
Linux on z Systems and LinuxONE

KVM Virtual Server Management
October 2016

SC34-2752-02

IBM

Linux on z Systems and LinuxONE

KVM Virtual Server Management
October 2016

SC34-2752-02

IBM

This edition applies to the Linux on z Systems Development stream, libvirt version, and QEMU release as available
at that time, and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2015, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document . ix
How this document is organized . ix
Conventions and assumptions used in this publication . x
Where to get more information . xi
Other publications for Linux on z Systems . xi

Part 1. General concepts . 1

Chapter 1. Overview . 3
Virtual server management tasks . 4
Virtualization components . 6

Chapter 2. DASDs and SCSI disks as virtual block devices. 9

Chapter 3. SCSI tapes and SCSI medium changers as virtual SCSI devices 15

Chapter 4. Network devices as virtual Ethernet devices. 19

Chapter 5. Migration to a different hypervisor release 23

Part 2. Device setup . 27

Chapter 6. Preparing DASDs . 29

Chapter 7. Preparing SCSI disks. 31

Chapter 8. Preparing SCSI tape and medium changer devices 35

Chapter 9. Preparing network devices . 39
Creating a network interface. 40
Preparing a network interface for a direct MacVTap connection 42

Preparing a bonded interface . 42
Preparing a virtual switch . 45

Part 3. Configuration. 49

Chapter 10. Configuring a virtual server . 51
Domain configuration-XML . 53
Configuring the boot process . 55

Configuring a DASD or SCSI disk as IPL device . 55
Configuring an ISO image as IPL device. 56
Configuring a kernel image file as IPL device . 57
Example of an initial installation . 58

Configuring virtual CPUs . 62
Configuring the number of virtual CPUs . 62
Tuning virtual CPUs . 63

Configuring virtual memory. 64
Configuring the collection of QEMU core dumps . 64
Configuring the user space . 65
Configuring persistent devices . 66
Configuring the console . 67

© Copyright IBM Corp. 2015, 2016 iii

||

Configuring a watchdog device. 68
Disabling protected key encryption . 69
Suppressing the automatic configuration of a default memory balloon device 71

Chapter 11. Configuring devices. 73
Device configuration-XML . 74
Configuring virtual block devices . 76

Configuring a DASD or SCSI disk . 76
Configuring a file as storage device . 82

Configuring virtual SCSI devices . 84
Configuring a virtual HBA . 84
Configuring a SCSI tape or medium changer device . 85
Example of a multipathed SCSI tape and medium changer device configuration 89
Configuring a virtual SCSI-attached CD/DVD drive . 91

Configuring virtual Ethernet devices . 94
Configuring a MacVTap interface . 94
Configuring a virtual switch. 96

Configuring a random number generator . 98

Part 4. Operation . 99

Chapter 12. Creating, modifying, and deleting persistent virtual server definitions. . . 101
Defining a virtual server . 102
Modifying a virtual server definition . 102
Undefining a virtual server . 103

Chapter 13. Managing the virtual server life cycle 105
Starting a virtual server . 106
Terminating a virtual server . 106
Suspending a virtual server . 108
Resuming a virtual server . 108

Chapter 14. Monitoring virtual servers . 111
Browsing virtual servers . 112
Displaying information about a virtual server . 112
Displaying the current libvirt-internal configuration . 114

Chapter 15. Live virtual server migration. 117
Live migration setup . 117

Preservation of the virtual server resources . 117
Host environments . 120

Phases of a live migration . 121
Performing a live migration . 122

Chapter 16. Managing system resources . 127
Managing virtual CPUs . 128

Modifying the number of virtual CPUs . 128
Modifying the virtual CPU weight . 131

Chapter 17. Managing devices . 133
Attaching a device. 134
Detaching a device . 135
Replacing a virtual DVD . 135
Connecting to the console of a virtual server . 137

Part 5. Best practices and performance considerations 139

iv KVM Virtual Server Management - October 2016

||

||

Chapter 18. CPU management . 141
Linux scheduling . 141
CPU weight . 142

Chapter 19. Storage management. 145
I/O threads . 145
Logical volume management . 145

Part 6. Diagnostics and troubleshooting 149

Chapter 20. Logging . 151
Log messages . 151
Specifying the logging level of the libvirt log messages . 151

Chapter 21. Dumping . 153
Creating a virtual server dump on the host . 153
Creating a dump on the virtual server . 153

