
Linux on System z

libica Programmer's Reference
Version 2.4

SC34-2602-06

���

Linux on System z

libica Programmer's Reference
Version 2.4

SC34-2602-06

���

Note
Before using this document, be sure to read the information in “Notices” on page 167.

Edition notice

This edition applies to the libica token version 2.4 for openCryptoki version 3.1 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2009, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|

Contents

Summary of changes v
Updates for libica version 2.4 v
Updates for libica version 2.3.0 v
Updates for libica version 2.2.0 v

About this document vii
How this document is organized vii
Who should read this document vii

Assumptions viii
Distribution independence viii
Other Linux on System z publications viii

Chapter 1. General information about
libica 1
libica examples 1
System z cryptographic hardware support 1
Check the prerequisites: cryptographic adapter and
device driver 2

Loading the Linux zcrypt device driver 2
Checking the cryptographic adapter availability . 2

Chapter 2. Installing and using libica
version 2.4 5
Installing libica version 2.4 from the libica RPM . . 5
Installing libica version 2.4 from the source package 5
Using libica version 2.4 6
libica version 1, version 2, version 2.1.0, and up to
version 2.4 coexistence 6

Chapter 3. libica version 2.4 application
programming interfaces 7
Open and close adapter functions 9

ica_open_adapter 10
ica_close_adapter 10

Secure hash operations 10
ica_sha1 11
ica_sha224 12
ica_sha256 13
ica_sha384 14
ica_sha512 15

Pseudo random number generation function . . . 16
ica_random_number_generate 16

RSA key generation functions 17
ica_rsa_key_generate_mod_expo 17
ica_rsa_key_generate_crt 17

RSA encrypt and decrypt operations 18
ica_rsa_mod_expo 18
ica_rsa_crt 19

DES functions 20
ica_des_cbc 20
ica_des_cbc_cs 21
ica_des_cfb 22
ica_des_cmac 23
ica_des_cmac_intermediate 24

ica_des_cmac_last 25
ica_des_ctr. 26
ica_des_ctrlist. 28
ica_des_ecb 29
ica_des_ofb 29
Compatibility with earlier versions 30

TDES/3DES functions 31
ica_3des_cbc 32
ica_3des_cbc_cs 32
ica_3des_cfb 34
ica_3des_cmac 35
ica_3des_cmac_intermediate 36
ica_3des_cmac_last 37
ica_3des_ctr 38
ica_3des_ctrlist 39
ica_3des_ecb 40
ica_3des_ofb 41
Compatibility with earlier versions 42

AES functions 42
ica_aes_cbc 43
ica_aes_cbc_cs 44
ica_aes_ccm 45
ica_aes_cfb 47
ica_aes_cmac 48
ica_aes_cmac_intermediate 49
ica_aes_cmac_last 50
ica_aes_ctr 51
ica_aes_ctrlist 52
ica_aes_ecb 53
ica_aes_gcm 54
ica_aes_ofb 56
ica_aes_xts. 57
Compatibility with earlier versions 58

Information retrieval function 59
ica_get_version 59
ica_get_functionlist 59

Chapter 4. Accessing libica functions
through the PKCS #11 (openCryptoki) . 61
openCryptoki overview 61
Functions provided by openCryptoki with the ica
token 64
Installing openCryptoki 64

Installing from the RPM 64
Installing from the source package. 64

Configuring openCryptoki 65
Adjusting the openCryptoki configuration file . . 65
Configuring the ica token. 68
Initializing the token 68
How to recognize the ica token 69

Using openCryptoki 70
Supported mechanisms for the ica token. . . . 70

© Copyright IBM Corp. 2009, 2014 iii

||

||
||

||

||
||
||
||
||
||
||
||

||

Chapter 5. libica constants, type
definitions, data structures, and return
codes 73
libica constants 73
Type definitions 73
Data structures 74
Return codes 76

Chapter 6. libica tools 77
icainfo - Show available libica functions 77
icastats - Show use of libica functions 78

Chapter 7. Examples 81
DES with ECB mode example 81
SHA-256 example 83
Pseudo random number generation example . . . 89
Key generation example 90
RSA example 96
DES with CTR mode example 101

Triple DES with CBC mode example 104
AES with CFB mode example 107
AES with CTR mode example 119
AES with OFB mode example 129
AES with XTS mode example 137
CMAC example 147
Makefile example 150
Common Public License - V1.0 151
openCryptoki code samples 154

Coding samples (C) 154

Accessibility 165

Notices 167
Trademarks 168

Glossary 169

Index 171

iv libica Programmer's Reference

||
||

Summary of changes

This revision reflects changes to the Development stream for libica version 2.4.

Updates for libica version 2.4
Edition SC34-2602-06

New information

v An enhanced version of the icastats utility collects statistical data per users, not
per system. The data is persistently available beyond the context of a single
process. See “icastats - Show use of libica functions” on page 78.

v An improved version of the icainfo function shows whether the supported
cryptographic algorithms are implemented by hardware, software or both. See
“icainfo - Show available libica functions” on page 77.

Updates for libica version 2.3.0
There are two editions of this publication for libica version 2.3.0.

Edition SC34-2602-05

New information

v An example of the openCryptoki configuration file has been added, see
“Adjusting the openCryptoki configuration file” on page 65

v New cryptographic mechanisms are implemented for the ica token as of
openCryptoki version 3.0, see “Supported mechanisms for the ica token” on
page 70

Edition SC34-2602-04

New information

v New API added. See “ica_get_functionlist” on page 59.
v New defines and structures have been added. See Chapter 5, “libica constants,

type definitions, data structures, and return codes,” on page 73

Updates for libica version 2.2.0
New information

v Cryptographic hardware support with openCryptoki
v New APIs have been added:

– ica_3des_cbc_cs
– ica_3des_cmac
– ica_3des_cmac_intermediate
– ica_3des_cmac_last
– ica_aes_cbc_cs
– ica_aes_ccm
– ica_aes_cmac_intermediate
– ica_aes_cmac_last

© Copyright IBM Corp. 2009, 2014 v

|

|

|

|
|
|

|
|
|

|

– ica_aes_gcm
– ica_des_cbc_cs
– ica_des_cmac
– ica_des_cmac_intermediate
– ica_des_cmac_last

v New commands have been added. See Chapter 6, “libica tools,” on page 77.

Changed information

v Minor changes and corrections have been made to some of the APIs.

Deleted information

v Some obsolete examples have been removed.

vi libica Programmer's Reference

About this document

This document describes how to install and use version 2.4 of the Library for IBM®

Cryptographic Architecture (libica).

libica version 2.4 is a library of cryptographic functions used to write
cryptographic applications on IBM System z®, both with and without
cryptographic hardware.

You can find the latest version of this document on the developerWorks® website
at:

www.ibm.com/developerworks/linux/linux390/documentation_dev.html

and on the IBM Knowledge Center at:

ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

How this document is organized
The information is divided into topics that describe installing, configuring and
using libica together with descriptions of the functions and example programs.

Chapter 1, “General information about libica,” on page 1 has general information
about the current libica version.

Chapter 2, “Installing and using libica version 2.4,” on page 5 contains installation
and set up instructions, and coexistence information for the current libica version.

Chapter 3, “libica version 2.4 application programming interfaces,” on page 7
describes the libica APIs.

Chapter 4, “Accessing libica functions through the PKCS #11 (openCryptoki),” on
page 61 describes how the cryptographic functions provided by libica can be
accessed using the PKCS #11 API implemented by openCryptoki.

Chapter 5, “libica constants, type definitions, data structures, and return codes,” on
page 73 lists the defines, typedefs, structs, and return codes for libica.

Chapter 6, “libica tools,” on page 77 contains tools to investigate the capabilities of
your cryptographic hardware and how these capabilities are used by applications
that use libica.

Chapter 7, “Examples,” on page 81 is a set of programming examples that use the
libica APIs.

Who should read this document
This document is intended for C programmers that want to access IBM System z
hardware support for cryptographic methods.

In particular, this document addresses programmers who write hardware-specific
plug-ins for cryptographic libraries such as openssl and openCryptoki.

© Copyright IBM Corp. 2009, 2014 vii

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

Assumptions
The following general assumptions are made about your background knowledge:
v You have an understanding of basic computer architecture, operating systems,

and programs.
v You have an understanding of Linux and IBM System z terminology.
v You have knowledge about cryptographic applications and solution design, as

well as the required cryptographic functions and algorithms.

Distribution independence
This publication does not provide information that is specific to a particular Linux
distribution.

The tools it describes are distribution independent.

Other Linux on System z publications
You can find Linux on System z publications on developerWorks and on the IBM
Knowledge Center.

These publications are available on developerWorks at

www.ibm.com/developerworks/linux/linux390/documentation_dev.html
v Device Drivers, Features, and Commands, SC33-8411
v Using the Dump Tools, SC33-8412
v How to Improve Performance with PAV, SC33-8414
v How to use FC-attached SCSI devices with Linux on System z, SC33-8413
v How to use Execute-in-Place Technology with Linux on z/VM®, SC34-2594
v How to Set up a Terminal Server Environment on z/VM, SC34-2596
v Kernel Messages, SC34-2599
v libica Programmer's Reference, SC34-2602
v Secure Key Solution with the Common Cryptographic Architecture Application

Programmer's Guide, SC33-8294
v Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
v Linux on System z Troubleshooting, SC34-2612
v Linux Health Checker User's Guide, SC34-2609

These publications are available on the IBM Knowledge Center at

ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html
v libica Programmer's Reference, SC34-2602
v Secure Key Solution with the Common Cryptographic Architecture Application

Programmer's Guide, SC33-8294
v Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
v Linux Health Checker User's Guide, SC34-2609
v Linux on System z Troubleshooting, SC34-2612
v Kernel Messages, SC34-2599

viii libica Programmer's Reference

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

Chapter 1. General information about libica

The libica library provides hardware support (and software fallbacks if the
hardware is not available) for cryptographic functions. Version numbering libica
2.4 is used throughout this document, which is valid for all available libica
versions 2.4.x., because the changes in versions later than 2.4.0 are not relevant for
user documentation.

The cryptographic adapters are used for asymmetric encryption and decryption.
The CPACF instructions are used for symmetric encryption and decryption, pseudo
random number generation, message authentication, and Secure Hashing. For
some of these functions, if the hardware is not available or failed, libica uses the
low-level cryptographic functions of OpenSSL, if available.

This product includes software that is developed by the OpenSSL Project for use in
the OpenSSL Toolkit (http://www.openssl.org). This product includes
cryptographic software that is written by Eric Young (eay@cryptsoft.com).

The libica library is part of the openCryptoki project in SourceForge. It is primarily
used by OpenSSL through the IBM OpenSSL CA engine or by openCryptoki
through the ica_s390 token. A higher level of security can be achieved by using it
through the PKCS11 API implemented by openCryptoki.

The libica library works only on IBM System z hardware.

IBM reserves the right to change or modify this API at any time. However, an
effort is made to keep the API compatible with later versions within a major
release.

You can use the icastats utility to obtain statistics about cryptographic processes.
The icainfo command shows whether libica is using cryptographic hardware or
software fallback for each specific libica function. See “icastats - Show use of libica
functions” on page 78 and “icainfo - Show available libica functions” on page 77
for more information.

libica examples
There is a list of sample programs in the libica source for each API, as well as
instructions about how to use the functions.

You can find the open source version of libica at:
http://sourceforge.net/projects/opencryptoki/files/libica

Sample programs area also in Chapter 7, “Examples,” on page 81.

System z cryptographic hardware support
The following lists different types of cryptographic hardware support that might
be available in a System z server.

© Copyright IBM Corp. 2009, 2014 1

|
|
|
|
|

|
|
|
|
|

http://www.openssl.org/
http://sourceforge.net/projects/opencryptoki/files/libica

IBM CP Assist for Cryptographic Function (CPACF):

DES, TDES, AES128, AES192, AES256, SHA-1, SHA224, SHA256, SHA384, SHA512,
PRNG

Cryptographic cards:

Accelerator: RSA (CRT, MOD-EXPO) 1024, 2048 and 4096 bit key size

CCA Co-processor: RSA (CRT, MOD-EXPO) 1024, 2048 and 4096 bit key size, RNG

Check the prerequisites: cryptographic adapter and device driver

To exploit hardware support of asymmetric cryptographic operations, you need a
loaded device driver and an installed IBM cryptographic adapter.

Loading the Linux zcrypt device driver
You also need an installed Linux kernel that includes the zcrypt device driver.

To check, enter the command:

$ lszcrypt
card06: CEX3A

If the following error message is displayed, load the zcrypt device driver main
module:

error - cryptographic device driver zcrypt is not loaded!

The zcrypt device driver is no longer monolithic as in older distributions where
the module was called z90crypt. The device driver is now loaded as separate
modules, where the main module is called ap. There is, however, an alias name
z90crypt that links to the ap main module.

To load the device driver ap main module, use the following command:

modprobe ap

See your Linux distribution documentation for how to load the module
persistently.

Checking the cryptographic adapter availability
Check whether you have plugged in and enabled your IBM cryptographic adapter
and validate your model and type configuration (accelerator or coprocessor). Use
the lszcrypt command to retrieve basic status information.

To check, enter the command:

$ lszcrypt
card06: CEX3A

Use the chzcrypt command to enable (online state) or disable (offline state) the
IBM crypto adapter:

2 libica Programmer's Reference

|

|

|
|

|

|

|

|
|
||

|
|

|

|
|
|
|

|

|

|
|

|

|
|
|

|

|
|
||

|
|

$ chzcrypt -e 0x06 // set card06 online
$ chzcrypt -d 0x06 // set card06 offline

For more information about the IBM crypto adapter with Linux on System z, see
Device Drivers, Features, and Commands, SC33-8411 available at
www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Chapter 1. General information 3

|
|
||

|
|

|

|

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

4 libica Programmer's Reference

Chapter 2. Installing and using libica version 2.4

View the contained subtopics for information about where to obtain the libica
version 2.4 library (any 2.4.x version), and how to install it.

Installing libica version 2.4 from the libica RPM
To make use of the libica hardware support of cryptographic functions, it is
necessary to install the libica version 2.4 package. Obtain the current libica version
2.4.x from the SourceForge website.

The website is at:
http://sourceforge.net/projects/opencryptoki/files/libica

Before you begin

Follow the installation instructions on the mentioned website to download the
libica version 2.4 package and then follow the instructions in this topic or in topic
“Installing libica version 2.4 from the source package” to install libica version 2.4.

Procedure

The libica library is available as an RPM named libica-<version>. See your Linux
distribution documentation for how to install an RPM. To check whether the libica
library is installed, issue, for example:

rpm -qa | grep -i libica

Installing libica version 2.4 from the source package
If you prefer you can install the source package.

Procedure
1. Download the latest libica version 2.4 sources from:

http://sourceforge.net/projects/opencryptoki/files/libica

2. Extract the tar archive. There should be a new directory named libica-2.x.x.
3. Change to that directory and execute the following scripts and commands:

$./bootstrap
$./configure
$ make
$ make install

where:

bootstrap
Initial setup, basic configurations

configure
Check configurations and build the Makefile

make Compile and link

© Copyright IBM Corp. 2009, 2014 5

http://sourceforge.net/projects/opencryptoki/files/libica
http://sourceforge.net/projects/opencryptoki/files/libica

make install
Install the libraries

Using libica version 2.4
The function prototypes are provided in the header file, include/ica_api.h.

Applications using these functions must link libica and libcrypto. The libcrypto
library is available from the OpenSSL package. You must have OpenSSL in order to
run libica version 2.4 programs.

libica version 1, version 2, version 2.1.0, and up to version 2.4
coexistence

Some of the libica version 1 APIs are available in libica version 2, libica version
2.1.0, up to libica version 2.4.

Some of them, such as those APIs that work with an environment other than Linux
on IBM System z, were removed and are not present in libica version 2 or later
versions. If your application program has calls to libica version 1 APIs, check to
see whether these APIs are available in libica version 2.4. If they are, these API
calls still work. However, we suggest that you convert your application to use the
equivalent libica version 2.4 functions. See Chapter 3, “libica version 2.4 application
programming interfaces,” on page 7.

libica key generation is restricted to the limits imposed by the OpenSSL
implementation. Thus, the value of a public exponent passed to libica cannot be
greater than the maximum value that would fit in an unsigned long integer.

6 libica Programmer's Reference

|
|

|

|

Chapter 3. libica version 2.4 application programming
interfaces

A list of application programming interfaces (APIs) for libica version 2.4.

Table 1 lists the APIs for libica version 2.4.

Table 1. libica version 2.4 APIs

Function libica version 2.4 API name

Key
length in

bits

Supported on CPACF
function

Software
fallbackz9® z10™ z196

Open and close adapter functions

Open adapter handle “ica_open_adapter” on page 10 N/A Yes Yes Yes No N/A

Close adapter handle “ica_close_adapter” on page 10 N/A Yes Yes Yes No N/A

Secure hash operations

Secure hash using the
SHA-1 algorithm.

“ica_sha1” on page 11 N/A Yes Yes Yes Yes Yes

Secure hash using the
SHA-224 algorithm.

“ica_sha224” on page 12 N/A No Yes Yes Yes Yes

Secure hash using the
SHA-256 algorithm.

“ica_sha256” on page 13 N/A Yes Yes Yes Yes Yes

Secure hash using the
SHA-384 algorithm.

“ica_sha384” on page 14 N/A No Yes Yes Yes Yes

Secure hash using the
SHA-512 algorithm.

“ica_sha512” on page 15 N/A No Yes Yes Yes Yes

Random number generation

Generate a pseudo
random number.

“ica_random_number_generate”
on page 16

N/A Yes Yes Yes Yes Yes

RSA key generation functions

Generate RSA keys in
modulus/exponent
format.

“ica_rsa_key_generate_mod_expo”
on page 17

N/A Yes Yes Yes No Software
only

Generate RSA keys in
CRT format.

“ica_rsa_key_generate_crt” on
page 17

N/A Yes Yes Yes No Software
only

RSA encryption and decryption operations

RSA encryption and
decryption operation
using a key in
modulus/exponent
format.

“ica_rsa_mod_expo” on page 18 Depending
on

supported
key size of

Crypto
Express
feature

Yes Yes Yes No Key length
maximum

4 K bits

RSA encryption and
decryption operation
using a key in
Chinese-Remainder
Theorem (CRT) format.

“ica_rsa_crt” on page 19 Depending
on

supported
key size of

Crypto
Express
feature

Yes Yes Yes No Key length
maximum

4 K bits

© Copyright IBM Corp. 2009, 2014 7

Table 1. libica version 2.4 APIs (continued)

Function libica version 2.4 API name

Key
length in

bits

Supported on CPACF
function

Software
fallbackz9® z10™ z196

DES functions

DES with Cipher Block
Chaining mode

“ica_des_cbc” on page 20 56 Yes Yes Yes Yes Yes

DES with CBC-Cipher
text stealing mode

“ica_des_cbc_cs” on page 21 56 Yes Yes Yes Yes Yes

DES with Cipher
Feedback mode

“ica_des_cfb” on page 22 56 No No Yes Yes No

DES with CMAC mode “ica_des_cmac” on page 23 56 No No Yes Yes No

DES with CMAC mode
process intermediate
chunks

“ica_des_cmac_intermediate” on
page 24

56 No No Yes Yes No

DES with CMAC mode
process last chunk

“ica_des_cmac_last” on page 25 56 No No Yes Yes No

DES with Counter mode “ica_des_ctr” on page 26 56 No No Yes Yes No

DES with Counter mode,
using a list of counters

“ica_des_ctrlist” on page 28 56 No No Yes Yes No

DES with Electronic
Codebook mode.

“ica_des_ecb” on page 29 56 Yes Yes Yes Yes Yes

DES with Output
Feedback mode

“ica_des_ofb” on page 29 56 No No Yes Yes No

TDES/3DES functions

TDES with Cipher Block
Chaining mode

“ica_3des_cbc” on page 32 168 Yes Yes Yes Yes Yes

TDES with CBC-Cipher
text Stealing mode

“ica_3des_cbc_cs” on page 32 168 Yes Yes Yes Yes Yes

TDES with Cipher
Feedback mode

“ica_3des_cfb” on page 34 168 No No Yes Yes No

TDES with CMAC mode “ica_3des_cmac” on page 35 168 No No Yes Yes No

TDES with CMAC mode
process intermediate
chunks

“ica_3des_cmac_intermediate” on
page 36

168 No No Yes Yes No

TDES with CMAC mode
process last chunk

“ica_3des_cmac_last” on page 37 168 No No Yes Yes No

TDES with Counter mode “ica_3des_ctr” on page 38 168 No No Yes Yes No

TDES with Counter
mode, using a list of
counters

“ica_3des_ctrlist” on page 39 168 No No Yes Yes No

TDES with Electronic
Codebook mode

“ica_3des_ecb” on page 40 168 Yes Yes Yes Yes Yes

TDES with Output
Feedback mode

“ica_3des_ofb” on page 41 168 No No Yes Yes No

AES functions

AES with Cipher Block
Chaining mode.

“ica_aes_cbc” on page 43 128, 192,
256

Yes Yes Yes Yes Yes

8 libica Programmer's Reference

Table 1. libica version 2.4 APIs (continued)

Function libica version 2.4 API name

Key
length in

bits

Supported on CPACF
function

Software
fallbackz9® z10™ z196

AES with CBC-Cipher
text stealing mode.

“ica_aes_cbc_cs” on page 44 128, 192,
256

Yes Yes Yes Yes Yes

AES with Counter with
Cipher Block Chaining -
Message Authentication
Code mode.

“ica_aes_ccm” on page 45 128, 192,
256

No No Yes Yes No

AES with Cipher
Feedback mode.

“ica_aes_cfb” on page 47 128, 192,
256

No No Yes Yes No

AES with CMAC mode “ica_aes_cmac” on page 48 128, 192,
256

No No Yes Yes No

AES with CMAC mode
process intermediate
chunks

“ica_aes_cmac_intermediate” on
page 49

128, 192,
256

No No Yes Yes No

AES with CMAC mode
process last chunk

“ica_aes_cmac_last” on page 50 128, 192,
256

No No Yes Yes No

AES with Counter mode. “ica_aes_ctr” on page 51 128, 192,
256

No No Yes Yes No

AES with Counter mode,
using a list of counters

“ica_aes_ctrlist” on page 52 128, 192,
256

No No Yes Yes No

AES with Electronic
Codebook mode.

“ica_aes_ecb” on page 53 128, 192,
256

Yes Yes Yes Yes Yes

AES with Galois /
Counter mode.

“ica_aes_gcm” on page 54 128, 192,
256

No No Yes Yes No

AES with Output
Feedback mode.

“ica_aes_ofb” on page 56 128, 192,
256

No No Yes Yes No

AES with XEX-based
Tweaked CodeBook mode
(TCB) with CipherText
Stealing (CTS).

“ica_aes_xts” on page 57 128, 256 No No Yes Yes No

Information retrieval functions

Return version
information for libica.

“ica_get_version” on page 59 N/A Yes Yes Yes No N/A

Return a list of crypto
mechanisms supported
by libica.

“ica_get_functionlist” on page 59 N/A Yes Yes Yes No N/A

Open and close adapter functions
These functions open or close the crypto adapter. It is recommended to open the
crypto adapter before using any of the libica crypto functions, and to close it after
the last usage of the libica crypto functions. However, in this version of the libica
only the RSA-related functions ica_rsa_mod_expo and ica_rsa_crt require a valid
adapter handle as input. A pointer to the value DRIVER_NOT_LOADED indicates
an invalid adapter handle. The parameter ica_adapter_handle_t is a redefine of int.

These functions are included in: include/ica_api.h.

Chapter 3. libica APIs 9

ica_open_adapter
Purpose

Opens an adapter.

Format
unsigned int ica_open_adapter(ica_adapter_handle_t *adapter_handle);

Parameters

ica_adapter_handle_t *adapter_handle
Pointer to the file descriptor for the adapter or to DRIVER_NOT_LOADED if
opening the crypto adapter failed.

Opening an adapter succeeds if a cryptographic device is accessible for reading
and writing. By default, cryptographic access must be available with the
/dev/z90crypt path name for the adapter open request to succeed. If the
environment variable LIBICA_CRYPT_DEVICE is set to a valid path name of
an accessible cryptographic device, accessing the device with that path name
takes precedence over the default path names.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_close_adapter
Purpose

Closes an adapter.

Comments

This API closes a device handle.

Format
unsigned int ica_close_adapter(ica_adapter_handle_t adapter_handle);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

Secure hash operations
These functions are included in: include/ica_api.h.

These functions perform secure hash on input data using the chosen algorithm of
SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

10 libica Programmer's Reference

SHA context structs contain information about how much of the actual work was
already performed. Also, it contains the part of the hash that is already produced.
For the user, it is only interesting in cases where the message is not hashed at
once, because the context is needed for further operations.

ica_sha1
Purpose

Performs a secure hash operation on the input data using the SHA-1 algorithm.

Format
unsigned int ica_sha1(unsigned int message_part,

unsigned int input_length,
unsigned char *input_data,
sha_context_t *sha_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-1, or KLMD-SHA-1

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

unsigned int input_length
Length in bytes of the input data to be hashed using the SHA-1 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha_context_t *sha_context
Pointer to the SHA-1 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha1 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha1. Therefore, the application must not
modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA_HASH_LENGTH. Make sure that the buffer is at
least this size.

Chapter 3. libica APIs 11

|
|

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_sha224
Purpose

Performs a secure hash operation on the input data using the SHA-224 algorithm.

Format
unsigned int ica_sha224(unsigned int message_part,

unsigned int input_length,
unsigned char *input_data,
sha256_context_t *sha256_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-256, or KLMD-SHA-256

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

unsigned int input_length
Length in bytes of the input data to be hashed using the SHA-224 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha256_context_t *sha256_context
Pointer to the SHA-256 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha224 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha224. Therefore, the application must not
modify the contents of this structure in between chained calls.

Note: Due to the algorithm used by SHA-224, a SHA-256 context must be
used.

12 libica Programmer's Reference

|
|

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA224_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_sha256
Purpose

Performs a secure hash on the input data using the SHA-256 algorithm.

Format
unsigned int ica_sha256(unsigned int message_part,

unsigned int input_length,
unsigned char *input_data,
sha256_context_t *sha256_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-256, or KLMD-SHA-256

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

unsigned int input_length
Length in bytes of the input data to be hashed using the SHA-256 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha256_context_t *sha256_context
Pointer to the SHA-256 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha256 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha256. Therefore, the application must not
modify the contents of this structure in between chained calls.

Chapter 3. libica APIs 13

|
|

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA256_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_sha384
Purpose

Performs a secure hash on the input data using the SHA-384 algorithm.

Format
unsigned int ica_sha384(unsigned int message_part,

uint64_t input_length,
unsigned char *input_data,
sha512_context_t *sha512_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-512, or KLMD-SHA-512

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

uint64_t input_length
Length in bytes of the input data to be hashed using the SHA-384 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha384 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can
be used for a chained call of ica_sha384. Therefore, the application must not
modify the contents of this structure in between chained calls.

14 libica Programmer's Reference

|
|

Note: Due to the algorithm used by SHA-384, a SHA-512 context must be
used.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA384_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_sha512
Purpose

Performs a secure hash operation on input data using the SHA-512 algorithm.

Format
unsigned int ica_sha512(unsigned int message_part,

uint64_t input_length,
unsigned char *input_data,
sha512_context_t *sha512_context,
unsigned char *output_data);

Required hardware support

KIMD-SHA-512, or KLMD-SHA-512

Parameters

unsigned int message_part
The message chaining state. This parameter must be one of the following
values:
SHA_MSG_PART_ONLY

A single hash operation
SHA_MSG_PART_FIRST

The first part
SHA_MSG_PART_MIDDLE

The middle part
SHA_MSG_PART_FINAL

The last part

uint64_t input_length
Length in bytes of the input data to be hashed using the SHA-512 algorithm.

unsigned char *input_data
Pointer to the input data to be hashed. This pointer must not be zero. So even
in case of zero size message data, it must be set to a valid value.

sha512_context_t *sha512_context
Pointer to the SHA-512 context structure used to store intermediate values
needed when chaining is used. The contents are ignored for message part
SHA_MSG_PART_ONLY and SHA_MSG_PART_FIRST. This structure must
contain the returned value of the preceding call to ica_sha512 for message part
SHA_MSG_PART_MIDDLE and SHA_MSG_PART_FINAL. For message part
SHA_MSG_PART_FIRST and SHA_MSG_PART_FINAL, the returned value can

Chapter 3. libica APIs 15

|
|

be used for a chained call of ica_sha512. Therefore, the application must not
modify the contents of this structure in between chained calls.

unsigned char *output_data
Pointer to the buffer to contain the resulting hash data. The resulting output
data has a length of SHA512_HASH_LENGTH. Make sure that the buffer is at
least this size.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

Pseudo random number generation function
This function is included in: include/ica_api.h.

This function generates pseudo random data. Parameter *ouput_data is a pointer to
a buffer of byte length output_length. output_length number of bytes of pseudo
random data is placed in the buffer pointed to by output_data.

libica initialization tries to seed the CPACF random generator. To get the seed,
device /dev/hwrng is opened. Device /dev/hwrng provides true random data from
crypto adapters over the crypto device driver (main module name is ap, with an
alias name z90crypt, which is linking to ap). If that fails, the initialization
mechanism uses device /dev/urandom. Within the initialization, a byte counter
s390_byte_count is set to 0. If the CPACF pseudo random generator is available,
after 4096 bytes of the pseudo random number are generated, the random number
generator is seeded again. If the CPACF pseudo random generator is not available,
random numbers are read from /dev/urandom.

ica_random_number_generate
Purpose

Generates a pseudo random number.

Format
unsigned int ica_random_number_generate(unsigned int output_length,

unsigned char *output_data);

Required hardware support

KMC-PRNG

Parameters

unsigned int output_length
Length in bytes of the output_data buffer, and the length of the generated
pseudo random number.

unsigned char *output_data
Pointer to the buffer to receive the generated pseudo random number.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

16 libica Programmer's Reference

|
|

RSA key generation functions
These functions are included in: include/ica_api.h.

These functions generate an RSA public/private key pair. These functions are
performed using software through OpenSSL. Hardware is not used.

ica_rsa_key_generate_mod_expo
Purpose

Generates RSA keys in modulus/exponent format.

Comments

For specific information about some of these parameters, see the considerations in
“Data structures” on page 74.

Format
unsigned int ica_rsa_key_generate_mod_expo(ica_adapter_handle_t adapter_handle,

unsigned int modulus_bit_length,
ica_rsa_key_mod_expo_t *public_key,
ica_rsa_key_mod_expo_t *private_key);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned int modulus_bit_length
Length in bits of the modulus. This value should comply with the length of the
keys (in bytes), according to this calculation:
key_length = (modulus_bits + 7) / 8

ica_rsa_key_mod_expo_t *public_key
Pointer to where the generated public key is to be placed. If the exponent
element in the public key is not set, it is randomly generated. A poorly chosen
exponent could result in the program looping endlessly. Common public
exponents are 3 and 65537.

ica_rsa_key_mod_expo_t *private_key
Pointer to where the generated private key in modulus/exponent format is to
be placed. The length of both the private and public keys should be set in
bytes. This value should comply with the length of the keys (in bytes),
according to this calculation:
key_length = (modulus_bits + 7) / 8

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_rsa_key_generate_crt
Purpose

Generates RSA keys in Chinese-Remainder Theorem (CRT) format.

Chapter 3. libica APIs 17

Comments

For specific information about some of these parameters, see the considerations in
“Data structures” on page 74.

Format
unsigned int ica_rsa_key_generate_crt(ica_adapter_handle_t adapter_handle,

unsigned int modulus_bit_length,
ica_rsa_key_mod_expo_t *public_key,
ica_rsa_key_crt_t *private_key);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned int modulus_bit_length
Length in bits of the modulus part of the key. This value should comply with
the length of the keys (in bytes), according to this calculation:
key_length = (modulus_bits + 7) / 8

ica_rsa_key_mod_expo_t *public_key
Pointer to where the generated public key is to be placed. If the exponent
element in the public key is not set, it is randomly generated. A poorly chosen
exponent can result in the program looping endlessly. Common public
exponents are 3 and 65537.

ica_rsa_key_crt_t *private_key
Pointer to where the generated private key in CRT format is to be placed.
Length of both private and public keys should be set in bytes. This value
should comply with the length of the keys (in bytes), according to this
calculation
key_length = (modulus_bits + 7) / 8

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

RSA encrypt and decrypt operations
These functions are included in: include/ica_api.h.

These functions perform a modulus/exponent operation using an RSA key whose
type is either ica_rsa_key_mod_expo_t or ica_rsa_key_crt_t.

ica_rsa_mod_expo
Purpose

Performs an RSA encryption or decryption operation using a key in
modulus/exponent format.

Comments

Make sure that your message is padded before using this function.

18 libica Programmer's Reference

Format
unsigned int ica_rsa_mod_expo(ica_adapter_handle_t adapter_handle,

unsigned char *input_data,
ica_rsa_key_mod_expo_t *rsa_key,
unsigned char *output_data);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned char *input_data
Pointer to the input data to be encrypted or decrypted. This data must be in
big endian format. Make sure that the input data is not longer than the bit
length of the key. The byte length for the input data and the key must be the
same. Right align the input data inside the data block.

ica_rsa_key_mod_expo_t *rsa_key
Pointer to the key to be used, in modulus/exponent format.

unsigned char *output_data
Pointer to the location where the output results are to be placed. This buffer
has to be at least the same size as input_data and therefore at least the same
size as the size of the modulus.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_rsa_crt
Purpose

Performs an RSA encryption or decryption operation using a key in CRT format.

Comments

Make sure that your message is padded before using this function.

Format
unsigned int ica_rsa_crt(ica_adapter_handle_t adapter_handle,

unsigned char *input_data,
ica_rsa_key_crt_t *rsa_key,
unsigned char *output_data);

Parameters

ica_adapter_handle_t adapter_handle
Pointer to a previously opened device handle.

unsigned char *input_data
Pointer to the input data to be encrypted or decrypted. This data must be in
big endian format. Make sure that the input data is not longer than the bit
length of the key. The byte length for the input data and the key must be the
same. Right align the input data inside the data block.

ica_rsa_key_crt_t *rsa_key
Pointer to the key to be used, in CRT format.

Chapter 3. libica APIs 19

unsigned char *output_data
Pointer to the location where the output results are to be placed. This buffer
must be as large as the input_data, and as large as the length of the modulus
specified in rsa_key.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

DES functions
These functions are included in: include/ica_api.h.

These functions perform encryption and decryption and computation or
verification of message authentication codes using a DES (DEA) key. A DES key
has a size of 8 bytes. Each byte of a DES key contains one parity bit, such that each
64-bit DES key contains only 56 security-relevant bits. The cipher block size for
DES is 8 bytes.

To securely apply DES encryption to messages that are longer than the cipher
block size, modes of operation can be used to chain multiple encryption,
decryption, or authentication operations. Most modes of operation require an
initialization vector as additional input. As long as the messages are encrypted or
decrypted using such a mode of operation, and have a size that is a multiple of a
particular block size (mostly the cipher block size), the functions encrypting or
decrypting according to a mode of operation also compute an output vector. This
output vector can be used as the initialization vector of a chained encryption or
decryption operation in the same mode with the same block size and the same key.

