operation has finished and the path is available again, vary the path online

using:

echo on > /sys/devices/css0/chp0.<chpid>/status

If an unplanned change in path availability occurred (such as unplanned cable pulls

or a temporary path malfunction), the PIM/PAM/POM values (as obtained through

lscss) may not be as expected. To update the PIM/PAM/POM values, vary one of

the paths leading to the affected devices using:

echo off > /sys/devices/css0/chp0.<chpid>/status

echo on > /sys/devices/css0/chp0.<chpid>/status.

Rationale: Linux does not always receive a notification (machine check) when the

status of a path changes (especially a path becoming online again). To make sure

Linux has up-to-date information on the usable paths, path verification is triggered

through the Linux vary operation.

Determining channel path usage

To determine the usage of a specific channel path on LPAR, for example, to check

whether traffic is distributed evenly over all channel paths, use the channel path

measurement facility. See Chapter 21, “Channel measurement facility,” on page 231

for details.

Configuring LPAR I/O devices

A Linux LPAR should only contain those I/O devices that it uses. Achieve this by:

v Adding only the needed devices to the IOCDS

v Using the cio_ignore kernel parameter to ignore all devices that are not currently

in use by this LPAR.

If more devices are needed later, they can be dynamically removed from the list

of devices to be ignored. For a description on how to use the cio_ignore kernel

parameter and the /proc/cio_ignore dynamic control, see “cio_ignore” on page

351 and “Changing the list of devices to be ignored” on page 352.

Rationale: Numerous unused devices can cause:

v Unnecessary high memory usage due to device structures being allocated.

© Copyright IBM Corp. 2000, 2006 383

|

|

|

|
|

|

|

|

|

|
||

|
|

|
||

|
|
|
|

|
|
||

|
|
|
|

|
|

|
|
|
|

|
|

|

|

|
|

|
|
|
|

|

|

v Unnecessary high load on status changes, since hot-plug handling must be done

for every device found.

384 Device Drivers, Features, and Commands - November, 2006

|
|

Glossary

This glossary includes IBM product terminology as

well as selected other terms and definitions.

Additional information can be obtained in:

v The American National Standard Dictionary for

Information Systems , ANSI X3.172-1990,

copyright 1990 by the American National

Standards Institute (ANSI). Copies may be

purchased from the American National

Standards Institute, 11 West 42nd Street, New

York, New York 10036.

v The ANSI/EIA Standard–440-A, Fiber Optic

Terminology. Copies may be purchased from

the Electronic Industries Association, 2001

Pennsylvania Avenue, N.W., Washington, DC

20006.

v The Information Technology Vocabulary

developed by Subcommittee 1, Joint Technical

Committee 1, of the International Organization

for Standardization and the International

Electrotechnical Commission (ISO/IEC

JTC1/SC1).

v The IBM Dictionary of Computing , New York:

McGraw-Hill, 1994.

v Internet Request for Comments: 1208, Glossary

of Networking Terms

v Internet Request for Comments: 1392, Internet

Users’ Glossary

v The Object-Oriented Interface Design: IBM

Common User Access® Guidelines , Carmel,

Indiana: Que, 1992.

Numerics

10 Gigabit Ethernet. An Ethernet network with a

bandwidth of 10000-Mbps.

3215. IBM console printer-keyboard.

3270. IBM information display system.

3370, 3380 or 3390. IBM direct access storage device

(disk).

3480, 3490, 3590. IBM magnetic tape subsystem.

9336 or 9345. IBM direct access storage device (disk).

A

asynchronous transfer mode (ATM). A transfer mode

in which the information is organized into cells; it is

asynchronous in the sense that the recurrence of cells

containing information from an individual user is not

necessarily periodic. ATM is specified in international

standards such as ATM Forum UNI 3.1.

auto-detection. Listing the addresses of devices

attached to a card by issuing a query command to the

card.

C

CCL.

 The Communication Controller for Linux on zSeries

(CCL) replaces the 3745/6 Communication Controller so

that the Network Control Program (NCP) software can

continue to provide business critical functions like SNI,

XRF, BNN, INN, and SSCP takeover. This allows you to

leverage your existing NCP functions on a "virtualized"

communication controller within the Linux zSeries

environment.

cdl. compatible disk layout. A disk structure for Linux

on System z which allows access from other System z

operating systems. This replaces the older ldl.

CEC. (Central Electronics Complex). A synonym for

CPC.

channel subsystem. The programmable input/output

processors of the System z, which operate in parallel

with the cpu.

checksum. An error detection method using a check

byte appended to message data

© Copyright IBM Corp. 2000, 2006 385

CHPID. channel path identifier. In a channel

subsystem, a value assigned to each installed channel

path of the system that uniquely identifies that path to

the system.

CPC. (Central Processor Complex). A physical

collection of hardware that includes main storage, one

or more central processors, timers, and channels. Also

referred to as a CEC.

CRC. cyclic redundancy check. A system of error

checking performed at both the sending and receiving

station after a block-check character has been

accumulated.

CSMA/CD. carrier sense multiple access with collision

detection

CTC. channel to channel. A method of connecting two

computing devices.

CUU. control unit and unit address. A form of

addressing for System z devices using device numbers.

D

DASD. direct access storage device. A mass storage

medium on which a computer stores data.

device driver. (1) A file that contains the code needed

to use an attached device. (2) A program that enables a

computer to communicate with a specific peripheral

device; for example, a printer, a videodisc player, or a

CD-ROM drive. (3) A collection of subroutines that

control the interface between I/O device adapters and

the processor.

E

ECKD. extended count-key-data device. A disk storage

device that has a data transfer rate faster than some

processors can utilize and that is connected to the

processor through use of a speed matching buffer. A

specialized channel program is needed to communicate

with such a device.

ESCON. enterprise systems connection. A set of IBM

products and services that provide a dynamically

connected environment within an enterprise.

Ethernet. A 10-Mbps baseband local area network that

allows multiple stations to access the transmission

medium at will without prior coordination, avoids

contention by using carrier sense and deference, and

resolves contention by using collision detection and

delayed retransmission. Ethernet uses CSMA/CD.

F

Fast Ethernet (FENET). Ethernet network with a

bandwidth of 100 Mbps

FBA. fixed block architecture. A type of DASD on

Multiprise 3000 or P/390 or emulated by VM.

FDDI. fiber distributed data interface. An American

National Standards Institute (ANSI) standard for a

100-Mbps LAN using optical fiber cables.

FTP. file transfer protocol. In the Internet suite of

protocols, an application layer protocol that uses TCP

and Telnet services to transfer bulk-data files between

machines or hosts.

G

Gigabit Ethernet (GbE). An Ethernet network with a

bandwidth of 1000-Mbps

G3, G4, G5 and G6. The generation names of the

S/390 CMOS based product family.

H

hardware console. A service-call logical processor

that is the communication feature between the main

processor and the service processor.

Host Bus Adapter (HBA). An I/O controller that

connects an external bus, such as a Fibre Channel, to

the internal bus (channel subsystem).

HMC. hardware management console. A console used

to monitor and control hardware such as the System z

microprocessors.

HFS. hierarchical file system. A system of arranging

files into a tree structure of directories.

I

ioctl system call. Performs low-level input- and

output-control operations and retrieves device status

information. Typical operations include buffer

manipulation and query of device mode or status.

IOCS. input / output channel subsystem. See channel

subsystem.

IP. internet protocol. In the Internet suite of protocols, a

connectionless protocol that routes data through a

network or interconnected networks and acts as an

intermediary between the higher protocol layers and the

physical network.

IP address. The unique 32-bit address that specifies

the location of each device or workstation on the

Internet. For example, 9.67.97.103 is an IP address.

IPIP. IPv4 in IPv4 tunnel, used to transport IPv4

packets in other IPv4 packets.

Glossary

386 Device Drivers, Features, and Commands - November, 2006

IPL. initial program load (or boot). (1) The initialization

procedure that causes an operating system to

commence operation. (2) The process by which a

configuration image is loaded into storage at the

beginning of a work day or after a system malfunction.

(3) The process of loading system programs and

preparing a system to run jobs.

IPv6. IP version 6. The next generation of the Internet

Protocol.

IPX. Internetwork Packet Exchange. (1) The network

protocol used to connect Novell servers, or any

workstation or router that implements IPX, with other

workstations. Although similar to the Internet Protocol

(IP), IPX uses different packet formats and terminology.

IPX address. The 10-byte address, consisting of a

4-byte network number and a 6-byte node address, that

is used to identify nodes in the IPX network. The node

address is usually identical to the medium access

control (MAC) address of the associated LAN adapter.