Chapter 22. Collecting performance metrics 155

Part 7. Reference . 159

Chapter 23. Virtual server life cycle . 161
shut off . 162
running . 163
paused . 164
crashed . 165
in shutdown. 166

Chapter 24. Selected libvirt XML elements . 167
<adapter> as child element of <source> . 169
<address> as child element of <controller>, <disk>, <interface>, and <memballoon> 170
<address> as child element of <hostdev> or <disk> . 171
<address> as child element of <source> . 172
<backend> . 173
<boot> . 174
<cipher> . 175
<cmdline> . 176
<console> . 177
<controller> . 178
<cputune> . 179
<devices> . 180
<disk> . 181
<domain> . 182
<driver> as child element of <disk> . 183
<emulator> . 185
<geometry> . 186
<hostdev> . 187
<initrd> . 188
<interface> . 189
<iothreads> . 190
<kernel> . 191
<keywrap> . 192
<log> . 193
<mac>. 194
<memballoon> . 195
<memory> . 196
<model> . 198

Contents v

|

||

||

<name> . 199
<on_crash> . 200
<on_reboot>. 201
<os> . 202
<readonly> . 203
<rng> . 204
<shareable> . 205
<shares> . 206
<source> as child element of <disk>. 207
<source> as child element of <hostdev> . 208
<source> as child element of <interface> . 209
<target> as child element of <console> . 210
<target> as child element of <disk> . 211
<type> . 212
<vcpu> . 213
<virtualport> . 214
<watchdog> . 215

Chapter 25. Selected virsh commands. 217
attach-device . 219
change-media . 221
console . 223
define . 224
destroy . 225
detach-device . 226
domblklist . 228
domblkstat . 229
domiflist . 231
domifstat . 232
dominfo . 233
domjobabort. 234
domstate . 235
dump . 236
dumpxml. 237
edit. 238
inject-nmi . 239
iothreadadd . 240
iothreaddel . 242
iothreadinfo . 244
list . 245
managedsave . 247
migrate . 249
migrate-getspeed . 252
migrate-setmaxdowntime . 253
migrate-setspeed . 254
reboot . 255
resume . 256
schedinfo . 257
shutdown . 258
setvcpus . 259
start . 261
suspend . 263
undefine . 264
vcpucount . 265

Chapter 26. Selected QEMU commands . 267
QEMU monitor commands . 267
Examples for the use of the qemu-img command . 267

vi KVM Virtual Server Management - October 2016

||

||

Chapter 27. Hypervisor information for the virtual server user 269

Part 8. Appendixes . 275

Accessibility . 277

Notices . 279
Trademarks . 280

Index . 281

Contents vii

||

viii KVM Virtual Server Management - October 2016

About this document

This document describes the tasks that are performed by the KVM virtual server
administrator to set up, configure, and operate Linux on KVM instances and their
virtual devices running on the KVM host on z Systems™ hardware.

For an appropriate KVM host setup, refer to your host administration
documentation. Depending on the product or distribution you use, this is KVM for
IBM z Systems: System Administration, SC27-8237, or your distribution
documentation.

For a scenario of defining and operating a KVM virtual server, see KVM Virtual
Server Quick Start, SC34-2753.

For a description of the installation of SLES 12 as a guest operating system, see
Installing SUSE Linux Enterprise Server 12 as a KVM Guest, SC34-2755.

For a description of Linux on KVM and tasks that are performed by the KVM
virtual server user, see Device Drivers, Features, and Commands for Linux as a KVM
Guest, SC34-2754.

This document describes a selection of helpful libvirt XML elements and virsh
commands that can be used to perform the documented administration tasks on z
Systems. The described subset is not complete.

KVM users familiar with other platforms should be aware that:
v The use of some configuration elements might be different on the z Systems

platform.
v Not all available commands, command options or command output are relevant

on a z Systems platform.

You can find the latest version of the complete references on libvirt.org at:
v libvirt.org/format.html
v libvirt.org/sources/virshcmdref

How this document is organized

The first part of this document contains general and overview information for the
KVM virtual server management tasks and concepts.

Part two contains chapters that describe how to change the current setup of z
Systems devices on the KVM host in order to provide them as virtual devices for a
KVM virtual server.

Part three contains chapters about the configuration of a KVM virtual server and
the specification of the z Systems hardware on which the virtual resources are
based.

Part four contains chapters about the lifecycle management and operation of a
KVM virtual server.