When decrypting a cipher text, these values used for the decryption function must
match the corresponding settings of the encryption function that transformed the
plain text into the cipher text:
v The mode of operation
v The key
v The initialization vector (if applicable)
v For the ica_des_cfb function, the lcfb parameter

ica_des_cbc
Purpose

Encrypt or decrypt data with a DES key using Cipher Block Chaining (CBC) mode,
as described in NIST Special Publication 800-38A Chapter 6.2.

Format
unsigned int ica_des_cbc(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMC-DEA

20 libica Programmer's Reference

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. This buffer must be
at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(a multiple of 8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (8
bytes for DES). This vector is overwritten by this function. The result value in
iv can be used as the initialization vector for a chained ica_des_cbc or
ica_des_cbc_cs call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_des_cbc_cs
Purpose

Encrypt or decrypt data with a DES key using Cipher Block Chaining with
Ciphertext Stealing (CBC-CS) mode, as described in NIST Special Publication
800-38A, Chapter 6.2 and the Addendum to NIST Special Publication 800-38A on
Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext
Stealing for CBC Mode.

ica_des_cbc_cs can be used to encrypt or decrypt the last chunk of a message
consisting of multiple chunks, where all chunks except the last one are encrypted
or decrypted by chained calls to ica_des_cbc. To do this, the resulting iv of the last
call to ica_des_cbc is fed into the iv of the ica_des_cbc_cs call, provided that the
chunk is greater than the cipher block size (8 bytes for DES).

Format
unsigned int ica_des_cbc_cs(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction,
unsigned int variant);

Chapter 3. libica APIs 21

Required hardware support

KMC-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as the data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. This buffer must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be greater than or equal to the cipher
block size (8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes.
This vector is overwritten during the function. For variant equal to 1 or variant
equal to 2, the result value in iv can be used as the initialization vector for a
chained ica_des_cbc or ica_des_cbc_cs call with the same key, if data_length is
a multiple of the cipher block size.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

unsigned int variant
1 Use variant CBC-CS1 of the Addendum to NIST Special Publication

800-38A to encrypt or decrypt the message: always keep last two
blocks in order.

2 Use variant CBC-CS2 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: switch order of the last two
blocks if data_length is not a multiple of the cipher block size (a
multiple of 8 bytes for DES).

3 Use variant CBC-CS3 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always switch order of the
last two blocks.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_des_cfb
Purpose

Encrypt or decrypt data with a DES key using Cipher Feedback (CFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.3.

22 libica Programmer's Reference

Format
unsigned int ica_des_cfb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int lcfb,
unsigned int direction);

Required hardware support

KMF-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as the data_length parameter.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as the
data_length parameter.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size bytes (8 bytes for
DES). This vector is overwritten during the function. The result value in iv can
be used as the initialization vector for a chained ica_des_cfb call with the same
key, if data_length in the preceding call is a multiple of the lcfb parameter.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal
to 1 and less than or equal to the cipher block size (8 bytes for DES).

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_des_cmac
Purpose

Authenticate data or verify the authenticity of data with a DES key using the Block
Cipher Based Message Authentication Code (CMAC) mode, as described in NIST
Special Publication 800-38B. ica_des_cmac can be used to authenticate or verify the
authenticity of a complete message.

Chapter 3. libica APIs 23

Format
unsigned int ica_des_cmac(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int direction);

Required hardware support
KMAC-DEA
PCC-Compute-Last_block-CMAC-Using-DEA

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message to be authenticated or of which the
authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac, which is less than or
equal to the cipher block size (8 bytes for DES). It is recommended to use a
mac_length of 8.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 76.

ica_des_cmac_intermediate
Purpose

Authenticate data or verify the authenticity of data with a DES key using the Block
Cipher Based Message Authentication Code (CMAC) mode, as described in NIST
Special Publication 800-38B. ica_des_cmac_intermediate and ica_des_cmac_last can
be used when the message to be authenticated or to be verified using CMAC is
supplied in multiple chunks. ica_des_cmac_intermediate is used to process all but
the last chunk. All message chunks to be processed by ica_des_cmac_intermediate
must have a size that is a multiple of the cipher block size (8 bytes for DES).

24 libica Programmer's Reference

Note that ica_des_cmac_intermediate has no direction argument. This function can
be used during authentication and during authenticity verification.

Format
unsigned int ica_des_cmac_intermediate(const unsigned char *message,

unsigned long message_length,
const unsigned char *key,
unsigned char *iv);

Required hardware support

KMAC-DEA

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a non-final part of a message to be authenticated, or
of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple
of the cipher block size.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size bytes (8 bytes for
DES). For the first message part, this parameter must be set to a string of
zeros. For processing the n-th message part, this parameter must be the
resulting iv value of the ica_des_cmac_intermediate function applied to the
(n-1)-th message part. This vector is overwritten during the function. The result
value in iv can be used as the initialization vector for a chained call to
ica_des_cmac_initermediate, or to ica_des_cmac_last with the same key.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_des_cmac_last
Purpose

Authenticate data or verify the authenticity of data with a DES key using the Block
Cipher Based Message Authentication Code (CMAC) mode, as described in NIST
Special Publication 800-38B. ica_des_cmac_last can be used to authenticate or
verify the authenticity of a complete message or of the final part of a message for
which all preceding parts were processed with ica_des_cmac_intermediate.

Format
unsigned int ica_des_cmac_last(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Chapter 3. libica APIs 25

Required hardware support
KMAC-DEA
PCC-Compute-Last_block-CMAC-Using-DEA

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message or the final part of a message, to be
either authenticated or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code that is verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac that is less than or
equal to the cipher block size (8 bytes for DES). It is recommended to use a
mac_length of 8.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If
iv is NULL, message is assumed to be the complete message to be processed.
Otherwise, message is the final part of a composite message to be processed
and iv contains the output vector resulting from processing all previous parts
with chained calls to ica_des_cmac_intermediate (the value returned in iv of
the ica_des_cmac_intermediate call applied to the penultimate message part).

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 76.

ica_des_ctr
Purpose

Encrypt or decrypt data with a DES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A Chapter 6.5. With the counter mode, each
message block of the same size as the cipher block (8 bytes for DES) is combined
with a counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block,
subsequent counter values to be combined with subsequent message blocks are

26 libica Programmer's Reference

derived from preceding counter values by an increment function. The increment
function used in ica_des_ctr is an arithmetic increment without carry on the M
least significant bytes in the counter, where M is a parameter to ica_des_ctr.

Format
unsigned int ica_des_ctr(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *ctr,
unsigned int ctr_width,
unsigned int direction);

Required hardware support

KMCTR-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block
in bytes. ctr contains an initialization value for a counter function, and it is
replaced by a new value. That new value can be used as the initialization
value for a counter function in a chained ica_des_ctr call with the same key, if
the data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 1 and the cipher block size. This value is used by the
counter increment function, which increments a counter value by incrementing
without carry the least significant M bytes of the counter value.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

Chapter 3. libica APIs 27

ica_des_ctrlist
Purpose

Encrypt or decrypt data with a DES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A ,Chapter 6.5. With the counter mode, each
message block of the same size as the cipher block is combined with a counter
value of the same size during encryption and decryption.

The ica_des_ctrlist function assumes that a list n of precomputed counter values is
provided, where n is the smallest integer that is less than or equal to the message
size divided by the cipher block size. This function is used to optimally utilize IBM
System z hardware support for non-standard counter functions.

Format
unsigned int ica_des_ctrlist(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
const unsigned char *ctrlist,
unsigned int direction);

Required hardware support

KMCTR-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

Calls to ica_des_ctrlist with the same key can be chained if:
v With the possible exception of the last call in the chain the data_length used

is a multiple of the cipher block size.
v The ctrlist argument of each chained call contains a list of counters that

follows the counters used in the preceding call.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

const unsigned char *ctrlist
Pointer to a readable buffer of a size greater than or equal to data_length, and a
multiple of the cipher block size (8 bytes for DES). ctrlist should contain a list
of precomputed counter values, each of the same size as the cipher block.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

28 libica Programmer's Reference

For return codes indicating exceptions, see “Return codes” on page 76.

ica_des_ecb
Purpose

Encrypt or decrypt data with a DES key using Electronic Code Book (ECB) mode,
as described in NIST Special Publication 800-38A Chapter 6.1.

Format
unsigned int ica_des_ecb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int direction);

Required hardware support

KM-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writeable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(8 bytes for DES).

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_des_ofb
Purpose

Encrypt or decrypt data with a DES key using Output Feedback (OFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.4.

Format
unsigned int ica_des_ofb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,

Chapter 3. libica APIs 29

const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMO-DEA

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that contains the resulting encrypted or decrypted
message. The size of this buffer must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid DES key of 8 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes (8 bytes for DES). This vector is overwritten during the function. If
data_length is a multiple of the cipher block size (8 bytes for DES), the result
value in iv can be used as the initialization vector for a chained ica_des_ofb
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following DES
interfaces remain supported:
unsigned int ica_des_encrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_single_t *des_key,
unsigned char *output_data);

unsigned int ica_des_decrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_single_t *des_key,
unsigned char *output_data);

Table 2 on page 31 shows libica version 2.0 DES functions calls, and their
corresponding libica version 2.4 DES function calls.

30 libica Programmer's Reference

Table 2. Compatibility of libica version 2.0 DES functions calls to libica version 2.4 DES function calls

Calling this libica version 2.0 DES function Corresponds to calling this libica version 2.4 DES
function

ica_des_encrypt(MODE_ECB, data_length,in_data,NULL,
key, out_data);

ica_des_ecb(in_data,out_data,(long)data_length,
key,1);

ica_des_encrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,iv,1);

ica_des_decrypt(MODE_ECB,data_length,in_data,NULL,
key,out_data);

ica_des_ecb(in_data,out_data,(long)data_length,
key,0);

ica_des_decrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,iv,0);

The functions ica_des_encrypt and ica_des_decrypt remain supported, but their
use is discouraged in favor of ica_des_ecb and ica_des_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference
version 2.0.

TDES/3DES functions
These functions are included in: include/ica_api.h.

These functions perform encryption and decryption or computation and
verification of message authentication codes using a triple-DES (3DES, TDES or
TDEA) key. A 3DES key consists of a concatenation of three DES keys, each of
which has a size of 8 bytes. Note that each byte of a DES key contains one parity
bit, such that each 64-bit DES key contains only 56 security-relevant bits. The
cipher block size for 3DES is 8 bytes.

3DES is known in two variants: a two key variant and a three key variant. This
library implements only the three key variant. The two key variant can be derived
from functions for the three key variant by using the same key as the first and
third key.

To securely apply 3DES encryption to messages that are longer than the cipher
block size, modes of operation can be used to chain multiple encryption,
decryption, or authentication operations. Most modes of operation require an
initialization vector as additional input. As long as the messages are encrypted or
decrypted using such a mode of operation and have a size that is a multiple of a
particular block size (mostly the cipher block size), the functions encrypting or
decryption according to that mode of operation also compute an output vector that
can be used as the initialization vector of a chained encryption or decryption
operation in the same mode with the same block size and the same key.

Note that when decrypting a cipher text, the mode of operation, the key, the
initialization vector (if applicable), and for ica_3des_cfb the lcfb value used for the
decryption function must match the corresponding settings of the encryption
function that was used to transform the plain text into the cipher text.

Chapter 3. libica APIs 31

ica_3des_cbc
Purpose

Encrypt or decrypt data with an 3DES key using Cipher Block Chaining (CBC)
mode, as described in NIST Special Publication 800-38A Chapter 6.2.

Format
unsigned int ica_3des_cbc(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMC-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes.
This vector is overwritten during the function. The result value in iv can be
used as the initialization vector for a chained ica_3des_cbc or ica_3des_cbc_cs
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_3des_cbc_cs
Purpose

Encrypt or decrypt data with a 3DES key using Cipher Block Chaining with
Ciphertext Stealing (CBC-CS) mode, as described in NIST Special Publication

32 libica Programmer's Reference

800-38A Chapter 6.2 and the Addendum to NIST Special Publication 800-38A on
Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext
Stealing for CBC Mode.

ica_3des_cbc_cs can be used to encrypt or decrypt the last chunk of a message
consisting of multiple chunks, where all chinks except the last one are encrypted or
decrypted by chained calls to ica_3des_cbc. To do this, the resulting iv of the last
call to ica_3des_cbc is fed into the iv of the ica_3des_cbc_cs call, provided that the
chunk is greater than the cipher block size (8 bytes for 3DES).

Format
unsigned int ica_3des_cbc_cs(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction,
unsigned int variant);

Required hardware support

KMC-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be greater than or equal to the cipher
block size (8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes. This vector is overwritten during the function. For variant equal to 1 or
variant equal to 2, the result value in iv can be used as the initialization vector
for a chained ica_3des_cbc or ica_3des_cbc_cs call with the same key, if
data_length is a multiple of the cipher block size.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

unsigned int variant
1 Use variant CBC-CS1 of the Addendum to NIST Special Publication

800-38A to encrypt or decrypt the message: always keep last two
blocks in order.

2 Use variant CBC-CS2 of the Addendum to NIST Special Publication

Chapter 3. libica APIs 33

800-38A to encrypt or decrypt the message: switch order of the last two
blocks if data_length is not a multiple of the cipher block size (a
multiple of 8 bytes for 3DES).

3 Use variant CBC-CS3 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always switch order of the
last two blocks.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_3des_cfb
Purpose

Encrypt or decrypt data with a 3DES key using Cipher Feedback (CFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.3.

Format
unsigned int ica_3des_cfb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *iv,
unsigned int lcfb,
unsigned int direction);

Required hardware support

KMF-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (8
bytes for 3DES). This vector is overwritten during the function. The result
value in iv can be used as the initialization vector for a chained ica_3des_cfb
call with the same key, if the data_length in the preceding call is a multiple of
lcfb.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal
to 1 and less than or equal to the cipher block size (8 bytes for 3DES).

34 libica Programmer's Reference

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_3des_cmac
Purpose

Authenticate data or verify the authenticity of data with an 3DES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_3des_cmac can be used to authenticate or
verify the authenticity of a complete message.

Format
unsigned int ica_3des_cmac(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int direction);

Required hardware support
KMAC-TDEA-192
PCC-Compute-Last_block-CMAC-Using-TDEA-192

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message to be authenticated, or of which the
authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac, which is less than or
equal to the cipher block size (8 bytes for 3DES). It is recommended to use a
mac_length of 8.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Chapter 3. libica APIs 35

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 76.

ica_3des_cmac_intermediate
Purpose

Authenticate data or verify the authenticity of data with an 3DES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_3des_cmac_intermediate and
ica_3des_cmac_last can be used when the message to be authenticated or to be
verified using CMAC is supplied in multiple chunks. ica_3des_cmac_intermediate
is used to process all but the last chunk. All message chunks to be processed by
ica_3des_cmac_intermediate must have a size that is a multiple of the cipher block
size (a multiple of 8 bytes for 3DES).

Note that ica_3des_cmac_intermediate has no direction argument. This function
can be used during authentication and during authenticity verification.

Format
unsigned int ica_3des_cmac_intermediate(const unsigned char *message,

unsigned long message_length,
const unsigned char *key,
unsigned char *iv);

Required hardware support

KMAC-TDEA-192

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a non-final part of a message to be authenticated, or
of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple
of the cipher block size.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of size cipher block size (8 bytes for
3DES). For the first message part, this parameter must be set to a string of
zeros. For processing the n-th message part, this parameter must be the
resulting iv value of the ica_3des_cmac_intermediate applied to the (n-1)-th
message part. This vector is overwritten during the function. The result value
in iv can be used as the initialization vector for a chained call to
ica_3des_cmac_initermediate or to ica_3des_cmac_last with the same key.

Return codes
0 Success

36 libica Programmer's Reference

For return codes indicating exceptions, see “Return codes” on page 76.

ica_3des_cmac_last
Purpose

Authenticate data or verify the authenticity of data with an 3DES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_3des_cmac_last can be used to authenticate
or verify the authenticity of a complete message or of the final part of a message,
for which all preceding parts were processed with ica_3des_cmac_intermediate.

Format
unsigned int ica_3des_cmac_last(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned char *iv,
unsigned int direction);

Required hardware support
KMAC-TDEA,-192
PCC-Compute-Last_block-CMAC-Using-TDEA-192

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. It contains a message or the final part of a message to be authenticated,
or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code that is to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes that is less
than or equal to the cipher block size (8 bytes for 3DES). It is recommended to
use a mac_length of 8.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If
iv is NULL, message is assumed to be the complete message to be processed.
Otherwise, message is the final part of a composite message to be processed
and iv contains the output vector resulting from processing all previous parts
with chained calls to ica_des_cmac_intermediate (the value returned in iv of
the ica_des_cmac_intermediate call applied to the penultimate message part.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Chapter 3. libica APIs 37

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 76.

ica_3des_ctr
Purpose

Encrypt or decrypt data with a triple-length DES key using Counter (CTR) mode,
as described in NIST Special Publication 800-38A Chapter 6.5. With the counter
mode, each message block of size cipher block size (8 bytes for 3DES) is combined
with a counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block,
subsequent counter values to be combined with subsequent message blocks are
derived from preceding counter values by an increment function. The increment
function used in ica_3des_ctr is an arithmetic increment without carry on the M
least significant bytes in the counter, where M is a parameter to ica_3des_ctr.

Format
unsigned int ica_3des_ctr(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned char *ctr,
unsigned int ctr_width,
unsigned int direction);

Required hardware support

KMCTR-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block
in bytes. ctr contains an initialization value for a counter function that is
replaced by a new value. The new value can be used as an initialization value
for a counter function in a chained ica_3des_ctr call with the same key, if the
data_length used in the preceding call is a multiple of the cipher block size.

38 libica Programmer's Reference

unsigned int ctr_width
A number M between 1 and the cipher block size. The value is used by the
counter increment function, which increments a counter value by incrementing
without carry the least significant M bytes of the counter value.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_3des_ctrlist
Purpose

Encrypt or decrypt data with an 3DES key using Counter (CTR) mode, as
described in NIST Special Publication 800-38A ,Chapter 6.5. With the counter
mode, each message block of the same size as the cipher block is combined with a
counter value of the same size during encryption and decryption.

The ica_3des_ctrlist function assumes that a list n of precomputed counter values
is provided where n is the smallest integer that is less than or equal to the message
size divided by the cipher block size. This function is used to optimally utilize IBM
System z hardware support for non-standard counter functions.

Format
unsigned int ica_3des_ctrlist(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
const unsigned char *ctrlist,
unsigned int direction);

Required hardware support

KMCTR-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

Calls to ica_3des_ctrlist with the same key can be chained if:
v With the possible exception of the last call in the chain the data_length used

is a multiple of the cipher block size.
v The ctrlist argument of each chained call contains a list of counters that

follows the counters used in the preceding call.

Chapter 3. libica APIs 39

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

const unsigned char *ctrlist
Pointer to a readable buffer that is both of size greater than or equal to
data_length, and a multiple of the cipher block size (8 bytes for 3DES). ctrlist
should contain a list of precomputed counter values, each of the same size as
the cipher block.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_3des_ecb
Purpose

Encrypt or decrypt data with an 3DES key using Electronic Code Book (ECB)
mode, as described in NIST Special Publication 800-38A Chapter 6.1.

Format
unsigned int ica_3des_ecb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int direction);

Required hardware support

KM-DEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writeable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(8 bytes for 3DES).

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

40 libica Programmer's Reference

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_3des_ofb
Purpose

Encrypt or decrypt data with an 3DES key using Output Feedback (OFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.4.

Format
unsigned int ica_3des_ofb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMO-TDEA-192

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that contains the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid 3DES key of 24 bytes in length.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes (8 bytes for 3DES). This vector is overwritten during the function. If
data_length is a multiple of the cipher block size (a multiple of 8 for 3DES), the
result value in iv can be used as the initialization vector for a chained
ica_3des_ofb call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

Chapter 3. libica APIs 41

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following 3DES
interfaces remain supported:
unsigned int ica_3des_encrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_triple_t *des_key,
unsigned char *output_data);

unsigned int ica_3des_decrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_des_vector_t *iv, ica_des_key_triple_t *des_key,
unsigned char *output_data);

Table 3 shows libica version 2.0 TDES functions calls, and their corresponding
libica version 2.4 TDES function calls.

Table 3. Compatibility of libica version 2.0 TDES functions calls to libica version 2.4 TDES function calls

Calling this libica version 2.0 TDES function Corresponds to calling this libica version 2.4 TDES
function

ica_3des_encrypt(MODE_ECB, data_length,in_data,NULL,
key, out_data);

ica_3des_ecb(in_data,out_data,(long)data_length,
key,1);

ica_3des_encrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_3des_cbc(in_data,out_data,(long)data_length,
key,iv,1);

ica_3des_decrypt(MODE_ECB,data_length,in_data,NULL,
key,out_data);

ica_3des_ecb(in_data,out_data,(long)data_length,
key,0);

ica_3des_decrypt(MODE_CBC,data_length,in_data,iv,
key,out_data);

ica_3des_cbc(in_data,out_data,(long)data_length,,
key,iv,0);

The functions ica_3des_encrypt and ica_3des_decrypt remain supported, but their
use is discouraged in favor of ica_3des_ecb and ica_3des_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference
version 2.0.

AES functions
These functions are included in: include/ica_api.h.

These functions perform encryption and decryption or computation or verification
of message authentication codes using an AES key. Supported key lengths are 16,
24 or 32 bytes for AES-128, AES-192 and AES-256 respectively. The cipher block
size for AES is 16 bytes.

To securely apply AES encryption to messages that are longer than the cipher
block size, modes of operation can be used to chain multiple encryption,
decryption, or authentication operations. Most modes of operation require an
initialization vector as additional input.

As long as the messages are encrypted or decrypted using such a mode of
operation, have a size that is a multiple of a particular block size (mostly the
cipher block size), the functions encrypting or decryption according to a mode of
operation also compute an output vector. The output vector can be used as the
initialization vector of a chained encryption or decryption operation in the same
mode with the same block size and the same key.

42 libica Programmer's Reference

Note that when decrypting a cipher text the mode of operation, the key, the
initialization vector (if applicable), and for ica_aes_cfb the lcfb value used for the
decryption function must match the corresponding settings of the encryption
function that transformed the plain text into the cipher text.

ica_aes_cbc
Purpose

Encrypt or decrypt data with an AES key using Cipher Block Chaining (CBC)
mode, as described in NIST Special Publication 800-38A Chapter 6.2.

Format
unsigned int ica_aes_cbc(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMC-AES-128, KMC-AES-192, or KMC-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(a multiple of 16 for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for
AES-128, AES-192, and AES-256 respectively. Therefore, you can use the
definitions: AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes. This vector is overwritten during the function. The result value in iv can
be used as the initialization vector for a chained ica_aes_cbc or ica_aes_cbc_cs
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

Chapter 3. libica APIs 43

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_cbc_cs
Purpose

Encrypt or decrypt data with an AES key using Cipher Block Chaining with
Ciphertext Stealing (CBC-CS) mode, as described in NIST Special Publication
800-38A Chapter 6.2, and the Addendum to NIST Special Publication 800-38A on
Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext
Stealing for CBC Mode.

ica_aes_cbc_cs can be used to encrypt or decrypt the last chunk of a message
consisting of multiple chunks, where all chunks except the last one are encrypted
or decrypted by chained calls to ica_aes_cbc. To do this, the resulting iv of the last
call to ica_aes_cbc is fed into the iv of the ica_aes_cbc_cs call, provided that the
chunk is greater than the cipher block size (greater than 16 bytes for AES).

Format
unsigned int ica_aes_cbc_cs(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction,
unsigned int variant);

Required hardware support

KMC-AES-128, KMC-AES-192 or KMC-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be greater than or equal to the cipher
block size (16 bytes for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for
AES-128, AES-192, and AES-256 respectively. . Therefore, you can use the
definitions: AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes.
This vector is overwritten during the function. For variant equal to 1 or variant

44 libica Programmer's Reference

equal to 2, the result value in iv can be used as the initialization vector for a
chained ica_aes_cbc or ica_aes_cbc_cs call with the same key, if data_length is a
multiple of the cipher block size.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

unsigned int variant
1 Use variant CBC-CS1 of the Addendum to NIST Special Publication

800-38A to encrypt or decrypt the message: always keep last two
blocks in order.

2 Use variant CBC-CS2 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: switch order of the last two
blocks if data_length is not a multiple of the cipher block size (a
multiple of 16 bytes for AES).

3 Use variant CBC-CS3 of the Addendum to NIST Special Publication
800-38A to encrypt or decrypt the message: always switch order of the
last two blocks.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_ccm
Purpose

Encrypt and authenticate or decrypt data and check authenticity of data with an
AES key using Counter with Cipher Block Chaining Message Authentication Code
(CCM) mode, as described in NIST Special Publication 800-38C. Formatting and
counter functions are implemented according to NIST 800-38C Appendix A.

Format
unsigned int ica_aes_ccm(unsigned char *payload,

unsigned long payload_length,
unsigned char *ciphertext_n_mac,
unsigned int mac_length,
const unsigned char *assoc_data,
unsigned long assoc_data_length,
const unsigned char *nonce,
unsigned int nonce_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support
KMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256
KMAC-AES-128, KMAC-AES-192, or KMAC-AES-256

Parameters

unsigned char *payload
Pointer to a buffer of size greater than or equal to payload_length bytes. If
direction is equal to 1, the payload buffer must be readable and contain a
payload message of size payload_length to be encrypted. If direction is equal to
0, the payload buffer must be writable. If the authentication verification

Chapter 3. libica APIs 45

succeeds, the decrypted message in the most significant payload_length bytes of
ciphertext_n_mac is written to this buffer. Otherwise, the contents of this buffer
is undefined.

unsigned long payload_length
Length in bytes of the message to be encrypted or decrypted. This value can be
0 unless assoc_data_length is equal to 0.

unsigned char *ciphertext_n_mac
Pointer to a buffer of size greater than or equal to payload_length plus
mac_length bytes. If direction is equal to 1, the buffer must be writable and the
encrypted message from payload followed by the message authentication code
for the nonce, the payload, and associated data are written to that buffer. If
direction is equal to 0, then the buffer is readable and contains an encrypted
message of length payload_length followed by a message authentication code of
length mac_length.

unsigned int mac_length
Length in bytes of the message authentication code. Valid values are: 4, 6, 8,
10, 12, and 16.

const unsigned char *assoc_data
Pointer to a readable buffer of size greater than or equal to assoc_data_length
bytes. The associated data in the most significant assoc_data_length bytes is
subject to the authentication code computation, but is not encrypted.

unsigned long assoc_data_length
Length of the associated data in assoc_data. This value can be 0 unless
payload_length is equal to 0.

const unsigned char *nonce
Pointer to readable buffer of size greater than or equal to nonce_length bytes,
which contains a nonce (number used once) of size nonce_length bytes.

unsigned int nonce_length
Length of the nonce in bytes. Valid values are greater than 6 and less than 14.

const unsigned char *key
Specifies a pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192 and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 76.

46 libica Programmer's Reference

ica_aes_cfb
Purpose

Encrypt or decrypt data with an AES key using Cipher Feedback (CFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.3.

Format
unsigned int ica_aes_cfb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int lcfb,
unsigned int direction);

Required hardware support

KMF-AES-128, KMF-AES-192, or KMF-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32, for
AES-128, AES-192, and AES-256 respectively. Therefore, you can use the
definitions: AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block in
bytes (16 bytes for AES). This vector is overwritten during the function. The
result value in iv can be used as the initialization vector for a chained
ica_aes_cfb call with the same key, if the data_length in the preceding call is a
multiple of lcfb.

unsigned int lcfb
Length in bytes of the cipher feedback, which is a value greater than or equal
to 1 and less than or equal to the cipher block size (16 bytes for AES).

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

Chapter 3. libica APIs 47

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_cmac
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_aes_cmac can be used to authenticate or
verify the authenticity of a complete message.

Format
unsigned int ica_aes_cmac(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support
KMAC-AES-128, KMAC-AES-192 or KMAC-AES-256
PCC-Compute-Last_block-CMAC-Using-AES-128, PCC-Compute-Last_block-
CMAC-Using-AES-192, or PCC-Compute-Last_block-CMAC-Using-AES-256

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message to be authenticated, or of which the
authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to this buffer. If
direction is equal to 0, this buffer must be readable and contain a message
authentication code to be verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes, which is less
than or equal to the cipher block size (16 bytes for AES). It is recommended to
use values greater than or equal to 8.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success

48 libica Programmer's Reference

EFAULT
If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_cmac_intermediate
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_aes_cmac_intermediate and
ica_aes_cmac_last can be used when the message to be authenticated or to be
verified using CMAC is supplied in multiple chunks. ica_aes_cmac_intermediate is
used to process all but the last chunk. All message chunks to be processed by
ica_aes_cmac_intermediate must have a size that is a multiple of the cipher block
size (a multiple of 16 bytes for AES).

Note that ica_aes_cmac_intermediate has no direction argument. This function can
be used during authentication and during authenticity verification.

Format
unsigned int ica_aes_cmac_intermediate(const unsigned char *message,

unsigned long message_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv);

Required hardware support

KMAC-AES-128, KMAC-AES-192, or KMAC-AES-256

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a non-final part of a message, to be authenticated or
of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message part in message. This value must be a multiple
of the cipher block size.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes (16
bytes for AES). For the first message part, this parameter must be set to a
string of zeros. For processing the n-th message part, this parameter must be
the resulting iv value of the ica_aes_cmac_intermediate function applied to the
(n-1)-th message part. This vector is overwritten during the function. The result

Chapter 3. libica APIs 49

value in iv can be used as the initialization vector for a chained call to
ica_aes_cmac_initermediate or to ica_aes_cmac_last with the same key.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_cmac_last
Purpose

Authenticate data or verify the authenticity of data with an AES key using the
Block Cipher Based Message Authentication Code (CMAC) mode, as described in
NIST Special Publication 800-38B. ica_aes_cmac_last can be used to authenticate or
verify the authenticity of a complete message, or of the final part of a message for
which all preceding parts were processed with ica_aes_cmac_intermediate.

Format
unsigned int ica_aes_cmac_last(const unsigned char *message,

unsigned long message_length,
unsigned char *mac,
unsigned int mac_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support
KMAC-AES-128, KMAC-AES-192 or KMAC-AES-256
PCC-Compute-Last_block-CMAC-Using-AES-128, PCC-Compute-Last_block-
CMAC-Using-AES-192, or PCC-Compute-Last_block-CMAC-Using-AES-256

Parameters

const unsigned char *message
Pointer to a readable buffer of size greater than or equal to message_length
bytes. This buffer contains a message or the final part of a message to be
authenticated, or of which the authenticity is to be verified.

unsigned long message_length
Length in bytes of the message to be authenticated or verified.

unsigned char *mac
Pointer to a buffer of size greater than or equal to mac_length bytes. If direction
is equal to 1, the buffer must be writable and a message authentication code
for the message in message of size mac_length bytes is written to the buffer. If
direction is equal to 0, the buffer must be readable and contain a message
authentication code that is verified against the message in message.

unsigned int mac_length
Length in bytes of the message authentication code mac in bytes, which is less
than or equal to the cipher block size (16 bytes for AES). It is recommended to
use values greater than or equal to 8.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,

50 libica Programmer's Reference

AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of cipher block size number of bytes. If
iv is NULL, message is assumed to be the complete message to be processed.
Otherwise, message is the final part of a composite message to be processed,
and iv contains the output vector resulting from processing all previous parts
with chained calls to ica_aes_cmac_intermediate (the value returned in iv of
the ica_aes_cmac_intermediate call applied to the penultimate message part).

unsigned int direction
0 Verify message authentication code.
1 Compute message authentication code for the message.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_ctr
Purpose

Encrypt or decrypt data with an AES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A Chapter 6.5. With the counter mode, each
message block of size cipher block size (16 bytes for AES) is combined with a
counter value of the same size during encryption and decryption.

Starting with an initial counter value to be combined with the first message block,
subsequent counter values to be combined with subsequent message blocks are
derived from preceding counter values by an increment function. The increment
function used in ica_aes_ctr is an arithmetic increment without carry on the M
least significant bytes in the counter where M is a parameter to ica_aes_ctr.

Format
unsigned int ica_aes_ctr(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *ctr,
unsigned int ctr_width,
unsigned int direction);

Required hardware support

KMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

Chapter 3. libica APIs 51

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *ctr
Pointer to a readable and writable buffer of the same size as the cipher block
in bytes. ctr contains an initialization value for a counter function, and it is
replaced by a new value. That new value can be used as an initialization value
for a counter function in a chained ica_aes_ctr call with the same key, if the
data_length used in the preceding call is a multiple of the cipher block size.

unsigned int ctr_width
A number M between 1 and the cipher block size. The value is used by the
counter increment function, which increments a counter value by incrementing
without carry the least significant M bytes of the counter value.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_ctrlist
Purpose

Encrypt or decrypt data with an AES key using Counter (CTR) mode, as described
in NIST Special Publication 800-38A ,Chapter 6.5. With the counter mode, each
message block of the same size as the cipher block in bytes is combined with a
counter value of the same size during encryption and decryption.

The ica_aes_ctrlist function assumes that a list n of precomputed counter values is
provided, where n is the smallest integer that is less than or equal to the message
size divided by the cipher block size. This function optimally uses IBM System z
hardware support for non-standard counter functions.

Format
unsigned int ica_aes_ctrlist(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
const unsigned char *ctrlist,
unsigned int direction);

52 libica Programmer's Reference

Required hardware support

KMCTR-DEAKMCTR-AES-128, KMCTR-AES-192, or KMCTR-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

Calls to ica_aes_ctrlist with the same key can be chained if:
v With the possible exception of the last call in the chain the data_length used

is a multiple of the cipher block size.
v The ctrlist argument of each chained call contains a list of counters that

follows the counters used in the preceding call.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

const unsigned char *ctrlist
Pointer to a readable buffer that is both of a size greater than or equal to
data_length, and a multiple of the cipher block size (16 bytes for AES). ctrlist
should contain a list of precomputed counter values, each of the same size as
the cipher block.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_ecb
Purpose

Encrypt or decrypt data with an AES key using Electronic Code Book (ECB) mode,
as described in NIST Special Publication 800-38A Chapter 6.1.

Chapter 3. libica APIs 53

Format
unsigned int ica_aes_ecb(const unsigned char *in_data,

unsigned char *output,
unsigned int data_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support

KM-AES-128, KM-AES-192, or KM-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. data_length must be a multiple of the cipher block size
(a multiple of 16 for AES).

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_gcm
Purpose

Encrypt data and authenticate data or decrypt data and check authenticity of data
with an AES key using the Galois/Counter (GCM) mode, as described in NIST
Special Publication 800-38D. If no message needs to be encrypted or decrypted and
only authentication or authentication checks are requested, then this method
implements the GMAC mode.