IUCV. inter-user communication vehicle. A VM facility

for passing data between virtual machines and VM

components.

K

kernel. The part of an operating system that performs

basic functions such as allocating hardware resources.

kernel module. A dynamically loadable part of the

kernel, such as a device driver or a file system.

kernel image. The kernel when loaded into memory.

L

LAN. local area network.

LCS. LAN channel station. A protocol used by OSA.

ldl. Linux disk layout. A basic disk structure for Linux

on System z. Now replaced by cdl.

LDP. Linux Documentation Project. An attempt to

provide a centralized location containing the source

material for all open source Linux documentation.

Includes user and reference guides, HOW TOs, and

FAQs. The homepage of the Linux Documentation

Project is http://www.linuxdoc.org

Linux. a variant of UNIX which runs on a wide range

of machines from wristwatches through personal and

small business machines to enterprise systems.

Linux on System z. the port of Linux to the IBM

System z architecture.

LPAR. logical partition of a System z9 or zSeries.

LVS (Linux virtual server). Network sprayer software

used to dispatch, for example, http requests to a set of

Web servers to balance system load.

M

MAC. medium access control. In a LAN this is the

sub-layer of the data link control layer that supports

medium-dependent functions and uses the services of

the physical layer to provide services to the logical link

control (LLC) sub-layer. The MAC sub-layer includes the

method of determining when a device has access to the

transmission medium.

Mbps. million bits per second.

MIB (Management Information Base). (1) A collection

of objects that can be accessed by means of a network

management protocol. (2) A definition for management

information that specifies the information available from

a host or gateway and the operations allowed.

MTU. maximum transmission unit. The largest block

which may be transmitted as a single unit.

Multicast. A protocol for the simultaneous distribution

of data to a number of recipients, for example live video

transmissions.

Multiprise. An enterprise server of the S/390 family.

N

NIC. network interface card. The physical interface

between the IBM mainframe and the network.

O

OCO. Object-code only. A loadable module supplied by

IBM without the associated source code.

OS. operating system. (1) Software that controls the

execution of programs. An operating system may

provide services such as resource allocation,

scheduling, input/output control, and data management.

(2) A set of programs that control how the system

works. (3) The software that deals with the most basic

operations that a computer performs.

OSA-2. Open Systems Adapter-2. A common System z

network interface feature

OSA-Express. Abbreviation for Open Systems

Adapter-Express networking features. These include 10

Gigabit Ethernet, Gigabit Ethernet, Fast Ethernet, Token

Ring, and ATM.

OSPF. open shortest path first. A function used in

route optimization in networks.

Glossary

Glossary 387

P

POR. power-on reset

POSIX. Portable Operating System Interface for

Computer Environments. An IEEE operating system

standard closely related to the UNIX system.

R

router. A device or process which allows messages to

pass between different networks.

S

S/390. The predecessor of System z.

SA/SE. stand alone support element. See SE.

SE. support element. (1) An internal control element of

a processor that assists in many of the processor

operational functions. (2) A hardware unit that provides

communications, monitoring, and diagnostic functions to

a central processor complex.

SNA. systems network architecture. The IBM

architecture that defines the logical structure, formats,

protocols, and operational sequences for transmitting

information units through, and controlling the

configuration and operation of, networks. The layered

structure of SNA allows the ultimate origins and

destinations of information (the users) to be

independent of and unaffected by the specific SNA

network services and facilities that are used for

information exchange.

SNMP (Simple Network Management Protocol). In

the Internet suite of protocols, a network management

protocol that is used to monitor routers and attached

networks. SNMP is an application layer protocol.

Information on devices managed is defined and stored

in the application’s Management Information Base

(MIB).

Sysctl. system control programming manual control

(frame). A means of dynamically changing certain Linux

kernel parameters during operation.

T

TCP. transmission control protocol. A communications

protocol used in the Internet and in any network that

follows the Internet Engineering Task Force (IETF)

standards for internetwork protocol. TCP provides a

reliable host-to-host protocol between hosts in

packet-switched communications networks and in

interconnected systems of such networks. It uses the

Internet Protocol (IP) as the underlying protocol.

TCP/IP. transmission control protocol/internet protocol.

(1) The Transmission Control Protocol and the Internet

Protocol, which together provide reliable end-to-end

connections between applications over interconnected

networks of different types. (2) The suite of transport

and application protocols that run over the Internet

Protocol.

Telnet. A member of the Internet suite of protocols

which provides a remote terminal connection service. It

allows users of one host to log on to a remote host and

interact as if they were using a terminal directly

attached to that host.

Token Ring. (1) According to IEEE 802.5, network

technology that controls media access by passing a

token (special packet or frame) between media-attached

stations. (2) A FDDI or IEEE 802.5 network with a ring

topology that passes tokens from one attaching ring

station (node) to another.

U

UNIX. An operating system developed by Bell

Laboratories that features multiprogramming in a

multiuser environment. The UNIX operating system was

originally developed for use on minicomputers but has

been adapted for mainframes and microcomputers.

V

V=R. In VM, a guest whose real memory (virtual from

a VM perspective) corresponds to the real memory of

VM.

V=V. In VM, a guest whose real memory (virtual from a

VM perspective) corresponds to virtual memory of VM.

Virtual LAN (VLAN). A group of devices on one ore

more LANs that are configured (using management

software) so that they can communicate as if they were

attached to the same wire, when in fact they are located

on a number of different LAN segments. Because

VLANs are based on logical rather than physical

connections, they are extremely flexible.

volume. A data carrier that is usually mounted and

demounted as a unit, for example a tape cartridge or a

disk pack. If a storage unit has no demountable packs

the volume is the portion available to a single read/write

mechanism.

Z

zSeries. The family of IBM enterprise servers that

demonstrate outstanding reliability, availability,

scalability, security, and capacity in today’s network

computing environments.

Glossary

388 Device Drivers, Features, and Commands - November, 2006

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information about the products

and services currently available in your area. Any reference to an IBM product,

program, or service is not intended to state or imply that only that IBM product,

program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used

instead. However, it is the user’s responsibility to evaluate and verify the operation

of any non-IBM product, program, or service.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

Trademarks

The following terms are trademarks of International Business Machines Corporation

in the United States, other countries, or both:

v Common User Access

v developerWorks

© Copyright IBM Corp. 2000, 2006 389

v ECKD

v Enterprise Storage Server

v ESCON

v Eserver

v FICON

v HiperSockets

v IBM

v Multiprise

v OS/390

v RAMAC

v S/390

v System/390

v System z9

v TotalStorage

v VSE/ESA

v z9

v z/Architecture

v z/OS

v z/VM

v zSeries

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

390 Device Drivers, Features, and Commands - November, 2006

Index

Special characters
/sys, mount point xviii

*ACCOUNT, VM record 185

*LOGREC, VM record 185

*SYMPTOM, VM record 185

Numerics
10 Gigabit Ethernet 95

1000Base-T, Ethernet 95

1750, control unit 25

2105, control unit 25

2107, control unit 25

3088, control unit 145, 151

31-bit xvii

values for monitor records 176

zcrypt 226

3215 line-mode terminal 207

3270 emulation 212

3270 line-mode terminal 207

3370, DASD 25

3480 tape drive 75

3490 tape drive 75

3590 tape drive 75

3592 tape drive 75

3880, control unit 25

3990, control unit 25

6310, control unit 25

64-bit xvii

9336, DASD 25

9343, control unit 25

9345, DASD 25

A
access control

FCP LUN 53

access_denied
zfcp attribute (port) 64

zfcp attribute (SCSI device) 67, 68

access_shared
zfcp attribute 68

ACCOUNT, VM record 185

add_hhlen, qeth attribute 116

add, DCSS attribute 160

additional_cpus=, kernel parameter 350

Address Resolution Protocol
See ARP

AgentX protocol 237

alias
DASD attribute 45

alias device 45

all_rings, value for qeth broadcast_mode attribute 115

AP
devices 9

API
FC-HBA 51

appldata_mem, kernel module 173

appldata_net_sum, kernel module 173

appldata_os, kernel module 173

APPLDATA, monitor stream 173

ARP 100

proxy ARP 123

query/purge OSA-Express ARP cache 303

ATM 95

attributes
device 11

for CCW devices 11

for subchannels 14

qeth 105

auto-detection
DASD 37

LCS 145

qeth 97

autoconfiguration, IPv6 103

autopurge, z/VM recording attribute 189

autorecording, z/VM recording attribute 188

availability
common CCW attribute 11

DASD attribute 42

avg_*, cmf attributes 233

B
base device 45

base name
network interfaces 5

block device
tape 75

blocksize, tape attribute 83

boot devices 366

preparing 330

boot loader code 367

booting Linux 365

broadcast_mode, qeth attribute 115

buffer_count, qeth attribute 116

bus ID 11

C
canonical_macaddr, qeth attribute 114

card_type, qeth attribute 117

case conversion 211

CCW
channel measurement facility 231

common attributes 11

devices 9

group devices 9

hotplug events 16

setting devices online/offline 269

CD-ROM, loading Linux 376

CEX2A (Crypto Express2) 219

CEX2C (Crypto Express2) 219

channel measurement facility 231

© Copyright IBM Corp. 2000, 2006 391

channel measurement facility (continued)
cmb_enable attribute 232

read-only attributes 232

channel path
ensuring correct status 383

planned change in availability 383

unplanned change in availability 383

character device, tape 75

chccwdev, Linux command 269

checksumming, qeth attribute 112

Chinese-Remainder Theorem 219

CHPID
in sysfs 15

online attribute 15

chpids, subchannel attribute 14

cio_ignore, procfs interface 352

cio_ignore=, kernel parameter 351

cio_msg=, kernel parameter 354

cmb_enable
cmf attribute 232

common CCW attribute 11

tape attribute 83

cmd=, module parameters 196

cmf.format=, kernel parameter 231

cmf.maxchannels=, kernel parameter 231

CMM
kernel configuration menu options 201

CMS disk layout 30

CMS1 labeled disk 30

code page
for x3270 212

commands, Linux
chccwdev 269

dasdfmt 271

dasdview 274

dmesg 6

fdasd 284

ifconfig 5

lscss 292

lsdasd 294

lsqeth 295

lstape 297

lszfcp 299

mknod 3

osasnmpd 301

qetharp 303

qethconf 305

readlink 7

scsi_logging_level 312

snipl 315

tape390_display 323

tunedasd 325

vmcp 328

zipl 330

commands, VM
sending from Linux 328

compatibility mode, zcrypt 226

compatible disk layout 27

compression, tape 84

conceal=, module parameters 196

condev=, kernel parameter 215

CONFIG_APPLDATA_BASE 173, 253

CONFIG_APPLDATA_MEM 173, 253

CONFIG_APPLDATA_NET_SUM 173, 253

CONFIG_APPLDATA_OS 173, 254

CONFIG_BINFMT_ELF32 254

CONFIG_BLK_DEV_XPRAM 88, 260

CONFIG_CCW 36

CONFIG_CHECK_STACK 254

CONFIG_CLAW 260

CONFIG_CMM 254

CONFIG_CMM_IUCV 254

CONFIG_CMM_PROC 254

CONFIG_CRYPTO_AES_S390 254

CONFIG_CRYPTO_DES_S390 254

CONFIG_CRYPTO_SHA1_S390 255

CONFIG_CRYPTO_SHA256_S390 255

CONFIG_CTC 260

CONFIG_DASD 36, 260

CONFIG_DASD_CMB 36, 260

CONFIG_DASD_DIAG 36, 260

CONFIG_DASD_ECKD 36, 260

CONFIG_DASD_EER 36, 261

CONFIG_DASD_FBA 36, 261

CONFIG_DASD_PROFILE 36, 261

CONFIG_DCSSBLK 158, 261

CONFIG_DEFAULT_MIGRATION_COST 255

CONFIG_DUMMY 104

CONFIG_HOTPLUG_CPU 255

CONFIG_INET 104

CONFIG_IP_MULTICAST 104, 146

CONFIG_IPL 255

CONFIG_IPL_TAPE 255

CONFIG_IPL_VM 255

CONFIG_IUCV 261

CONFIG_LCS 146, 261

CONFIG_MACHCHK_WARNING 255

CONFIG_MAGIC_SYSRQ 209

CONFIG_MARCH_G5 255

CONFIG_MARCH_Z900 255

CONFIG_MARCH_Z990 255

CONFIG_MONREADER 166, 261

CONFIG_MONWRITER 181, 261

CONFIG_MPC 152, 261

CONFIG_NET_ETHERNET 104, 146

CONFIG_NETIUCV 261

CONFIG_NO_IDLE_HZ 255

CONFIG_NO_IDLE_HZ_INIT 256

CONFIG_NR_CPUS 256

CONFIG_OPROFILE 256

CONFIG_PACK_STACK 256

CONFIG_PFAULT 256

CONFIG_PREEMPT 256

CONFIG_PROCESS_DEBUG 256

CONFIG_PROFILING 256

CONFIG_QDIO 54, 104, 257

CONFIG_QDIO_DEBUG 257

CONFIG_QDIO_PERF_STATS 104, 257

CONFIG_QETH 104, 262

CONFIG_QETH_IPV6 104, 262

CONFIG_QETH_PERF_STATS 104, 262

CONFIG_QETH_VLAN 262

392 Device Drivers, Features, and Commands - November, 2006

CONFIG_S390_HYPFS_FS 19, 257

CONFIG_S390_TAPE 80, 262

CONFIG_S390_TAPE_34XX 80, 262

CONFIG_S390_TAPE_3590 80, 262

CONFIG_S390_TAPE_BLOCK 80, 263

CONFIG_SCLP 213, 235, 263

CONFIG_SCLP_CONSOLE 213, 263

CONFIG_SCLP_CPI 235, 263

CONFIG_SCLP_TTY 213, 263

CONFIG_SCLP_VT220_CONSOLE 213, 263

CONFIG_SCLP_VT220_TTY 213, 263

CONFIG_SCSI 54

CONFIG_SHARED_KERNEL 257

CONFIG_SMALL_STACK 257

CONFIG_SMP 257

CONFIG_SMSGIUCV 263

CONFIG_STACK_GUARD 258

CONFIG_STATISTICS 257

CONFIG_TN3215 213, 263

CONFIG_TN3215_CONSOLE 213, 263

CONFIG_TN3270 213, 263

CONFIG_TN3270_CONSOLE 213, 264

CONFIG_TN3270_FS 264

CONFIG_TN3270_TTY 264

CONFIG_TR 104, 146

CONFIG_VIRT_CPU_ACCOUNTING 258

CONFIG_VIRT_TIMER 173, 258

CONFIG_VLAN 104

CONFIG_VMCP 200, 264

CONFIG_VMLOGRDR 187, 264

CONFIG_WARN_STACK 258

CONFIG_WARN_STACK_SIZE 258

CONFIG_ZCRYPT 221, 264

CONFIG_ZCRYPT_MONOLITHIC 264

CONFIG_ZFCP 54

CONFIG_ZFCP_HBAAPI 54

CONFIG_ZVM_WATCHDOG 193, 264

configuration options
See kernel configuration menu options

conmode=, kernel parameter 214

console
device names 208

device nodes 215

mainframe versus Linux 207

console device driver 207

defining to P/390 215

features 207

kernel configuration menu options 213

kernel parameter 215

overriding default driver 214

specifying preferred console 215

console=, kernel parameter 215

control characters 209

control program identification 235

kernel configuration menu options 235

control unit
1750 25

2105 25

2107 25

3880 25

3990 25

control unit (continued)
6310 25

9343 25

cooperative memory management 201

CP commands
send to VM hypervisor 328

CP Error Logging System Service 185

CPI (control program identification) 235

kernel configuration menu options 235

CRT 219

Crypto Express2 219

cryptographic device driver
See zcrypt

CTCMPC
device driver 151

group attribute 152

kernel configuration menu options 152

online attribute 153

subchannels 151

ctcmpc, kernel module 152

cutype
common CCW attribute 11

tape attribute 83

D
DASD

access by bus-ID 34

access by VOLSER 34

alias attribute 45

availability attribute 42

booting from 369, 372

boxed 42

control unit attached devices 25

device driver 25

device names 30

device nodes 31

discipline attribute 45

displaying information 274

displaying overview 294

eer_enabled attribute 44

extended error reporting 25

features 25

forcing online 42

formatting ECKD 271

kernel configuration menu options 35

module parameter 38

online attribute 46

partitioning 284

partitions on 26

performance tuning 325

readonly attribute 45

uid attribute 45

use_diag attribute 43, 45

vendor attribute 46

virtual 25

dasd_diag_mod, kernel module 36

dasd_eckd_mod, kernel module 36

dasd_eer, kernel module 36

dasd_fba_mod, kernel module 36

dasd_mod, kernel module 36

Index 393