© Copyright IBM Corp. 2015, 2016 ix

http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.ldvq/ldvq_c_welcome.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.ldvq/ldvq_c_welcome.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lhvi/lhvi_c_welcome.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_kvm_dd.html
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_kvm_dd.html
http://libvirt.org
http://libvirt.org/format.html
http://libvirt.org/sources/virshcmdref

Part five contains chapters that describe how to display information that helps to
diagnose and solve problems associated with the operation of a KVM virtual
server.

Part six contains a selection of configuration elements and operation commands
that are useful for the described tasks on the z Systems platform.

Conventions and assumptions used in this publication
This summarizes the styles, highlighting, and assumptions used throughout this
publication.

Authority

Most of the tasks described in this document require a user with root authority.
Throughout this document, it is assumed that you have root authority.

Persistent configuration

This document describes how to set up devices and interfaces for Linux on z
Systems which are not persistent. If you need to make your changes persistent,
refer to your host administration documentation, or use commonly available tools.

Depending on the product or distribution you use, your host administration
documentation is KVM for IBM z Systems: System Administration, SC27-8237 or your
distribution documentation.

Terminology

This document uses the following terminology:

KVM virtual server, virtual server
Virtualized z Systems resources that comprise processor, memory, and I/O
capabilities as provided and managed by KVM. A virtual server can
include an operating system.

KVM guest, guest
An operating system of a virtual server.

KVM host, host
The Linux instance that runs the KVM virtual servers and manages their
resources.

Highlighting

This publication uses the following highlighting styles:
v Paths and URLs are highlighted in monospace.
v Variables are highlighted in italics.

v Commands in text are highlighted in monospace bold.
v Input and output as normally seen on a computer screen is shown

within a screen frame.
Prompts on the KVM host are shown as hash signs:
#
Prompts on the KVM virtual server are shown as hash signs preceeded by an indication:
[root@guest:] #

x KVM Virtual Server Management - October 2016

Where to get more information
This section provides links to information about KVM virtual server management.

Kernel based virtual machine (KVM)

For general documentation around KVM, see linux-kvm.org/page/Main_Page. The
documentation mainly focuses on KVM internals and feature sets. There are also
more general documents that describe administration and tuning aspects. Of
particular interest is the KVM HowTo page at linux-kvm.org/page/HOWTO.

For information about KVM on x86, see the IBM® Knowledge Center at
www.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaatkvm.htm.

libvirt virtualization API

libvirt provides the management API on the host.

For internal and external documentation of libvirt, see libvirt.org. Of particular
interest are:
v The FAQ section at wiki.libvirt.org/page/FAQ. This section provides a good

general introduction to libvirt.
v The XML reference at libvirt.org/format.html. This XML configures a virtual

server.
v The virsh command reference at libvirt.org/virshcmdref.html. The virsh

commands are used on the host to manage virtual servers.

QEMU

QEMU is the user space process that implements the virtual server hardware on
the host.

For QEMU documentation, see wiki.qemu.org.

Other publications
v Open vSwitch: openvswitch.org
v SCSI Architecture Model (SAM): t10.org

Other publications for Linux on z Systems
You can find publications for Linux on z Systems on IBM Knowledge Center and
on developerWorks®.

These publications are available on IBM Knowledge Center at

www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html
v Device Drivers, Features, and Commands (distribution-specific editions)
v Using the Dump Tools (distribution-specific editions)
v KVM Virtual Server Management, SC34-2752
v KVM Virtual Server Quick Start, SC34-2753
v KVM Virtual Server Management Tools, SC34-2763
v Installing SUSE Linux Enterprise Server 12 as a KVM Guest, SC34-2755

About this document xi

http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/HOWTO
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaatkvm.htm
http://libvirt.org
http://wiki.libvirt.org/page/FAQ
http://libvirt.org/format.html
http://libvirt.org/virshcmdref.html
http://wiki.qemu.org
http://www.openvswitch.org
http://www.t10.org
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_lib.html

v Device Drivers, Features, and Commands for Linux as a KVM Guest
(distribution-specific editions)

v How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
v libica Programmer's Reference, SC34-2602
v Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
v Secure Key Solution with the Common Cryptographic Architecture Application

Programmer's Guide, SC33-8294
v Linux on z Systems Troubleshooting, SC34-2612
v Linux Health Checker User's Guide, SC34-2609
v Kernel Messages, SC34-2599
v How to Set up a Terminal Server Environment on z/VM®, SC34-2596