Format
unsigned int ica_aes_gcm(unsigned char *plaintext,

unsigned long plaintext_length,
unsigned char *ciphertext,
const unsigned char *iv,
unsigned int iv_length,

54 libica Programmer's Reference

const unsigned char *aad,
unsigned long aad_length,
unsigned char *tag,
unsigned int tag_length,
const unsigned char *key,
unsigned int key_length,
unsigned int direction);

Required hardware support
KM-AES-128, KM-AES-192 or KM-AES-256
KIMD-GHASH
KMCTR-AES-128, KMCTR_AES-192 or KMCTR-AES-256

Parameters

unsigned char *plaintext
Pointer to a buffer of size greater than or equal to plaintext_length bytes. If
direction is equal to 1, the plaintext buffer must be readable and contain a
payload message of size plaintext_length to be encrypted. If direction is equal to
0, the plaintext buffer must be writable and if the authentication verification
succeeds, the decrypted message in the most significant plaintext_length bytes
of ciphertext is written to the buffer. Otherwise, the contents of the buffer are
undefined.

unsigned long plaintext_length
Length in bytes of the message to be encrypted or decrypted. This value can be
0 unless aad_length is equal to 0. The value must be greater than or equal to 0
and less than (2**36) - 32.

unsigned char *ciphertext
Pointer to a buffer of size greater than or equal to plaintext_length bytes. If
direction is equal to 1, then this buffer must be writable and the encrypted
message from plaintext is written to that buffer. If direction is equal to 0, then
this buffer is readable and contains an encrypted message of length
plaintext_length.

const unsigned char *iv
Pointer to a readable buffer of size greater than or equal to iv_length bytes,
which contains an initialization vector of size iv_length.

unsigned int iv_length
Length in bytes of the initialization vector in iv. The value must be greater
than 0 and less than 2**61. A length of 12 is recommended.

const unsigned char *aad
Pointer to a readable buffer of size greater than or equal to aad_length bytes.
The additional authenticated data in the most significant aad_length bytes is
subject to the message authentication code computation, but is not encrypted.

unsigned int aad_length
Length in bytes of the additional authenticated data in aad. The value must be
greater than or equal to 0 and less than 2**61.

unsigned char *tag
Pointer to a buffer of size greater than or equal to tag_length bytes. If direction
is equal to 1, this buffer must be writable, and a message authentication code
for the additional authenticated data in aad and the plain text in plaintext of
size tag_length bytes is written to this buffer. If direction is equal to 0, this buffer
must be readable and contain a message authentication code to be verified
against the additional authenticated data in aad and the decrypted cipher text
from ciphertext.

Chapter 3. libica APIs 55

unsigned int tag_length
Length in bytes of the message authentication code tag in bytes. Valid values
are: 4, 8, 12, 13, 14, 15, and 16.

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned int direction
0 Verify message authentication code and decrypt encrypted payload.
1 Encrypt payload and compute message authentication code for the

additional authenticated data and the payload.

Return codes
0 Success
EFAULT

If direction is equal to 0 and the verification of the message authentication
code fails.

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_ofb
Purpose

Encrypt or decrypt data with an AES key using Output Feedback (OFB) mode, as
described in NIST Special Publication 800-38A Chapter 6.4.

Format
unsigned int ica_aes_ofb(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key,
unsigned int key_length,
unsigned char *iv,
unsigned int direction);

Required hardware support

KMO-AES-128, KMO-AES-192, or KMO-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer that to contain the resulting encrypted or
decrypted message. The size of this buffer in bytes must be at least as large as
data_length.

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data.

56 libica Programmer's Reference

const unsigned char *key
Pointer to a valid AES key.

unsigned int key_length
Length in bytes of the AES key. Supported sizes are 16, 24, and 32 for AES-128,
AES-192, and AES-256 respectively. Therefore, you can use the definitions:
AES_KEY_LEN128, AES_KEY_LEN192, and AES_KEY_LEN256.

unsigned char *iv
Pointer to a valid initialization vector of the same size as the cipher block, in
bytes (16 bytes for AES). This vector is overwritten during the function. If
data_length is a multiple of the cipher block size (16 bytes for AES), the result
value in iv can be used as the initialization vector for a chained ica_aes_ofb
call with the same key.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_aes_xts
Purpose

Encrypt or decrypt data with an AES key using the XEX Tweakable Bloc Cipher
with Ciphertext Stealing (XTS) mode, as described in NIST Special Publication
800-38E and IEEE standard 1619-2007.

Format
unsigned int ica_aes_xts(const unsigned char *in_data,

unsigned char *out_data,
unsigned long data_length,
const unsigned char *key1,
const unsigned char *key2,
unsigned int key_length,
unsigned char *tweak,
unsigned int direction);

Required hardware support
KM-XTS-AES-128, or KM-XTS-AES-256
PCC-Compute-XTS-Parameter-Using-AES-128, or PCC-Compute-XTS-Parameter-
Using-AES-256

Parameters

const unsigned char *in_data
Pointer to a readable buffer that contains the message to be encrypted or
decrypted. The size of the message in bytes is data_length. The size of this
buffer must be at least as large as data_length.

unsigned char *out_data
Pointer to a writable buffer to contain the resulting encrypted or decrypted
message. The size of this buffer in bytes must be at least as large as data_length.

Chapter 3. libica APIs 57

unsigned long data_length
Length in bytes of the message to be encrypted or decrypted, which resides at
the beginning of in_data. The minimal value of data_length is 16.

const unsigned char *key1
Pointer to a buffer containing a valid AES key. key1 is used for the actual
encryption of the message buffer, combined with some vector computed from
the tweak value (Key1 in IEEE Std 1619-2007).

const unsigned char *key2
Pointer to a buffer containing a valid AES key key2 is used to encrypt the
tweak (Key2 in IEEE Std 1619-2007).

unsigned int key_length
The length in bytes of the AES key. XTS supported AES key sizes are 16 and
32, for AES-128 and AES-256 respectively. Therefore, you can use:

2 * AES_KEY_LEN128 and 2 * AES_KEY_LEN256.

unsigned char *tweak
Pointer to a valid 16-byte tweak value (as in IEEE standard 1619-2007). This
tweak is overwritten during the function. If data_length is a multiple of the
cipher block size (a multiple of 16 for AES), the result value in tweak can be
used as the tweak value for a chained ica_aes_xts call with the same key pair.

unsigned int direction
0 Use the decrypt function.
1 Use the encrypt function.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

Compatibility with earlier versions
In order to stay compatible with earlier versions of libica, the following AES
interfaces remain supported:
unsigned int ica_aes_encrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_aes_vector_t *iv, unsigned int key_length, unsigned char *aes_key,
unsigned char *output_data);

unsigned int ica_aes_decrypt(unsigned int mode,
unsigned int data_length, unsigned char *input_data,
ica_aes_vector_t *iv, unsigned int key_length, unsigned char *aes_key,
unsigned char *output_data);

Table 4 shows libica version 2.0 AES functions calls, and their corresponding libica
version 2.4 AES function calls.

Table 4. Compatibility of libica version 2.0 AES functions calls to libica version 2.4 AES function calls

Calling this libica version 2.0 AES function Corresponds to calling this libica version 2.4 AES
function

ica_aes_encrypt(MODE_ECB, data_length,in_data,NULL,
key_length,key,out_data);

ica_aes_ecb(in_data,out_data,(long)data_length,
key,key_length,1);

ica_aes_encrypt(MODE_CBC,data_length,in_data,iv,
key_length,key,out_data);

ica_des_cbc(in_data,out_data,(long)data_length,
key,key_length,iv,1);

ica_aes_decrypt(MODE_ECB,data_length,in_data,NULL,
key_length,key,out_data);

ica_aes_ecb(in_data,out_data,(long)data_length,
key,key_length,0);

58 libica Programmer's Reference

Table 4. Compatibility of libica version 2.0 AES functions calls to libica version 2.4 AES function calls (continued)

Calling this libica version 2.0 AES function Corresponds to calling this libica version 2.4 AES
function

ica_aes_decrypt(MODE_CBC,data_length,in_data,iv,
key_length,key,out_data);

ica_aes_cbc(in_data,out_data,(long)data_length,
key,key_length,iv,0);

The functions ica_aes_encrypt and ica_aes_decrypt remain supported, but their
use is discouraged in favor of ica_aes_ecb and ica_aes_cbc.

For a detailed description of the earlier APIs, see libica Programmers Reference
version 2.0.

Information retrieval function
These functions are included in: include/ica_api.h.

ica_get_version
Purpose

Return libica version information.

Format
unsigned int ica_get_version(libica_version_info *version_info);

Parameters

libica_version_info *version_info
Pointer to a libica_version_info structure. The structure is filled with the current
libica version information.

Return codes
0 Success

For return codes indicating exceptions, see “Return codes” on page 76.

ica_get_functionlist
Purpose

Returns a list of crypto mechanisms supported by libica.

Format
unsigned int ica_get_functionlist(libica_func_list_element *mech_list,
unsigned int *mech_list_len);

Parameters

libica_func_list_element *mech_list
Null or pointer to an array of at least as many libica_func_list_element structures
as denoted in the *mech_list_len argument. If the value in the *mech_list_len
argument is equal to or greater than the number of mechanisms available in
libica then the libica_func_list_element structures in *mech_list are filled (in the
order of the array indices) with information for the supported otherwise the
*mech_list argument remains unchanged.

Chapter 3. libica APIs 59

unsigned int *mech_list_len
Pointer to an integer which contain the actual number of array elements
(number of structures). If *mech_list was NULL the contents of *mech_list_len
will be replaced by the number of mechanisms available in libica.

Return codes
0 Success
EINVAL

The value in *mech_list is to small

For return codes indicating exceptions, see “Return codes” on page 76.

Recommended usage

First call ica_get_functionlist with a NULL mechanism list, then allocate the
mechanism list according to number of mechanisms in libica returned by that
function, and then call ica_get_functionlist with the allocated mechanism list.

60 libica Programmer's Reference

Chapter 4. Accessing libica functions through the PKCS #11
(openCryptoki)

Learn how the cryptographic functions provided by libica can be accessed using
the PKCS #11 API implemented by openCryptoki is described in this section.

For more information about PKCS #11 standard, see PKCS #11 Cryptographic
Token Interface Standard

openCryptoki overview
openCryptoki consists of an implementation of the PKCS #11 API, a slot manager,
an API for slot token dynamic link libraries (STDLLs), and a set of STDLLs (or
tokens). The libica token is such a STDLL introduced into openCryptoki.

The openCryptoki base library (libopencryptoki.so) provides the generic API as
outlined in the PKCS #11 specification (version 2.20). This library also loads
token-specific modules (STDLLs) that provide the token specific implementation of
the PKCS #11 API and cryptographic functions (for example, session management,
object management, and crypto algorithms). For a description of the PKCS #11
version 2.20 standard, refer to the following URL: PKCS #11 Cryptographic Token
Interface Standard

A global configuration file (/etc/opencryptoki/opencryptoki.conf) is provided
which describes the available tokens. This configuration file can be customized for
the individual tokens. The openCryptoki package contains man pages that describe
the format of the configuration files. For more information, see “Adjusting the
openCryptoki configuration file” on page 65.

The libica token is a plug-in into the openCryptoki token library, providing
support for several cryptographic algorithms.

Slot manager

The slot manager (pkcsslotd) runs as a daemon. Upon start-up, it creates a shared
memory segment and reads the openCryptoki configuration file to acquire the
available token and slot information. The openCryptoki API attaches to this
memory segment to retrieve token information. Thus, the slot manager provides
the openCryptoki API with the token information when required. An application in
turn links to or loads the openCryptoki API.

Slot token dynamic link libraries (STDLLs)

The libica token is an example of an STDLL within openCryptoki. STDLLs are
plug-in modules to the openCryptoki (main) API. They provide token-specific
functions that implement the interfaces. Specific devices can be supported by
building an appropriate STDLL. Figure 1 on page 63 illustrates the stack and the
process flow in a System z environment.

The STDLLs require local disk space to store persistent data, such as token
information, personal identification numbers (PINs) and token objects. This
information is stored in a separate directory for each token (for example in
/var/lib/opencryptoki/lite for the libica token). Within each of these directories

© Copyright IBM Corp. 2009, 2014 61

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

there is a sub-directory TOK_OBJ that contains the token objects (token key store).
Each private token object is represented by an encrypted file. Most of these
directories are created during installation of openCryptoki.

The pkcsconf command line program

openCryptoki provides a command line program (/usr/sbin/pkcsconf) to
configure and administer tokens that are supported within the system. The
pkcsconf capabilities include token initialization, and security officer (SO) PIN and
user PIN initialization and maintenance.

pkcsconf operations that address a specific token must specify the slot that
contains the token with the -c option. You can view the list of tokens present
within the system by specifying the -t option (without -c option). For example,
the following code shows the options for the pkcsconf command and displays slot
information for the system:

pkcsconf ?
usage: pkcsconf [-itsmlIupPh] [-c slotnumber -U user-PIN -S SO-PIN -n new PIN]

The available options have the following meanings:

-i display PKCS11 info

-t display token info

-s display slot info

-m display mechanism list

-l display slot description

-I initialize token

-u initialize user PIN

-p set the user PIN

-P set the SO PIN

-h | --help | ?
show pkcsconf help information

-c specify the token slot for the operation

-U the current user PIN (for use when changing the user pin with -u and -p
options); if not specified, user will be prompted

-S the current Security Officer (SO) pin (for use when changing the SO pin
with -P option); if not specified, user will be prompted

-n the new pin (for use when changing either the user pin or the SO pin with
-u, -p or -P options); if not specified, user will be prompted

For more information about the pkcsconf command, see the pkcsconf man page.

Figure 1 on page 63 illustrates the stack and the process flow:

62 libica Programmer's Reference

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
||

|

||

||

||

||

||

||

||

||

||

|
|

||

||
|

||
|

||
|

|

|
|

Application
(C)

openCryptoki

openCryptoki API

Soft
Token

(STDLL)

ICA
Token

(STDLL)

Other
Token

(STDLL)

ica library

zcrypt
device driver

EP11
Token

(STDLL)

CEX4S Crypto Adapter
(CEX4A, CEX4C)

S
ta

n
d

a
rd

c
ry

p
to

lib
ra

ri
e

s
H

a
rd

w
a

re
A

p
p

lic
a

ti
o

n
la

y
e

r
S

y
s
te

m
z

H
W

c
ry

p
to

lib
ra

ri
e

s

L
in

u
x

k
e

rn
e

l

slot manager

Application
(C)

Application
(C)

Application
(C)

CPACF

Figure 1. Stack and process flow

Chapter 4. Using libica through openCryptoki 63

|

|
|
|

Functions provided by openCryptoki with the ica token
The PKCS #11 functions that manage tokens, slots, and sessions are described in
the PKCS #11 standard.

For an overview of the algorithms supported by the ica token, see “Supported
mechanisms for the ica token” on page 70.

The PKCS #11 standard describes the exact API for the mentioned mechanisms. For
more information, see
http://www.rsa.com/rsalabs/

For more details about how to use openCryptoki, see “Using openCryptoki” on
page 70.

Installing openCryptoki
openCryptoki is shipped with the Linux on System z distributions. Follow the
instructions in this section to install openCryptoki.

Check whether you have already installed openCryptoki in your current
environment:

$ rpm -qa | grep -i opencryptoki

Note: This command example is distribution dependent. opencryptoki must in
certain distribution be specified as openCryptoki (case-sensitive).

You should see all installed openCryptoki packages. If required packages are
missing, use the installation tool of your Linux distribution to install the
appropriate openCryptoki RPM.

Note: You must remove any previous package of openCryptoki, before you can
install the new package version 3.1.

Installing from the RPM
The current distributions already provide the openCryptoki binary RPMs.

The openCryptoki version 3.1 or higher packages, are delivered by the distributors.
Distributors build these packages as RPM packages for delivering them to
customers.

Customers can install these openCryptoki RPM packages by using the installation
tool of their selected distribution.

If you received openCryptoki as an RPM package, follow the RPM installation
process that is described in the RPM man page. This process is the preferred
installation method.

Installing from the source package
If you prefer, you can install openCryptoki from the source package.

As an alternative, for example for development purposes, you can get the latest
openCryptoki version (inclusive latest patches) from the sourceforge repository

64 libica Programmer's Reference

|

|
|

|
|

|
||

|
|

|
|
|

|
|

|

|

|
|
|

|
|

|
|
|

|

|

|
|

http://www.rsa.com/rsalabs/

(sourceforge.net/projects/opencryptoki) and build it yourself. But this version is
not serviced. It is suitable for non-production systems and early feature testing, but
you should not use it for production.
1. Download the latest version of the openCryptoki sources from:

http://sourceforge.net/projects/opencryptoki/files/opencryptoki/v3.1/

2. Decompress and extract the compressed tape archive (TGZ file). There is a new
directory named opencryptoki.

3. Change to that directory and issue the following scripts and commands:

$./bootstrap
$./configure
$ make
$ make install

The scripts or commands perform the following functions:
bootstrap

Initial setup, basic configurations
configure

Check configurations and build the makefile

make Compile and link

make install
Install the libraries

Note: When installing openCryptoki from the source package, the location of some
installed files will differ from the location of files installed from an RPM.

Configuring openCryptoki
After a successful installation of openCryptoki, you need to perform certain
configuration and customization tasks to enable the exploitation of the libica
functions from applications. Especially, you need to set up tokens and daemons
and then initialize the tokens.

openCryptoki, and in particular the slot manager, can handle several tokens, which
can have different support for different hardware devices or software solutions. As
shown in Figure 1 on page 63, libica interacts with the libica library host part.
libica can operate with the Crypto Express4S (CEX4S) adapter (CEX4A and CEX4C)
for symmetric and asymmetric cryptographic functions.

For a complete configuration of openCryptoki, finish the tasks as described in the
contained subtopics:
v “Adjusting the openCryptoki configuration file”
v “Configuring the ica token” on page 68
v “Initializing the token” on page 68
v “How to recognize the ica token” on page 69

Finally, to control your configuration results, follow the instructions provided in
“How to recognize the ica token” on page 69.

Adjusting the openCryptoki configuration file
A preconfigured list of all available tokens that are ready to register to the
openCryptoki slot daemon is required before the openCryptoki daemon can start.

Chapter 4. Using libica through openCryptoki 65

|
|
|

|

|

|
|

|

|
|
|
|
||

|
|
|
|
|

||

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|
|

|

|
|

http://sourceforge.net/projects/opencryptoki
http://sourceforge.net/projects/opencryptoki/files/opencryptoki/v3.1/

This list is provided by the global configuration file. Read this topic for
information on how to adapt this file according to your installation.

Table 5 provides an overview of supported libraries (tokens) that may be in place
after you have successfully installed openCryptoki. The list may vary for different
distributions and is dependent from the installed RPM packages.

Also, Linux on System z does not support the TPM token library.

A token is only available, if the token library is installed, and the appropriate
software and hardware support pertaining to the stack of the token is also
installed.

A token needs not be available, even if the corresponding token library is installed.
Display the list of available tokens by using the command:

$ pkcsconf -t

Table 5. openCryptoki libraries

Library Explanation

/usr/lib64/opencryptoki/libopencryptoki.so openCryptoki base library

/usr/lib64/opencryptoki/stdll/libpkcs11_ica.so ica token library

/usr/lib64/opencryptoki/stdll/libpkcs11_sw.so software token library

/usr/lib64/opencryptoki/stdll/libpkcs11_tpm.so TPM token library

/usr/lib64/opencryptoki/stdll/libpkcs11_cca.so CCA token library

/usr/lib64/opencryptoki/stdll/libpkcs11_ep11.so EP11 token library

/usr/lib64/opencryptoki/stdll/libpkcs11_icsf.so ICSF token library

Note: An analogous set of libraries is available for 32 bit compatibility mode.

Sample configuration file:

66 libica Programmer's Reference

|
|

|
|
|

|

|
|
|

|
|

|
||

||

||

||

||

||

||

||

||

||
|

|

|

-------------- content of opencryptoki.conf ---------
version opencryptoki-3.1

The following defaults are defined:
hwversion = 0.0
firmwareversion = 0.0
description = Linux
manufacturer = IBM
#
The slot definitions below may be overriden and/or customized.
For example:
slot 0
{
stdll = libpkcs11_cca.so
description = "OCK CCA Token"
manufacturer = "MyCompany Inc."
hwversion = 2.32
firmwareversion = 1.0
}
See man(5) opencryptoki.conf for further information.
#
slot 0
{
stdll = libpkcs11_tpm.so
}

slot 1
{
stdll = libpkcs11_ica.so
description = "ICA Token"
manufacturer = "IBM"
hwversion = 1.0
firmwareversion = 1.0
}

slot 2
{
stdll = libpkcs11_cca.so
}

slot 3
{
stdll = libpkcs11_sw.so
}

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok.conf
}
---------------------------- end ----------------------------------

Note:

v The standard path for slot token dynamic link libraries (STDLLs) is:
/usr/lib64/opencryptoki/stdll/.

Use one of the following command to start the slot-daemon, which reads out the
configuration information and sets up the tokens:

$ pkcsslotd start
$ service pkcsslotd start

For a permanent solution, for example, for an automatic start-up of the
slot-daemon, refer to the distribution documentation.

Chapter 4. Using libica through openCryptoki 67

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|
|

|
|

|
|
||

|
|

Configuring the ica token
You need to connect the libica library to the ica token. For this purpose, you
should check the slot entry definition in the openCryptoki configuration file.

Each token has its own token directory, which is used by openCryptoki to store
token-specific information (like for example, key objects, user PIN, or SO PIN). The
ica token directory is /var/lib/opencryptoki/lite/.

Note: This configuration is token-based. It applies to all applications that use this
ica token.

Defining the slot entry for the ica token in openCryptoki

Normally, the default openCryptoki configuration file opencryptoki.conf already
provides a slot entry for the ica token. It is preconfigured to slot #1. Check this
default entry to find out whether you can use it as is. If it is missing, then define a
slot entry that sets the stdll attribute to libpkcs11_ica.so.

Initializing the token
Once the configuration files of openCryptoki and the ica token are set up, and the
pkcsslotd daemon is started, the ica token must be initialized.

Note: PKCS #11 defines two users for each token: a security officer (SO) whose
responsibility is the administration of the token, and a standard user (User) who
wants to use the token to perform cryptographic operations. openCryptoki requires
that for both the SO and the User a log-in PIN is defined as part of the token
initialization.

The following command provides some useful slot information:

pkcsconf -s

Slot #0 Info
Description: EP11 Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 4.0
Firmware Version: 2.11

Slot #1 Info
Description: ICA Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 4.0
Firmware Version: 2.10

Find your preferred token in the details list and select the correct slot number. This
number is used in the next initialization steps to identify your token:

$ pkcsconf -I -c <slot> // Initialize the Token and setup a Token Label

$ pkcsconf -P -c <slot> // change the SO PIN (recommended)

$ pkcsconf -u -c <slot> // Initialize the User PIN (SO PIN required)

$ pkcsconf -p -c <slot> // change the User PIN (optional)

68 libica Programmer's Reference

|

|
|

|
|
|

|
|

|

|
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
|
|
|
||

pkcsconf -I
During token initialization, you are asked for a token label. Provide a
meaningful name, because you might need this reference for identification
purposes.

pkcsconf -P
For security reasons, openCryptoki requires that you change the default SO
PIN (87654321) to a different value. Use the pkcsconf -P option to change
the SO PIN.

pkcsconf -u
When you enter the user PIN initialization you are asked for the newly set
SO PIN. The length of the user PIN must be 4 - 8 characters.

pkcsconf -p
You must at least once change the user PIN with pkcsconf -p option. After
you completed the PIN setup, the token is prepared and ready for use.

Note: An initialization (pkcsconf -u option) with 12345678 will work without any
issues. However, this is not recommended, because this pattern is checked
internally and marked as default PIN. Therefore, change to a user PIN that is
different from 12345678.

How to recognize the ica token
You can use the pkcsconf -t command to display a table that shows all available
tokens. You can check the slot and token information, and the PIN status at any
time.

The following information provided by the pkcsconf -t command about the ica
token is returned in the Token Info section, where, for example, Token #1 Info
displays information about the token plugged into slot number 1.

$ pkcsconf -t

Token #1 Info:
Label: IBM ICA PKCS #11

Manufacturer: IBM Corp.
Model: IBM ICA
Serial Number: 123
Flags: 0x880045 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|USER_PIN_TO_BE_CHANGED|

SO_PIN_TO_BE_CHANGED)
Sessions: 0/-2
R/W Sessions: -1/-2
PIN Length: 4-8
Public Memory: 0xFFFFFFFF/0xFFFFFFFF
Private Memory: 0xFFFFFFFF/0xFFFFFFFF
Hardware Version: 1.0
Firmware Version: 1.0
Time: 14:16:45

The most important information is as follows:
v The token Label you assigned at the initialization phase (IBM ICA PKCS #11, in

the example). You can initialize or change a token label by using the pkcsconf
-I command.

v The Model name is unique and designates the token that is in use.
v The Flags provide information about the token initialization status, the PIN

status, and features such as Random Number Generator (RNG). They also
provide information about requirements, such as Login required, which means
that there is at least one mechanism that requires a session log-in to use that
cryptographic function.

Chapter 4. Using libica through openCryptoki 69

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|
|
|

|

|
|
|
|
|

The flag USER_PIN_TO_BE_CHANGED indicates that the user PIN must be
changed before the token can be used. The flag SO_PIN_TO_BE_CHANGED
indicates that the SO PIN must be changed before administration commands can
be used.
For more information about the flags provided in this output, see the description
of the TOKEN_INFO structure and the Token Information Flags in the PKCS #11
Cryptographic Token Interface Standard.

v The PIN length range declared for this token.

Using openCryptoki
How you can get status information about openCryptoki is described in this
section.

For a list of code samples, refer to “Coding samples (C)” on page 154.

Supported mechanisms for the ica token
View a list of the supported mechanisms for the ica token in the openCryptoki
implementation.

Use the following command to retrieve a complete list of algorithms (or
mechanisms) that are supported by the token:

$ pkcsconf -m -c <slot>
Mechanism #2

Mechanism: 0x131 (CKM_DES3_KEY_GEN)
Key Size: 24-24
Flags: 0x8001 (CKF_HW|CKF_GENERATE)

...
Mechanism #10

Mechanism: 0x132 (CKM_DES3_ECB)
Key Size: 24-24
Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)

Mechanism #11
Mechanism: 0x133 (CKM_DES3_CBC)
Key Size: 24-24
Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)

...

The list displays all mechanisms supported by this token. The mechanism ID and
name corresponds to the PKCS #11 specification. Each mechanism provides its
supported key size and the some further properties such as hardware support and
mechanism information flags. These flags provide information about the PKCS #11
functions that may use the mechanism. Typical functions are for example, encrypt,
decrypt, wrap key, unwrap key, sign, or verify.

Table 6. Supported mechanism list for the ica token.

Mechanisms ica token
supported with

openCryptoki version

CKM_RSA_PKCS_KEY_PAIR_GEN x 2.4

CKM_RSA_PKCS x 2.4

CKM_RSA_X_509 x 2.4

CKM_MD5_RSA_PKCS x 2.4

CKM_SHA1_RSA_PKCS x 2.4

CKM_SHA256_RSA_PKCS x 2.4.3.1

70 libica Programmer's Reference

|
|
|
|

|
|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|

||

||
|
|

|||

|||

|||

|||

|||

|||

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

Table 6. Supported mechanism list for the ica token (continued).

Mechanisms ica token
supported with

openCryptoki version

CKM_SHA384_RSA_PKCS x 2.4.3.1

CKM_SHA512_RSA_PKCS x 2.4.3.1

CKM_DES_OFB64 x 3.0

CKM_DES_KEY_GEN x 2.4

CKM_DES_ECB x 2.4

CKM_DES_CFB8 x 3.0

CKM_DES_CFB64 x 3.0

CKM_DES_CBC x 2.4

CKM_DES_CBC_PAD x 2.4

CKM_DES3_MAC x 3.0

CKM_DES3_MAC_GENERAL x 3.0

CKM_DES3_KEY_GEN x 2.4

CKM_DES3_ECB x 2.4

CKM_DES3_CBC x 2.4

CKM_DES3_CBC_PAD x 2.4

CKM_MD5 x 2.4

CKM_MD5_HMAC x 2.4

CKM_MD5_HMAC_GENERAL x 2.4

CKM_SHA_1 x 2.4

CKM_SHA_1_HMAC x 2.4

CKM_SHA_1_HMAC_GENERAL x 2.4

CKM_SHA256 x 2.4

CKM_SHA256_HMAC x 2.4

CKM_SHA256_HMAC_GENERAL x 2.4

CKM_SHA384 x 2.4

CKM_SHA384_HMAC x 2.4.3.1

CKM_SHA384_HMAC_GENERAL x 2.4.3.1

CKM_SHA512 x 2.4

CKM_SHA512_HMAC x 2.4.3.1

CKM_SHA512_HMAC_GENERAL x 2.4.3.1

CKM_SSL3_PRE_MASTER_KEY_GEN x 2.4

Chapter 4. Using libica through openCryptoki 71

|

||
|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 6. Supported mechanism list for the ica token (continued).

Mechanisms ica token
supported with

openCryptoki version

CKM_SSL3_MASTER_KEY_DERIVE x 2.4

CKM_SSL3_KEY_AND_MAC_DERIVE x 2.4

CKM_SSL3_MD5_MAC x 2.4

CKM_SSL3_SHA1_MAC x 2.4

CKM_AES_OFB x 3.0

CKM_AES_MAC x 3.0

CKM_AES_MAC_GENERAL x 3.0

CKM_AES_KEY_GEN x 2.4

CKM_AES_ECB x 2.4

CKM_AES_CFB8 x 3.0

CKM_AES_CFB64 x 3.0

CKM_AES_CFB128 x 3.0

CKM_AES_CBC x 2.4

CKM_AES_CBC_PAD x 2.4

CKM_AES_CTR x 2.4

72 libica Programmer's Reference

|

||
|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|
|

Chapter 5. libica constants, type definitions, data structures,
and return codes

Use these constants, type definitions, data structures, and return codes when you
program with the libica APIs.

The APIs are described in Chapter 3, “libica version 2.4 application programming
interfaces,” on page 7. To use them, include ica_api.h in your programs.

libica constants

The constants listed in this topic are provided and valid for the current libica
version.

Use these constants instead of the equivalent libica version 1 constants. There is no
difference in their values.
#define ica_adapter_handle_t int

#define SHA_HASH_LENGTH 20

#define SHA1_HASH_LENGTH SHA_HASH_LENGTH

#define SHA224_HASH_LENGTH 28

#define SHA256_HASH_LENGTH 32

#define SHA384_HASH_LENGTH 48

#define SHA512_HASH_LENGTH 64

#define ica_aes_key_t ica_key_t

#define ICA_ENCRYPT 1

#define ICA_DECRYPT 0

Type definitions
These type definitions are available to ensure compatibility with libica version 1
types.
typedef ica_des_vector_t ICA_DES_VECTOR;

typedef ica_des_key_single_t ICA_KEY_DES_SINGLE;

typedef ica_des_key_triple_t ICA_KEY_DES_TRIPLE;

typedef ica_aes_vector_t ICA_AES_VECTOR;

typedef ica_aes_key_single_t ICA_KEY_AES_SINGLE;

typedef ica_aes_key_len_128_t ICA_KEY_AES_LEN128;

typedef ica_aes_key_len_192_t ICA_KEY_AES_LEN192;

typedef ica_aes_key_len_256_t ICA_KEY_AES_LEN256;

typedef sha_context_t SHA_CONTEXT;

typedef sha256_context_t SHA256_CONTEXT;

typedef sha512_context_t SHA512_CONTEXT;

typedef unsigned char ica_des_vector_t[8];

typedef unsigned char ica_des_key_single_t[8];

typedef unsigned char ica_key_t[8];

typedef unsigned char ica_aes_vector_t[16];

typedef unsigned char ica_aes_key_single_t[8];

typedef unsigned char ica_aes_key_len_128_t[16];

© Copyright IBM Corp. 2009, 2014 73

|
|

typedef unsigned char ica_aes_key_len_192_t[24];

typedef unsigned char ica_aes_key_len_256_t[32];

Data structures
These structures are used in the API of the current libica version.

For the definitions of older functions, see previous versions of this book. The older
functions are no longer recommended for use, but they are supported.
typedef struct {
unsigned int key_length;
unsigned char* modulus;
unsigned char* exponent;
} ica_rsa_key_mod_expo_t;

typedef struct {
unsigned int key_length;
unsigned char* p;
unsigned char* q;
unsigned char* dp;
unsigned char* dq;
unsigned char* qInverse;
} ica_rsa_key_crt_t;

typedef struct {
unsigned int mech_mode_id;
unsigned int flags;
unsigned int property;
} libica_func_list_element;

* mech_mode_id: Unique mechanism ID for each mechanism implemented in libica
#define SHA1 1
#define SHA224 2
#define SHA256 3
#define SHA384 4
#define SHA512 5
#define DES_ECB 20
#define DES_CBC 21
#define DES_CBC_CS 22
#define DES_OFB 23
#define DES_CFB 24
#define DES_CTR 25
#define DES_CTRLST 26
#define DES_CBC_MAC 27
#define DES_CMAC 28
#define DES3_ECB 41
#define DES3_CBC 42
#define DES3_CBC_CS 43
#define DES3_OFB 44
#define DES3_CFB 45
#define DES3_CTR 46
#define DES3_CTRLST 47
#define DES3_CBC_MAC 48
#define DES3_CMAC 49
#define AES_ECB 60
#define AES_CBC 61
#define AES_CBC_CS 62
#define AES_OFB 63
#define AES_CFB 64
#define AES_CTR 65
#define AES_CTRLST 66
#define AES_CBC_MAC 67
#define AES_CMAC 68
#define AES_CCM 69
#define AES_GCM 70

74 libica Programmer's Reference

#define AES_XTS 71
#define P_RNG 80
#define RSA_ME 90
#define RSA_CRT 91
#define RSA_KEY_GEN_ME 92
#define RSA_KEY_GEN_CRT 93

For more details regarding these mechanism please refer to the openCryptoki v
2.20 specification.

* flags
This flag represents the type of hardware/software support for each
mechanism.

#define ICA_FLAG_SHW 4
Static hardware support (operations on CPACF). Hardware support will be
available unless a hardware error occurs.

#define ICA_FLAG_DHW 2
Dynamic hardware support (operations on crypto cards). Hardware support
will be available unless the hardware is reconfigured.

#define ICA_FLAG_SW 1
Software support. If both static and dynamic hardware support as well as
software support are available, then software support is used as fall back if
hardware support fails.

* property
This property field is optional depending on the mechanism. It is used to
declare mechanism specific parameters, such as key sizes for RSA and AES.

For RSA mechanisms:

- bit 0
512 bit key size support

- bit 1
1024 bit key size support

- bit 2
2048 bit key size support

- bit 3
4096 bit key size support

For AES mechanisms:

- bit 0
128 bit key size support

- bit 1
192 bit key size support

- bit 2
256 bit key size support

For all non-RSA/AES mechanisms this field is empty.

Take note of these considerations:
v The buffers pointed to by members of type unsigned char * must be manually

allocated and deallocated by the user.
v Key parts must always be right-aligned in their fields.