dasd=
kernel parameter 36

module parameter 38

dasdfmt, Linux command 271

dasdview, Linux command 274

data execution protection
kernel configuration menu options 247

DCSS
access mode 160

add attribute 160

device driver 157

device names 157

device nodes 157

kernel configuration menu options 158

loader 339

minor number 160

remove attribute 162

save attribute 161

shared attribute 161

dcssblk, kernel module 158

dcssblk.segments=, kernel parameter 158

dcssblk.segments=, module parameter 159

decryption 219, 227

delete
zfcp attribute (SCSI device) 68

delete, zfcp attribute 71

detach_state, subchannel attribute 14

developerWorks xvii

device bus-ID 11

of a qeth interface 118

device driver
console 207

crypto 219

CTCMPC 151

DASD 25

DCSS 157

HiperSockets 95

in sysfs 12

LCS 145

monitor stream application 181

network 93

OSA-Express (QDIO) 95

overview 10

qeth 95

SCSI-over-Fibre Channel 49

tape 75

vmcp 199

watchdog 193

XPRAM 87

z/VM *MONITOR record reader 165

z/VM recording 185

zcrypt 219

zfcp 49

device names 3

console 208

DASD 30

DCSS 157

tape 76

vmcp 200

XPRAM 87

z/VM *MONITOR record 169

device names (continued)
z/VM recording 185

device nodes 3

console 215

DASD 31

DCSS 157

extended error reporting 32

SCSI 51

tape 78

udev 4

vmcp 200

watchdog 197

XPRAM 88

z/VM *MONITOR record 169

z/VM recording 185

zcrypt 226

zfcp 51

device numbers 3

device special file
See device nodes

device_blocked
zfcp attribute (SCSI device) 68

devices
alias 45

attributes 11

base 45

corresponding interfaces 6

ignoring 351

in sysfs 11

devs=, module parameter 90

devtype
common CCW attribute 11

tape attribute 83

DHCP 141

required options 141

Direct Access Storage Device
See DASD

Direct SNMP 237

discipline
DASD attribute 45

discontiguous saved segments
See DCSS

dmesg 6

domain=
kernel parameter 222

module parameter 223, 224

drivers
See device driver

dummy, kernel module 104

dump device
DASD and tape 335

SCSI 337

dump tools xvii

dumped_frames, zfcp attribute 60

Dynamic Host Configuration Protocol
See DHCP

dynamic routing, and VIPA 125

394 Device Drivers, Features, and Commands - November, 2006

E
EBCDIC

kernel parameters 367

ECKD 25

devices 25

EDDP, value for qeth large_send attribute 112

edit characters, VM console 210

eer_enabled
DASD attribute 44

enable, qeth IP takeover attribute 121

encryption 219

Enterprise Storage Server 25

environment variables
LOADDEV 370

SRC_VIPA_CONFIG_FILE 128

TERM 216

ZIPLCONF 343

Error Logging System Service 185

error_frames, zfcp attribute 60

ESS 25

Ethernet 95, 145

interface name 97, 145

execution protection feature 247

expanded memory 87

ext2 157

extended error reporting
device node 32

extended error reporting, DASD 25

F
failed

zfcp attribute (channel) 62

zfcp attribute (port) 64, 65

zfcp attribute (SCSI device) 68, 70

failed, zfcp attribute 59

fake_broadcast, qeth attribute 115

fake_ll, qeth attribute 100

Fast Ethernet 145

FBA devices 25

FC-HBA 51

FCP 49

FCP LUN access control 53

fcp_control_requests zfcp attribute 60

fcp_input_megabytes zfcp attribute 60

fcp_input_requests zfcp attribute 60

fcp_lun
zfcp attribute (SCSI device) 68

fcp_lun, zfcp attribute 67

fcp_output_megabytes zfcp attribute 60

fcp_output_requests zfcp attribute 60

fdasd, Linux command 284

feature
execution protection 247

IPL parameter interface 245

Fibre Channel 49

file systems
ext2 157

ISO9660 76

sysfs 9

file systems (continued)
tape 76

xip2 157

FTP server, loading Linux 376

full-screen mode terminal 216

G
Gigabit Ethernet 95

group
CTCMPC attribute 152

LCS attribute 147

qeth attribute 107

group devices
CTCMPC 151

LCS 145

qeth 96

guest LAN sniffer 143

H
hardware console 207

Hardware Management Console
See HMC

hardware status, zcrypt 227

HBA API 51

hba_id
zfcp attribute (SCSI device) 68

hba_id, zfcp attribute 67

high availability project 322

HiperSockets
device driver 95

interface name 97

HiperSockets Network Concentrator 135

HMC 207

as terminal 208

for booting Linux 366

hotplug
CCW devices 16

hw_checksumming, value for qeth checksumming

attribute 112

I
I/O message suppression 354

IBM compatible disk layout 27

IBM label partitioning scheme 26

IBM TotalStorage Enterprise Storage Server 25

IDRC compression 84

IEEE 802.1q 104

if_name, qeth attribute 118

ifconfig 5

Improved Data Recording Capability compression 84

in_recovery
zfcp attribute (channel) 62

zfcp attribute (port) 64, 65

zfcp attribute (SCSI device) 68, 70

in_recovery, zfcp attribute 59

Initial Program Load
See IPL

initial RAM disk 368

Index 395

interface
MTIO 79

network 5

interface names
lcs 145

mpc 151

overview 5

qeth 97, 118

versus devices 6

vmcp 200

interfaces
FC-HBA 51

invalid_crc_count zfcp attribute 60

invalid_tx_word_count zfcp attribute 60

iocounterbits
zfcp attribute 68

ioctl
return codes 229

iodone_cnt
zfcp attribute (SCSI device) 68

ioerr_cnt
zfcp attribute (SCSI device) 68

iorequest_cnt
zfcp attribute (SCSI device) 68

IP address
confirming 120

duplicate 120

takeover 121

virtual 124

IP, service types 113

ipa_takeover, qeth attributes 121

IPL 365

IPL devices
for booting 366

preparing 330

IPL parameter interface 245

ipldelay=, kernel parameter 355

IPv4, OSA-Express 99

IPv6
OSA-Express 98

stateless autoconfiguration 103

support for 103

ISO9660 file systems 76

J
journaling file systems

write barrier 41

K
kernel configuration menu options

channel measurement facility 231

CMM 201

console 213

CPI 235

CTCMPC 152

DASD 35

data execution protection 247

DCSS 158

LCS 146

kernel configuration menu options (continued)
monitor stream 173

MONWRITER 181

qeth 104

S/390 hypervisor file system 19

tape 80

watchdog 193

XPRAM 89

xxx 200

z/VM *MONITOR record device driver 166

z/VM recording 187

zcrypt 221

zfcp 54

kernel image 367

kernel module
appldata_mem 173

appldata_net_sum 173

appldata_os 173

ctcmpc 152

dasd_diag_mod 36

dasd_eckd_mod 36

dasd_eer 36

dasd_fba_mod 36

dasd_mod 36

dcssblk 158

dummy 104

lcs 146

monreader 166

MONWRITER 181

qdio 104

qeth 104

sclp_cpi 235

tape 80

tape_34xx 80

tape_3590 80

vmcp 200

vmlogrdr 187

vmwatchdog 193

xpram 89

zcrypt 221

zfcp 54

zfcp_hbaapi 54

kernel monolithic configuration menu options
zcrypt 222

kernel parameters 367

additional_cpus= 350

and zipl 335

channel measurement facility 231

cio_ignore= 351

cio_msg= 354

cmf.format= 231

cmf.maxchannels= 231

condev= 215

conmode= 214

console= 215

DASD 36

dasd= 36

dcssblk.segments= 158

domain= 222

general 349

ipldelay= 355

396 Device Drivers, Features, and Commands - November, 2006

kernel parameters (continued)
maxcpus= 356

mem= 357

mondcss= 168, 182

noinitrd 358

possible_cpus= 359

ramdisk_size= 360

root= 362

vmhalt= 363

vmpoff= 364

vmwatchdog.cmd= 195

vmwatchdog.conceal= 195

vmwatchdog.nowayout= 195

xpram.parts= 89

xxx= 201

zcrypt 222

zfcp_hbaapi.maxpolled= 55

zfcp_hbaapi.maxshared= 55

zfcp_hbaapi.minor= 55

zfcp.device= 54

kernel source tree xvii

L
LAN

z/VM guest LAN sniffer 143

LAN channel station
See LCS

LAN, virtual 132

lancmd_timeout, LCS attribute 147

large_send, qeth attribute 112

layer2, qeth attribute 102

LCS
activating an interface 148

device driver 145

group attribute 147

kernel configuration menu option 146

lancmd_timeout attribute 147

online attribute 148

subchannels 145

lcs, kernel module 146

libica library 225

libpcap 142

lic_version, zfcp attribute 59

line edit characters, VM console 210

line-mode terminal 216

special characters 209

link_failure_count, zfcp attribute 60

Linux device special file
See device nodes

Linux disk layout 29

Linux guest, booting 368

Linux in LPAR mode, booting 372

lip_count, zfcp attribute 60

LLC header 99

fake for qeth 100

layer2 for qeth 102

LNX1 labeled disk 29

LOADDEV, environment variable 370

local, value for qeth broadcast_mode attribute 115

log-in at terminals 216

Logical Link Control (LLC) header 99

LOGREC, VM record 185

loss_of_signal_count, zfcp attribute 60

loss_of_sync_count, zfcp attribute 60

LPAR Linux, booting 372

lscss, Linux command 292

lsdasd, Linux command 294

lsqeth, Linux command 295

lstape, Linux command 297

lszfcp, Linux command 299

M
MAC addresses 98

format for qeth device 114

magic sysrequest 209

major number 3

console devices 208

DASD devices 30

DCSS devices 157

SCSI 70

tape devices 76

vmcp 200

XPRAM 87

z/VM *MONITOR record 169

z/VM recording 185

zcrypt with udev 226

zfcp 70

management information base 237

maxcpus=, kernel parameter 356

maxframe_size
zfcp attribute 59

Media Access Control (MAC) addresses 98

medium_state, tape attribute 83

mem=, kernel parameter 357

memory, expanded 87

menu configuration 344

VM example 369

MIB (management information base) 237

minor number 3

console devices 208

DASD devices 30

DCSS devices 160

SCSI 70

tape devices 76

vmcp 200

XPRAM 87

z/VM *MONITOR record 169

z/VM recording 185

z90crypt with udev 226

zfcp 70

mknod, Linux command 3

model
zfcp attribute (SCSI device) 68

module
See kernel module

module parameters
cmd= 196

conceal= 196

CPI 235

dasd= 38

Index 397

module parameters (continued)
dcssblk.segments= 159

devs= 90

domain= 223, 224

mondcss= 168, 182

nowayout= 196

poll_thread= 223, 224

sizes= 90

system_name= 235

XPRAM 90

z90crypt 223

zcrypt 224

modulus-exponent 219

mondcss=, kernel parameters 168, 182

mondcss=, module parameters 168, 182

monitor stream 173

kernel configuration menu options 173

module activation 175

on/off 174

sampling interval 175

monitor stream application
device driver 181

monreader, kernel module 166

MONWRITER
kernel configuration menu options 181

MONWRITER, kernel module 181

mount point, sysfs xviii

MTIO interface 79

MTU
qeth 119

multicast_router, value for qeth router attribute 110

multiple subchannel set 12

Multiprise 25

N
name

devices
See device names

network interface
See base name

NCP 95

net-snmp 237

network
device drivers 93

interface names 5

Network Concentrator 135

Network Control Program 95

network interfaces 5

no_checksumming, value for qeth checksumming

attribute 112

no_prio_queueing, value for qeth priority_queueing

attribute 113

no_router, value for qeth router attribute 110

no, value for qeth large_send attribute 112

node_name
zfcp attribute 59

zfcp attribute (port) 64

node, device
See device nodes

noinitrd, kernel parameter 358

non-priority commands 210

non-rewinding tape device 75

nos_count, zfcp attribute 60

notices 389

nowayout=, module parameters 196

NPIV
example 61

FCP channel mode 61

for FCP channels 53

O
object ID 238

offline
CHPID 15

devices 11

OID (object ID) 238

online
CHPID 15

common CCW attribute 11

CTCMPC attribute 153

DASD attribute 46

LCS attribute 148

qeth attribute 118

tape attribute 81, 83

TTY attribute 217

zfcp attribute 58

online, zfcp attribute 59

Open Source Development Network, Inc. 237

openCryptoki 225

operation, tape attribute 83

OSA NCP 95

OSA-2 145

OSA-Express 145

device driver 95

IPv4 handling 99

IPv6 handling 98

osasnmpd, command 301

osasnmpd, OSA-Express SNMP subagent 237

OSDN (Open Source Development Network, Inc.) 237

P
P/390 207, 357

padding, zcrypt 220

parallel access volume (PAV) 45

partition
on DASD 26

schemes for DASD 26

table 28

XPRAM 87

patches
tcpdump 142

PAV (parallel access volume) 45

PAV enablement, suppression 37

PCI Cryptographic Accelerator 219

PCI Cryptographic Coprocessor 219

PCI-X Cryptographic Coprocessor 219

peer_d_id , zfcp attribute 59

peer_wwnn, zfcp attribute 59

peer_wwpn, zfcp attribute 59

398 Device Drivers, Features, and Commands - November, 2006

permanent_port_name, zfcp attribute 59, 61

physical_s_id, zfcp attribute 61

pimpampom, subchannel attribute 14

PKCS #11 API 219, 225

planned changes in channel path availability 383

poll_thread=
module parameter 223, 224

port_add, zfcp attribute 62

port_id
zfcp attribute (port) 64

port_id, zfcp attribute 59

port_name
zfcp attribute (port) 64

port_name, zfcp attribute 59

port_remove, zfcp attribute 63

port_state
zfcp attribute (port) 64

port_type, zfcp attribute 59

portname, qeth attribute 108

portno, qeth attribute 117

possible_cpus=, kernel parameter 359

preferred console 215

prerequisites 23, 93, 155, 205, 265

prim_seq_protocol_err_count, zfcp attribute 60

primary_connector, value for qeth router attribute 110

primary_router, value for qeth router attribute 110

prio_queueing, value for qeth priority_queueing

attribute 113

priority command 210

priority_queueing, qeth attribute 113

processors
cryptographic 9

procfs
appldata 174

cio_ignore 352

magic sysrequest function 209

QDIO and qeth performance data 104

qeth interfaces 118

VLAN 134

proxy ARP 123

proxy ARP attributes 106

purge, z/VM recording attribute 189

PVMSG 210

Q
QDIO 96

qdio, kernel module 104

qeth
activating an interface 119

add_hhlen attribute 116

auto-detection 97

broadcast_mode attribute 115

buffer_count attribute 116

canonical_macaddr attribute 114

card_type attribute 117

checksumming attribute 112

configuration tool 305

device driver 95

displaying device overview 295

enable attribute for IP takeover 121

qeth (continued)
fake_broadcast attribute 115

fake_ll attribute 100

group attribute 107

if_name attribute 118

ipa_takeover attributes 121

kernel configuration menu options 104

large_send attribute 112

layer2 attribute 102

MTU 119

online attribute 118

portname attribute 108

portno attribute 117

priority_queueing attribute 113

proxy ARP attributes 106

recover attribute 125

route4 attribute 109

route6 attribute 109

subchannels 96

summary of attributes 105

TCP segmentation offload 112

VIPA attributes 106

qeth interfaces, mapping 6

qeth, kernel module 104

qetharp, Linux command 303

qethconf, Linux command 305

queue_depth
zfcp attribute (SCSI device) 68

queue_type
zfcp attribute (SCSI device) 68

queueing, priority 113

quiesce 213

R
RAM disk, initial 368

RAMAC 25

ramdisk_size=, kernel parameter 360

readlink, Linux command 7

readonly
DASD attribute 45

recording, z/VM recording attribute 188

recover, qeth attribute 125

relative port number
qeth 117

remove, DCSS attribute 162

rescan
zfcp attribute (SCSI device) 68

reset_statistics
zfcp attribute 59

restrictions 23, 93, 155, 205, 265

return codes, ioctl and read 229

rev
zfcp attribute (SCSI device) 68

rewinding tape device 75

Rivest-Shamir-Adleman 219

ro, kernel parameter 361

roles
zfcp attribute (port) 64

root=, kernel parameter 362

route4, qeth attribute 109

Index 399

route6, qeth attribute 109

router
IPv4 router settings 109

IPv6 router settings 109

RSA 219

RSA exponentiation 219

RVA 25

rx_frames, zfcp attribute 60

rx_words, zfcp attribute 60

S
s_id, zfcp attribute 61

S/390 Application Programming Interfaces 322

S/390 hypervisor file system 19

defining access rights 21

kernel configuration menu options 19

S390_EXEC_PROTECT 247

S390_SWITCH_AMODE 247

save, DCSS attribute 161

SCLP (service-call logical processor) interface 207

sclp_cpi, kernel module 235

SCSI devices, in sysfs 67

SCSI system dumper 337

scsi_host_no, zfcp attribute 66

scsi_id, zfcp attribute 66

scsi_level
zfcp attribute (SCSI device) 68

scsi_logging_level, Linux command 312

scsi_lun, zfcp attribute 66

scsi_target_id
zfcp attribute (port) 64

SCSI-over-Fibre Channel
See also zfcp

kernel configuration menu options 54

SCSI-over-Fibre Channel device driver 49

SCSI, booting from 370, 372

SE (Service Element) 207

SE (Support Element) 366

secondary_connector, value for qeth router

attribute 110

secondary_router, value for qeth router attribute 110

seconds_since_last_reset
zfcp attribute 59

segmentation offload, TCP 112

serial_number, zfcp attribute 59

service types, IP 113

service-call logical processor interface 207

setsockopt 113

shared, DCSS attribute 161

Shoot The Other Node In The Head 322

signal quiesce 213

simple network IPL 315

Simple Network Management Protocol 237

sizes=, module parameter 90

sniffer, guest LAN 143

snipl, Linux command 315

SNMP 237, 322

Source VIPA 128

example 129

special characters
line-mode terminals 209

VM console 210

special file
See device nodes

speed, zfcp attribute 59

SRC_VIPA_CONFIG_FILE, environment variable 128

ssch_rsch, cmf attribute 233

state
zfcp attribute (SCSI device) 68

state, tape attribute 83

stateless autoconfiguration, IPv6 103

static routing, and VIPA 125

status, CHPID attribute 15

STONITH 322

subchannel
multiple set 12