Chapter 5. libica programming definitions 75

v All buffers pointed to by members modulus and exponent in struct
ica_rsa_key_mod_expo_t must be of length key_length.

v All buffers pointed to by members p, q, dp, dq, and qInverse in struct
ica_rsa_key_crt_t must be of size key_length / 2 or larger.

v In the struct ica_rsa_key_crt_t, the buffers p, dp, and qInverse must contain 8 bytes
of zero padding in front of the actual values.

v If an exponent is set in struct ica_rsa_key_mod_expo_t as part of a public key for
key generation, be aware that due to a restriction in OpenSSL, the public
exponent cannot be larger than a size of unsigned long. Therefore, you must
have zeros left-padded in the buffer pointed to by exponent in the struct
ica_rsa_key_mod_expo_t struct. Be aware that this buffer also must be of size
key_length.

v This key_length value should be calculated from the length of the modulus in
bits, according to this calculation:
key_length = (modulus_bits + 7) / 8

typedef struct {
uint64_t runningLength;
unsigned char shaHash[LENGTH_SHA_HASH];

} sha_context_t;

typedef struct {
uint64_t runningLength;
unsigned char sha256Hash[LENGTH_SHA256_HASH];

} sha256_context_t;

typedef struct {
uint64_t runningLengthHigh;
uint64_t runningLengthLow;
unsigned char sha512Hash[LENGTH_SHA512_HASH];

} sha512_context_t;

typedef struct {
unsigned int major_version;
unsigned int minor_version;
unsigned int fixpack_version;

} libica_version_info;

Return codes
The current libica functions use the standard Linux return codes listed in this topic.
0 Success
EFAULT

The message authentication failed.
EINVAL

Incorrect parameter
EIO I/O error
EPERM

Operation not permitted by Hardware (CPACF).
ENODEV

No such device
ENOMEM

Not enough memory
errno When libica calls open, close, begin_sigill_section, or OpenSSL function

RSA_generate_key, the error codes of these programs are returned.

76 libica Programmer's Reference

Chapter 6. libica tools

The libica package includes tools to investigate the capabilities of your
cryptographic hardware and how these capabilities are used by applications that
use libica.

icainfo - Show available libica functions
Use the icainfo command to find out which libica functions are available on your
Linux system.

Format

icainfo syntax

�� icainfo
-v
-h

��

Where:

-v or --version
Displays the version number of icainfo, then exits.

-h or --help
Displays help information for the command.

Examples

To obtain an overview of the supported algorithms with modes of operations and
how they are implemented on your Linux system (hardware, software, or both),
enter:

icainfo

View the output produced by this command:
The following CP Assist for Cryptographic Function (CPACF) operations are
supported by libica on this system:

function | # hardware | #software
---------------+------------+--------------

SHA-1 | yes | yes
SHA-224 | yes | yes
SHA-256 | yes | yes
SHA-384 | yes | yes
SHA-512 | yes | yes

P_RNG | yes | yes
RSA ME | yes | yes
RSA CRT | yes | yes
DES ECB | yes | yes
DES CBC | yes | yes

© Copyright IBM Corp. 2009, 2014 77

|

|
|

|
|

|

||||||||||||||||

|
||

|

|
|

|
|

|

|
|
|

|
||

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DES CBC CS | yes | no
DES OFB | yes | no
DES CFB | yes | no
DES CTR | yes | no
DES CTRLST | yes | no
DES CBC MAC | yes | no
DES CMAC | yes | no
3DES ECB | yes | yes
3DES CBC | yes | yes
3DES CBC CS | yes | no
3DES OFB | yes | no
3DES CFB | yes | no
3DES CTR | yes | no
3DES CTRLIST | yes | no
3DES CBC MAC | yes | no
3DES CMAC | yes | no
AES ECB | yes | yes
AES CBC | yes | yes
AES CBC CS | yes | no
AES OFB | yes | no
AES CFB | yes | no
AES CTR | yes | no
AES CTRLST | yes | no
AES CBC MAC | yes | no
AES CMAC | yes | no
AES CCM | yes | no
AES GCM | yes | no
AES XTS | yes | no

icastats - Show use of libica functions
Use the icastats utility to find out whether libica uses hardware acceleration
features or works with software fallbacks. icastats collects the statistical data per
user and not per system.

The command also shows which specific functions of libica are used. For a
standard user, icastats shows a statistics table with all crypto operations that are
used by the user’s processes. For the root user, icastats provides statistics for all
users, or processes, on the system.

The shared memory segment that holds the statistic data is created when a user
starts icastats or when a program is started, that performs cryptographic
operations using libica. Once the shared memory segment exists, it can only be
removed by one of the delete options (-d or -D) provided with the icastats utility.
Thus, this function collects crypto statistics independently from the process context
for continuing availability of data. All cryptographic operations using libica are
counted into the statistics.

Note: Before deleting the shared memory segment, ensure that there are no
running applications that are using this memory segment.

78 libica Programmer's Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

Format

icastats syntax

�� icastats
-A
-d
-D
-r
-R
-S
-U < username>
-h
-v

��

Where:

-A or --all
Shows the statistic tables from all users (for root users only).

-d or --delete
Removes the user specific shared memory segment.

-D or --delete-all
Removes all shared memory segments (for root users only).

-r or --reset
Resets the user statistic data table.

-R or --reset-all
Resets all statistic data tables from all users (for root users only).

-S or --summary
Shows accumulated statistics from all users (for root users only).

-U <username> or --user <username>
Shows statistic data for a dedicated user (for root users only).

-h or --help
Displays help information for the command.

-v or --version
Displays the version number of icastats, then exits.

Examples

To display the current use of libica functions issue:

icastats

View an excerpt of a sample output produced by this command:
Function | # Hardware | # Software
-------------+-------------------------+-----------------------

ENC CRYPT DEC | ENC CRYPT DEC
-------------+-------------------------+-----------------------
SHA-1 | 100 | 0
SHA-224 | 256 | 0
SHA-256 | 0 | 0

Chapter 6. libica tools 79

|
|

|

|||||||||||||||||||||||||||||||||||||

|
||

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
||

|

|
|
|
|
|
|
|

SHA-384 | 0 | 0
SHA-512 | 0 | 0
P_RNG | 0 | 100
RSA ME | 0 0 | 121 22
RSA CRT | 0 0 | 0 0
DES ECB | 0 0 | 0 0
DES CBC | 0 0 | 0 0
...
3DES ECB | 0 0 | 0 0
3DES CBC | 0 0 | 0 0
...
AES ECB | 0 0 | 0 0
AES CBC | 0 0 | 0 0
...
AES GCM AUTH | 0 0 | 0 0

Logging and error handling

Access failures to the shared memory segments that are used by the icastats
utility, are logged once via the syslog interface. After a failed attempt to access the
shared memory segment, the library no longer collects any statistic data for this
application (related to application lifetime and user).

Example of syslog message:
<date> <machine> <application>: failed to create or access shared memory segment.

The icastats utility prints an error messages if it cannot create, access, or remove
the shared memory segment.

Note: The log message may indicate a permission problem with the shared
memory segment. An administrator can remove the defect memory segment. The
next call of icastats should create a new memory segment automatically.

80 libica Programmer's Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|

|
|

|
|
|
|

Chapter 7. Examples

These sample program segments illustrate the use of the libica APIs.

These examples are released under the Common Public License - V1.0, which is
stated in full at the end of this chapter. See “Common Public License - V1.0” on
page 151.

View a list of examples for libica, and the makefile used to create the library.
v “DES with ECB mode example”
v “SHA-256 example” on page 83
v “Pseudo random number generation example” on page 89
v “Key generation example” on page 90
v “RSA example” on page 96
v “DES with CTR mode example” on page 101
v “Triple DES with CBC mode example” on page 104
v “AES with CFB mode example” on page 107
v “AES with CTR mode example” on page 119
v “AES with OFB mode example” on page 129
v “AES with XTS mode example” on page 137
v “CMAC example” on page 147
v “Makefile example” on page 150
v “openCryptoki code samples” on page 154

DES with ECB mode example
This program prints the version of libica and then encrypts the contents of a
character array (plain_data[]) using DES in ECE mode and a key stored in another
character array (des_key[]). The program then decrypts the result and prints it as a
string. Intermediate results are written as hex dumps.

/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*
* Copyright IBM Corp. 2011
*
*/

#include <stdio.h>
#include <string.h>
#include <errno.h>

#include <ica_api.h>

#define DES_CIPHER_BLOCK_SIZE 8

/* Prints hex values to standard out. */
static void dump_data(unsigned char *data, unsigned long length);
/* Prints a description of the return value to standard out. */
static int handle_ica_error(int rc);

int main(char **argv, int argc)

© Copyright IBM Corp. 2009, 2014 81

{
int rc;
libica_version_info version;

/* This example uses a static key. In real life you would
* use your real DES key, which is negotiated between the
* encrypting and the decrypting entity.
*
* Note: DES key size is cipher block size (DES_CIPHER_BLOCK_SIZE)
*/
unsigned char des_key[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
};

/* This is the plain data, you want to encrypt. For the
* encryption mode, used in this example, it is necessary,
* that the length of the encrypted data is a multiple of
* cipher block size (DES_CIPHER_BLOCK_SIZE).
*/
unsigned char plain_data[] = {
0x55, 0x73, 0x69, 0x6e, 0x67, 0x20, 0x6c, 0x69,
0x62, 0x69, 0x63, 0x61, 0x20, 0x69, 0x73, 0x20,
0x73, 0x6d, 0x61, 0x72, 0x74, 0x20, 0x61, 0x6e,
0x64, 0x20, 0x65, 0x61, 0x73, 0x79, 0x21, 0x00,
};

unsigned char cipher_data[sizeof(plain_data)];
unsigned char decrypt_data[sizeof(plain_data)];

/* Print out libica version.
*/
ica_get_version(&version);
printf("libica version %i.%i.%i\n\n",

version.major_version,
version.minor_version,
version.fixpack_version);

/* Dump key and plain data to standard output, just for
* a visual control.
*/
printf("DES key:\n");
dump_data(des_key, DES_CIPHER_BLOCK_SIZE);
printf("plain data:\n");
dump_data(plain_data, sizeof(plain_data));

/* Encrypt plain data to cipher data, using libica API.
*/
rc = ica_des_ecb(plain_data, cipher_data, sizeof(plain_data),

des_key,
ICA_ENCRYPT);

/* Error handling (if necessary).
*/
if (rc)
return handle_ica_error(rc);

/* Dump encrypted data.
*/
printf("encrypted data:\n");
dump_data(cipher_data, sizeof(plain_data));

/* Decrypt cipher data to decrypted data, using libica API.
* Note: The same DES key must be used for encryption and decryption.
*/
rc = ica_des_ecb(cipher_data, decrypt_data, sizeof(plain_data),

des_key,
ICA_DECRYPT);

82 libica Programmer's Reference

/* Error handling (if necessary).
*/
if (rc)
return handle_ica_error(rc);

/* Dump decrypted data.
* Note: Please compare output with the plain data, they are the same.
*/
printf("decrypted data:\n");
dump_data(decrypt_data, sizeof(plain_data));

/* Surprise... :-)
* Note: The following will only work in this example!
*/
printf("%s\n", decrypt_data);
}

static void dump_data(unsigned char *data, unsigned long length)
{
unsigned char *ptr;
int i;

for (ptr = data, i = 1; ptr < (data+length); ptr++, i++) {
printf("0x%02x ", *ptr);
if ((i % DES_CIPHER_BLOCK_SIZE) == 0)
printf("\n");

}
if (i % DES_CIPHER_BLOCK_SIZE)
printf("\n");

}

static int handle_ica_error(int rc)
{
switch (rc) {
case 0:
printf("OK\n");
break;
case EINVAL:
printf("Incorrect parameter.\n");
break;
case EPERM:
printf("Operation not permitted by Hardware (CPACF).\n");
break;
case EIO:
printf("I/O error.\n");
break;
default:
printf("unknown error.\n");
}

return rc;
}

SHA-256 example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2005, 2009, 2011 */
/* (C) COPYRIGHT International Business Machines Corp. 2005, 2009 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>

Chapter 7. Examples 83

#include <string.h>
#include "ica_api.h"

#define NUM_FIPS_TESTS 3

unsigned char FIPS_TEST_DATA[NUM_FIPS_TESTS][64] = {
// Test 0: "abc"
{ 0x61,0x62,0x63 },
// Test 1: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
{

0x61,0x62,0x63,0x64,0x62,0x63,0x64,0x65,0x63,0x64,0x65,0x66,0x64,0x65,0x66,0x67,
0x65,0x66,0x67,0x68,0x66,0x67,0x68,0x69,0x67,0x68,0x69,0x6a,0x68,0x69,0x6a,0x6b,
0x69,0x6a,0x6b,0x6c,0x6a,0x6b,0x6c,0x6d,0x6b,0x6c,0x6d,0x6e,0x6c,0x6d,0x6e,0x6f,
0x6d,0x6e,0x6f,0x70,0x6e,0x6f,0x70,0x71,

},
// Test 2: 1,000,000 ’a’ -- don’t actually use this... see the special case
// in the loop below.
{

0x61,
},

};

unsigned int FIPS_TEST_DATA_SIZE[NUM_FIPS_TESTS] = {
// Test 0: "abc"
3,
// Test 1: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
56,
// Test 2: 1,000,000 ’a’
1000000,

};

unsigned char FIPS_TEST_RESULT[NUM_FIPS_TESTS][LENGTH_SHA256_HASH] =
{

// Hash for test 0: "abc"
{

0xBA,0x78,0x16,0xBF,0x8F,0x01,0xCF,0xEA,0x41,0x41,0x40,0xDE,0x5D,0xAE,0x22,0x23,
0xB0,0x03,0x61,0xA3,0x96,0x17,0x7A,0x9C,0xB4,0x10,0xFF,0x61,0xF2,0x00,0x15,0xAD,

},
// Hash for test 1: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
{

0x24,0x8D,0x6A,0x61,0xD2,0x06,0x38,0xB8,0xE5,0xC0,0x26,0x93,0x0C,0x3E,0x60,0x39,
0xA3,0x3C,0xE4,0x59,0x64,0xFF,0x21,0x67,0xF6,0xEC,0xED,0xD4,0x19,0xDB,0x06,0xC1,

},
// Hash for test 2: 1,000,000 ’a’
{

0xCD,0xC7,0x6E,0x5C,0x99,0x14,0xFB,0x92,0x81,0xA1,0xC7,0xE2,0x84,0xD7,0x3E,0x67,
0xF1,0x80,0x9A,0x48,0xA4,0x97,0x20,0x0E,0x04,0x6D,0x39,0xCC,0xC7,0x11,0x2C,0xD0,

},
};

void dump_array(unsigned char *ptr, unsigned int size)
{

unsigned char *ptr_end;
unsigned char *h;
int i = 1, trunc = 0;

if (size > 64) {
trunc = size - 64;
size = 64;

}
h = ptr;
ptr_end = ptr + size;
while (h < ptr_end) {

printf("0x%02x ", *h);
h++;
if (i == 8) {

if (h != ptr_end)

84 libica Programmer's Reference

printf("\n");
i = 1;

} else {
++i;
}

}
printf("\n");
if (trunc > 0)

printf("... %d bytes not printed\n", trunc);
}

int old_api_sha256_test(void)
{

ICA_ADAPTER_HANDLE adapter_handle;
SHA256_CONTEXT Sha256Context;
int rc = 0, i = 0;
unsigned char input_data[1000000];
unsigned int output_hash_length = LENGTH_SHA256_HASH;
unsigned char output_hash[LENGTH_SHA256_HASH];

rc = icaOpenAdapter(0, &adapter_handle);
if (rc != 0) {

printf("icaOpenAdapter failed and returned %d (0x%x).\n", rc, rc);
if (rc == ENODEV)

printf("The usual cause of this on zSeries is that the CPACF instruction is not available.\n");
return 2;

}

for (i = 0; i < NUM_FIPS_TESTS; i++) {
// Test 2 is a special one, because we want to keep the size of the
// executable down, so we build it special, instead of using a static
if (i != 2)

memcpy(input_data, FIPS_TEST_DATA[i], FIPS_TEST_DATA_SIZE[i]);
else

memset(input_data, ’a’, FIPS_TEST_DATA_SIZE[i]);

printf("\nOriginal data for test %d:\n", i);
dump_array(input_data, FIPS_TEST_DATA_SIZE[i]);

rc = icaSha256(adapter_handle,
SHA_MSG_PART_ONLY,
FIPS_TEST_DATA_SIZE[i],
input_data,
LENGTH_SHA256_CONTEXT,
&Sha256Context,
&output_hash_length,
output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x).\n", rc, rc);
return 2;

}

if (output_hash_length != LENGTH_SHA256_HASH) {
printf("icaSha256 returned an incorrect output data length, %u (0x%x).\n",

output_hash_length, output_hash_length);
return 2;

}

printf("\nOutput hash for test %d:\n", i);
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[i], LENGTH_SHA256_HASH) != 0) {

printf("This does NOT match the known result.\n");
} else {

printf("Yes, it’s what it should be.\n");
}

Chapter 7. Examples 85

}

// This test is the same as test 2, except that we use the SHA256_CONTEXT and
// break it into calls of 1024 bytes each.
printf("\nOriginal data for test 2(chunks = 1024) is calls of 1024 ’a’s at a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {

unsigned int shaMessagePart;
memset(input_data, ’a’, 1024);

if (i == FIPS_TEST_DATA_SIZE[2])
shaMessagePart = SHA_MSG_PART_FIRST;

else if (i <= 1024)
shaMessagePart = SHA_MSG_PART_FINAL;

else
shaMessagePart = SHA_MSG_PART_MIDDLE;

rc = icaSha256(adapter_handle,
shaMessagePart,
(i < 1024) ? i : 1024,
input_data,
LENGTH_SHA256_CONTEXT,
&Sha256Context,
&output_hash_length,
output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x) on iteration %d.\n", rc, rc, i);
return 2;

}

i -= 1024;
}

if (output_hash_length != LENGTH_SHA256_HASH) {
printf("icaSha256 returned an incorrect output data length, %u (0x%x).\n",

output_hash_length, output_hash_length);
return 2;

}

printf("\nOutput hash for test 2(chunks = 1024):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0) {

printf("This does NOT match the known result.\n");
} else {

printf("Yes, it’s what it should be.\n");
}

// This test is the same as test 2, except that we use the SHA256_CONTEXT and
// break it into calls of 64 bytes each.
printf("\nOriginal data for test 2(chunks = 64) is calls of 64 ’a’s at a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {

unsigned int shaMessagePart;
memset(input_data, ’a’, 64);

if (i == FIPS_TEST_DATA_SIZE[2])
shaMessagePart = SHA_MSG_PART_FIRST;

else if (i <= 64)
shaMessagePart = SHA_MSG_PART_FINAL;

else
shaMessagePart = SHA_MSG_PART_MIDDLE;

rc = icaSha256(adapter_handle,
shaMessagePart,
(i < 64) ? i : 64,
input_data,

86 libica Programmer's Reference

LENGTH_SHA256_CONTEXT,
&Sha256Context,
&output_hash_length,
output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x) on iteration %d.\n", rc, rc, i);
return 2;

}

i -= 64;
}

if (output_hash_length != LENGTH_SHA256_HASH) {
printf("icaSha256 returned an incorrect output data length, %u (0x%x).\n",

output_hash_length, output_hash_length);
return 2;

}

printf("\nOutput hash for test 2(chunks = 64):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0) {

printf("This does NOT match the known result.\n");
} else {

printf("Yes, it’s what it should be.\n");
}

printf("\nAll SHA256 tests completed successfully\n");

icaCloseAdapter(adapter_handle);

return 0;
}

int new_api_sha256_test(void)
{
sha256_context_t sha256_context;
int rc = 0, i = 0;
unsigned char input_data[1000000];
unsigned int output_hash_length = LENGTH_SHA256_HASH;
unsigned char output_hash[LENGTH_SHA256_HASH];

for (i = 0; i < NUM_FIPS_TESTS; i++) {
// Test 2 is a special one, because we want to keep the size of the
// executable down, so we build it special, instead of using a static
if (i != 2)
memcpy(input_data, FIPS_TEST_DATA[i], FIPS_TEST_DATA_SIZE[i]);
else
memset(input_data, ’a’, FIPS_TEST_DATA_SIZE[i]);

printf("\nOriginal data for test %d:\n", i);
dump_array(input_data, FIPS_TEST_DATA_SIZE[i]);

rc = ica_sha256(SHA_MSG_PART_ONLY, FIPS_TEST_DATA_SIZE[i], input_data,
&sha256_context, output_hash);

if (rc != 0) {
printf("icaSha256 failed with errno %d (0x%x).\n", rc, rc);
return rc;
}

printf("\nOutput hash for test %d:\n", i);
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[i], LENGTH_SHA256_HASH) != 0)
printf("This does NOT match the known result.\n");
else
printf("Yes, it’s what it should be.\n");

Chapter 7. Examples 87

}

// This test is the same as test 2, except that we use the SHA256_CONTEXT and
// break it into calls of 1024 bytes each.
printf("\nOriginal data for test 2(chunks = 1024) is calls of 1024"

" ’a’s at a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {
unsigned int sha_message_part;
memset(input_data, ’a’, 1024);

if (i == FIPS_TEST_DATA_SIZE[2])
sha_message_part = SHA_MSG_PART_FIRST;
else if (i <= 1024)
sha_message_part = SHA_MSG_PART_FINAL;
else
sha_message_part = SHA_MSG_PART_MIDDLE;

rc = ica_sha256(sha_message_part, (i < 1024) ? i : 1024,
input_data, &sha256_context, output_hash);

if (rc != 0) {
printf("ica_sha256 failed with errno %d (0x%x) on"

" iteration %d.\n", rc, rc, i);
return rc;
}
i -= 1024;
}

printf("\nOutput hash for test 2(chunks = 1024):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0)
printf("This does NOT match the known result.\n");
else
printf("Yes, it’s what it should be.\n");

// This test is the same as test 2, except that we use the
// SHA256_CONTEXT and break it into calls of 64 bytes each.
printf("\nOriginal data for test 2(chunks = 64) is calls of 64 ’a’s at"

" a time\n");
i = FIPS_TEST_DATA_SIZE[2];
while (i > 0) {
unsigned int sha_message_part;
memset(input_data, ’a’, 64);

if (i == FIPS_TEST_DATA_SIZE[2])
sha_message_part = SHA_MSG_PART_FIRST;
else if (i <= 64)
sha_message_part = SHA_MSG_PART_FINAL;
else
sha_message_part = SHA_MSG_PART_MIDDLE;

rc = ica_sha256(sha_message_part, (i < 64) ? i : 64,
input_data, &sha256_context, output_hash);

if (rc != 0) {
printf("ica_sha256 failed with errno %d (0x%x) on iteration"

" %d.\n", rc, rc, i);
return rc;
}
i -= 64;
}

printf("\nOutput hash for test 2(chunks = 64):\n");
dump_array(output_hash, output_hash_length);
if (memcmp(output_hash, FIPS_TEST_RESULT[2], LENGTH_SHA256_HASH) != 0)
printf("This does NOT match the known result.\n");

88 libica Programmer's Reference

else
printf("Yes, it’s what it should be.\n");

printf("\nAll SHA256 tests completed successfully\n");

return 0;
}

int main(int argc, char **argv)
{
int rc = 0;
rc = old_api_sha256_test();
if (rc) {
printf("old_api_sha256_test: returned rc = %i\n", rc);
return rc;
}

rc = new_api_sha256_test();
if (rc) {
printf("new_api_sha256_test: returned rc = %i\n", rc);
return rc;
}

return rc;
}

Pseudo random number generation example
This example uses the libica version 1 API. Examples for using the libica version
2.4 API for random number generation are located in other examples, such as the
DES with CTR mode example.

/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include "ica_api.h"

unsigned char R[512];

extern int errno;

void dump_array(unsigned char *ptr, unsigned int size)
{

unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {

printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {

printf("\n");
i = 1;

} else {
++i;

}

Chapter 7. Examples 89

}
printf("\n");

}

int main(int ac, char **av)
{

int rc;
ICA_ADAPTER_HANDLE adapter_handle;

rc = icaOpenAdapter(0, &adapter_handle);
if (rc != 0) {

printf("icaOpenAdapter failed and returned %d (0x%x).\n", rc, rc);
}

rc = icaRandomNumberGenerate(adapter_handle, sizeof R, R);
if (rc != 0) {

printf("icaRandomNumberGenerate failed and returned %d (0x%x).\n", rc, rc);
#ifdef __s390__

if (rc == ENODEV)
printf("The usual cause of this on zSeries is that the CPACF instruction is not available.\n");

#endif
}
else {

printf("\nHere it is:\n");
}

dump_array(R, sizeof R);

if (!rc) {
printf("\nWell, does it look random?\n\n");

}

icaCloseAdapter(adapter_handle);

return 0;
}

Key generation example
This example uses the various key generation APIs, as well as those to open and
close an adapter, and random number generation.

/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* (C) COPYRIGHT International Business Machines Corp. 2001, 2009 */
#include <sys/errno.h>
#include <fcntl.h>
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "ica_api.h"

#define KEY_BYTES ((key_bits + 7) / 8)
#define KEY_BYTES_MAX 256

extern int errno;

void dump_array(char *ptr, int size)
{
char *ptr_end;
char *h;
int i = 1;

90 libica Programmer's Reference

h = ptr;
ptr_end = ptr + size;
while (h < ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");
}

int main(int argc, char **argv)
{
ICA_ADAPTER_HANDLE adapter_handle;
ICA_KEY_RSA_CRT crtkey;
ICA_KEY_RSA_MODEXPO wockey, wockey2;
unsigned char decrypted[KEY_BYTES_MAX], encrypted[KEY_BYTES_MAX],

original[KEY_BYTES_MAX];
int rc;
unsigned int length, length2;
unsigned int exponent_type = RSA_PUBLIC_FIXED, key_bits = 1024;

length = sizeof wockey;
length2 = sizeof wockey2;
bzero(&wockey, sizeof wockey);
bzero(&wockey2, sizeof wockey2);

rc = icaOpenAdapter(0, &adapter_handle);
if (rc != 0) {
printf("icaOpenAdapter failed and returned %d (0x%x).\n", rc,

rc);
}
exponent_type = RSA_PUBLIC_FIXED;
printf("a fixed exponent . . .\n");
rc = icaRandomNumberGenerate(adapter_handle, KEY_BYTES,

wockey.keyRecord);
if (rc != 0) {

printf("icaRandomNumberGenerate failed and returned %d (0x%x)"
".\n", rc, rc);

return -1;
}
wockey.nLength = KEY_BYTES / 2;
wockey.expLength = sizeof(unsigned long);
wockey.expOffset = SZ_HEADER_MODEXPO;
wockey.keyRecord[wockey.expLength - 1] |= 1;
if (argc > 1) {
key_bits = atoi(argv[1]);
if (key_bits > KEY_BYTES_MAX * 8) {
printf("The maximum key length is %d bits.",

KEY_BYTES_MAX * 8);
exit(0);
}
wockey.modulusBitLength = key_bits;
printf("Using %u-bit keys and ", key_bits);
if (argc > 2) {
switch (argv[2][0]) {
case ’3’:
exponent_type = RSA_PUBLIC_3;
printf("exponent 3 . . .\n");
wockey.expLength = 1;
break;

Chapter 7. Examples 91

case ’6’:
exponent_type = RSA_PUBLIC_65537;
printf("exponent 65537 . . .\n");
wockey.expLength = 3;
break;
case ’R’:
case ’r’:
exponent_type = RSA_PUBLIC_RANDOM;
printf("a random exponent . . .\n");
break;
default:
break;
}
}
}

rc = icaRandomNumberGenerate(adapter_handle, sizeof(original),
original);

if (rc != 0) {
printf("icaRandomNumberGenerate failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;
}
original[0] = 0;

rc = icaRsaKeyGenerateModExpo(adapter_handle, key_bits, exponent_type,
&length, &wockey, &length2, &wockey2);

if (rc != 0) {
printf("icaRsaKeyGenerateModExpo failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;
}

printf("Public key:\n");
dump_array((char *) wockey.keyRecord, 2 * KEY_BYTES);
printf("Private key:\n");
dump_array((char *) wockey2.keyRecord, 2 * KEY_BYTES);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
printf("encrypt \n");
rc = icaRsaModExpo(adapter_handle, KEY_BYTES, original, &wockey,

&length, encrypted);
if (rc != 0) {
printf("icaRsaModExpo failed and returned %d (0x%x).\n", rc, rc);
return rc;
}
bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
printf("decrypt \n");
rc = icaRsaModExpo(adapter_handle, KEY_BYTES, encrypted, &wockey2,

&length, decrypted);
if (rc != 0) {
printf("icaRsaModExpo failed and returned %d (0x%x).\n", rc,

rc);
return rc;
}

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext. Failure!\n");
icaCloseAdapter(adapter_handle);

92 libica Programmer's Reference

return errno ? errno : -1;
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext."

"That can’t be good.\n");
return -1;
}
}
fflush(stdout);

length = sizeof wockey;
length2 = sizeof crtkey;
bzero(&wockey, sizeof wockey);
wockey.expLength = sizeof(unsigned long);
if (exponent_type == RSA_PUBLIC_FIXED) {
wockey.keyType = KEYTYPE_MODEXPO;
wockey.keyLength = sizeof wockey;
wockey.modulusBitLength = key_bits;
wockey.nLength = KEY_BYTES;
wockey.expOffset = SZ_HEADER_MODEXPO;
wockey.expLength = sizeof (unsigned long);
wockey.nOffset = KEY_BYTES + wockey.expOffset;
rc = icaRandomNumberGenerate(adapter_handle, KEY_BYTES,

wockey.keyRecord);
if (rc != 0) {
printf("icaRandomNumberGenerate failed and returned %d"

"(0x%x).\n", rc, rc);
return rc;
}
wockey.keyRecord[wockey.expLength - 1] |= 1;
}
rc = icaRsaKeyGenerateCrt(adapter_handle, key_bits, exponent_type,

&length, &wockey, &length2, &crtkey);
printf("wockey.modulusBitLength = %i, crtkey.modulusBitLength = %i"

" \n", wockey.modulusBitLength, crtkey.modulusBitLength);
if (rc != 0) {
printf("icaRsaKeyGenerateCrt failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;
}

printf("Public key:\n");
dump_array((char *) wockey.keyRecord, 2 * KEY_BYTES);
printf("Private key:\n");
dump_array((char *) crtkey.keyRecord, 5 * KEY_BYTES / 2 + 24);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
rc = icaRsaModExpo(adapter_handle, KEY_BYTES, original, &wockey,

&length, encrypted);
if (rc != 0)
printf("icaRsaModExpo failed and returned %d (0x%x).\n", rc, rc);

bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
rc = icaRsaCrt(adapter_handle, KEY_BYTES, encrypted, &crtkey, &length,

decrypted);
if (rc != 0)
printf("icaRsaCrt failed and returned %d (0x%x).\n", rc, rc);

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);

Chapter 7. Examples 93

if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext. Failure!\n");
icaCloseAdapter(adapter_handle);
return errno ? errno : -1;
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext. That can’t be good.\n");
return -1;
}
}
fflush(stdout);

printf("TEST NEW API - MOD_EXPO\n");
rc = ica_close_adapter(adapter_handle);
printf("ica_close_adapter rc = %i\n", rc);

rc = ica_open_adapter(&adapter_handle);
if (rc)
printf("Adapter not open\n");
else
printf("Adapter open\n");

ica_rsa_key_mod_expo_t modexpo_public_key;
unsigned char modexpo_public_n[KEY_BYTES];
bzero(modexpo_public_n, KEY_BYTES);
unsigned char modexpo_public_e[KEY_BYTES];
bzero(modexpo_public_e, KEY_BYTES);
modexpo_public_key.modulus = modexpo_public_n;
modexpo_public_key.exponent = modexpo_public_e;
modexpo_public_key.key_length = KEY_BYTES;
if (exponent_type == RSA_PUBLIC_65537)
(unsigned long)((unsigned char *)modexpo_public_key.exponent +

modexpo_public_key.key_length -
sizeof(unsigned long)) = 65537;

if (exponent_type == RSA_PUBLIC_3)
(unsigned long)((unsigned char *)modexpo_public_key.exponent +

modexpo_public_key.key_length -
sizeof(unsigned long)) = 3;

ica_rsa_key_mod_expo_t modexpo_private_key;
unsigned char modexpo_private_n[KEY_BYTES];
bzero(modexpo_private_n, KEY_BYTES);
unsigned char modexpo_private_e[KEY_BYTES];
bzero(modexpo_private_e, KEY_BYTES);
modexpo_private_key.modulus = modexpo_private_n;
modexpo_private_key.exponent = modexpo_private_e;
modexpo_private_key.key_length = KEY_BYTES;

rc = ica_rsa_key_generate_mod_expo(adapter_handle,
key_bits,
&modexpo_public_key,
&modexpo_private_key);

if (rc)
printf("ica_rsa_key_generate_mod_expo rc = %i\n",rc);

printf("Public key:\n");
dump_array((char *) (char *)modexpo_public_key.exponent, KEY_BYTES);
dump_array((char *) (char *)modexpo_public_key.modulus, KEY_BYTES);
printf("Private key:\n");
dump_array((char *) (char *)modexpo_private_key.exponent, KEY_BYTES);
dump_array((char *) (char *)modexpo_private_key.modulus, KEY_BYTES);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
printf("encrypt \n");
rc = ica_rsa_mod_expo(adapter_handle, original, &modexpo_public_key,

94 libica Programmer's Reference

encrypted);

if (rc != 0) {
printf("ica_rsa_mod_expo failed and returned %d (0x%x).\n", rc,

rc);
return rc;
}
bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
printf("decrypt \n");
rc = ica_rsa_mod_expo(adapter_handle, encrypted, &modexpo_private_key,

decrypted);
if (rc != 0) {
printf("ica_rsa_mod_expo failed and returned %d (0x%x).\n", rc,

rc);
return rc;
}

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext. Failure!\n");
return -1;
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext. That can’t be good.\n");
return -1;
}
}
fflush(stdout);

printf("TEST NEW API - CRT\n");
ica_rsa_key_mod_expo_t public_key;
ica_rsa_key_crt_t private_key;

unsigned char public_n[KEY_BYTES];
bzero(public_n, KEY_BYTES);
unsigned char public_e[KEY_BYTES];
bzero(public_e, KEY_BYTES);
public_key.modulus = public_n;
public_key.exponent = public_e;
public_key.key_length = KEY_BYTES;

unsigned char private_p[(key_bits + 7) / (8 * 2) + 8];
bzero(private_p, KEY_BYTES + 1);
unsigned char private_q[(key_bits + 7) / (8 * 2)];
bzero(private_q, KEY_BYTES);
unsigned char private_dp[(key_bits + 7) / (8 * 2) + 8];
bzero(private_dp, KEY_BYTES + 1);
unsigned char private_dq[(key_bits + 7) / (8 * 2)];
bzero(private_dq, KEY_BYTES);
unsigned char private_qInverse[(key_bits + 7) / (8 * 2) + 8];
bzero(private_qInverse, KEY_BYTES + 1);
private_key.p = private_p;
private_key.q = private_q;
private_key.dp = private_dp;
private_key.dq = private_dq;
private_key.qInverse = private_qInverse;
private_key.key_length = (key_bits + 7) / 8;

if (exponent_type == RSA_PUBLIC_65537)
(unsigned long)((unsigned char *)public_key.exponent +

Chapter 7. Examples 95

public_key.key_length -
sizeof(unsigned long)) = 65537;

if (exponent_type == RSA_PUBLIC_3)
(unsigned long)((unsigned char *)public_key.exponent +

public_key.key_length -
sizeof(unsigned long)) = 3;

rc = ica_rsa_key_generate_crt(adapter_handle, key_bits, &public_key,
&private_key);

if (rc != 0) {
printf("ica_rsa_key_generate_crt failed and returned %d (0x%x)"

".\n", rc, rc);
return rc;
}

printf("Public key:\n");
dump_array((char *) (char *)&public_key, 2 * KEY_BYTES);
printf("Private key:\n");
dump_array((char *) (char *)&private_key, 5 * KEY_BYTES / 2 + 24);

bzero(encrypted, KEY_BYTES);
length = KEY_BYTES;
rc = ica_rsa_mod_expo(adapter_handle, original, &public_key, encrypted);
if (rc != 0) {
printf("ica_rsa_mod_expo failed and returned %d (0x%x).\n",

rc, rc);
return rc;
}
bzero(decrypted, KEY_BYTES);
length = KEY_BYTES;
rc = ica_rsa_crt(adapter_handle, encrypted, &private_key, decrypted);
if (rc != 0) {
printf("icaRsaCrt failed and returned %d (0x%x).\n", rc, rc);
return rc;
}

printf("Original:\n");
dump_array((char *) original, KEY_BYTES);
printf("Result of encrypt:\n");
dump_array((char *) encrypted, KEY_BYTES);
printf("Result of decrypt:\n");
dump_array((char *) decrypted, KEY_BYTES);
if (memcmp(original, decrypted, KEY_BYTES) != 0) {
printf("This does not match the original plaintext."

"Failure!\n");
} else {
printf("Success! The key pair checks out.\n");
if (memcmp(original, encrypted, KEY_BYTES) == 0) {
printf("But the ciphertext equals the plaintext."

"That can’t be good.\n");
}
}
fflush(stdout);
ica_close_adapter(adapter_handle);
return 0;

}

RSA example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2001, 2009, 2011 */

96 libica Programmer's Reference

#include <fcntl.h>
#include <memory.h>
#include <sys/errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "ica_api.h"

unsigned char pubkey1024[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 };

unsigned char modulus1024[] =
{ 0xec, 0x51, 0xab, 0xa1, 0xf8, 0x40, 0x2c, 0x08,

0x2e, 0x24, 0x52, 0x2e, 0x3c, 0x51, 0x6d, 0x98,
0xad, 0xee, 0xc7, 0x7d, 0x00, 0xaf, 0xe1, 0xa8,
0x61, 0xda, 0x32, 0x97, 0xb4, 0x32, 0x97, 0xe3,
0x52, 0xda, 0x28, 0x45, 0x55, 0xc6, 0xb2, 0x46,
0x65, 0x1b, 0x02, 0xcb, 0xbe, 0xf4, 0x2c, 0x6b,
0x2a, 0x5f, 0xe1, 0xdf, 0xe9, 0xe3, 0xbc, 0x47,
0xb7, 0x38, 0xb5, 0xa2, 0x78, 0x9d, 0x15, 0xe2,
0x59, 0x81, 0x77, 0x6b, 0x6b, 0x2e, 0xa9, 0xdb,
0x13, 0x26, 0x9c, 0xca, 0x5e, 0x0a, 0x1f, 0x3c,
0x50, 0x9d, 0xd6, 0x79, 0x59, 0x99, 0x50, 0xe5,
0x68, 0x1a, 0x98, 0xca, 0x11, 0xce, 0x37, 0x63,
0x58, 0x22, 0x40, 0x19, 0x29, 0x72, 0x4c, 0x41,
0x89, 0x0b, 0x56, 0x9e, 0x3e, 0xd5, 0x6d, 0x75,
0x9e, 0x3f, 0x8a, 0x50, 0xf1, 0x0a, 0x59, 0x4a,
0xc3, 0x59, 0x4b, 0xf6, 0xbb, 0xc9, 0xa5, 0x93 };

unsigned char Bp[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0xa7, 0xcf, 0xa2, 0x18, 0x2c, 0xa9, 0xb4, 0xb9,
0xf5, 0x9e, 0xc9, 0x04, 0x16, 0xd9, 0xa6, 0x8b,
0x90, 0x4a, 0x19, 0x6d, 0x64, 0xb7, 0x17, 0x67,
0x53, 0xfa, 0x4e, 0x8d, 0xde, 0xa6, 0x94, 0x32,
0x5d, 0xcf, 0x58, 0x3e, 0x90, 0xbb, 0x30, 0x19,
0x96, 0x38, 0x95, 0xb6, 0xca, 0x2f, 0xfa, 0x22,
0x81, 0x65, 0x3b, 0x3c, 0x95, 0x9e, 0x79, 0x75,
0xe4, 0x93, 0x50, 0xf1, 0x88, 0x6b, 0xc1, 0x87 };

unsigned char Bq[] =
{ 0xa0, 0x3a, 0x18, 0xa4, 0x1c, 0x3c, 0x49, 0x09,

0xd0, 0x84, 0x4a, 0x8c, 0x7c, 0xce, 0xdf, 0x9e,
0x90, 0x7d, 0xc4, 0xca, 0x7e, 0x2d, 0x3d, 0xbc,
0x09, 0x71, 0x79, 0xd0, 0xc0, 0xae, 0xa6, 0xc1,
0x9d, 0xf0, 0x16, 0xf0, 0x1f, 0x68, 0x9a, 0xc5,
0x2b, 0xf3, 0x5a, 0xfc, 0x2c, 0xf5, 0xa7, 0xec,
0xd9, 0xa2, 0xac, 0x49, 0xcc, 0x76, 0x9c, 0xd8,
0x4c, 0x59, 0x5e, 0x38, 0xd2, 0x85, 0xd3, 0x3b };

Chapter 7. Examples 97

unsigned char Np[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0xfb, 0xb7, 0x73, 0x24, 0x42, 0xfe, 0x8f, 0x16,
0xf0, 0x6e, 0x2d, 0x86, 0x22, 0x46, 0x79, 0xd1,
0x58, 0x6f, 0x26, 0x24, 0x17, 0x12, 0xa3, 0x1a,
0xfd, 0xf7, 0x75, 0xd4, 0xcd, 0xf9, 0xde, 0x4b,
0x8c, 0xb7, 0x04, 0x5d, 0xd9, 0x18, 0xc8, 0x26,
0x61, 0x54, 0xe0, 0x92, 0x2f, 0x47, 0xf7, 0x33,
0xc2, 0x17, 0xd8, 0xda, 0xe0, 0x6d, 0xb6, 0x30,
0xd6, 0xdc, 0xf9, 0x6a, 0x4c, 0xa1, 0xa2, 0x4b };

unsigned char Nq[] =
{ 0xf0, 0x57, 0x24, 0xf6, 0x2a, 0x5a, 0x6d, 0x8e,

0xb8, 0xc6, 0x6f, 0xd2, 0xbb, 0x36, 0x4f, 0x6d,
0xd8, 0xbc, 0xa7, 0x2f, 0xbd, 0x43, 0xdc, 0x9a,
0x0e, 0x2a, 0x36, 0xb9, 0x21, 0x05, 0xfa, 0x22,
0x6c, 0xe8, 0x22, 0x68, 0x2f, 0x1c, 0xe8, 0x27,
0xc1, 0xed, 0x08, 0x7a, 0x43, 0x70, 0x7b, 0xe3,
0x46, 0x74, 0x02, 0x6e, 0xb2, 0xb1, 0xeb, 0x44,
0x72, 0x86, 0x0d, 0x55, 0x3b, 0xc8, 0xbc, 0xd9 };

unsigned char U[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x83, 0xf1, 0xca, 0x06, 0x58, 0x4a, 0x04, 0x5e,
0x96, 0xb5, 0x30, 0x32, 0x40, 0x36, 0x48, 0xb9,
0x02, 0x0c, 0xe3, 0x37, 0xb7, 0x51, 0xbc, 0x22,
0x26, 0x5d, 0x74, 0x03, 0x47, 0xd3, 0x33, 0x20,
0x8e, 0x75, 0x62, 0xf2, 0x9d, 0x4e, 0xc8, 0x7d,
0x5d, 0x8e, 0xb6, 0xd9, 0x69, 0x4a, 0x9a, 0xe1,
0x36, 0x6e, 0x1c, 0xbe, 0x8a, 0x14, 0xb1, 0x85,
0x39, 0x74, 0x7c, 0x25, 0xd8, 0xa4, 0x4f, 0xde };

unsigned char R[128];

unsigned char A[] =
{ 0x00, 0x02, 0x08, 0x68, 0x30, 0x9a, 0x32, 0x08,

0x57, 0xb0, 0x28, 0xaa, 0x76, 0x30, 0x3d, 0x84,
0x5f, 0x92, 0x0d, 0x8e, 0x34, 0xe0, 0xd5, 0xcc,
0x36, 0x97, 0xed, 0x00, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23,
0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33,
0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43,
0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b,
0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53,
0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b,
0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63 };

unsigned char Ciphertext[] =
{ 0xb2, 0xb2, 0x82, 0xd7, 0x2c, 0x6f, 0x53, 0x29,

0xee, 0x4c, 0xd1, 0x77, 0xb7, 0x13, 0xf3, 0x1c,
0x51, 0x60, 0xd8, 0xa9, 0x4e, 0x52, 0x72, 0x43,
0x29, 0xfa, 0x51, 0xaa, 0xd8, 0xbc, 0x31, 0x21,
0xe0, 0xac, 0x9b, 0x4e, 0x0, 0x94, 0xac, 0x91,
0x7f, 0x1e, 0xfd, 0xfb, 0x1c, 0xfa, 0xa8, 0xe8,
0x56, 0x5a, 0x1, 0x17, 0xf1, 0x5f, 0x1, 0xba,
0xcd, 0x77, 0xa1, 0x8c, 0x74, 0x8a, 0xef, 0xfa,
0x64, 0x58, 0x79, 0x13, 0xaa, 0x54, 0x13, 0x2b,
0xaa, 0xe7, 0xc3, 0x50, 0x3b, 0x69, 0x3b, 0xb,
0x9a, 0xa9, 0x9d, 0x15, 0x8a, 0x6, 0x45, 0x71,

98 libica Programmer's Reference

0x40, 0x7a, 0x80, 0x85, 0x4a, 0xbe, 0x68, 0x48,
0x6c, 0xe6, 0xdd, 0x96, 0xb0, 0xdc, 0xf4, 0x23,
0xa8, 0xea, 0x21, 0x9f, 0xbc, 0x6b, 0x15, 0xa4,
0x87, 0x6e, 0x93, 0x56, 0xae, 0xa7, 0x17, 0x4e,
0xd7, 0x14, 0xe4, 0x69, 0x4, 0xd5, 0x2e, 0x62 };

extern int errno;

void dump_array(unsigned char *ptr, unsigned int size)
{

unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {

printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {

printf("\n");
i = 1;

} else {
++i;

}
}
printf("\n");

}

int main()
{

ICA_ADAPTER_HANDLE adapter_handle;
ICA_KEY_RSA_CRT icakey;
ICA_KEY_RSA_MODEXPO wockey;
caddr_t key;
caddr_t my_result;
caddr_t my_result2;
/* icaRsaModExpo_t rsawoc; */
int i;
unsigned int length;

i = icaOpenAdapter(0, &adapter_handle);
if (i != 0) {

printf("icaOpenAdapter failed and returned %d (0x%x), errno=%d\n", i, i, errno);
return i;

}

/*
* encrypt with public key
*/

printf("modulus size = %ld\n", (long)sizeof(modulus1024));
bzero(&wockey, sizeof(wockey));
wockey.keyType = KEYTYPE_MODEXPO;
wockey.keyLength = sizeof(ICA_KEY_RSA_MODEXPO);
wockey.modulusBitLength = sizeof(modulus1024) * 8;
wockey.nLength = sizeof(modulus1024);
wockey.expLength = sizeof(pubkey1024);

key = (caddr_t)wockey.keyRecord;

bcopy(&pubkey1024, key, sizeof(pubkey1024));
wockey.expOffset = key - (char *) &wockey;
key += sizeof(pubkey1024);
bcopy(&modulus1024, key, sizeof(modulus1024));
wockey.nOffset = key - (char *) &wockey;

Chapter 7. Examples 99

my_result = (caddr_t) malloc(sizeof(A));
bzero(my_result, sizeof(A));
length = sizeof(A);

printf("wockey.modulusBitLength = %i\n", wockey.modulusBitLength);
if ((i = icaRsaModExpo(adapter_handle, sizeof(A), A,

&wockey, &length, (unsigned char *)my_result)) != 0) {
printf("icaRsaModExpo failed and returned %d (0x%x).\n", i, i);

}

printf("\n\n\n\n\n result of encrypt with public key\n");
dump_array((unsigned char *)my_result,sizeof(A));
printf("Ciphertext \n");
dump_array(Ciphertext,sizeof(A));
if (memcmp(my_result,Ciphertext,sizeof(A))){

printf("Ciphertext mismatch\n");
return 0;

} else {
printf("ENCRYPT WORKED\n");

}

bzero(&icakey, sizeof(icakey));

/* Card level CRT operation */
icakey.keyType = KEYTYPE_PKCSCRT;
icakey.keyLength = sizeof(ICA_KEY_RSA_CRT);
icakey.modulusBitLength = sizeof(modulus1024)*8;

my_result2 = (caddr_t)malloc(sizeof(A));
bzero(my_result2,sizeof(A));

key = (caddr_t)icakey.keyRecord;
/*
* Bp is copied into the key */
bcopy(Bp,key,sizeof(Bp));
icakey.dpLength = sizeof(Bp);
icakey.dpOffset = key - (char *)&icakey;
key += sizeof(Bp);
/*
* Bq is copied into the key */
bcopy(Bq,key,sizeof(Bq));
icakey.dqLength = sizeof(Bq);
icakey.dqOffset = key - (char *)&icakey;
key += sizeof(Bq);
/*
* Np is copied into the key */
bcopy(Np,key,sizeof(Np));
icakey.pLength = sizeof(Np);
icakey.pOffset = key - (char *)&icakey;
key += sizeof(Np);
/*
* Nq is copied into the key */
bcopy(Nq,key,sizeof(Nq));
icakey.qLength = sizeof(Nq);
icakey.qOffset = key - (char *)&icakey;
key += sizeof(Nq);
/*
* U is copied into the key */
bcopy(U,key,sizeof(U));
icakey.qInvLength = sizeof(U);
icakey.qInvOffset = key - (char *)&icakey;
key += sizeof(U);

/* printf("size of Bp=%d\n",sizeof(Bp));
printf("size of Bq=%d\n",sizeof(Bq));

100 libica Programmer's Reference

printf("size of Np=%d\n",sizeof(Np));
printf("size of Nq=%d\n",sizeof(Nq));
printf("size of U=%d\n",sizeof(U));
printf("size of R=%d\n",sizeof(R));

printf("icakey private Key record\n");
dump_array(&icakey,sizeof(ICA_KEY_RSA_CRT)); */

length = sizeof(Ciphertext);
icakey.modulusBitLength = length * 8;
icakey.keyLength = length;

if ((i = icaRsaCrt(adapter_handle, sizeof(Ciphertext), Ciphertext,
&icakey, &length, (unsigned char *)my_result2)) != 0) {

printf("icaRsaCrt failed and returned %d (0x%x).\n", i, i);
}

printf("Result of decrypt\n");
dump_array((unsigned char *)my_result2, sizeof(A));
printf("original data\n");
dump_array(A, sizeof(A));
if(memcmp(A,my_result2,sizeof(A)) != 0) {

printf("Results do not match. Failure!\n");
return -1;

} else {
printf("Results match!\n");

}

icaCloseAdapter(adapter_handle);

return 0;
}

DES with CTR mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_RANDOM_TESTS 100

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {

Chapter 7. Examples 101

++i;
}
}
printf("\n");

}

void dump_ctr_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

}

int random_des_ctr(int iteration, int silent, unsigned int data_length, unsigned int iv_length)
{
unsigned int key_length = sizeof(ica_des_key_single_t);
if (data_length % sizeof(ica_des_vector_t))
iv_length = sizeof(ica_des_vector_t);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
rc = ica_random_number_generate(data_length, input_data);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}

rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}
memcpy(tmp_iv, iv, iv_length);

rc = ica_des_ctr(input_data, encrypt, data_length, key, tmp_iv,
32,1);

if (rc) {
printf("ica_des_ctr encrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
return rc;
}
if (!silent && !rc) {
printf("Encrypt:\n");

102 libica Programmer's Reference

dump_ctr_data(iv, iv_length, key, key_length, input_data,
data_length, encrypt);

}

memcpy(tmp_iv, iv, iv_length);
rc = ica_des_ctr(encrypt, decrypt, data_length, key, tmp_iv,

32, 0);
if (rc) {
printf("ica_des_ctr decrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;
}

int main(int argc, char **argv)
{
unsigned int silent = 0;
unsigned int endless = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;
if (strstr(argv[1], "endless"))
endless = 1;

}
int rc = 0;
int error_count = 0;
int i = 0;
unsigned int data_length = sizeof(ica_des_key_single_t);
unsigned int iv_length = sizeof(ica_des_key_single_t);

if (endless) {
silent = 1;
while (1) {
printf("i = %i\n",i);
rc = random_des_ctr(i, silent, 320, 320);
if (rc) {
printf("kat_des_ctr failed with rc = %i\n",
rc);
return rc;
} else
printf("kat_des_ctr finished successfuly\n");
i++;
}
} else {
for (i = 1; i < NR_RANDOM_TESTS; i++) {
rc = random_des_ctr(i, silent, data_length, iv_length);

if (rc) {
printf("random_des_ctr failed with rc = %i\n",

rc);

Chapter 7. Examples 103

error_count++;
} else
printf("random_des_ctr finished "
"successfuly\n");

if (!(data_length % sizeof(ica_des_key_single_t))) {
/* Always when the full block size is reached use a

* counter with the same size as the data */
rc = random_des_ctr(i, silent,
data_length, data_length);
if (rc) {

printf("random_des_ctr failed with "
"rc = %i\n", rc);

error_count++;
} else

printf("random_des_ctr finished "
"successfuly\n");

}
data_length++;
}
}

if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

Triple DES with CBC mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_RANDOM_TESTS 10000

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");

104 libica Programmer's Reference

}

void dump_cbc_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);
}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;
}

int random_3des_cbc(int iteration, int silent, unsigned int data_length)
{
unsigned int iv_length = sizeof(ica_des_vector_t);
unsigned int key_length = sizeof(ica_des_key_triple_t);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

Chapter 7. Examples 105

rc = ica_3des_cbc(input_data, encrypt, data_length, key, tmp_iv, 1);
if (rc) {
printf("ica_3des_cbc encrypt failed with rc = %i\n", rc);
dump_cbc_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_cbc_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (rc) {
printf("3DES CBC test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);

rc = ica_3des_cbc(encrypt, decrypt, data_length, key, tmp_iv,
0);

if (rc) {
printf("ica_3des_cbc decrypt failed with rc = %i\n", rc);
dump_cbc_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_cbc_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int main(int argc, char **argv)
{
// Default mode is 0. ECB,CBC and CFQ tests will be performed.
unsigned int silent = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
unsigned int data_length = sizeof(ica_des_vector_t);
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
int silent = 1;
rc = random_3des_cbc(iteration, silent, data_length);
if (rc) {
printf("random_3des_cbc failed with rc = %i\n", rc);
error_count++;
goto out;
} else
printf("random_3des_cbc finished successfuly\n");

106 libica Programmer's Reference

data_length += sizeof(ica_des_vector_t);
}
out:
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

AES with CFB mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 12
#define NR_RANDOM_TESTS 1000

/* CFB128 data -1- AES128 */
unsigned char NIST_KEY_CFB_E1[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CFB_E1[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E1[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned char NIST_TEST_DATA_CFB_E1[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CFB_E1[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned int NIST_LCFB_E1 = 128 / 8;

/* CFB128 data -2- AES128 */
unsigned char NIST_KEY_CFB_E2[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_CFB_E2[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,

Chapter 7. Examples 107

0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

unsigned char NIST_EXPECTED_IV_CFB_E2[] = {
0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,
0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b,

};

unsigned char NIST_TEST_DATA_CFB_E2[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

};

unsigned char NIST_TEST_RESULT_CFB_E2[] = {
0xc8, 0xa6, 0x45, 0x37, 0xa0, 0xb3, 0xa9, 0x3f,
0xcd, 0xe3, 0xcd, 0xad, 0x9f, 0x1c, 0xe5, 0x8b,

};

unsigned int NIST_LCFB_E2 = 128 / 8;

/* CFB8 data -3- AES128 */
unsigned char NIST_KEY_CFB_E3[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_CFB_E3[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_CFB_E3[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b,

};
unsigned char NIST_TEST_DATA_CFB_E3[] = {
0x6b,

};

unsigned char NIST_TEST_RESULT_CFB_E3[] = {
0x3b,

};
unsigned int NIST_LCFB_E3 = 8 / 8;

/* CFB8 data -4- AES128 */
unsigned char NIST_KEY_CFB_E4[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_CFB_E4[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b,

};

unsigned char NIST_EXPECTED_IV_CFB_E4[] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x3b, 0x79,

};
unsigned char NIST_TEST_DATA_CFB_E4[] = {
0xc1,

};

unsigned char NIST_TEST_RESULT_CFB_E4[] = {
0x79,

};

108 libica Programmer's Reference

unsigned int NIST_LCFB_E4 = 8 / 8;

/* CFB 128 data -5- for AES192 */
unsigned char NIST_KEY_CFB_E5[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_CFB_E5[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E5[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

unsigned char NIST_TEST_DATA_CFB_E5[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CFB_E5[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

unsigned int NIST_LCFB_E5 = 128 / 8;

/* CFB 128 data -6- for AES192 */
unsigned char NIST_KEY_CFB_E6[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

unsigned char NIST_IV_CFB_E6[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,
};

unsigned char NIST_EXPECTED_IV_CFB_E6[] = {
0x67, 0xce, 0x7f, 0x7f, 0x81, 0x17, 0x36, 0x21,
0x96, 0x1a, 0x2b, 0x70, 0x17, 0x1d, 0x3d, 0x7a,
};

unsigned char NIST_TEST_DATA_CFB_E6[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CFB_E6[] = {
0x67, 0xce, 0x7f, 0x7f, 0x81, 0x17, 0x36, 0x21,
0x96, 0x1a, 0x2b, 0x70, 0x17, 0x1d, 0x3d, 0x7a,
};

unsigned int NIST_LCFB_E6 = 128 / 8;

/* CFB 128 data -7- for AES192 */
unsigned char NIST_KEY_CFB_E7[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,
};

Chapter 7. Examples 109

unsigned char NIST_IV_CFB_E7[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_CFB_E7[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd,

};

unsigned char NIST_TEST_DATA_CFB_E7[] = {
0x6b,

};

unsigned char NIST_TEST_RESULT_CFB_E7[] = {
0xcd,

};

unsigned int NIST_LCFB_E7 = 8 / 8;

/* CFB 128 data -8- for AES192 */
unsigned char NIST_KEY_CFB_E8[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,

};

unsigned char NIST_IV_CFB_E8[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd,

};

unsigned char NIST_EXPECTED_IV_CFB_E8[] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xcd, 0xa2,

};

unsigned char NIST_TEST_DATA_CFB_E8[] = {
0xc1,

};

unsigned char NIST_TEST_RESULT_CFB_E8[] = {
0xa2,

};

unsigned int NIST_LCFB_E8 = 8 / 8;

/* CFB128 data -9- for AES256 */
unsigned char NIST_KEY_CFB_E9[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CFB_E9[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_CFB_E9[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,

};

110 libica Programmer's Reference

unsigned char NIST_TEST_DATA_CFB_E9[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CFB_E9[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,
};

unsigned int NIST_LCFB_E9 = 128 / 8;

/* CFB128 data -10- for AES256 */
unsigned char NIST_KEY_CFB_E10[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E10[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,
};

unsigned char NIST_EXPECTED_IV_CFB_E10[] = {
0x39, 0xff, 0xed, 0x14, 0x3b, 0x28, 0xb1, 0xc8,
0x32, 0x11, 0x3c, 0x63, 0x31, 0xe5, 0x40, 0x7b,
};

unsigned char NIST_TEST_DATA_CFB_E10[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CFB_E10[] = {
0x39, 0xff, 0xed, 0x14, 0x3b, 0x28, 0xb1, 0xc8,
0x32, 0x11, 0x3c, 0x63, 0x31, 0xe5, 0x40, 0x7b,
};

unsigned int NIST_LCFB_E10 = 128 / 8;

/* CFB8 data -11- for AES256 */
unsigned char NIST_KEY_CFB_E11[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CFB_E11[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_CFB_E11[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc,
};

unsigned char NIST_TEST_DATA_CFB_E11[] = {
0x6b,
};

unsigned char NIST_TEST_RESULT_CFB_E11[] = {
0xdc,

Chapter 7. Examples 111

};

unsigned int NIST_LCFB_E11 = 8 / 8;

/* CFB8 data -12- for AES256 */
unsigned char NIST_KEY_CFB_E12[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CFB_E12[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc,

};

unsigned char NIST_EXPECTED_IV_CFB_E12[] = {
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xdc, 0x1f,

};

unsigned char NIST_TEST_DATA_CFB_E12[] = {
0xc1,

};

unsigned char NIST_TEST_RESULT_CFB_E12[] = {
0x1f,

};

unsigned int NIST_LCFB_E12 = 8 / 8;

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");

}

void dump_cfb_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

112 libica Programmer's Reference

}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_CFB_E1);
*iv_length = sizeof(NIST_IV_CFB_E1);
*key_length = sizeof(NIST_KEY_CFB_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_CFB_E2);
*iv_length = sizeof(NIST_IV_CFB_E2);
*key_length = sizeof(NIST_KEY_CFB_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_CFB_E3);
*iv_length = sizeof(NIST_IV_CFB_E3);
*key_length = sizeof(NIST_KEY_CFB_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_CFB_E4);
*iv_length = sizeof(NIST_IV_CFB_E4);
*key_length = sizeof(NIST_KEY_CFB_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_CFB_E5);
*iv_length = sizeof(NIST_IV_CFB_E5);
*key_length = sizeof(NIST_KEY_CFB_E5);
break;
case 6:
*data_length = sizeof(NIST_TEST_DATA_CFB_E6);
*iv_length = sizeof(NIST_IV_CFB_E6);
*key_length = sizeof(NIST_KEY_CFB_E6);
break;
case 7:
*data_length = sizeof(NIST_TEST_DATA_CFB_E7);
*iv_length = sizeof(NIST_IV_CFB_E7);
*key_length = sizeof(NIST_KEY_CFB_E7);
break;
case 8:
*data_length = sizeof(NIST_TEST_DATA_CFB_E8);
*iv_length = sizeof(NIST_IV_CFB_E8);
*key_length = sizeof(NIST_KEY_CFB_E8);
break;
case 9:
*data_length = sizeof(NIST_TEST_DATA_CFB_E9);
*iv_length = sizeof(NIST_IV_CFB_E9);
*key_length = sizeof(NIST_KEY_CFB_E9);
break;
case 10:
*data_length = sizeof(NIST_TEST_DATA_CFB_E10);
*iv_length = sizeof(NIST_IV_CFB_E10);
*key_length = sizeof(NIST_KEY_CFB_E10);
break;
case 11:
*data_length = sizeof(NIST_TEST_DATA_CFB_E11);
*iv_length = sizeof(NIST_IV_CFB_E11);
*key_length = sizeof(NIST_KEY_CFB_E11);
break;
case 12:
*data_length = sizeof(NIST_TEST_DATA_CFB_E12);
*iv_length = sizeof(NIST_IV_CFB_E12);
*key_length = sizeof(NIST_KEY_CFB_E12);
break;

}

Chapter 7. Examples 113

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *iv, unsigned char *expected_iv,
unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned int *lcfb, unsigned int iteration)

{
switch (iteration) {
case 1:
memcpy(data, NIST_TEST_DATA_CFB_E1, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E1, data_length);
memcpy(iv, NIST_IV_CFB_E1, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E1, iv_length);
memcpy(key, NIST_KEY_CFB_E1, key_length);
*lcfb = NIST_LCFB_E1;
break;
case 2:
memcpy(data, NIST_TEST_DATA_CFB_E2, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E2, data_length);
memcpy(iv, NIST_IV_CFB_E2, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E2, iv_length);
memcpy(key, NIST_KEY_CFB_E2, key_length);
*lcfb = NIST_LCFB_E2;
break;
case 3:
memcpy(data, NIST_TEST_DATA_CFB_E3, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E3, data_length);
memcpy(iv, NIST_IV_CFB_E3, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E3, iv_length);
memcpy(key, NIST_KEY_CFB_E3, key_length);
*lcfb = NIST_LCFB_E3;
break;
case 4:
memcpy(data, NIST_TEST_DATA_CFB_E4, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E4, data_length);
memcpy(iv, NIST_IV_CFB_E4, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E4, iv_length);
memcpy(key, NIST_KEY_CFB_E4, key_length);
*lcfb = NIST_LCFB_E4;
break;
case 5:
memcpy(data, NIST_TEST_DATA_CFB_E5, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E5, data_length);
memcpy(iv, NIST_IV_CFB_E5, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E5, iv_length);
memcpy(key, NIST_KEY_CFB_E5, key_length);
*lcfb = NIST_LCFB_E5;
break;
case 6:
memcpy(data, NIST_TEST_DATA_CFB_E6, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E6, data_length);
memcpy(iv, NIST_IV_CFB_E6, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E6, iv_length);
memcpy(key, NIST_KEY_CFB_E6, key_length);
*lcfb = NIST_LCFB_E6;
break;
case 7:
memcpy(data, NIST_TEST_DATA_CFB_E7, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E7, data_length);
memcpy(iv, NIST_IV_CFB_E7, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E7, iv_length);
memcpy(key, NIST_KEY_CFB_E7, key_length);
*lcfb = NIST_LCFB_E7;
break;

114 libica Programmer's Reference

case 8:
memcpy(data, NIST_TEST_DATA_CFB_E8, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E8, data_length);
memcpy(iv, NIST_IV_CFB_E8, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E8, iv_length);
memcpy(key, NIST_KEY_CFB_E8, key_length);
*lcfb = NIST_LCFB_E8;
break;
case 9:
memcpy(data, NIST_TEST_DATA_CFB_E9, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E9, data_length);
memcpy(iv, NIST_IV_CFB_E9, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E9, iv_length);
memcpy(key, NIST_KEY_CFB_E9, key_length);
*lcfb = NIST_LCFB_E9;
break;
case 10:
memcpy(data, NIST_TEST_DATA_CFB_E10, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E10, data_length);
memcpy(iv, NIST_IV_CFB_E10, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E10, iv_length);
memcpy(key, NIST_KEY_CFB_E10, key_length);
*lcfb = NIST_LCFB_E10;
break;
case 11:
memcpy(data, NIST_TEST_DATA_CFB_E11, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E11, data_length);
memcpy(iv, NIST_IV_CFB_E11, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E11, iv_length);
memcpy(key, NIST_KEY_CFB_E11, key_length);
*lcfb = NIST_LCFB_E11;
break;
case 12:
memcpy(data, NIST_TEST_DATA_CFB_E12, data_length);
memcpy(result, NIST_TEST_RESULT_CFB_E12, data_length);
memcpy(iv, NIST_IV_CFB_E12, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CFB_E12, iv_length);
memcpy(key, NIST_KEY_CFB_E12, key_length);
*lcfb = NIST_LCFB_E12;
break;

}

}

int kat_aes_cfb(int iteration, int silent)
{
unsigned int data_length;
unsigned int iv_length;
unsigned int key_length;

get_sizes(&data_length, &iv_length, &key_length, iteration);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char expected_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;
unsigned int lcfb;
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

Chapter 7. Examples 115

load_test_data(input_data, data_length, result, iv, expected_iv,
iv_length, key, key_length, &lcfb, iteration);

memcpy(tmp_iv, iv, iv_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i,"

" lcfb = %i\n", key_length, data_length, iv_length, lcfb);

if (iteration == 3)
rc = ica_aes_cfb(input_data, encrypt, lcfb, key, key_length, tmp_iv,

lcfb, 1);
else
rc = ica_aes_cfb(input_data, encrypt, data_length, key, key_length,

tmp_iv, lcfb, 1);
if (rc) {
printf("ica_aes_cfb encrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

if (memcmp(expected_iv, tmp_iv, iv_length)) {
printf("Update of IV does not match the expected IV!\n");
printf("Expected IV:\n");
dump_array(expected_iv, iv_length);
printf("Updated IV:\n");
dump_array(tmp_iv, iv_length);
printf("Original IV:\n");
dump_array(iv, iv_length);
rc++;
}
if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);
if (iteration == 3)
rc = ica_aes_cfb(encrypt, decrypt, lcfb, key, key_length, tmp_iv,

lcfb, 0);
else
rc = ica_aes_cfb(encrypt, decrypt, data_length, key, key_length,

tmp_iv, lcfb, 0);
if (rc) {
printf("ica_aes_cfb decrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

116 libica Programmer's Reference

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;
}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;
}

int random_aes_cfb(int iteration, int silent, unsigned int data_length,
unsigned int lcfb)

{
unsigned int iv_length = sizeof(ica_aes_vector_t);
unsigned int key_length = AES_KEY_LEN128;

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
for (key_length = AES_KEY_LEN128; key_length <= AES_KEY_LEN256; key_length += 8) {
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i,"

" lcfb = %i\n", key_length, data_length, iv_length, lcfb);

rc = ica_aes_cfb(input_data, encrypt, data_length, key, key_length,

Chapter 7. Examples 117

tmp_iv, lcfb, 1);
if (rc) {
printf("ica_aes_cfb encrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_cfb(encrypt, decrypt, data_length, key, key_length,
tmp_iv, lcfb, 0);

if (rc) {
printf("ica_aes_cfb decrypt failed with rc = %i\n", rc);
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_cfb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
}
return rc;

}

int main(int argc, char **argv)
{
unsigned int silent = 0;
unsigned int endless = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;
if (strstr(argv[1], "endless"))
endless = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_cfb(iteration, silent);
if (rc) {
printf("kat_aes_cfb failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_cfb finished successfuly\n");

118 libica Programmer's Reference

}

unsigned int data_length = 1;
unsigned int lcfb = 1;
unsigned int j;
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
for (j = 1; j <= 3; j++) {
int silent = 1;
if (!(data_length % lcfb)) {
rc = random_aes_cfb(iteration, silent, data_length, lcfb);
if (rc) {
printf("random_aes_cfb failed with rc = %i\n", rc);
error_count++;
} else
printf("random_aes_cfb finished successfuly\n");
}
switch (j) {
case 1:
lcfb = 1;
break;
case 2:
lcfb = 8;
break;
case 3:
lcfb = 16;
break;

}
}
if (data_length == 1)
data_length = 8;
else
data_length += 8;

}
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

AES with CTR mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 7

/* CTR data - 1 for AES128 */
unsigned char NIST_KEY_CTR_E1[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

Chapter 7. Examples 119

unsigned char NIST_IV_CTR_E1[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

};

unsigned char NIST_EXPECTED_IV_CTR_E1[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,

};

unsigned char NIST_TEST_DATA_CTR_E1[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_CTR_E1[] = {
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,

};

/* CTR data - 2 for AES128 */
unsigned char NIST_KEY_CTR_E2[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

};

unsigned char NIST_IV_CTR_E2[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

};

unsigned char NIST_EXPECTED_IV_CTR_E2[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,

};

unsigned char NIST_TEST_DATA_CTR_E2[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,