subchannel set ID 12

subchannels
CCW and CCW group devices 9

CTCMPC 151

displaying overview 292

in sysfs 13

LCS 145

qeth 96

Support Element 366

supported_classes
zfcp attribute (port) 64

supported_classes, zfcp attribute 59

supported_speeds, zfcp attribute 59

sw_checksumming, value for qeth checksumming

attribute 112

SYMPTOM, VM record 185

syntax diagrams xix

sysfs 9

sysplex name 235

sysrequest 209

system name 235

system_name=, module parameter 235

Systems Management Application Programming,

z/VM 322

T
tape

access by bus-ID 79

block device 75

blocksize attribute 83

booting from 368, 372

character device 75

cmb_enable attribute 83

cutype attribute 83

device names 76

device nodes 78

devtype attribute 83

display support 323

displaying overview 297

file systems 76

IDRC compression 84

kernel configuration menu options 80

loading and unloading 85

400 Device Drivers, Features, and Commands - November, 2006

tape (continued)
medium_state attribute 83

MTIO interface 79

online attribute 81, 83

operation attribute 83

state attribute 83

tape device driver 75

tape_34xx, kernel module 80

tape_3590, kernel module 80

tape, kernel module 80

tape390_display, Linux command 323

TCP segmentation offload 112

TCP/IP
ARP 100

checksumming 112

DHCP 141

kernel configuration option 104

tcpdump 142

TERM, environment variable 216

terminal
enabling user log-ins 216

mainframe versus Linux 207

tgid_bind_type, zfcp attribute 59

timeout
zfcp attribute (SCSI device) 68

timeout for LCS LAN commands 147

Token Ring 95, 145

interface name 97, 145

trademarks 389

TSO, value for qeth large_send attribute 112

TTY
console devices 208

kernel configuration menu options 213

online attribute 217

routines 208

tunedasd, Linux command 325

tx_frames, zfcp attribute 59

tx_words, zfcp attribute 60

type
zfcp attribute (SCSI device) 68

U
ucd-snmp 237

udev 4

uid
DASD attribute 45

unit_add, zfcp attribute 65

unit_remove, zfcp attribute 71

unplanned changes in channel path availability 383

use_diag
DASD attribute 45

use_diag, DASD attribute 43

V
VACM (View-Based Access Control Mechanism) 239

vendor
DASD attribute 46

zfcp attribute (SCSI device) 68

version, zfcp attribute 58

View-Based Access Control Mechanism (VACM) 239

VINPUT 210

VIPA (virtual IP address)
attributes 106

description 124, 125

example 126

Source VIPA 127

static routing 125

usage 125

virtual
DASD 25

IP address 124

LAN 132

VLAN (virtual LAN) 132

VM console, line edit characters 210

VM reader
booting from 371

vmcp
device driver 199

device names 200

device nodes 200

vmcp, kernel module 200

vmcp, Linux command 328

vmhalt=, kernel parameter 363

vmlogrdr, kernel module 187

vmpoff=, kernel parameter 364

VMSG 210

vmwatchdog, kernel module 193

vmwatchdog.cmd=, kernel parameters 195

vmwatchdog.conceal=, kernel parameters 195

vmwatchdog.nowayout=, kernel parameters 195

VOL1 labeled disk 27

VOLSER, DASD device access by 34

volume label 27

Volume Table Of Contents 28

VTOC 28

W
watchdog

device driver 193

device node 197

kernel configuration menu options 193

write barrier 41

wwpn
zfcp attribute (SCSI device) 68

wwpn, zfcp attribute 61, 67

X
x3270 code page 212

xip2 157

XPRAM
device driver 87

device nodes 88

features 87

kernel configuration menu options 89

kernel parameter 89

module parameter 90

partitions 87

xpram, kernel module 89

Index 401

xpram.parts=, kernel parameter 89

xxx
kernel configuration menu options 200

xxx=, kernel parameters 201

Z
z/VM

guest LAN sniffer 143

monitor stream 173

Systems Management Application

Programming 322

z/VM *MONITOR record
device name 169

device node 169

z/VM *MONITOR record device driver
kernel configuration menu option 166

z/VM *MONITOR record reader
device driver 165

z/VM discontiguous saved segments
See DCSS

z/VM recording
device names 185

device nodes 185

z/VM recording device driver 185

autopurge attribute 189

autorecording attribute 188

kernel configuration menu options 187

purge attribute 189

recording attribute 188

z90crypt
module parameter 223

zcrypt
decryption 227

device driver 219

device nodes 226

hardware status 227

kernel configuration menu option 221

kernel module 221

kernel monolithic configuration menu option 222

kernel parameter 222

module parameter 224

zfcp
access_denied attribute (port) 64

access_denied attribute (SCSI device) 67, 68

access_shared attribute 68

delete attribute 71

delete attribute (SCSI device) 68

device driver 49

device nodes 51

device_blocked attribute (SCSI device) 68

dumped_frames attribute 60

error_frames attribute 60

failed attribute 59

failed attribute (channel) 62

failed attribute (port) 64, 65

failed attribute (SCSI device) 68, 70

fcp_control_requests attribute 60

fcp_input_megabytes attribute 60

fcp_input_requests attribute 60

fcp_lun attribute 67

zfcp (continued)
fcp_lun attribute (SCSI device) 68

fcp_output_megabytes attribute 60

fcp_output_requests attribute 60

hba_id attribute 67

hba_id attribute (SCSI device) 68

in_recovery attribute 59

in_recovery attribute (channel) 62

in_recovery attribute (port) 64, 65

in_recovery attribute (SCSI device) 68, 70

invalid_crc_count attribute 60

invalid_tx_word_count attribute 60

iocounterbits attribute 68

iodone_cnt attribute (SCSI device) 68

ioerr_cnt attribute (SCSI device) 68

iorequest_cnt attribute (SCSI device) 68

kernel configuration menu options 54

kernel module 54

lic_version attribute 59

link_failure_count attribute 60

lip_count attribute 60

loss_of_signal_count attribute 60

loss_of_sync_count attribute 60

major/minor 70

maxframe_siz attribute 59

model attribute (SCSI device) 68

node_name attribute 59

node_name attribute (port) 64

nos_count attribute 60

online attribute 58, 59

peer_d_id attribute 59

peer_wwnn attribute 59

peer_wwpn attribute 59

permanent_port_name attribute 59, 61

physical_s_id attribute 61

port_add attribute 62

port_id attribute 59

port_id attribute (port) 64

port_name attribute 59

port_name attribute (port) 64

port_remove attribute 63

port_state attribute (port) 64

port_type attribute 59

prim_seq_protocol_err_count attribute 60

queue_depth attribute (SCSI device) 68

queue_type attribute (SCSI device) 68

rescan attribute (SCSI device) 68

reset_statistics attribute 59

rev attribute (SCSI device) 68

roles attribute (port) 64

rx_frames attribute 60

rx_words attribute 60

s_id attribute 61

scsi_host_no attribute 66

scsi_id attribute 66

scsi_level attribute (SCSI device) 68

scsi_lun attribute 66

scsi_target_id attribute (port) 64

seconds_since_last_reset attribute 59

serial_number attribute 59

speed attribute 59

402 Device Drivers, Features, and Commands - November, 2006

zfcp (continued)
state attribute (SCSI device) 68

supported_classes attribute 59

supported_classes attribute (port) 64

supported_speeds attribute 59

tgid_bind_type attribute 59

timeout attribute (SCSI device) 68

tx_frames attribute 59

tx_words attribute 60

type attribute (SCSI device) 68

unit_add attribute 65

unit_remove attribute 71

vendor attribute (SCSI device) 68

version attribute 58

wwpn attribute 61, 67

wwpn attribute (SCSI device) 68

zfcp HBA API 51

zfcp_hbaapi
kernel module 54

zfcp_hbaapi.maxpolled=, kernel parameter 55

zfcp_hbaapi.maxshared=, kernel parameter 55

zfcp_hbaapi.minor=, kernel parameter 55

zfcp.device=, kernel parameter 54

zipl
and kernel parameters 335

base functions 330

configuration file 343

Linux command 330

menu configurations 344

parameters 340

ZIPLCONF, environment variable 343

zSeries Application Programming Interfaces 322

Index 403

404 Device Drivers, Features, and Commands - November, 2006

Readers’ Comments — We’d Like to Hear from You

Linux on System z

Device Drivers, Features, and Commands

November, 2006

Linux Kernel 2.6 - October 2005 stream

 Publication No. SC33-8289-02

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC33-8289-02

SC33-8289-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH

Information Development

Department 3248

Schoenaicher Strasse 220

71032 Boeblingen

Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC33-8289-02

	Contents
	Summary of changes
	Edition 3 changes
	Edition 2 changes
	Updates for the October 2005 stream

	About this document
	How this document is organized
	Who should read this document
	Assumptions

	Distribution specific information
	Conventions used in this book
	Terminology
	sysfs
	Hexadecimal numbers
	Highlighting
	Understanding syntax diagrams

	Finding IBM books

	Part 1. General concepts
	Chapter 1. How devices are accessed by Linux
	Device nodes and major/minor numbers
	Creating device nodes
	Device nodes provided by udev

	Network interfaces
	Interface names
	Matching devices with the corresponding interfaces
	Main steps for setting up a network interface

	Chapter 2. Devices in sysfs
	Device categories
	Devices and device attributes
	Device views in sysfs
	Device driver view
	Device category view
	Device view
	Channel subsystem view
	Subchannel attributes

	Channel path measurement
	Examples

	CHPID information
	Setting a CHPID logically online or offline
	Examples

	CCW hotplug events

	Chapter 3. S/390 hypervisor file system
	Building a kernel with the S/390 hypervisor file system
	Directory structure
	Setting up the S/390 hypervisor file system
	Working with the S/390 hypervisor file system
	Defining access rights
	Updating the CPU information

	Part 2. Storage device drivers
	Chapter 4. DASD device driver
	Features
	What you should know about DASD
	The IBM label partitioning scheme
	DASD partitions

	System z compatible disk layout
	Volume label
	VTOC

	Linux disk layout
	CMS disk layout
	DASD naming scheme
	Creating device nodes
	Assuring that a device node exists for extended error reporting
	Example:

	Examples for udev-created DASD device nodes
	Accessing DASD by bus-ID
	Example

	Accessing DASD by VOLSER
	Examples

	Further information

	Building a kernel with the DASD device driver
	Setting up the DASD device driver
	Kernel parameters
	Example

	Module parameters
	Example

	Working with the DASD device driver
	Preparing an ECKD-type DASD for use
	Preparing an FBA-type DASD for use
	Accessing DASD by force
	Enabling DIAG calls to access DASDs
	Example

	Working with extended error reporting for ECKD
	Switching extended error reporting on and off
	Displaying DASD information
	Example

	Setting a DASD online or offline
	Examples
	Dynamic attach and detach

	Chapter 5. SCSI-over-Fibre Channel device driver
	Features
	What you should know about zfcp
	sysfs structures for FCP channels and SCSI devices
	SCSI device nodes
	Partitioning a SCSI device
	Example

	zfcp HBA API (FC-HBA) support
	Overview of zfcp HBA API support setup

	Discovering SAN ports and LUNs with the san_disc command
	FCP LUN access control
	N_Port ID Virtualization for FCP channels
	Further information

	Building a kernel with the zfcp device driver
	Setting up the zfcp device driver
	Device driver kernel parameters
	Example

	zfcp HBA API kernel parameters
	Example

	zfcp HBA API module parameters
	Installing the zfcp HBA API library
	Ensuring that the required device node exists for the HBA API support
	Example:

	Working with the zfcp device driver
	Displaying the device driver version
	Setting an FCP channel online or offline
	Examples

	Displaying adapter information
	Examples

	Finding out if NPIV is in use
	Example

	Recovering a failed FCP channel
	Example

	Configuring and removing ports
	Example

	Displaying port information
	Examples

	Recovering a failed port
	Example

	Configuring SCSI devices
	Example

	Mapping the representations of a SCSI device in sysfs
	Example

	Displaying information on SCSI devices
	Examples

	Finding the major and minor numbers for a device
	Example

	Recovering a failed SCSI device
	Example

	Removing SCSI devices
	Example

	Scenario
	API provided by the zfcp HBA API support
	Functions provided
	Environment variables

	Chapter 6. Channel-attached tape device driver
	Features
	What you should know about channel-attached tape devices
	Tape device modes and logical devices
	Tape naming scheme
	Example

	Creating device nodes
	Example: Defining standard tape nodes

	Examples for udev-created tape device nodes
	Accessing tapes by bus-ID
	Example

	Using the mt command

	Building a kernel with the tape device driver
	Setting up the tape device driver
	Loading the tape device driver

	Working with the tape device driver
	Setting a tape device online or offline
	Examples

	Displaying tape information
	Example

	Enabling compression
	Example

	Loading and unloading tapes
	Example

	Scenario: Using a tape block device

	Chapter 7. XPRAM device driver
	XPRAM features
	What you should know about XPRAM
	XPRAM partitions and device nodes
	Creating device nodes
	Example: Defining standard XPRAM nodes

	XPRAM use for diagnosis
	Reusing XPRAM partitions

	Building a kernel with the XPRAM device driver
	Setting up the XPRAM device driver
	Kernel parameters
	Examples

	Module parameters
	Examples

	Part 3. Network device drivers
	Chapter 8. qeth device driver for OSA-Express (QDIO) and HiperSockets
	Features
	What you should know about the qeth device driver
	qeth group devices
	Overview of the steps for setting up a qeth group device
	qeth interface names and device directories
	MAC address handling for IPv4
	IP addresses
	LLC headers
	ARP
	Faking LLC headers

	MAC address handling for IPv4 with the layer2 option
	Support for IP Version 6 (IPv6)
	Further information

	Building a kernel with the qeth device driver
	Setting up the qeth device driver
	Loading the qeth device driver modules

	Working with the qeth device driver
	Creating a qeth group device
	Example

	Assigning a port name
	Example

	Setting up a Linux router
	Example

	Setting the checksumming method
	Examples

	Providing Large Send
	Examples

	Using priority queueing
	Example

	Setting the Token Ring MAC address format
	Example

	Setting the scope of Token Ring broadcasts
	Example

	Faking broadcast capability
	Example

	Setting the layer2 attribute
	Adding additional hardware-header space
	Example

	Specifying the number of inbound buffers
	Example

	Specifying the relative port number
	Example

	Finding out the type of your network adapter
	Example

	Setting a device online or offline
	Example

	Finding out the interface name of a qeth group device
	Example

	Finding out the bus ID of a qeth interface
	Example

	Activating an interface
	Examples
	Confirming that an IP address has been set
	Duplicate IP addresses

	Deactivating an interface
	Example

	Taking over IP addresses
	Stage 1: Enabling a qeth group device for IP takeover
	Stage 2: Activating and deactivating IP addresses for takeover
	Stage 3: Issuing a command to take over the address

	Configuring a device for proxy ARP
	Example

	Configuring a device for virtual IP address (VIPA)
	Recovering a device
	Example

	Scenario: VIPA – minimize outage due to adapter failure
	Standard VIPA
	Purpose
	Usage
	Example

	Source VIPA
	Purpose
	Usage
	Restrictions
	Example

	Source VIPA 2
	Purpose
	Usage
	Restrictions
	Example

	Scenario: Virtual LAN (VLAN) support
	Introduction to VLANs
	Configuring VLAN devices
	Examples
	Further information

	HiperSockets Network Concentrator
	Design
	Setup
	Availability setups
	Hints
	Restrictions
	Examples

	Setting up for DHCP with IPv4
	Required options for using DHCP on Linux for System z

	Setting up for tcpdump with IPv4
	Setting up a Linux guest as a z/VM guest LAN sniffer

	Chapter 9. LAN channel station device driver
	Features
	What you should know about LCS
	LCS group devices
	LCS interface names

	Building a kernel with the LCS device driver
	Setting up the LCS device driver
	Working with the LCS device driver
	Creating an LCS group device
	Example