};

unsigned char NIST_TEST_RESULT_CTR_E2[] = {
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff,
0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e,
0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1,
0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee,

};

/* CTR data - 3 - for AES192 */
unsigned char NIST_KEY_CTR_E3[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CTR_E3[] = {

120 libica Programmer's Reference

0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E3[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
};

unsigned char NIST_TEST_DATA_CTR_E3[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_CTR_E3[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
};

/* CTR data - 4 - for AES192 */
unsigned char NIST_KEY_CTR_E4[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E4[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
};

unsigned char NIST_EXPECTED_IV_CTR_E4[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
};

unsigned char NIST_TEST_DATA_CTR_E4[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_CTR_E4[] = {
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
};

/* CTR data 5 - for AES 256 */
unsigned char NIST_KEY_CTR_E5[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E5[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};

unsigned char NIST_EXPECTED_IV_CTR_E5[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,
};

unsigned char NIST_TEST_DATA_CTR_E5[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,

Chapter 7. Examples 121

0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,

};

unsigned char NIST_TEST_RESULT_CTR_E5[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6,

};

/* CTR data 6 - for AES 256.
* Data is != BLOCK_SIZE */

unsigned char NIST_KEY_CTR_E6[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,

};

unsigned char NIST_IV_CTR_E6[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

};

unsigned char NIST_EXPECTED_IV_CTR_E6[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x03,

};

unsigned char NIST_TEST_DATA_CTR_E6[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,

};

unsigned char NIST_TEST_RESULT_CTR_E6[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,

};

/* CTR data 7 - for AES 256
* Counter as big as the data. Therefore the counter
* should not be updated. Because it is already pre
* computed. */

unsigned char NIST_KEY_CTR_E7[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,

122 libica Programmer's Reference

0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_CTR_E7[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x02,
};

unsigned char NIST_EXPECTED_IV_CTR_E7[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x00,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x01,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xff, 0x02,
};

unsigned char NIST_TEST_DATA_CTR_E7[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
};

unsigned char NIST_TEST_RESULT_CTR_E7[] = {
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6,
};

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");

Chapter 7. Examples 123

}

void dump_ctr_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_CTR_E1);
*iv_length = sizeof(NIST_IV_CTR_E1);
*key_length = sizeof(NIST_KEY_CTR_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_CTR_E2);
*iv_length = sizeof(NIST_IV_CTR_E2);
*key_length = sizeof(NIST_KEY_CTR_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_CTR_E3);
*iv_length = sizeof(NIST_IV_CTR_E3);
*key_length = sizeof(NIST_KEY_CTR_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_CTR_E4);
*iv_length = sizeof(NIST_IV_CTR_E4);
*key_length = sizeof(NIST_KEY_CTR_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_CTR_E5);
*iv_length = sizeof(NIST_IV_CTR_E5);
*key_length = sizeof(NIST_KEY_CTR_E5);
break;
case 6:
*data_length = sizeof(NIST_TEST_DATA_CTR_E6);
*iv_length = sizeof(NIST_IV_CTR_E6);
*key_length = sizeof(NIST_KEY_CTR_E6);
break;
case 7:
*data_length = sizeof(NIST_TEST_DATA_CTR_E7);
*iv_length = sizeof(NIST_IV_CTR_E7);
*key_length = sizeof(NIST_KEY_CTR_E7);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *iv, unsigned char *expected_iv,
unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned int iteration)

{

124 libica Programmer's Reference

switch (iteration) {
case 1:
memcpy(data, NIST_TEST_DATA_CTR_E1, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E1, data_length);
memcpy(iv, NIST_IV_CTR_E1, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E1, iv_length);
memcpy(key, NIST_KEY_CTR_E1, key_length);
break;
case 2:
memcpy(data, NIST_TEST_DATA_CTR_E2, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E2, data_length);
memcpy(iv, NIST_IV_CTR_E2, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E2, iv_length);
memcpy(key, NIST_KEY_CTR_E2, key_length);
break;
case 3:
memcpy(data, NIST_TEST_DATA_CTR_E3, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E3, data_length);
memcpy(iv, NIST_IV_CTR_E3, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E3, iv_length);
memcpy(key, NIST_KEY_CTR_E3, key_length);
break;
case 4:
memcpy(data, NIST_TEST_DATA_CTR_E4, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E4, data_length);
memcpy(iv, NIST_IV_CTR_E4, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E4, iv_length);
memcpy(key, NIST_KEY_CTR_E4, key_length);
break;
case 5:
memcpy(data, NIST_TEST_DATA_CTR_E5, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E5, data_length);
memcpy(iv, NIST_IV_CTR_E5, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E5, iv_length);
memcpy(key, NIST_KEY_CTR_E5, key_length);
break;
case 6:
memcpy(data, NIST_TEST_DATA_CTR_E6, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E6, data_length);
memcpy(iv, NIST_IV_CTR_E6, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E6, iv_length);
memcpy(key, NIST_KEY_CTR_E6, key_length);
break;
case 7:
memcpy(data, NIST_TEST_DATA_CTR_E7, data_length);
memcpy(result, NIST_TEST_RESULT_CTR_E7, data_length);
memcpy(iv, NIST_IV_CTR_E7, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_CTR_E7, iv_length);
memcpy(key, NIST_KEY_CTR_E7, key_length);
break;

}

}

int random_aes_ctr(int iteration, int silent, unsigned int data_length, unsigned int iv_length)
{
unsigned int key_length = AES_KEY_LEN256;
if (data_length % sizeof(ica_aes_vector_t))
iv_length = sizeof(ica_aes_vector_t);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char key[key_length];

Chapter 7. Examples 125

unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

int rc = 0;
rc = ica_random_number_generate(data_length, input_data);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}

rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("random number generate returned rc = %i, errno = %i\n", rc, errno);
return rc;
}
memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_ctr(input_data, encrypt, data_length, key, key_length,
tmp_iv, 32, 1);

if (rc) {
printf("ica_aes_ctr encrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
return rc;
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

memcpy(tmp_iv, iv, iv_length);
rc = ica_aes_ctr(encrypt, decrypt, data_length, key, key_length,

tmp_iv, 32, 0);
if (rc) {
printf("ica_aes_ctr decrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int kat_aes_ctr(int iteration, int silent)
{

126 libica Programmer's Reference

unsigned int data_length;
unsigned int iv_length;
unsigned int key_length;

get_sizes(&data_length, &iv_length, &key_length, iteration);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char expected_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;

load_test_data(input_data, data_length, result, iv, expected_iv,
iv_length, key, key_length, iteration);

memcpy(tmp_iv, iv, iv_length);

if (iv_length == 16)
rc = ica_aes_ctr(input_data, encrypt, data_length, key, key_length,

tmp_iv, 32, 1);
else
rc = ica_aes_ctrlist(input_data, encrypt, data_length, key, key_length,

tmp_iv, 1);
if (rc) {
printf("ica_aes_ctr encrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

if (memcmp(expected_iv, tmp_iv, iv_length)) {
printf("Update of IV does not match the expected IV!\n");
printf("Expected IV:\n");
dump_array(expected_iv, iv_length);
printf("Updated IV:\n");
dump_array(tmp_iv, iv_length);
printf("Original IV:\n");
dump_array(iv, iv_length);
rc++;
}
if (rc) {
printf("AES CTR test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);

Chapter 7. Examples 127

rc = ica_aes_ctr(encrypt, decrypt, data_length, key, key_length,
tmp_iv, 32,0);

if (rc) {
printf("ica_aes_ctr decrypt failed with rc = %i\n", rc);
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ctr_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int main(int argc, char **argv)
{
// Default mode is 0. ECB,CBC and CFQ tests will be performed.
unsigned int silent = 0;
unsigned int endless = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;
if (strstr(argv[1], "endless"))
endless = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
if (!endless)
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_ctr(iteration, silent);
if (rc) {
printf("kat_aes_ctr failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_ctr finished successfuly\n");

}
int i = 0;
if (endless)
while (1) {
printf("i = %i\n",i);
silent = 1;
rc = random_aes_ctr(i, silent, 320, 320);
if (rc) {
printf("kat_aes_ctr failed with rc = %i\n", rc);
return rc;
} else
printf("kat_aes_ctr finished successfuly\n");
i++;
}

if (error_count)
printf("%i testcases failed\n", error_count);

128 libica Programmer's Reference

else
printf("All testcases finished successfully\n");

return rc;
}

AES with OFB mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 6
#define NR_RANDOM_TESTS 10000

/* OFB data - 1 for AES128 */
unsigned char NIST_KEY_OFB_E1[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_OFB_E1[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_OFB_E1[] = {
0x50, 0xfe, 0x67, 0xcc, 0x99, 0x6d, 0x32, 0xb6,
0xda, 0x09, 0x37, 0xe9, 0x9b, 0xaf, 0xec, 0x60,
};

unsigned char NIST_TEST_DATA_OFB_E1[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_OFB_E1[] = {
0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20,
0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a,
};

/* OFB data - 2 for AES128 */
unsigned char NIST_KEY_OFB_E2[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,
};

unsigned char NIST_IV_OFB_E2[] = {
0x50, 0xfe, 0x67, 0xcc, 0x99, 0x6d, 0x32, 0xb6,
0xda, 0x09, 0x37, 0xe9, 0x9b, 0xaf, 0xec, 0x60,
};

unsigned char NIST_EXPECTED_IV_OFB_E2[] = {
0xd9, 0xa4, 0xda, 0xda, 0x08, 0x92, 0x23, 0x9f,
0x6b, 0x8b, 0x3d, 0x76, 0x80, 0xe1, 0x56, 0x74,
};

Chapter 7. Examples 129

unsigned char NIST_TEST_DATA_OFB_E2[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

};

unsigned char NIST_TEST_RESULT_OFB_E2[] = {
0x77, 0x89, 0x50, 0x8d, 0x16, 0x91, 0x8f, 0x03,
0xf5, 0x3c, 0x52, 0xda, 0xc5, 0x4e, 0xd8, 0x25,

};

/* OFB data - 3 - for AES192 */
unsigned char NIST_KEY_OFB_E3[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,

};

unsigned char NIST_IV_OFB_E3[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

};

unsigned char NIST_EXPECTED_IV_OFB_E3[] = {
0xa6, 0x09, 0xb3, 0x8d, 0xf3, 0xb1, 0x13, 0x3d,
0xdd, 0xff, 0x27, 0x18, 0xba, 0x09, 0x56, 0x5e,

};

unsigned char NIST_TEST_DATA_OFB_E3[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

};

unsigned char NIST_TEST_RESULT_OFB_E3[] = {
0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab,
0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74,

};

/* OFB data - 4 - for AES192 */
unsigned char NIST_KEY_OFB_E4[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b,

};

unsigned char NIST_IV_OFB_E4[] = {
0xa6, 0x09, 0xb3, 0x8d, 0xf3, 0xb1, 0x13, 0x3d,
0xdd, 0xff, 0x27, 0x18, 0xba, 0x09, 0x56, 0x5e,

};

unsigned char NIST_EXPECTED_IV_OFB_E4[] = {
0x52, 0xef, 0x01, 0xda, 0x52, 0x60, 0x2f, 0xe0,
0x97, 0x5f, 0x78, 0xac, 0x84, 0xbf, 0x8a, 0x50,

};

unsigned char NIST_TEST_DATA_OFB_E4[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

};

unsigned char NIST_TEST_RESULT_OFB_E4[] = {
0xfc, 0xc2, 0x8b, 0x8d, 0x4c, 0x63, 0x83, 0x7c,
0x09, 0xe8, 0x17, 0x00, 0xc1, 0x10, 0x04, 0x01,

};

/* OFB data 5 - for AES 256 */
unsigned char NIST_KEY_OFB_E5[] = {

130 libica Programmer's Reference

0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_OFB_E5[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};

unsigned char NIST_EXPECTED_IV_OFB_E5[] = {
0xb7, 0xbf, 0x3a, 0x5d, 0xf4, 0x39, 0x89, 0xdd,
0x97, 0xf0, 0xfa, 0x97, 0xeb, 0xce, 0x2f, 0x4a,
};

unsigned char NIST_TEST_DATA_OFB_E5[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};

unsigned char NIST_TEST_RESULT_OFB_E5[] = {
0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b,
0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60,
};

/* OFB data 6 - for AES 256 */
unsigned char NIST_KEY_OFB_E6[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4,
};

unsigned char NIST_IV_OFB_E6[] = {
0xb7, 0xbf, 0x3a, 0x5d, 0xf4, 0x39, 0x89, 0xdd,
0x97, 0xf0, 0xfa, 0x97, 0xeb, 0xce, 0x2f, 0x4a,
};

unsigned char NIST_EXPECTED_IV_OFB_E6[] = {
0xe1, 0xc6, 0x56, 0x30, 0x5e, 0xd1, 0xa7, 0xa6,
0x56, 0x38, 0x05, 0x74, 0x6f, 0xe0, 0x3e, 0xdc,
};

unsigned char NIST_TEST_DATA_OFB_E6[] = {
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};

unsigned char NIST_TEST_RESULT_OFB_E6[] = {
0x4f, 0xeb, 0xdc, 0x67, 0x40, 0xd2, 0x0b, 0x3a,
0xc8, 0x8f, 0x6a, 0xd8, 0x2a, 0x4f, 0xb0, 0x8d,
};

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;
if (i == 8) {

Chapter 7. Examples 131

printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");

}

void dump_ofb_data(unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("IV \n");
dump_array(iv, iv_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

}

void get_sizes(unsigned int *data_length, unsigned int *iv_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_OFB_E1);
*iv_length = sizeof(NIST_IV_OFB_E1);
*key_length = sizeof(NIST_KEY_OFB_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_OFB_E2);
*iv_length = sizeof(NIST_IV_OFB_E2);
*key_length = sizeof(NIST_KEY_OFB_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_OFB_E3);
*iv_length = sizeof(NIST_IV_OFB_E3);
*key_length = sizeof(NIST_KEY_OFB_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_OFB_E4);
*iv_length = sizeof(NIST_IV_OFB_E4);
*key_length = sizeof(NIST_KEY_OFB_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_OFB_E5);
*iv_length = sizeof(NIST_IV_OFB_E5);
*key_length = sizeof(NIST_KEY_OFB_E5);
break;
case 6:
*data_length = sizeof(NIST_TEST_DATA_OFB_E6);
*iv_length = sizeof(NIST_IV_OFB_E6);
*key_length = sizeof(NIST_KEY_OFB_E6);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *iv, unsigned char *expected_iv,
unsigned int iv_length,
unsigned char *key, unsigned int key_length,

132 libica Programmer's Reference

unsigned int iteration)
{
switch (iteration) {
case 1:
memcpy(data, NIST_TEST_DATA_OFB_E1, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E1, data_length);
memcpy(iv, NIST_IV_OFB_E1, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E1, iv_length);
memcpy(key, NIST_KEY_OFB_E1, key_length);
break;
case 2:
memcpy(data, NIST_TEST_DATA_OFB_E2, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E2, data_length);
memcpy(iv, NIST_IV_OFB_E2, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E2, iv_length);
memcpy(key, NIST_KEY_OFB_E2, key_length);
break;
case 3:
memcpy(data, NIST_TEST_DATA_OFB_E3, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E3, data_length);
memcpy(iv, NIST_IV_OFB_E3, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E3, iv_length);
memcpy(key, NIST_KEY_OFB_E3, key_length);
break;
case 4:
memcpy(data, NIST_TEST_DATA_OFB_E4, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E4, data_length);
memcpy(iv, NIST_IV_OFB_E4, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E4, iv_length);
memcpy(key, NIST_KEY_OFB_E4, key_length);
break;
case 5:
memcpy(data, NIST_TEST_DATA_OFB_E5, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E5, data_length);
memcpy(iv, NIST_IV_OFB_E5, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E5, iv_length);
memcpy(key, NIST_KEY_OFB_E5, key_length);
break;
case 6:
memcpy(data, NIST_TEST_DATA_OFB_E6, data_length);
memcpy(result, NIST_TEST_RESULT_OFB_E6, data_length);
memcpy(iv, NIST_IV_OFB_E6, iv_length);
memcpy(expected_iv, NIST_EXPECTED_IV_OFB_E6, iv_length);
memcpy(key, NIST_KEY_OFB_E6, key_length);
break;

}

}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);

Chapter 7. Examples 133

if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;

}

int random_aes_ofb(int iteration, int silent, unsigned int data_length)
{
int i;
int rc = 0;
unsigned int iv_length = sizeof(ica_aes_vector_t);
unsigned int key_length = AES_KEY_LEN128;
unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];

for (i = 0; i <= 2; i++) {

unsigned char key[key_length];

memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);
printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

rc = ica_aes_ofb(input_data, encrypt, data_length, key, key_length,
tmp_iv, 1);

if (rc) {
printf("ica_aes_ofb encrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_ofb(encrypt, decrypt, data_length, key, key_length,
tmp_iv, 0);

if (rc) {
printf("ica_aes_ofb decrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);

134 libica Programmer's Reference

}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
return rc;
}
key_length += 8;
}

return rc;
}

int kat_aes_ofb(int iteration, int silent)
{
unsigned int data_length;
unsigned int iv_length;
unsigned int key_length;

get_sizes(&data_length, &iv_length, &key_length, iteration);

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char expected_iv[iv_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;

load_test_data(input_data, data_length, result, iv, expected_iv,
iv_length, key, key_length, iteration);

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_ofb(input_data, encrypt, data_length, key, key_length,
tmp_iv, 1);

if (rc) {
printf("ica_aes_ofb encrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

if (memcmp(expected_iv, tmp_iv, iv_length)) {

Chapter 7. Examples 135

printf("Update of IV does not match the expected IV!\n");
printf("Expected IV:\n");
dump_array(expected_iv, iv_length);
printf("Updated IV:\n");
dump_array(tmp_iv, iv_length);
printf("Original IV:\n");
dump_array(iv, iv_length);
rc++;
}
if (rc) {
printf("AES OFB test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);
rc = ica_aes_ofb(encrypt, decrypt, data_length, key, key_length,

tmp_iv, 0);
if (rc) {
printf("ica_aes_ofb decrypt failed with rc = %i\n", rc);
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_ofb_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
}
return rc;

}

int main(int argc, char **argv)
{
unsigned int silent = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
unsigned int data_length = sizeof(ica_aes_vector_t);
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_ofb(iteration, silent);
if (rc) {
printf("kat_aes_ofb failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_ofb finished successfuly\n");

}
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
int silent = 1;
rc = random_aes_ofb(iteration, silent, data_length);
if (rc) {
printf("random_aes_ofb failed with rc = %i\n", rc);

136 libica Programmer's Reference

error_count++;
goto out;
} else
printf("random_aes_ofb finished successfuly\n");
data_length += sizeof(ica_aes_vector_t);
}

out:
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

AES with XTS mode example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include "ica_api.h"

#define NR_TESTS 5
#define NR_RANDOM_TESTS 20000

/* XTS data -1- AES128 */
unsigned char NIST_KEY_XTS_E1[] = {
0x46, 0xe6, 0xed, 0x9e, 0xf4, 0x2d, 0xcd, 0xb3,
0xc8, 0x93, 0x09, 0x3c, 0x28, 0xe1, 0xfc, 0x0f,
0x91, 0xf5, 0xca, 0xa3, 0xb6, 0xe0, 0xbc, 0x5a,
0x14, 0xe7, 0x83, 0x21, 0x5c, 0x1d, 0x5b, 0x61,
};

unsigned char NIST_TWEAK_XTS_E1[] = {
0x72, 0xf3, 0xb0, 0x54, 0xcb, 0xdc, 0x2f, 0x9e,
0x3c, 0x5b, 0xc5, 0x51, 0xd4, 0x4d, 0xdb, 0xa0,
};

/* TWEAK should not be updated, so the exptected tweak is the same as the
* original TWEAK.
*/
unsigned char NIST_EXPECTED_TWEAK_XTS_E1[] = {
0x72, 0xf3, 0xb0, 0x54, 0xcb, 0xdc, 0x2f, 0x9e,
0x3c, 0x5b, 0xc5, 0x51, 0xd4, 0x4d, 0xdb, 0xa0,
};

unsigned char NIST_TEST_DATA_XTS_E1[] = {
0xe3, 0x77, 0x8d, 0x68, 0xe7, 0x30, 0xef, 0x94,
0x5b, 0x4a, 0xe3, 0xbc, 0x5b, 0x93, 0x6b, 0xdd,
};

unsigned char NIST_TEST_RESULT_XTS_E1[] = {
0x97, 0x40, 0x9f, 0x1f, 0x71, 0xae, 0x45, 0x21,
0xcb, 0x49, 0xa3, 0x29, 0x73, 0xde, 0x4d, 0x05,
};

Chapter 7. Examples 137

/* XTS data -2- AES128 */
unsigned char NIST_KEY_XTS_E2[] = {
0x93, 0x56, 0xcd, 0xad, 0x25, 0x1a, 0xb6, 0x11,
0x14, 0xce, 0xc2, 0xc4, 0x4a, 0x60, 0x92, 0xdd,
0xe9, 0xf7, 0x46, 0xcc, 0x65, 0xae, 0x3b, 0xd4,
0x96, 0x68, 0x64, 0xaa, 0x36, 0x26, 0xd1, 0x88,

};

unsigned char NIST_TWEAK_XTS_E2[] = {
0x68, 0x88, 0x27, 0x83, 0x65, 0x24, 0x36, 0xc4,
0x85, 0x7a, 0x88, 0xc0, 0xc3, 0x73, 0x41, 0x7e,

};

unsigned char NIST_EXPECTED_TWEAK_XTS_E2[] = {
0x68, 0x88, 0x27, 0x83, 0x65, 0x24, 0x36, 0xc4,
0x85, 0x7a, 0x88, 0xc0, 0xc3, 0x73, 0x41, 0x7e,

};

unsigned char NIST_TEST_DATA_XTS_E2[] = {
0xce, 0x17, 0x6b, 0xdd, 0xe3, 0x39, 0x50, 0x5b,
0xa1, 0x5d, 0xea, 0x36, 0xd2, 0x8c, 0xe8, 0x7d,

};

unsigned char NIST_TEST_RESULT_XTS_E2[] = {
0x22, 0xf5, 0xf9, 0x37, 0xdf, 0xb3, 0x9e, 0x5b,
0x74, 0x25, 0xed, 0x86, 0x3d, 0x31, 0x0b, 0xe1,

};

/* XTS data -3- AES128 */
unsigned char NIST_KEY_XTS_E3[] = {
0x63, 0xf3, 0x6e, 0x9c, 0x39, 0x7c, 0x65, 0x23,
0xc9, 0x9f, 0x16, 0x44, 0xec, 0xb1, 0xa5, 0xd9,
0xbc, 0x0f, 0x2f, 0x55, 0xfb, 0xe3, 0x24, 0x44,
0x4c, 0x39, 0x0f, 0xae, 0x75, 0x2a, 0xd4, 0xd7,

};

unsigned char NIST_TWEAK_XTS_E3[] = {
0xcd, 0xb1, 0xbd, 0x34, 0x86, 0xf3, 0x53, 0xcc,
0x16, 0x0a, 0x84, 0x0b, 0xea, 0xdf, 0x03, 0x29,

};

unsigned char NIST_EXPECTED_TWEAK_XTS_E3[] = {
0xcd, 0xb1, 0xbd, 0x34, 0x86, 0xf3, 0x53, 0xcc,
0x16, 0x0a, 0x84, 0x0b, 0xea, 0xdf, 0x03, 0x29,

};

unsigned char NIST_TEST_DATA_XTS_E3[] = {
0x9a, 0x01, 0x49, 0x88, 0x8b, 0xf7, 0x61, 0x60,
0xa8, 0x14, 0x28, 0xbc, 0x91, 0x40, 0xec, 0xcd,
0x26, 0xed, 0x18, 0x36, 0x8e, 0x24, 0xd4, 0x9b,
0x9c, 0xc5, 0x12, 0x92, 0x9a, 0x88, 0xad, 0x1e,
0x66, 0xc7, 0x63, 0xf4, 0xf5, 0x6b, 0x63, 0xbb,
0x9d, 0xd9, 0x50, 0x8c, 0x5d, 0x4d, 0xf4, 0x65,
0xad, 0x98, 0x82, 0x14, 0x82, 0xfc, 0x71, 0x94,
0xee, 0x23, 0x54, 0xa3, 0xfa, 0xdc, 0xe9, 0x23,
0x18, 0x54, 0x8e, 0x8c, 0xe9, 0x45, 0x20, 0x81,
0x60, 0x49, 0x7b, 0x93, 0x05, 0xd9, 0xab, 0x10,
0x91, 0xab, 0x41, 0xd1, 0xf0, 0x9a, 0x0c, 0x7b,
0xfa, 0xf9, 0xf9, 0x4f, 0xe7, 0xc8, 0xf1, 0xea,
0x96, 0x8f, 0x8f, 0x9a, 0x71, 0x3a, 0xca, 0xde,
0x18, 0xb6, 0x82, 0x32, 0x10, 0x6f, 0xfd, 0x6d,
0x42, 0x81, 0xe9, 0x9e, 0x11, 0xd6, 0xa4, 0x28,
0xb5, 0x16, 0x53, 0xc0, 0xc7, 0xdd, 0xe5, 0xa0,
0xf2, 0x73, 0xe7, 0x4f, 0xf0, 0x15, 0xce, 0x80,
0x27, 0x7d, 0x74, 0x30, 0xf5, 0xda, 0xea, 0x8f,
0x73, 0x40, 0x64, 0x5e, 0x0b, 0xec, 0x25, 0xf4,
0x04, 0x0f, 0xa1, 0x3c, 0x0b, 0x33, 0x06, 0x93,

138 libica Programmer's Reference

0xb1, 0x00, 0x83, 0xa8, 0xb9, 0xbc, 0x10, 0x8f,
0xe6, 0x4f, 0x3a, 0x5b, 0x61, 0x3c, 0xbb, 0x56,
0x5a, 0xee, 0x2f, 0x09, 0xf5, 0xb2, 0x04, 0xae,
0xe1, 0x72, 0x28, 0xfe, 0x65, 0x31, 0xc7, 0x0c,
0x0e, 0xc9, 0x47, 0xd2, 0xa5, 0x14, 0x7b, 0x45,
0xc5, 0x1a, 0xc7, 0xdc, 0x8e, 0x85, 0x87, 0x03,
0x87, 0xeb, 0x8d, 0xb6, 0x25, 0x13, 0x68, 0x36,
0x8b, 0xf5, 0xf2, 0x46, 0xb2, 0x95, 0x7d, 0xaf,
0xf7, 0x02, 0xe3, 0x79, 0x02, 0x2e, 0x99, 0x16,
0x17, 0x49, 0xe6, 0xbe, 0x8e, 0xb7, 0x9d, 0x51,
0x97, 0x99, 0xaa, 0xe0, 0x7c, 0x18, 0x31, 0xbd,
0x0e, 0xe7, 0x25, 0x50, 0xb8, 0x53, 0x33, 0xab,
0x9e, 0x96, 0xa5, 0x33, 0xe2, 0x97, 0x25, 0xd7,
0x02, 0x3d, 0x82, 0x1a, 0xbe, 0x1c, 0xe3, 0xa7,
0x44, 0xbe, 0x02, 0xe0, 0x52, 0x56, 0x8f, 0x84,
0xe6, 0xe3, 0xf7, 0x44, 0x42, 0xbb, 0xa5, 0x0d,
0x02, 0xad, 0x2d, 0x6c, 0xa5, 0x8a, 0x69, 0x1f,
0xd2, 0x43, 0x9a, 0xa3, 0xaf, 0x0c, 0x03, 0x3a,
0x68, 0xc4, 0x38, 0xb2, 0xd9, 0xa0, 0xa0, 0x1d,
0x78, 0xc4, 0xf8, 0x7c, 0x50, 0x9f, 0xea, 0x0a,
0x43, 0x5b, 0xe7, 0x1b, 0xa2, 0x37, 0x06, 0xd6,
0x08, 0x2d, 0xcb, 0xa6, 0x26, 0x25, 0x99, 0x9e,
0xce, 0x09, 0xdf, 0xb3, 0xfc, 0xbe, 0x08, 0xeb,
0xb6, 0xf2, 0x15, 0x1e, 0x2f, 0x12, 0xeb, 0xe8,
0xa5, 0xbf, 0x11, 0x62, 0xc2, 0x59, 0xf2, 0x02,
0xc1, 0xba, 0x47, 0x8b, 0x5f, 0x46, 0x8a, 0x28,
0x69, 0xf1, 0xe7, 0x6c, 0xf5, 0xed, 0x38, 0xde,
0x53, 0x86, 0x9a, 0xdc, 0x83, 0x70, 0x9e, 0x21,
0xb3, 0xf8, 0xdc, 0x13, 0xba, 0x3d, 0x6a, 0xa7,
0xf6, 0xb0, 0xcf, 0xb3, 0xe5, 0xa4, 0x3c, 0x23,
0x72, 0xe0, 0xee, 0x60, 0x99, 0x1c, 0xe1, 0xca,
0xd1, 0x22, 0xa3, 0x1d, 0x93, 0x97, 0xe3, 0x0b,
0x92, 0x1f, 0xd2, 0xf6, 0xee, 0x69, 0x6e, 0x68,
0x49, 0xae, 0xee, 0x29, 0xe2, 0xb4, 0x45, 0xc0,
0xfd, 0x9a, 0xde, 0x65, 0x56, 0xc3, 0xc0, 0x69,
0xc5, 0xd6, 0x05, 0x95, 0xab, 0xbd, 0xf5, 0xba,
0xe2, 0xcc, 0xc7, 0x9a, 0x49, 0x6e, 0x83, 0xcc,
0xab, 0x95, 0x74, 0x0e, 0xb8, 0xe4, 0xf2, 0x92,
0x5d, 0xbf, 0x72, 0x97, 0xa8, 0xc9, 0x92, 0x75,
0x6e, 0x62, 0x87, 0x0e, 0xdc, 0xe9, 0x8f, 0x6c,
0xba, 0x1a, 0xa0, 0xd5, 0xb8, 0x6f, 0x09, 0x21,
0x43, 0xb1, 0x6d, 0xa1, 0x44, 0x15, 0x47, 0xd1,
0xd4, 0x2b, 0x80, 0x06, 0xfa, 0xce, 0x69, 0x5b,
0x03, 0xfd, 0xfa, 0xe6, 0x45, 0xf9, 0x5b, 0xd6,
};

unsigned char NIST_TEST_RESULT_XTS_E3[] = {
0x0e, 0xee, 0xf2, 0x8c, 0xa1, 0x59, 0xb8, 0x05,
0xf5, 0xc2, 0x15, 0x61, 0x05, 0x51, 0x67, 0x8a,
0xb7, 0x72, 0xf2, 0x79, 0x37, 0x4f, 0xb1, 0x40,
0xab, 0x55, 0x07, 0x68, 0xdb, 0x42, 0xcf, 0x6c,
0xb7, 0x36, 0x37, 0x64, 0x19, 0x34, 0x19, 0x5f,
0xfc, 0x08, 0xcf, 0x5a, 0x91, 0x88, 0xb8, 0x2b,
0x84, 0x0a, 0x00, 0x7d, 0x52, 0x72, 0x39, 0xea,
0x3f, 0x0d, 0x7d, 0xd1, 0xf2, 0x51, 0x86, 0xec,
0xae, 0x30, 0x87, 0x7d, 0xad, 0xa7, 0x7f, 0x24,
0x3c, 0xdd, 0xb2, 0xc8, 0x8e, 0x99, 0x04, 0x82,
0x7d, 0x3e, 0x09, 0x82, 0xda, 0x0d, 0x13, 0x91,
0x1d, 0x0e, 0x2d, 0xbb, 0xbb, 0x2d, 0x01, 0x6c,
0xbe, 0x4d, 0x06, 0x76, 0xb1, 0x45, 0x9d, 0xa8,
0xc5, 0x3a, 0x91, 0x45, 0xe8, 0x3c, 0xf4, 0x2f,
0x30, 0x11, 0x2c, 0xa6, 0x5d, 0x77, 0xc8, 0x93,
0x4a, 0x26, 0xee, 0x00, 0x1f, 0x39, 0x0f, 0xfc,
0xc1, 0x87, 0x03, 0x66, 0x2a, 0x8f, 0x71, 0xf9,
0xda, 0x0e, 0x7b, 0x68, 0xb1, 0x04, 0x3c, 0x1c,
0xb5, 0x26, 0x08, 0xcf, 0x0e, 0x69, 0x51, 0x0d,
0x38, 0xc8, 0x0f, 0xa0, 0x0d, 0xe4, 0x3d, 0xef,

Chapter 7. Examples 139

0x98, 0x4d, 0xff, 0x2f, 0x32, 0x4e, 0xcf, 0x39,
0x89, 0x44, 0x53, 0xd3, 0xe0, 0x1b, 0x3d, 0x7b,
0x3b, 0xc0, 0x57, 0x04, 0x9d, 0x19, 0x5c, 0x8e,
0xb9, 0x3f, 0xe4, 0xd9, 0x5a, 0x83, 0x00, 0xa5,
0xe6, 0x0a, 0x7c, 0x89, 0xe4, 0x0c, 0x69, 0x16,
0x79, 0xfb, 0xca, 0xfa, 0xd8, 0xeb, 0x41, 0x8f,
0x8d, 0x1f, 0xf7, 0xb9, 0x11, 0x75, 0xf8, 0xeb,
0x3c, 0x6f, 0xf2, 0x87, 0x2d, 0x32, 0xee, 0x4c,
0x57, 0x36, 0x9e, 0x61, 0xb6, 0x6d, 0x16, 0x6f,
0xd0, 0xa4, 0x34, 0x57, 0x47, 0x82, 0x75, 0xfe,
0x14, 0xbf, 0x34, 0x63, 0x8a, 0x9e, 0x4e, 0x1d,
0x25, 0xcc, 0x5a, 0x5f, 0x9e, 0x25, 0x7e, 0x61,
0x7a, 0xdc, 0xdd, 0xe6, 0x5e, 0x25, 0x57, 0x40,
0x53, 0x62, 0xc8, 0x91, 0xe6, 0x54, 0x6a, 0x6d,
0xee, 0xaa, 0x8f, 0xc0, 0x3b, 0x12, 0x2a, 0x55,
0x87, 0x4d, 0x33, 0xe0, 0xa7, 0x73, 0x52, 0x34,
0x68, 0x32, 0x5e, 0xc2, 0x4d, 0x4f, 0xaf, 0xfb,
0x63, 0xc0, 0x52, 0xc8, 0x11, 0xa1, 0xc0, 0x22,
0xba, 0xfc, 0xcb, 0x97, 0x98, 0x8b, 0x7e, 0x45,
0x67, 0xb2, 0x47, 0xd4, 0x04, 0x4b, 0x05, 0x2f,
0xf7, 0x3f, 0x4c, 0x67, 0x1d, 0x27, 0xe0, 0x52,
0xe2, 0xeb, 0xc7, 0x2d, 0x00, 0x57, 0xcb, 0x21,
0x7c, 0x52, 0x59, 0xb6, 0x09, 0x50, 0xe3, 0xc8,
0xb3, 0xd9, 0xe3, 0xe7, 0x63, 0x0f, 0x9e, 0xcb,
0xe5, 0x48, 0xb9, 0xe3, 0x62, 0x20, 0xf3, 0x3c,
0x2b, 0x45, 0x68, 0x30, 0x7c, 0xd0, 0x37, 0x5b,
0xba, 0x13, 0x35, 0xe5, 0x8b, 0xfb, 0xcd, 0xe8,
0x5c, 0xc8, 0x4c, 0x9c, 0x9c, 0x1c, 0xe7, 0x4f,
0x44, 0xb2, 0x8e, 0xa1, 0xb6, 0x97, 0x30, 0x5b,
0xb6, 0xba, 0x3b, 0x46, 0x4e, 0x5a, 0xb7, 0x45,
0x01, 0x29, 0x3e, 0xf9, 0x15, 0x2c, 0x0f, 0x5d,
0x33, 0x07, 0xd2, 0x6a, 0x1f, 0x07, 0x41, 0xc5,
0xe5, 0x72, 0x1a, 0x71, 0x3d, 0x1b, 0x86, 0xc1,
0x80, 0x82, 0x11, 0xf5, 0x7a, 0xad, 0x09, 0xa9,
0x50, 0xb6, 0x86, 0x30, 0xaf, 0xce, 0x4f, 0x0a,
0xd9, 0xf3, 0x2e, 0x67, 0x69, 0xb5, 0xfe, 0x31,
0x92, 0x9c, 0x44, 0x6f, 0x7a, 0x33, 0x55, 0xf4,
0x58, 0x84, 0xc7, 0x48, 0xc9, 0x05, 0x54, 0x15,
0xe6, 0x37, 0xd9, 0xad, 0x87, 0xd9, 0x4c, 0x46,
0x57, 0xb1, 0xad, 0x03, 0x4c, 0xb1, 0x4d, 0x9a,
0x72, 0xea, 0x74, 0x5f, 0xe5, 0x2d, 0x7a, 0x71,
0x1b, 0xa4, 0x1c, 0xa0, 0x35, 0x85, 0x6a, 0x5a,
0x44, 0x89, 0xa4, 0x27, 0x0b, 0xb3, 0x0d, 0x5b,
0x63, 0xf4, 0x9c, 0x05, 0x12, 0xfe, 0xd4, 0xb4