	Specifying a timeout for LCS LAN commands
	Example

	Setting a device online or offline
	Example

	Activating and deactivating an interface
	Examples

	Chapter 10. CTCMPC device driver
	Features
	What you should know about CTCMPC
	CTCMPC group devices
	CTCMPC interfaces

	Building a kernel with the CTCMPC device driver
	Setting up the CTCMPC device driver
	Working with the CTCMPC device driver
	Creating a CTCMPC group device
	Example

	Setting a device online or offline
	Example

	Part 4. z/VM virtual server integration
	Chapter 11. z/VM DCSS device driver
	Features
	What you should know about DCSS
	DCSS naming scheme
	Creating device nodes
	Example: Defining standard DCSS nodes

	Further information

	Building a kernel with the DCSS device driver
	Setting up the DCSS device driver
	Kernel parameters
	Example

	Module parameters
	Example

	Working with the DCSS device driver
	Adding a DCSS
	Example

	Finding the minor number for a DCSS
	Example

	Setting the access mode
	Example

	Saving an updated DCSS
	Example

	Removing a DCSS
	Example

	Changing the contents of a DCSS

	Chapter 12. z/VM *MONITOR record reader device driver
	Features
	What you should know about the z/VM *MONITOR record device driver
	Further information

	Building a kernel with the z/VM *MONITOR record device driver
	Setting up the z/VM *MONITOR record reader device driver
	Providing the required USER DIRECT entries for your z/VM guest
	Making the DCSS addressable for your Linux guest
	Defining the guest storage with storage gaps
	Extending the Linux address range

	Specifying the monitor DCSS name
	Kernel parameter
	Module parameter

	Assuring that the required device node exists
	Example:

	Working with the z/VM *MONITOR record device driver
	Opening and closing the character device
	Reading monitor records

	Chapter 13. Linux monitor stream support for z/VM
	Building a kernel that is enabled for monitoring
	Setting up the monitor stream support
	Loading data gathering modules
	Enabling your VM guest for data gathering

	Working with the monitor stream support
	Switching on or off the monitoring support
	Activating or deactivating individual data gathering modules
	Example

	Setting the sampling interval
	Example

	APPLDATA monitor record layout
	Programming interfaces

	Chapter 14. Monitor stream application support
	Features
	What you should know about monitor stream application support
	Further information

	Building a kernel with monitor stream application support
	Setting up the monitor stream application support
	Kernel parameters
	Module parameters
	Example

	Setting up the user

	Working with the monitor stream application support
	Writing data
	Using the monwrite_hdr structure
	Stopping data writing

	Chapter 15. z/VM recording device driver
	Features
	What you should know about the z/VM recording device driver
	z/VM recording device nodes
	Creating device nodes for the z/VM recording devices
	Reading records
	Further information

	Building a kernel with the z/VM recording device driver
	Setting up the z/VM recording device driver
	Authorizing the Linux guest
	Loading the z/VM recording device driver

	Working with z/VM recording devices
	Starting and stopping record collection
	Examples

	Purging existing records
	Examples

	Querying the VM recording status
	Example

	Opening and closing devices

	Scenario: Connecting to the *ACCOUNT service.

	Chapter 16. Watchdog device driver
	Features
	Building a kernel with the watchdog device driver
	What you should know about the watchdog device driver
	Setting up the watchdog device driver
	Kernel parameters
	Examples

	Module parameters
	Example

	Assuring that a device node exists

	External programming interfaces

	Chapter 17. z/VM CP interface device driver
	What you should know about the z/VM CP interface
	Differences between vmcp and a 3270 console
	Creating device nodes

	Building a kernel with the z/VM CP interface
	Setting up the z/VM CP interface

	Chapter 18. Cooperative memory management
	Building a kernel with cooperative memory management
	Setting up cooperative memory management
	Kernel parameters
	Loading the cooperative memory management module
	Example

	Further information

	Working with cooperative memory management

	Part 5. Generic features
	Chapter 19. Console device drivers
	Console features
	What you should know about console devices
	Console modes
	Console device names
	Using the hardware console
	Magic sysrequest function
	Console special characters on line-mode terminals
	VM console line edit characters
	Example

	Using VInput
	Priority and non-priority commands
	Case conversion
	Using the escape character
	Using the end of line character

	Console 3270 emulation
	Further information

	Building a kernel with the console device drivers
	Setting up the console device drivers
	Console kernel parameter syntax
	conmode parameter
	condev parameter
	console parameter

	Assuring device nodes
	Setting up a line-mode terminal
	Setting up a full-screen mode terminal
	Enabling a terminal for user log-ins
	Example

	Setting a TTY device online or offline
	Examples

	Chapter 20. Generic cryptographic device driver
	Features
	Supported devices
	Supported facilities

	Elements of zcrypt
	Software components
	Dependencies
	Hardware restrictions
	Performance considerations
	Polling thread
	Load balancing

	Further information

	Building a kernel with the zcrypt device driver
	Setting up the zcrypt device driver
	Kernel parameters
	Example

	Module parameters
	Monolithic module parameters
	Discrete module parameters

	The libica library
	The openCryptoki library
	The sysfs interface
	Debugging messages
	Setting up for the 31-bit compatibility mode
	Assuring that you have a device node
	Using udev

	Checking hardware status, activating and deactivating devices under zcrypt
	Examples

	External programming interfaces
	Outline of a decryption program
	The ica_rsa_modexpo structure
	The ica_rsa_modexpo_crt structure
	Querying the hardware status
	Returns from ioctl

	Chapter 21. Channel measurement facility
	Features
	Building a kernel with the channel measurement facility
	Setting up the channel measurement facility
	Working with the channel measurement facility
	Enabling, resetting, and switching off data collection
	Example

	Reading data
	Example

	Chapter 22. Control program identification
	Building a kernel with CPI support
	Assigning a name to your Linux instance
	Example

	Chapter 23. OSA-Express SNMP subagent support
	What you need to know about osasnmpd
	Setting up osasnmpd
	Downloading the IBM OSA-Express MIB
	Configuring access control

	Working with the osasnmpd subagent
	Starting the osasnmpd subagent
	Checking the log file
	Issuing queries
	Stopping osasnmpd

	Chapter 24. IPL parameter interface
	Working with the IPL parameter interface
	Example
	Setting the IPL device online

	Chapter 25. Data execution protection for user processes
	Features
	What you should know about the data execution protection feature
	Building a kernel with the data execution protection feature
	Setting up the data execution protection feature
	Working with the data execution protection feature
	Enabling and disabling stack execution protection

	Chapter 26. Other features kernel builders should know about
	Dependencies between options
	General architecture-specific options
	Device driver-related options

	Part 6. Commands and kernel parameters
	Chapter 27. Useful Linux commands
	Generic command options
	chccwdev - Set a CCW device online
	dasdfmt - Format a DASD
	dasdview - Display DASD structure
	fdasd – Partition a DASD
	lscss - List subchannels
	lsdasd - List DASD devices
	lsqeth - List qeth based network devices
	lstape - List tape devices
	lszfcp - List zfcp devices
	osasnmpd – Start OSA-Express SNMP subagent
	qetharp - Query and purge OSA and HiperSockets ARP data
	qethconf - Configure qeth devices
	san_disc - Discover ports and LUNs in Fibre Channel SANs
	scsi_logging_level - Set and get the SCSI logging level
	snipl – Simple network IPL (Linux image control for LPAR and VM)
	tape390_display - display messages on tape devices and load tapes
	tunedasd - Adjust DASD performance
	vmcp - Send CP commands to the VM hypervisor
	zipl – zSeries initial program loader

	Chapter 28. Selected kernel parameters
	additional_cpus
	cio_ignore
	cio_msg
	ipldelay
	maxcpus
	mem
	noinitrd
	possible_cpus
	ramdisk_size
	ro
	root
	vmhalt
	vmpoff

	Appendix A. Booting Linux
	IPL and booting
	Control point and boot medium
	Menu configurations
	Boot data
	Kernel image
	Boot loader code
	Kernel parameters
	Initial RAM disk image

	Booting a z/VM Linux guest
	Using tape
	Using DASD
	Example for a DASD menu configuration on VM

	Using SCSI
	Using the VM reader

	Booting Linux in LPAR mode
	Booting from DASD, tape, or SCSI
	Example for a DASD menu configuration (LPAR)

	Loading Linux from a CD-ROM or from an FTP server

	Appendix B. Linux diagnose code use
	Appendix C. Avoiding common pitfalls
	Ensuring correct channel path status
	Determining channel path usage
	Configuring LPAR I/O devices

	Glossary
	Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