};

/* XTS data -4- AES256 */
unsigned char NIST_KEY_XTS_E4[] = {
0x97, 0x09, 0x8b, 0x46, 0x5a, 0x44, 0xca, 0x75,
0xe7, 0xa1, 0xc2, 0xdb, 0xfc, 0x40, 0xb7, 0xa6,
0x1a, 0x20, 0xe3, 0x2c, 0x6d, 0x9d, 0xbf, 0xda,
0x80, 0x72, 0x6f, 0xee, 0x10, 0x54, 0x1b, 0xab,
0x47, 0x54, 0x63, 0xca, 0x07, 0xc1, 0xc1, 0xe4,
0x49, 0x61, 0x73, 0x32, 0x14, 0x68, 0xd1, 0xab,
0x3f, 0xad, 0x8a, 0xd9, 0x1f, 0xcd, 0xc6, 0x2a,
0xbe, 0x07, 0xbf, 0xf8, 0xef, 0x96, 0x1b, 0x6b,

};

unsigned char NIST_TWEAK_XTS_E4[] = {
0x15, 0x60, 0x1e, 0x2e, 0x35, 0x85, 0x10, 0xa0,
0x9d, 0xdc, 0xa4, 0xea, 0x17, 0x51, 0xf4, 0x3c,

};

unsigned char NIST_EXPECTED_TWEAK_XTS_E4[] = {
0x15, 0x60, 0x1e, 0x2e, 0x35, 0x85, 0x10, 0xa0,
0x9d, 0xdc, 0xa4, 0xea, 0x17, 0x51, 0xf4, 0x3c,

};

140 libica Programmer's Reference

unsigned char NIST_TEST_DATA_XTS_E4[] = {
0xd1, 0x9c, 0xfb, 0x38, 0x3b, 0xaf, 0x87, 0x2e,
0x6f, 0x12, 0x16, 0x87, 0x45, 0x1d, 0xe1, 0x5c,
};

unsigned char NIST_TEST_RESULT_XTS_E4[] = {
0xeb, 0x22, 0x26, 0x9b, 0x14, 0x90, 0x50, 0x27,
0xdc, 0x73, 0xc4, 0xa4, 0x0f, 0x93, 0x80, 0x69,
};

/* XTS data -5- AES256 */
unsigned char NIST_KEY_XTS_E5[] = {
0xfb, 0xf0, 0x77, 0x6e, 0x7d, 0xbe, 0x49, 0x10,
0xfb, 0x0c, 0x12, 0x0f, 0x41, 0x85, 0x71, 0x21,
0x92, 0x6c, 0x05, 0x2f, 0xd6, 0x5a, 0x27, 0x8c,
0xd2, 0xf0, 0xd9, 0x8d, 0xa5, 0x4e, 0xdf, 0xd5,
0x08, 0x03, 0xa4, 0x2f, 0xbe, 0x6f, 0xd1, 0x33,
0x58, 0x49, 0x00, 0xe8, 0xdc, 0x7a, 0x11, 0x52,
0x39, 0x1f, 0x82, 0x2d, 0x76, 0xa7, 0x56, 0x68,
0xcf, 0xce, 0x7f, 0x8d, 0xde, 0x20, 0x3e, 0xc8,
};

unsigned char NIST_TWEAK_XTS_E5[] = {
0x39, 0x5b, 0x6a, 0xcf, 0x9a, 0xdc, 0xd2, 0x91,
0xc2, 0xc9, 0x48, 0x86, 0x36, 0x33, 0xaf, 0xf8,
};

unsigned char NIST_EXPECTED_TWEAK_XTS_E5[] = {
0x39, 0x5b, 0x6a, 0xcf, 0x9a, 0xdc, 0xd2, 0x91,
0xc2, 0xc9, 0x48, 0x86, 0x36, 0x33, 0xaf, 0xf8,
};

unsigned char NIST_TEST_DATA_XTS_E5[] = {
0x3e, 0x2e, 0x26, 0x9d, 0x78, 0x3a, 0x2b, 0x29,
0xe8, 0x73, 0xd6, 0x73, 0x47, 0x9f, 0x51, 0x16,
0x73, 0x4f, 0xe0, 0x3e, 0xe3, 0x29, 0x65, 0xed,
0xc4, 0x79, 0x35, 0xc0, 0xea, 0x99, 0xa0, 0x64,
0xbd, 0x44, 0x4b, 0xec, 0x12, 0x5b, 0x2c, 0x78,
0x9d, 0xb9, 0xde, 0x6d, 0x18, 0x35, 0x92, 0x05,
0x3b, 0x48, 0xa8, 0x77, 0xa9, 0x5a, 0xc2, 0x55,
0x9c, 0x3d, 0xdf, 0xc7, 0xb4, 0xdb, 0x99, 0x07,
};

unsigned char NIST_TEST_RESULT_XTS_E5[] = {
0x4c, 0x70, 0xbd, 0xbb, 0x77, 0x30, 0x2b, 0x7f,
0x1f, 0xdd, 0xca, 0x50, 0xdc, 0x70, 0x73, 0x1e,
0x00, 0x8a, 0x26, 0x55, 0xd2, 0x2a, 0xd0, 0x20,
0x0c, 0x11, 0x1f, 0xd3, 0x2a, 0x67, 0x5a, 0x7e,
0x09, 0x97, 0x11, 0x43, 0x6f, 0x98, 0xd2, 0x1c,
0x72, 0x77, 0x2e, 0x0d, 0xd7, 0x67, 0x2f, 0xf5,
0xfd, 0x00, 0xdd, 0xcb, 0xe1, 0x1e, 0xb9, 0x7e,
0x69, 0x87, 0x83, 0xbf, 0xa4, 0x05, 0x46, 0xe3,
};

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1;

h = ptr;
ptr_end = ptr + size;
while (h < (unsigned char *)ptr_end) {
printf("0x%02x ",(unsigned char) *h);
h++;

Chapter 7. Examples 141

if (i == 8) {
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");

}

void dump_xts_data(unsigned char *tweak, unsigned int tweak_length,
unsigned char *key, unsigned int key_length,
unsigned char *input_data, unsigned int data_length,
unsigned char *output_data)

{
printf("TWEAK \n");
dump_array(tweak, tweak_length);
printf("Key \n");
dump_array(key, key_length);
printf("Input Data\n");
dump_array(input_data, data_length);
printf("Output Data\n");
dump_array(output_data, data_length);

}

void get_sizes(unsigned int *data_length, unsigned int *tweak_length,
unsigned int *key_length, unsigned int iteration)

{
switch (iteration) {
case 1:
*data_length = sizeof(NIST_TEST_DATA_XTS_E1);
*tweak_length = sizeof(NIST_TWEAK_XTS_E1);
*key_length = sizeof(NIST_KEY_XTS_E1);
break;
case 2:
*data_length = sizeof(NIST_TEST_DATA_XTS_E2);
*tweak_length = sizeof(NIST_TWEAK_XTS_E2);
*key_length = sizeof(NIST_KEY_XTS_E2);
break;
case 3:
*data_length = sizeof(NIST_TEST_DATA_XTS_E3);
*tweak_length = sizeof(NIST_TWEAK_XTS_E3);
*key_length = sizeof(NIST_KEY_XTS_E3);
break;
case 4:
*data_length = sizeof(NIST_TEST_DATA_XTS_E4);
*tweak_length = sizeof(NIST_TWEAK_XTS_E4);
*key_length = sizeof(NIST_KEY_XTS_E4);
break;
case 5:
*data_length = sizeof(NIST_TEST_DATA_XTS_E5);
*tweak_length = sizeof(NIST_TWEAK_XTS_E5);
*key_length = sizeof(NIST_KEY_XTS_E5);
break;

}

}

void load_test_data(unsigned char *data, unsigned int data_length,
unsigned char *result,
unsigned char *tweak, unsigned char *expected_tweak,
unsigned int tweak_length,
unsigned char *key, unsigned int key_length,
unsigned int iteration)

{
switch (iteration) {
case 1:

142 libica Programmer's Reference

memcpy(data, NIST_TEST_DATA_XTS_E1, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E1, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E1, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E1,

tweak_length);
memcpy(key, NIST_KEY_XTS_E1, key_length);
break;
case 2:
memcpy(data, NIST_TEST_DATA_XTS_E2, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E2, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E2, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E2,

tweak_length);
memcpy(key, NIST_KEY_XTS_E2, key_length);
break;
case 3:
memcpy(data, NIST_TEST_DATA_XTS_E3, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E3, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E3, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E3,

tweak_length);
memcpy(key, NIST_KEY_XTS_E3, key_length);
break;
case 4:
memcpy(data, NIST_TEST_DATA_XTS_E4, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E4, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E4, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E4,

tweak_length);
memcpy(key, NIST_KEY_XTS_E4, key_length);
break;
case 5:
memcpy(data, NIST_TEST_DATA_XTS_E5, data_length);
memcpy(result, NIST_TEST_RESULT_XTS_E5, data_length);
memcpy(tweak, NIST_TWEAK_XTS_E5, tweak_length);
memcpy(expected_tweak, NIST_EXPECTED_TWEAK_XTS_E5,

tweak_length);
memcpy(key, NIST_KEY_XTS_E5, key_length);
break;

}

}

int kat_aes_xts(int iteration, int silent)
{
unsigned int data_length;
unsigned int tweak_length;
unsigned int key_length;

get_sizes(&data_length, &tweak_length, &key_length, iteration);

unsigned char tweak[tweak_length];
unsigned char tmp_tweak[tweak_length];
unsigned char expected_tweak[tweak_length];
unsigned char key[key_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
unsigned char result[data_length];

int rc = 0;
memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_test_data(input_data, data_length, result, tweak, expected_tweak,
tweak_length, key, key_length, iteration);

memcpy(tmp_tweak, tweak, tweak_length);

Chapter 7. Examples 143

printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, tweak length = %i,",

key_length, data_length, tweak_length);

rc = ica_aes_xts(input_data, encrypt, data_length,
key, key+(key_length/2), (key_length/2),
tmp_tweak, 1);

if (rc) {
printf("ica_aes_xts encrypt failed with rc = %i\n", rc);
dump_xts_data(tweak, tweak_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_xts_data(tweak, tweak_length, key, key_length, input_data,

data_length, encrypt);
}

if (memcmp(result, encrypt, data_length)) {
printf("Encryption Result does not match the known ciphertext!\n");
printf("Expected data:\n");
dump_array(result, data_length);
printf("Encryption Result:\n");
dump_array(encrypt, data_length);
rc++;
}

if (memcmp(expected_tweak, tmp_tweak, tweak_length)) {
printf("Update of TWEAK does not match the expected TWEAK!\n");
printf("Expected TWEAK:\n");
dump_array(expected_tweak, tweak_length);
printf("Updated TWEAK:\n");
dump_array(tmp_tweak, tweak_length);
printf("Original TWEAK:\n");
dump_array(tweak, tweak_length);
rc++;
}
if (rc) {
printf("AES XTS test exited after encryption\n");
return rc;
}

memcpy(tmp_tweak, tweak, tweak_length);
rc = ica_aes_xts(encrypt, decrypt, data_length,

key, key+(key_length/2), (key_length/2),
tmp_tweak, 0);

if (rc) {
printf("ica_aes_xts decrypt failed with rc = %i\n", rc);
dump_xts_data(tweak, tweak_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_xts_data(tweak, tweak_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);

144 libica Programmer's Reference

rc++;
}
return rc;
}

int load_random_test_data(unsigned char *data, unsigned int data_length,
unsigned char *iv, unsigned int iv_length,
unsigned char *key, unsigned int key_length)

{
int rc;
rc = ica_random_number_generate(data_length, data);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(iv_length, iv);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
rc = ica_random_number_generate(key_length, key);
if (rc) {
printf("ica_random_number_generate with rc = %i errnor = %i\n",

rc, errno);
return rc;
}
return rc;
}

int random_aes_xts(int iteration, int silent, unsigned int data_length)
{
int i;
int rc = 0;
unsigned int iv_length = sizeof(ica_aes_vector_t);
unsigned int key_length = AES_KEY_LEN128 * 2;
unsigned char iv[iv_length];
unsigned char tmp_iv[iv_length];
unsigned char input_data[data_length];
unsigned char encrypt[data_length];
unsigned char decrypt[data_length];
for (i = 1; i <= 2; i++) {

unsigned char key[key_length];

memset(encrypt, 0x00, data_length);
memset(decrypt, 0x00, data_length);

load_random_test_data(input_data, data_length, iv, iv_length, key,
key_length);

memcpy(tmp_iv, iv, iv_length);
printf("Test Parameters for iteration = %i\n", iteration);
printf("key length = %i, data length = %i, iv length = %i\n",

key_length, data_length, iv_length);

rc = ica_aes_xts(input_data, encrypt, data_length,
key, key+(key_length/2), (key_length/2),
tmp_iv, 1);

if (rc) {
printf("ica_aes_xts encrypt failed with rc = %i\n", rc);
dump_xts_data(iv, iv_length, key, key_length, input_data,

data_length, encrypt);
}
if (!silent && !rc) {
printf("Encrypt:\n");
dump_xts_data(iv, iv_length, key, key_length, input_data,

Chapter 7. Examples 145

data_length, encrypt);
}

if (rc) {
printf("AES XTS test exited after encryption\n");
return rc;
}

memcpy(tmp_iv, iv, iv_length);

rc = ica_aes_xts(encrypt, decrypt, data_length,
key, key+(key_length/2), (key_length/2),
tmp_iv, 0);

if (rc) {
printf("ica_aes_xts decrypt failed with rc = %i\n", rc);
dump_xts_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
return rc;
}

if (!silent && !rc) {
printf("Decrypt:\n");
dump_xts_data(iv, iv_length, key, key_length, encrypt,

data_length, decrypt);
}

if (memcmp(decrypt, input_data, data_length)) {
printf("Decryption Result does not match the original data!\n");
printf("Original data:\n");
dump_array(input_data, data_length);
printf("Decryption Result:\n");
dump_array(decrypt, data_length);
rc++;
return rc;
}
key_length = AES_KEY_LEN256 * 2;

}

return rc;
}

int main(int argc, char **argv)
{
unsigned int silent = 0;
if (argc > 1) {
if (strstr(argv[1], "silent"))
silent = 1;

}
int rc = 0;
int error_count = 0;
int iteration;
unsigned int data_length = sizeof(ica_aes_vector_t);
for(iteration = 1; iteration <= NR_TESTS; iteration++) {
rc = kat_aes_xts(iteration, silent);
if (rc) {
printf("kat_aes_xts failed with rc = %i\n", rc);
error_count++;
} else
printf("kat_aes_xts finished successfuly\n");

}
for(iteration = 1; iteration <= NR_RANDOM_TESTS; iteration++) {
int silent = 1;
rc = random_aes_xts(iteration, silent, data_length);
if (rc) {
printf("random_aes_xts failed with rc = %i\n", rc);

146 libica Programmer's Reference

error_count++;
goto out;
} else
printf("random_aes_xts finished successfuly\n");
data_length += sizeof(ica_aes_vector_t) / 2;
}

out:
if (error_count)
printf("%i testcases failed\n", error_count);
else
printf("All testcases finished successfully\n");

return rc;
}

CMAC example
/* This program is released under the Common Public License V1.0
*
* You should have received a copy of Common Public License V1.0 along with
* with this program.
*/

/* Copyright IBM Corp. 2010, 2011 */
#include <fcntl.h>
#include <sys/errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ica_api.h"

#define BYTE 8

#define NUM_TESTS 12

unsigned int key_length[12] = {16, 16, 16, 16, 24, 24, 24, 24, 32, 32, 32,
32};

unsigned char key[12][32] = {{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15,
0x88, 0x09, 0xcf, 0x4f, 0x3c},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10 ,0xf3,
0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c,
0x6b, 0x7b},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,

Chapter 7. Examples 147

0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4},{
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae,
0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61,
0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4}
};

unsigned char last_block[3][16] = {{
0x7d, 0xf7, 0x6b, 0x0c, 0x1a, 0xb8, 0x99, 0xb3, 0x3e, 0x42, 0xf0,
0x47, 0xb9, 0x1b, 0x54, 0x6f},{
0x22, 0x45, 0x2d, 0x8e, 0x49, 0xa8, 0xa5, 0x93, 0x9f, 0x73, 0x21,
0xce, 0xea, 0x6d, 0x51, 0x4b},{
0xe5, 0x68, 0xf6, 0x81, 0x94, 0xcf, 0x76, 0xd6, 0x17, 0x4d, 0x4c,
0xc0, 0x43, 0x10, 0xa8, 0x54}
};

unsigned long mlen[12] = { 0, 16, 40, 64, 0,16, 40, 64, 0, 16, 40, 64};
unsigned char message[12][512] = {{
0x00},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10},{
0x00},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10},{
0x00},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf ,0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11},{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e,
0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03,
0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30,
0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19,
0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b,
0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10}
};

unsigned char expected_cmac[12][16] = {{
0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28, 0x7f, 0xa3, 0x7d,
0x12, 0x9b, 0x75, 0x67, 0x46},{
0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44, 0xf7, 0x9b, 0xdd,
0x9d, 0xd0, 0x4a, 0x28, 0x7c},{
0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30, 0x30, 0xca, 0x32,
0x61, 0x14, 0x97, 0xc8, 0x27},{
0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92, 0xfc, 0x49, 0x74,
0x17, 0x79, 0x36, 0x3c, 0xfe},{

148 libica Programmer's Reference

0xd1, 0x7d, 0xdf, 0x46, 0xad, 0xaa, 0xcd, 0xe5, 0x31, 0xca, 0xc4,
0x83, 0xde, 0x7a, 0x93, 0x67},{
0x9e, 0x99, 0xa7, 0xbf, 0x31, 0xe7, 0x10, 0x90, 0x06, 0x62, 0xf6,
0x5e, 0x61, 0x7c, 0x51, 0x84},{
0x8a, 0x1d, 0xe5, 0xbe, 0x2e, 0xb3, 0x1a, 0xad, 0x08, 0x9a, 0x82,
0xe6, 0xee, 0x90, 0x8b, 0x0e},{
0xa1, 0xd5, 0xdf, 0x0e, 0xed, 0x79, 0x0f, 0x79, 0x4d, 0x77, 0x58,
0x96, 0x59, 0xf3, 0x9a, 0x11},{
0x02, 0x89, 0x62, 0xf6, 0x1b, 0x7b, 0xf8, 0x9e, 0xfc, 0x6b, 0x55,
0x1f, 0x46, 0x67, 0xd9, 0x83},{
0x28, 0xa7, 0x02, 0x3f, 0x45, 0x2e, 0x8f, 0x82, 0xbd, 0x4b, 0xf2,
0x8d, 0x8c, 0x37, 0xc3, 0x5c},{
0xaa, 0xf3, 0xd8, 0xf1, 0xde, 0x56, 0x40, 0xc2, 0x32, 0xf5, 0xb1,
0x69, 0xb9, 0xc9, 0x11, 0xe6},{
0xe1, 0x99, 0x21, 0x90, 0x54, 0x9f, 0x6e, 0xd5, 0x69, 0x6a, 0x2c,
0x05, 0x6c, 0x31, 0x54, 0x10}
};

unsigned int i = 0;

void dump_array(unsigned char *ptr, unsigned int size)
{
unsigned char *ptr_end;
unsigned char *h;
int i = 1, trunc = 0;
int maxsize = 2000;

puts("Dump:");

if (size > maxsize) {
trunc = size - maxsize;
size = maxsize;
}
h = ptr;
ptr_end = ptr + size;
while (h < ptr_end) {
printf("0x%02x ", *h);
h++;
if (i == 16) {
if (h != ptr_end)
printf("\n");
i = 1;
} else {
++i;
}
}
printf("\n");
if (trunc > 0)
printf("... %d bytes not printed\n", trunc);
}
unsigned char *cmac;
unsigned int cmac_length = 16;

int api_cmac_test(void)
{
printf("Test of CMAC api\n");
int rc = 0;
for (i = 0 ; i < NUM_TESTS; i++) {
if (!(cmac = malloc(cmac_length)))
return EINVAL;
memset(cmac, 0, cmac_length);
rc = (ica_aes_cmac(message[i], mlen[i],

cmac, cmac_length,
key[i], key_length[i],
ICA_ENCRYPT));

if (rc) {
printf("ica_aes_cmac generate failed with errno %d (0x%x)."

Chapter 7. Examples 149

"\n",rc,rc);
return rc;
}
if (memcmp(cmac, expected_cmac[i], cmac_length) != 0) {
printf("This does NOT match the known result. "
"Testcase %i failed\n",i);
printf("\nOutput MAC for test %d:\n", i);
dump_array((unsigned char *)cmac, cmac_length);
printf("\nExpected MAC for test %d:\n", i);
dump_array((unsigned char *)expected_cmac[i], 16);
free(cmac);
return 1;
}
printf("Expected MAC has been generated.\n");
rc = (ica_aes_cmac(message[i], mlen[i],

cmac, cmac_length,
key[i], key_length[i],
ICA_DECRYPT));

if (rc) {
printf("ica_aes_cmac verify failed with errno %d (0x%x).\n",
rc, rc);
free(cmac);
return rc;
}
free(cmac);
if (! rc)
printf("MAC was successful verified. testcase %i "
"succeeded\n",i);

else {
printf("MAC verification failed for testcase %i "
"with RC=%i\n",i,rc);
return rc;
}
}
return 0;
}

int main(int argc, char **argv)
{
int rc = 0;

rc = api_cmac_test();
if (rc) {
printf("api_cmac_test failed with rc = %i\n", rc);
return rc;
}
printf("api_cmac_test was succesful\n");
return 0;
}

Makefile example
Specify include directory. Leave blank for default system location.
INCDIR =

Specify library directory. Leave blank for default system location.
LIBDIR =

Specify library.
LIBS = -lica

TARGETS = example_des_ecb

all: $(TARGETS)

%: %.c

150 libica Programmer's Reference

gcc $(INCDIR) $(LIBDIR) $(LIBS) -o $@ $^

clean:
rm -f $(TARGETS)

Common Public License - V1.0
Common Public License - V1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF
THE PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:
1. in the case of the initial Contributor, the initial code and
documentation distributed under this Agreement, and

2. in the case of each subsequent Contributor:
1. changes to the Program, and
2. additions to the Program;

where such changes and/or additions to the Program originate
from and are distributed by that particular Contributor. A
Contribution ’originates’ from a Contributor if it was added to
the Program by such Contributor itself or anyone acting on such
Contributor’s behalf. Contributions do not include additions to
the Program which: (i) are separate modules of software
distributed in conjunction with the Program under their own
license agreement, and (ii) are not derivative works of the
Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor
which are necessarily infringed by the use or sale of its Contribution
alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this
Agreement.

"Recipient" means anyone who receives the Program under this Agreement,
including all Contributors.

2. GRANT OF RIGHTS

1. Subject to the terms of this Agreement, each Contributor
hereby grants Recipient a non-exclusive, worldwide,
royalty-free copyright license to reproduce, prepare derivative
works of, publicly display, publicly perform, distribute and
sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor
hereby grants Recipient a non-exclusive, worldwide,
royalty-free patent license under Licensed Patents to make,
use, sell, offer to sell, import and otherwise transfer the
Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the
combination of the Contribution and the Program if, at the time
the Contribution is added by the Contributor, such addition of
the Contribution causes such combination to be covered by the
Licensed Patents. The patent license shall not apply to any
other combinations which include the Contribution. No hardware
per se is licensed hereunder.

Chapter 7. Examples 151

3. Recipient understands that although each Contributor grants
the licenses to its Contributions set forth herein, no
assurances are provided by any Contributor that the Program
does not infringe the patent or other intellectual property
rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity
based on infringement of intellectual property rights or
otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole
responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is
required to allow Recipient to distribute the Program, it is
Recipient’s responsibility to acquire that license before
distributing the Program.

4. Each Contributor represents that to its knowledge it has
sufficient copyright rights in its Contribution, if any, to
grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form
under its own license agreement, provided that:

1. it complies with the terms and conditions of this Agreement;
and

2. its license agreement:
1. effectively disclaims on behalf of all Contributors
all warranties and conditions, express and implied,
including warranties or conditions of title and
non-infringement, and implied warranties or conditions
of merchantability and fitness for a particular purpose;

2. effectively excludes on behalf of all Contributors
all liability for damages, including direct, indirect,
special, incidental and consequential damages, such as
lost profits;

3. states that any provisions which differ from this
Agreement are offered by that Contributor alone and not
by any other party; and

4. states that source code for the Program is available
from such Contributor, and informs licensees how to
obtain it in a reasonable manner on or through a medium
customarily used for software exchange.

When the Program is made available in source code form:
1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each
copy of the Program.

Contributors may not remove or alter any copyright notices
contained within the Program.

Each Contributor must identify itself as the originator of its
Contribution, if any, in a manner that reasonably allows
subsequent Recipients to identify the originator of the
Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities

152 libica Programmer's Reference

with respect to end users, business partners and the like. While this
license is intended to facilitate the commercial use of the Program,
the Contributor who includes the Program in a commercial product
offering should do so in a manner which does not create potential
liability for other Contributors. Therefore, if a Contributor includes
the Program in a commercial product offering, such Contributor
("Commercial Contributor") hereby agrees to defend and indemnify every
other Contributor ("Indemnified Contributor") against any losses,
damages and costs (collectively "Losses") arising from claims, lawsuits
and other legal actions brought by a third party against the
Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of
the Program in a commercial product offering. The obligations in this
section do not apply to any claims or Losses relating to any actual or
alleged intellectual property infringement. In order to qualify, an
Indemnified Contributor must: a) promptly notify the Commercial
Contributor in writing of such claim, and b) allow the Commercial
Contributor to control, and cooperate with the Commercial Contributor
in, the defense and any related settlement negotiations. The
Indemnified Contributor may participate in any such claim at its own
expense.

For example, a Contributor might include the Program in a commercial
product offering, Product X. That Contributor is then a Commercial
Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance
claims and warranties are such Commercial Contributor’s responsibility
alone. Under this section, the Commercial Contributor would have to
defend claims against the other Contributors related to those
performance claims and warranties, and if a court requires any other
Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS
PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible
for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights
under this Agreement, including but not limited to the risks and costs
of program errors, compliance with applicable laws, damage to or loss
of data, programs or equipment, and unavailability or interruption of
operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR
ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING
WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this Agreement, and without further
action by the parties hereto, such provision shall be reformed to the

Chapter 7. Examples 153

minimum extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with
respect to a patent applicable to software (including a cross-claim or
counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as
of the date such litigation is filed. In addition, if Recipient
institutes patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Program
itself (excluding combinations of the Program with other software or
hardware) infringes such Recipient’s patent(s), then such Recipient’s
rights granted under Section 2(b) shall terminate as of the date such
litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails
to comply with any of the material terms or conditions of this
Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient’s rights
under this Agreement terminate, Recipient agrees to cease use and
distribution of the Program as soon as reasonably practicable. However,
Recipient’s obligations under this Agreement and any licenses granted
by Recipient relating to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement,
but in order to avoid inconsistency the Agreement is copyrighted and
may only be modified in the following manner. The Agreement Steward
reserves the right to publish new versions (including revisions) of
this Agreement from time to time. No one other than the Agreement
Steward has the right to modify this Agreement. IBM is the initial
Agreement Steward. IBM may assign the responsibility to serve as the
Agreement Steward to a suitable separate entity. Each new version of
the Agreement will be given a distinguishing version number. The
Program (including Contributions) may always be distributed subject to
the version of the Agreement under which it was received. In addition,
after a new version of the Agreement is published, Contributor may
elect to distribute the Program (including its Contributions) under the
new version. Except as expressly stated in Sections 2(a) and 2(b)
above, Recipient receives no rights or licenses to the intellectual
property of any Contributor under this Agreement, whether expressly, by
implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the
intellectual property laws of the United States of America. No party to
this Agreement will bring a legal action under this Agreement more than
one year after the cause of action arose. Each party waives its rights
to a jury trial in any resulting litigation.

openCryptoki code samples
This section provides the following code samples:
v “Dynamic library call” on page 155
v “Shared linked library” on page 155

Coding samples (C)
To develop an application that uses openCryptoki, you need to access the library.

There are two ways to access the library:
v Load shared objects using dynamic library calls (dlopen)
v Link the library(statically) to your application during built time

154 libica Programmer's Reference

For a list of supported mechanisms for ica-token, refer to “Supported mechanisms
for the ica token” on page 70.

Dynamic library call
openCryptoki code samples for a dynamic library call.

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <dlfcn.h>
#include <pkcs11types.h>

CK_RV init();
CK_RV cleanup();
CK_RV rc; /* return code */
void *dllPtr, (*symPtr)(); /* pointer to the ock library */
CK_FUNCTION_LIST_PTR FunctionPtr = NULL; /* pointer to function list */

int main(int argc, char *argv[]){
init(“/usr/lib64/opencryptoki/libopencryptoki.so”); /* opencryptoki initialization */
/* other opencryptoki commands.... */
cleanup(); /* cleanup/close shared library */
return 0;

}

CK_RV init(char *libPath){

dllPtr = dlopen(libPath, RTLD_NOW); /* open the PKCS11 library */
if (!dllPtr) {

printf("Error loading PKCS#11 library \n");
return errno;

}
symPtr = (void (*)())dlsym(dllPtr, "C_GetFunctionList"); /* Get ock function list */
if (!symPtr) {

printf("Error getting function list \n");
return errno;

}
symPtr(&FunctionPtr);
rc = FunctionPtr->C_Initialize(NULL); /* initialize opencryptoki/tokens) */
if (rc != CKR_OK) {
printf("Error initializing the opencryptoki library: 0x%X\n", rc);
cleanup();
}
printf("Opencryptoki initialized.\n");
return CKR_OK;

}

CK_RV cleanup(void) {
rc = FunctionPtr->C_Finalize(NULL);
if (dllPtr)

dlclose(dllPtr);
return rc;

}

To compile your sample code you need to provide the path of the source/include
files. Issue a command of the form:
gcc sample_dynamic.c -g -O0 -o sample_dynamic -I <include filepath>

The exact location of the include files depends on your Linux distribution.

Shared linked library
When you use your sample code with a static linked library you can access the
APIs directly.

At the compile time you need to specify the openCryptoki library:
gcc sample_shared.c -g -O0 -o sample_shared /usr/lib64/opencryptoki/libopencryptoki.so
-I /usr/<include filepath>

Chapter 7. Examples 155

The exact location of the include files depend on your Linux distribution.

The following code samples that interact with the openCryptoki API are based on
the shared linked openCryptoki library.

Base procedures:

View some openCryptoki code samples for base procedures, such as main
program, initialization, slot and token, mechanism, and finalize information.

The following code sample provides an insight into how to deal with the
openCryptoki API's. After describing some basic functions such as initialization,
session and login handling, the sample shows how to retrieve data, such as get slot
and token information and also detailed mechanism information. It also provides
an introduction about how to create key objects and process symmetric
encryption/decryption (DES). The last section shows RSA key generation with RSA
encrypt and decrypt operations.

Main program

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <dlfcn.h>
#include <pkcs11types.h>
#include <defs.h>

K_SLOT_ID slotID;
CK_SLOT_ID_PTR pSlotList = NULL;
CK_ULONG slotCount, ulCount, rsaLen = 2048, msgLen = 8, cipherLen = 8, c;
CK_FLAGS rw_sessionFlags = CKF_RW_SESSION | CKF_SERIAL_SESSION;
CK_SESSION_HANDLE hSession;
CK_MECHANISM_TYPE_PTR pMechList = NULL;
CK_BYTE keyValue[] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef};
CK_BYTE msg[] = {’T’, ’h’, ’e’, ’ ’, ’b’, ’i’, ’r’, ’d’};
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;

/* <insert helper functions (provided below) here> */

int main(int argc, char *argv[]) {
init();
getSlotList(pSlotList, &slotCount); // get the number of slots
pSlotList = malloc(slotCount * sizeof(CK_SLOT_ID)); // allocate memory
getSlotList(pSlotList, &slotCount); // retrieve slot list
slotID = *pSlotList; // first slot provide ica-token
getSlotInfo(slotID);
getTokenInfo(slotID);
getMechanismList(slotID, pMechList, &ulCount); // retrieve number of mech’s
pMechList = malloc(ulCount * sizeof(CK_MECHANISM_TYPE)); // allocate memory
getMechanismList(slotID, pMechList, &ulCount); // retrieve mechanism list
getMechanismInfo(slotID, CKM_DES3_ECB); // get mechanism information
openSession(slotID, rw_sessionFlags, &hSession);
loginSession(CKU_USER, "01234567", 8, hSession);
createKeyObject(hSession, keyValue);
CK_BYTE_PTR pCipherText = malloc(DES_BLOCK_SIZE*sizeof(CK_BYTE));
DESencrypt(hSession, (CK_BYTE_PTR)&msg, msgLen, pCipherText, &cipherLen);
DESdecrypt(hSession, pCipherText, cipherLen, (CK_BYTE_PTR)&msg, &msgLen);
generateRSAKeyPair(hSession, rsaLen, &hPublicKey, &hPrivateKey);
CK_BYTE_PTR pEncryptText = malloc(rsaLen*sizeof(CK_BYTE));
CK_BYTE_PTR pClearText = malloc(rsaLen*sizeof(CK_BYTE));
RSAencrypt(hSession, hPublicKey, (CK_BYTE_PTR)&msg, msgLen, pEncryptText, &rsaLen);
RSAdecrypt(hSession, hPrivateKey, pEncryptText, rsaLen, pClearText, &rsaLen);
logoutSession(hSession); closeSession(hSession);
finalize();
return 0;
}

156 libica Programmer's Reference

C_Initialize:

CK_RV init(void){
CK_RV rc;
rc = C_Initialize(NULL);
if (rc != CKR_OK) {

printf("Error initializing the opencryptoki library: 0x%X\n", rc);
}
return CKR_OK;

}

C_GetSlotList:

CK_RV getSlotList(CK_SLOT_ID_PTR pSlotList, CK_ULONG_PTR pSlotCount){
CK_RV rc;
rc = C_GetSlotList(TRUE, pSlotList, pSlotCount);
if (rc != CKR_OK) {

printf("Error getting number of slots: %x \n", rc);
return rc;

}
return CKR_OK;

}

C_GetSlotInfo:

CK_RV getSlotInfo(CK_SLOT_ID slotID){
CK_RV rc;
CK_SLOT_INFO slotInfo;

rc = C_GetSlotInfo(slotID, &slotInfo);
if (rc != CKR_OK) {

printf("Error getting slot information: %x \n", rc);
return rc;

}
printf("Slot %d Information:\n", slotID);
printf(" Description: %.64s\n", slotInfo.slotDescription);
printf(" Manufacturer: %.32s\n", slotInfo.manufacturerID);
printf(" Flags: 0x%X\n", slotInfo.flags);
if ((slotInfo.flags & CKF_TOKEN_PRESENT) == CKF_TOKEN_PRESENT) {

printf("Token Present!\n");
}
if ((slotInfo.flags & CKF_REMOVABLE_DEVICE) ==

CKF_REMOVABLE_DEVICE) {
printf("Removable Device!\n");

}
if ((slotInfo.flags & CKF_HW_SLOT) == CKF_HW_SLOT){

printf("Hardware support!\n");
}
else { printf("Software support!\n");}
printf(" Hardware Version: %d.%d\n",

slotInfo.hardwareVersion.major,
slotInfo.hardwareVersion.minor);

printf(" Firmware Version: %d.%d\n",
slotInfo.firmwareVersion.major,
slotInfo.firmwareVersion.minor);

return CKR_OK;
}

Chapter 7. Examples 157

C_GetTokenInfo:

CK_RV getTokenInfo(CK_SLOT_ID slotID){
CK_RV rc;
CK_TOKEN_INFO tokInfo;
rc = C_GetTokenInfo(slotID, &tokinfo);
if (rc != CKR_OK) {

printf("Error getting token info: 0x%X\n", rc); return rc;
}
printf("Token #%d Info:\n", slotID);
printf(" Label: %.32s\n", (&tokinfo)->label);
printf(" Manufacturer: %.32s\n", (&tokinfo)->manufacturerID);
printf(" Model: %.16s\n", (&tokinfo)->model);
printf(" Serial Number: %.16s\n", (&tokinfo)->serialNumber);
printf(" Flags: 0x%X\n", (&tokinfo)->flags);
if (((&tokinfo)->flags & CKF_RNG)== CKF_RNG)

printf(" |_ token has random generator\n");
if (((&tokinfo)->flags & CKF_WRITE_PROTECTED)== CKF_WRITE_PROTECTED)

printf(" |_ write protected token\n");
if (((&tokinfo)->flags & CKF_LOGIN_REQUIRED)== CKF_LOGIN_REQUIRED)

printf(" |_ Login required\n");
if (((&tokinfo)->flags & CKF_USER_PIN_INITIALIZED)== CKF_USER_PIN_INITIALIZED)

printf(" |_ User Pin initialized\n");
if (((&tokinfo)->flags & CKF_RESTORE_KEY_NOT_NEEDED)== CKF_RESTORE_KEY_NOT_NEEDED)

printf(" |_ Restore Keys not needed\n");
if (((&tokinfo)->flags & CKF_CLOCK_ON_TOKEN)== CKF_CLOCK_ON_TOKEN)

printf(" |_ Token has hardware clock\n");
if(((&tokinfo)->flags & CKF_PROTECTED_AUTHENTICATION_PATH)==CKF_PROTECTED_AUTHENTICATION_PATH)

printf(" |_ Token has protected configuration path\n");
if (((&tokinfo)->flags & CKF_DUAL_CRYPTO_OPERATIONS)== CKF_DUAL_CRYPTO_OPERATIONS)

printf(" |_ Token supports dual crypto operations\n");
if (((&tokinfo)->flags & CKF_TOKEN_INITIALIZED) == CKF_TOKEN_INITIALIZED)

printf(" |_ Token initialized\n");
if (((&tokinfo)->flags & CKF_SECONDARY_AUTHENTICATION) == CKF_SECONDARY_AUTHENTICATION)

printf(" |_ Token supports secondary authentication\n");
if (((&tokinfo)->flags & CKF_USER_PIN_COUNT_LOW) == CKF_USER_PIN_COUNT_LOW)

printf(" |_ at least one wrong user PIN submitted since last successful authentication\n");
if (((&tokinfo)->flags & CKF_USER_PIN_FINAL_TRY) == CKF_USER_PIN_FINAL_TRY)

printf(" |_ one last try before user PIN become locked\n");
if (((&tokinfo)->flags & CKF_USER_PIN_LOCKED) == CKF_USER_PIN_LOCKED)

printf(" |_ user PIN locked!!!\n");
if (((&tokinfo)->flags & CKF_USER_PIN_TO_BE_CHANGED) == CKF_USER_PIN_TO_BE_CHANGED)

printf(" |_ still default user PIN configured, PIN change recommended.\n");
if (((&tokinfo)->flags & CKF_SO_PIN_COUNT_LOW) == CKF_SO_PIN_COUNT_LOW)

printf(" |_ at least one wrong SO PIN submitted since last successful authentication\n");
if (((&tokinfo)->flags & CKF_SO_PIN_FINAL_TRY) == CKF_SO_PIN_FINAL_TRY)

printf(" |_ one last try before SO PIN become locked\n");
if (((&tokinfo)->flags & CKF_SO_PIN_LOCKED) == CKF_SO_PIN_LOCKED)

printf(" |_ SO PIN locked!!!\n");
if (((&tokinfo)->flags & CKF_SO_PIN_TO_BE_CHANGED) == CKF_SO_PIN_TO_BE_CHANGED)

printf(" |_ still default SO PIN configured, PIN change recommended.\n");
printf(" Sessions: %d/%d\n", (&tokinfo)->ulSessionCount, (&tokinfo)->ulMaxSessionCount);
printf(" R/W Sessions: %d/%d\n", (&tokinfo)->ulRwSessionCount, (&tokinfo)->ulMaxRwSessionCount);
printf(" PIN Length: %d-%d\n", (&tokinfo)->ulMinPinLen, (&tokinfo)->ulMaxPinLen);
printf(" Public Memory: 0x%X/0x%X\n", (&tokinfo)->ulFreePublicMemory, (&tokinfo)->ulTotalPublicMemory);
printf(" Private Memory: 0x%X/0x%X\n",(&tokinfo)->ulFreePrivateMemory, (&tokinfo)->ulTotalPrivateMemory);
printf(" Hardware Version: %d.%d\n", (&tokinfo)->hardwareVersion.major, (&tokinfo)->hardwareVersion.minor);
printf(" Firmware Version: %d.%d\n", (&tokinfo)->firmwareVersion.major, (&tokinfo)->firmwareVersion.minor);
printf(" Time: %.16s\n", (&tokinfo)->utcTime);

return CKR_OK;
}

C_GetMechanismList:

CK_RV getMechanismList(CK_SLOT_ID slotID, CK_MECHANISM_TYPE_PTR
pMechList, CK_ULONG_PTR pulCount) {

CK_RV rc;
rc = C_GetMechanismList(slotID, pMechList, pulCount);
if (rc != CKR_OK) {

printf("Error retrieve mechanism list: %x\n", rc);
return rc;
}

return CKR_OK;
}

158 libica Programmer's Reference

C_GetMechanismInfo:

CK_RV getMechanismInfo(CK_SLOT_ID slotID, CK_MECHANISM_TYPE type){
CK_RV rc;
CK_MECHANISM_INFO mechInfo;

rc = C_GetMechanismInfo(slotID, type, &mechinfo);
if (rc != CKR_OK) {

printf("Error in mechanism info: %x\n", rc);
return rc;

}
printf("MinKeySize: %d\n", (&mechinfo)->ulMinKeySize);
printf("MaxKeySize: %d\n", (&mechinfo)->ulMaxKeySize);
printf("Flags: %d\n", (&mechinfo)->flags);
return CKR_OK;

}

C_Finalize:

CK_RV finalize(void) {
CK_RV rc;
rc = C_Finalize(NULL);
if (rc != CKR_OK) {

printf("Error during finalize: %x\n", rc);
return rc;

}
return CKR_OK;

}

Session and login:

openCryptoki session and login code samples.

C_OpenSession:

CK_RV openSession(CK_SLOT_ID slotID, CK_FLAGS sFlags,
CK_SESSION_HANDLE_PTR phSession) {

CK_RV rc;
rc = C_OpenSession(slotID, sFlags, NULL, NULL, phSession);
if (rc != CKR_OK) {

printf("Error opening session: %x\n", rc); return rc;
}
printf("Open session successful.\n");
return CKR_OK;

}

C_Login:

CK_RV loginSession(CK_USER_TYPE userType, CK_CHAR_PTR pPin, CK_ULONG ulPinLen,
CK_SESSION_HANDLE hSession) {

CK_RV rc;
rc = C_Login(hSession, userType, pPin, ulPinLen);
if (rc != CKR_OK) {

printf("Error login session: %x\n", rc); return rc;
}
printf("Login session successful.\n");
return CKR_OK;

}

Chapter 7. Examples 159

C_Logout:

CK_RV logoutSession(CK_SESSION_HANDLE hSession) {
CK_RV rc;

rc = C_Logout(hSession);
if (rc != CKR_OK) {

printf("Error logout session: %x\n", rc); return rc;
}
printf("Logout session successful.\n");
return CKR_OK;

}

C_CloseSession:

CK_RV closeSession(CK_SESSION_HANDLE hSession) {
CK_RV rc;

rc = C_CloseSession(hSession);
if (rc != CKR_OK) {

printf("Error closing session: 0x%X\n", rc); return rc;
}
printf("Close session successful.\n");
return CKR_OK;

}

Object handling:

openCryptoki object handling code samples.

C_CreateObject:

CK_RV createKeyObject(CK_SESSION_HANDLE hSession, CK_BYTE keyValue[]) {
CK_RV rc;
CK_OBJECT_HANDLE hKey;
CK_BBOOL true = TRUE;
CK_BBOOL false = FALSE;

CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_ATTRIBUTE keyTempl[] = {

{CKA_CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_DECRYPT, &true, sizeof(true)},
{CKA_SIGN, &true, sizeof(true)},
{CKA_VERIFY, &true, sizeof(true)},
{CKA_TOKEN, &true, sizeof(true)}, // token object
{CKA_PRIVATE, &false, sizeof(false)}, // public object
{CKA_VALUE, keyValue, sizeof(keyValue)},
{CKA_LABEL, "Public_DES_Key", sizeof("Public_DES_Key")}

};
rc = C_CreateObject(hSession, keyTempl, sizeof (keyTempl)/sizeof (CK_ATTRIBUTE), &hKey);
if (rc != CKR_OK) {

printf("Error creating key object: 0x%X\n", rc); return rc;
}

}

160 libica Programmer's Reference

C_FindObjects:

CK_RV getKey(CK_CHAR_PTR label, int labelLen, CK_OBJECT_HANDLE_PTR hObject,
CK_SESSION_HANDLE hSession) {
CK_RV rc;
CK_ULONG ulMaxObjectCount = 1;
CK_ULONG ulObjectCount;
CK_ATTRIBUTE objectMask[] = { {CKA_LABEL, label, labelLen} };

rc = C_FindObjectsInit(hSession, objectMask, 1);
if (rc != CKR_OK) {

printf("Error FindObjectsInit: 0x%X\n", rc); return rc;
}

rc = C_FindObjects(hSession, hObject, ulMaxObjectCount, &ulObjectCount);
if (rc != CKR_OK) {

printf("Error FindObjects: 0x%X\n", rc); return rc;
}

rc = C_FindObjectsFinal(hSession);
if (rc != CKR_OK) {

printf("Error FindObjectsFinal: 0x%X\n", rc); return rc;
}

}

Cryptographic operations:

View some openCryptoki cryptographic operations code samples.

C_Encrypt (DES):

K_RV DESencrypt(CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
CK_BYTE_PTR pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {

CK_RV rc;
CK_MECHANISM myMechanism = {CKM_DES_ECB, NULL_PTR, 0};
CK_MECHANISM_PTR pMechanism = &myMechanism
CK_OBJECT_HANDLE hKey;

getKey("Public_DES_Key", sizeof("Public_DES_Key"), &hKey, hSession);
rc = C_EncryptInit(hSession, pMechanism, hKey);

if (rc != CKR_OK) {
printf("Error initializing encryption: 0x%X\n", rc);
return rc;

}

rc = C_Encrypt(hSession, pClearData, ulClearDataLen, pEncryptedData, pulEncryptedDataLen);
if (rc != CKR_OK) {

printf("Error during encryption: %x\n", rc);
return rc;

}
CK_BYTE_PTR tmp = pEncryptedData;
for (c=0; c<*pulEncryptedDataLen;c++, pEncryptedData++) {

printf("%X", *pEncryptedData);
}
printf("\n"); pEncryptedData = tmp;

return CKR_OK;
}

Chapter 7. Examples 161

C_Decrypt (DES):

CK_RV DESdecrypt(CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
CK_BYTE_PTR pClearData, CK_ULONG_PTR pulClearDataLen) {

CK_RV rc;
CK_MECHANISM myMechanism = {CKM_DES_ECB, NULL_PTR, 0};
CK_MECHANISM_PTR pMechanism = &myMechanism
CK_OBJECT_HANDLE hKey;

getKey("Public_DES_Key", sizeof("Public_DES_Key"), &hKey, hSession);

rc = C_DecryptInit(hSession, pMechanism, hKey);
if (rc != CKR_OK) {

printf("Error initializing decryption: 0x%X\n", rc);
return rc;

}

rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
pClearData, pulClearDataLen);

if (rc != CKR_OK) {
printf("Error during decryption: %x\n", rc);
return rc;

}
CK_BYTE_PTR tmp = pClearData;
for (c=0; c<*pulClearDataLen;c++,pClearData++) {

printf("%c", *pClearData);
}
printf("\n"); pClearData = tmp;

return CKR_OK;
}

162 libica Programmer's Reference

C_GenerateKeyPair (RSA):

CK_RV generateRSAKeyPair(CK_SESSION_HANDLE hSession, CK_ULONG keySize,
CK_OBJECT_HANDLE_PTR phPublicKey, CK_OBJECT_HANDLE_PTR phPrivateKey) {

CK_RV rc;
CK_BBOOL true = TRUE;
CK_BBOOL false = FALSE;

CK_OBJECT_CLASS keyClassPub = CKO_PUBLIC_KEY;
CK_OBJECT_CLASS keyClassPriv = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyTypeRSA = CKK_RSA;
CK_ULONG modulusBits = keySize;
CK_BYTE_PTR pModulus = malloc(sizeof(CK_BYTE)*modulusBits/8);
CK_BYTE publicExponent[] = {1, 0, 1};
CK_MECHANISM rsaKeyGenMech = {CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0};

CK_ATTRIBUTE publicKeyTemplate[] = {
{CKA_CLASS, &keyClassPub, sizeof(keyClassPub)},
{CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_PRIVATE, &true, sizeof(true)},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VERIFY, &true, sizeof(true)},
{CKA_WRAP, &true, sizeof(true)},
{CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
{CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)},
{CKA_LABEL, "My_Private_Token_RSA1024_PubKey",
sizeof("My_Private_Token_RSA1024_PubKey")},
{CKA_MODIFIABLE, &true, sizeof(true)},

};

CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA_CLASS, &keyClassPriv, sizeof(keyClassPriv)},
{CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
{CKA_EXTRACTABLE, &true, sizeof(true)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_PRIVATE, &true, sizeof(true)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DECRYPT, &true, sizeof(true)},
{CKA_SIGN, &true, sizeof(true)},
{CKA_UNWRAP, &true, sizeof(true)},
{CKA_LABEL, "My_Private_Token_RSA1024_PrivKey",
sizeof("My_Private_Token_RSA1024_PrivKey")},
{CKA_MODIFIABLE, &true, sizeof(true)},

};

rc = C_GenerateKeyPair(hSession, &rsaKeyGenMech , &publicKeyTemplate,
sizeof(publicKeyTemplate)/sizeof (CK_ATTRIBUTE), &privateKeyTemplate,
sizeof(privateKeyTemplate)/sizeof (CK_ATTRIBUTE), phPublicKey, phPrivateKey);
if (rc != CKR_OK) {

printf("Error generating RSA keys: %x\n", rc);
return rc;

}
}

Chapter 7. Examples 163

C_Encrypt (RSA):

CK_RV RSAencrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
CK_BYTE_PTR pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {

CK_RV rc;
CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};

rc = C_EncryptInit(hSession, rsaMechanism, hKey);
if (rc != CKR_OK) {

printf("Error initializing RSA encryption: %x\n", rc);
return rc;

}
rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
pEncryptedData, pulEncryptedDataLen);
if (rc != CKR_OK) {

printf("Error during RSA encryption: %x\n", rc);
return rc;

}
CK_BYTE_PTR tmp = pEncryptedData;
for (c=0; c<*pulEncryptedDataLen;c++,pEncryptedData++) {

printf("%X", *pEncryptedData);
}
printf("\n"); pEncryptedData = tmp;
return CKR_OK;
}

C_Decrypt (RSA):

CK_RV RSAdecrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
CK_BYTE_PTR pClearData, CK_ULONG_PTR pulClearDataLen) {

CK_RV rc;
CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};

rc = C_DecryptInit(hSession, rsaMechanism, hKey);
if (rc != CKR_OK) {

printf("Error initializing RSA decryption: %x\n", rc);
return rc;

}
rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
pClearData, pulClearDataLen);
if (rc != CKR_OK) {

printf("Error during RSA decryption: %x\n", rc);
return rc;

}
CK_BYTE_PTR tmp = pClearData;
for (c=0; c<*pulClearDataLen;c++,pClearData++) {

printf("%c", *pClearData);
}
printf("\n"); pClearData = tmp;
return CKR_OK;

}

For more information, refer to the current PKCS#11standard/specification:
http://www.cryptsoft.com/pkcs11doc/

164 libica Programmer's Reference

http://www.cryptsoft.com/pkcs11doc/

Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Documentation accessibility

The Linux on System z publications are in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when you use the PDF file and want to request a Web-based format for
this publication, use the Readers' Comments form in the back of this publication,
send an email to eservdoc@de.ibm.com, or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility at
www.ibm.com/able

© Copyright IBM Corp. 2009, 2014 165

http://www.ibm.com/able

166 libica Programmer's Reference

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

© Copyright IBM Corp. 2009, 2014 167

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems
Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

168 libica Programmer's Reference

http://www.ibm.com/legal/copytrade.shtml

Glossary
Advanced Encryption Standard (AES)

A data encryption technique that improved upon and officially replaced
the Data Encryption Standard (DES). AES is sometimes referred to as
Rijndael, which is the algorithm on which the standard is based.

asymmetric cryptography
Synonym for public key cryptography..

Central Processor Assist for Cryptographic Function (CPACF)
Hardware that provides support for symmetric ciphers and secure hash
algorithms (SHA) on every central processor. Hence the potential
encryption/decryption throughput scales with the number of central
processors in the system.

Chinese-Remainder Theorem (CRT)
A mathematical problem described by Sun Tsu Suan-Ching using the
remainder from a division operation.

Cipher Block Chaining (CBC)
A method of reducing repetitive patterns in cipher-text by performing an
exclusive-OR operation on each 8-byte block of data with the previously
encrypted 8-byte block before it is encrypted.

Cipher block length
The length of a block that can be encrypted or decrypted by a symmetric
cipher. Each symmetric cipher has a specific cipher block length.

clear key
Any type of encryption key not protected by encryption under another key.

CPACF instructions
Instruction set for the CPACF hardware.

Crypto Express4S (CEX4S)
Successor to the Crypto Express3 feature. The PCIe adapter on a CEX4S
feature can be configured in three ways: Either as cryptographic accelerator
(CEX4A), or as CCA coprocessor (CEX4C) for secure key encrypted
transactions, or in EP11 coprocessor mode (CEX4P) for exploiting
Enterprise PKCS #11 functionality.

A CEX4P only supports secure key mode.

electronic code book mode (ECB mode)
A method of enciphering and deciphering data in address spaces or data
spaces. Each 64-bit block of plain-text is separately enciphered and each
block of the cipher-text is separately deciphered.

libica Library for IBM Cryptographic Architecture.

master key (MK)
In computer security, the top-level key in a hierarchy of key-encrypting
keys.

Mode of operation
A schema describing how to apply a symmetric cipher to encrypt or
decrypt a message that is longer than the cipher block length. The goal of
most modes of operation is to keep the security level of the cipher by

© Copyright IBM Corp. 2009, 2014 169

avoiding the situation where blocks that occur more than once will always
be translated to the same value. Some modes of operations allow handling
messages of arbitrary lengths.

modulus-exponent (Mod-Expo)
A type of exponentiation performed using a modulus.

public key cryptography
In computer security, cryptography in which a public key is used for
encryption and a private key is used for decryption. Synonymous with
asymmetric cryptography.

Rivest-Shamir-Adleman (RSA)
An algorithm used in public key cryptography. These are the surnames of
the three researchers responsible for creating this asymmetric or
public/private key algorithm.

Secure Hash Algorithm (SHA)
An encryption method in which data is encrypted in a way that is
mathematically impossible to reverse. Different data can possibly produce
the same hash value, but there is no way to use the hash value to
determine the original data.

secure key
A key that is encrypted under a master key. When using a secure key, it is
passed to a cryptographic coprocessor where the coprocessor decrypts the
key and performs the function. The secure key never appears in the clear
outside of the cryptographic coprocessor.

symmetric cryptogrphy
An encryption method that uses the same key for encryption and
decryption. Keys of symmetric ciphers are private keys.

zcrypt device driver
Kernel device driver to access Crypto Express adapters. Formerly, a
monolithic module called z90crypt. Today, it consists of multiple modules
that are implicitly loaded when loading the ap main module of the device
driver.

170 libica Programmer's Reference

Index

Numerics
3DES 31

Cipher Based Message Authentication
Code (CMAC) 35

Cipher Based Message Authentication
Code (CMAC) intermediate 36

Cipher Based Message Authentication
Code (CMAC) last 37

Cipher Block Chaining (CBC) 32
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 32
Cipher Feedback (CFB) 34
Counter (CTR) mode 38
Counter (CTR) mode with list 39
Electronic Code Book (ECB) 40
Output Feedback (OFB) 41

A
about this document vii
accessibility 165
adapter

close 10
functions 9
open 10

AES 42
Cipher Based Message Authentication

Code (CMAC) 48
Cipher Based Message Authentication

Code (CMAC) last 50
Cipher Block Chaining (CBC) 43
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 44
Cipher Feedback (CFB) 47
Counter (CTR) mode 51
Counter (CTR) mode with list 52
Counter with CBC MAC (CCM) 45,

54
Electronic Code Book (ECB) 53
Output Feedback (OFB) 56
XEX-based Tweaked CodeBook mode

with CipherText Stealing (XTS) 57
AES with CFB mode

examples 107
AES with CTR mode

examples 119
AES with OFB mode

examples 129
AES with XTS mode

examples 137
API

ica_3des_cbc 32
ica_3des_cbc_cs 32
ica_3des_cfb 34
ica_3des_cmac 35
ica_3des_cmac_intermediate 36
ica_3des_cmac_last 37
ica_3des_ctr 38
ica_3des_ctrlist 39
ica_3des_ecb 40

API (continued)
ica_3des_ofb 41
ica_aes_cbc 43
ica_aes_cbc_cs 44
ica_aes_ccm 45
ica_aes_cfb 47
ica_aes_cmac 48
ica_aes_cmac_intermediate 49
ica_aes_cmac_last 50
ica_aes_ctr 51
ica_aes_ctrlist 52
ica_aes_ecb 53
ica_aes_gcm 54
ica_aes_ofb 56
ica_aes_xts 57
ica_close_adapter 10
ica_des_cbc 20
ica_des_cbc_cs 21
ica_des_cfb 22
ica_des_cmac 23
ica_des_cmac_intermediate 24
ica_des_cmac_last 25
ica_des_ctr 26
ica_des_ctrlist 28
ica_des_ecb 29
ica_des_ofb 29
ica_get_functionlist 59
ica_get_version 59
ica_open_adapter 10
ica_random_number_generate 16
ica_rsa_crt 19
ica_rsa_key_generate_crt 17
ica_rsa_key_generate_mod_expo 17
ica_rsa_mod_expo 18
ica_sha1 11
ica_sha224 12
ica_sha256 13
ica_sha384 14
ica_sha512 15
libica 7

assumptions viii
available functions 77
available libraries in openCryptoki 66

C
C_CloseSession 159
C_CreateObject 160
C_Decrypt (DES) 161
C_Decrypt (RSA) 161
C_Encrypt (DES) 161
C_Encrypt (RSA) 161
C_FindObjects 160
C_GenerateKeyPair (RSA) 161
C_Login 159
C_Logout 159
C_OpenSession 159
chzcrypt 2
CMAC

examples 147

command line program
pkcsconf 62

command pkcsconf 66
commands

icainfo 77
Common Public License - V1.0 151
compatibility

of APIs from earlier libica versions 6
configuration file

sample for opencryptoki.conf 66
configuring

ica token 68
configuring openCryptoki 65
constants 73
CPACF 2
CryptoCard 2
cryptographic adapter

installing 2

D
define statements 2, 73
DES 20

Cipher Based Message Authentication
Code (CMAC) 23

Cipher Based Message Authentication
Code (CMAC) intermediate 24, 49

Cipher Based Message Authentication
Code (CMAC) last 25

Cipher Block Chaining (CBC) 20
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 21
Cipher Feedback (CFB) 22
Counter (CTR) mode 26
Counter (CTR) mode with list 28
Electronic Code Book (ECB) 29
Output Feedback (OFB) 29

DES with CTR mode
examples 101

DES with ECB mode
examples 81

distribution independence viii
dynamic library call 155

E
examples 81

AES with CFB mode 107
AES with CTR mode 119
AES with OFB mode 129
AES with XTS mode 137
CMAC 147
Common Public License - V1.0 151
DES with CTR mode 101
DES with ECB mode 81
key generation 90
makefile 150
pseudo random number 89
RSA 96
SHA-256 83

© Copyright IBM Corp. 2009, 2014 171

examples (continued)
triple DES with CBC mode 104

G
glossary 169

I
ibopencryptoki.so 61
ica token 68

configuring 68
status information 69

ica_3des_cbc 32
ica_3des_cbc_cs 32
ica_3des_cfb 34
ica_3des_cmac 35
ica_3des_cmac_intermediate 36
ica_3des_cmac_last 37
ica_3des_ctr 38
ica_3des_ctrlist 39
ica_3des_ecb 40
ica_3des_ofb 41
ica_aes_cbc 43
ica_aes_cbc_cs 44
ica_aes_ccm 45
ica_aes_cfb 47
ica_aes_cmac 48
ica_aes_cmac_intermediate 49
ica_aes_cmac_last 50
ica_aes_ctr 51
ica_aes_ctrlist 52
ica_aes_ecb 53
ica_aes_gccm 54
ica_aes_ofb 56
ica_aes_xts 57
ica_close_adapter 9, 10
ica_des_cbc 20
ica_des_cbc_cs 21
ica_des_cfb 22
ica_des_cmac 23
ica_des_cmac_intermediate 24
ica_des_cmac_last 25
ica_des_ctr 26
ica_des_ctrlist 28
ica_des_ecb 29
ica_des_ofb 29
ica_get_functionlist 59
ica_get_version 59
ica_open_adapter 9, 10
ica_random_number_generate 16
ica_rsa_crt 19
ica_rsa_key_generate_crt 17
ica_rsa_key_generate_mod_expo 17
ica_rsa_mod_expo 18
ica_sha1 11
ica_sha224 12
ica_sha256 13
ica_sha384 14
ica_sha512 15
icainfo command 77
icastats utility 1, 78
icatoken 64
Information retrieval functions 59

K
key

CRT format 17
modulus/exponent 17

key generation
examples 90

L
libica

APIs 7
binary package 5
coexistance 6
constants 73
define statements 2, 73
examples 1, 81
function list 59
general information 1
installation 5
return codes 76
structs 74
typedefs 73
usage 5
using 6
version 59

Linux
distribution viii

log-in PIN 68
lszcrypt 2

M
makefile

examples 150

O
openCryptoki

base library 66
base procedures 156
binary package 64
C_CloseSession 159
C_CreateObject 160
C_Decrypt (DES) 161
C_Decrypt (RSA) 161
C_Encrypt (DES) 161
C_Encrypt (RSA) 161
C_FindObjects 160
C_GenerateKeyPair (RSA) 161
C_Login 159
C_Logout 159
C_OpenSession 159
code samples 154
configuration file 66
configuring 65
crypto adapter 2
general information 61
installing 64
lszcrypt 2
overview 61
SO PIN 68
source package 5, 64
standard PIN 68
status information 69, 70
token library 66

openCryptoki (continued)
zcrypt status information 2

openCryptoki library 61
opencryptoki.conf

configuration file 66

P
PIN 68
pk_config_data 66
PKCS #11

functions 64
PKCS #11 functions 64
PKCS #11 standard 61
pkcs11_startup 66
pkcsconf 62, 68
pkcsconf -t 69, 70
pkcsconf -t command 66
pkcsconf command 66
pkcsslotd 61
pseudo random number 16

examples 89

R
random number 16
return codes 76
RSA

examples 96

S
sample programs 1
secure hash 10
security officer (SO) 62
SHA-1 11
SHA-224 12
SHA-256 13

examples 83
SHA-384 14
SHA-512 15
shared linked library 155
slot entry 66
slot entry, defining 68
slot manager 61, 66

starting 66
slot token dynamic link libraries

(STDLLs) 61
SO

log-in PIN 68
standard user (User)

log-in PIN 68
starting the slot manager 66
status information 69, 70
STDLL 61
STDLLs 61
structs 74
summary of changes v

T
TDES 31

Cipher Based Message Authentication
Code (CMAC) 35

172 libica Programmer's Reference

TDES (continued)
Cipher Based Message Authentication

Code (CMAC) intermediate 36
Cipher Based Message Authentication

Code (CMAC) last 37
Cipher Block Chaining (CBC) 32
Cipher Block Chaining with Cipher

text Stealing (CBC-CS) 32
Cipher Feedback (CFB) 34
Counter (CTR) mode 38
Counter (CTR) mode with list 39
Electronic Code Book (ECB) 40
Output Feedback (OFB) 41

token
initializing 68

triple DES 31
triple DES with CBC mode

examples 104
typedefs 73

U
User

log-in PIN 68
utilities

icastats 78

W
who should read this document vii

Z
z90crypt

alias name 2
zcrypt status information 2

Index 173

174 libica Programmer's Reference

Readers’ Comments — We'd Like to Hear from You

Linux on System z
libica Programmer's Reference
Version 2.4

Publication No. SC34-2602-06

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via email to: eservdoc@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2602-06

SC34-2602-06

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-2602-06

	Contents
	Summary of changes
	Updates for libica version 2.4
	Updates for libica version 2.3.0
	Updates for libica version 2.2.0

	About this document
	How this document is organized
	Who should read this document
	Assumptions

	Distribution independence
	Other Linux on System z publications

	Chapter 1. General information about libica
	libica examples
	System z cryptographic hardware support
	Check the prerequisites: cryptographic adapter and device driver
	Loading the Linux zcrypt device driver
	Checking the cryptographic adapter availability

	Chapter 2. Installing and using libica version 2.4
	Installing libica version 2.4 from the libica RPM
	Installing libica version 2.4 from the source package
	Using libica version 2.4
	libica version 1, version 2, version 2.1.0, and up to version 2.4 coexistence

	Chapter 3. libica version 2.4 application programming interfaces
	Open and close adapter functions
	ica_open_adapter
	ica_close_adapter

	Secure hash operations
	ica_sha1
	ica_sha224
	ica_sha256
	ica_sha384
	ica_sha512

	Pseudo random number generation function
	ica_random_number_generate

	RSA key generation functions
	ica_rsa_key_generate_mod_expo
	ica_rsa_key_generate_crt

	RSA encrypt and decrypt operations
	ica_rsa_mod_expo
	ica_rsa_crt

	DES functions
	ica_des_cbc
	ica_des_cbc_cs
	ica_des_cfb
	ica_des_cmac
	ica_des_cmac_intermediate
	ica_des_cmac_last
	ica_des_ctr
	ica_des_ctrlist
	ica_des_ecb
	ica_des_ofb
	Compatibility with earlier versions

	TDES/3DES functions
	ica_3des_cbc
	ica_3des_cbc_cs
	ica_3des_cfb
	ica_3des_cmac
	ica_3des_cmac_intermediate
	ica_3des_cmac_last
	ica_3des_ctr
	ica_3des_ctrlist
	ica_3des_ecb
	ica_3des_ofb
	Compatibility with earlier versions

	AES functions
	ica_aes_cbc
	ica_aes_cbc_cs
	ica_aes_ccm
	ica_aes_cfb
	ica_aes_cmac
	ica_aes_cmac_intermediate
	ica_aes_cmac_last
	ica_aes_ctr
	ica_aes_ctrlist
	ica_aes_ecb
	ica_aes_gcm
	ica_aes_ofb
	ica_aes_xts
	Compatibility with earlier versions

	Information retrieval function
	ica_get_version
	ica_get_functionlist

	Chapter 4. Accessing libica functions through the PKCS #11 (openCryptoki)
	openCryptoki overview
	Functions provided by openCryptoki with the ica token
	Installing openCryptoki
	Installing from the RPM
	Installing from the source package

	Configuring openCryptoki
	Adjusting the openCryptoki configuration file
	Configuring the ica token
	Initializing the token
	How to recognize the ica token

	Using openCryptoki
	Supported mechanisms for the ica token

	Chapter 5. libica constants, type definitions, data structures, and return codes
	libica constants
	Type definitions
	Data structures
	Return codes

	Chapter 6. libica tools
	icainfo - Show available libica functions
	icastats - Show use of libica functions

	Chapter 7. Examples
	DES with ECB mode example
	SHA-256 example
	Pseudo random number generation example
	Key generation example
	RSA example
	DES with CTR mode example
	Triple DES with CBC mode example
	AES with CFB mode example
	AES with CTR mode example
	AES with OFB mode example
	AES with XTS mode example
	CMAC example
	Makefile example
	Common Public License - V1.0
	openCryptoki code samples
	Coding samples (C)
	Dynamic library call
	Shared linked library

	Accessibility
	Notices
	Trademarks

	Glossary
	Index
	Numerics
	A
	C
	D
	E
	G
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	W
	Z

	Readers’ Comments — We'd Like to Hear from You