These publications are available on developerWorks at

www.ibm.com/developerworks/linux/linux390/documentation_dev.html
v Device Drivers, Features, and Commands, SC33-8411
v Using the Dump Tools, SC33-8412
v KVM Virtual Server Management, SC34-2752
v KVM Virtual Server Quick Start, SC34-2753
v KVM Virtual Server Management Tools, SC34-2763
v Installing SUSE Linux Enterprise Server 12 as a KVM Guest, SC34-2755
v Device Drivers, Features, and Commands for Linux as a KVM Guest, SC34-2754
v How to Improve Performance with PAV, SC33-8414
v How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
v How to use Execute-in-Place Technology with Linux on z/VM, SC34-2594
v How to Set up a Terminal Server Environment on z/VM, SC34-2596
v Kernel Messages, SC34-2599
v libica Programmer's Reference, SC34-2602
v Secure Key Solution with the Common Cryptographic Architecture Application

Programmer's Guide, SC33-8294
v Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
v Linux on z Systems Troubleshooting, SC34-2612
v Linux Health Checker User's Guide, SC34-2609

Tuning hints and tips for Linux on z Systems are available at

www.ibm.com/developerworks/linux/linux390/perf

xii KVM Virtual Server Management - October 2016

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/developerworks/linux/linux390/perf

Part 1. General concepts

Chapter 1. Overview 3
Virtual server management tasks 4
Virtualization components 6

Chapter 2. DASDs and SCSI disks as virtual block
devices 9

Chapter 3. SCSI tapes and SCSI medium
changers as virtual SCSI devices 15

Chapter 4. Network devices as virtual Ethernet
devices 19

Chapter 5. Migration to a different hypervisor
release 23

As KVM virtual server administrator, you prepare devices for the use of virtual
servers, configure virtual servers, and manage the operation of virtual servers.

© Copyright IBM Corp. 2015, 2016 1

2 KVM Virtual Server Management - October 2016

Chapter 1. Overview

Set up, configure, and manage the operation of virtual servers.

A KVM virtual server consists of virtualized z Systems resources that comprise
processor, memory, and I/O capabilities as provided and managed by KVM. A
virtual server can include an operating system. Throughout this book, the term
virtual server is used for a KVM virtual server. In the libvirt documentation, a
virtual server is called a domain.

A KVM guest or simply guest is an operating system of a virtual server. In the
QEMU or libvirt documentation, sometimes a virtual server is also referred to as a
guest. Do not confuse this term with the preceding definitions.

The KVM host is the Linux instance that runs the KVM virtual servers and
manages their resources. In the libvirt documentation, a host is also called a node.

Setup

Configuration

Operation

. .

Figure 1. Virtual server administrator's tasks

Memory

Virtual hardware

CPU CPU

.

Guest

KVM host

Virtual server

blk eth

Memory
CPU CPU CPU

z Systems hardware

.

.

blk

DiskDisk Network

Figure 2. KVM host with a virtual server including a guest operating system

© Copyright IBM Corp. 2015, 2016 3

Virtual server management tasks
As a virtual server administrator, you are responsible for the following tasks.
1. Device setup

The virtual server user does not see the device specifics of the devices that you
provide for it. It can handle them only on an abstraction layer that does not
allow them to be configured. You need to prepare the adapter hardware, the
physical disk devices, and the network devices to be used by the virtual server.
For a detailed description of this task, see Part 2, “Device setup,” on page 27.

2. Virtual server and device configuration
You configure a virtual server with a domain configuration-XML. The
configuration includes the specification of a name, which is used to identify the
virtual server, system resources, and persistent devices.
You can also configure hotplug devices by using device configuration-XMLs.
For a detailed description of this task, see Part 3, “Configuration,” on page 49.

3. Virtual server and device operation
This document describes how to manage the operation of virtual servers by
using virsh commands based on configuration-XML files.
a. After you have configured a virtual server, you create a persistent virtual

server definition:
Defining the virtual server passes its domain configuration-XML file to
libvirt. libvirt associates the defined virtual server with the name specified
in the domain configuration-XML and with an internal representation of the
configuration (see Figure 3).
This internal representation may differ from the domain configuration-XML
with regard to the order of configuration elements, and automatically
generated additional configuration elements and values.
The current libvirt-internal configuration may vary depending on resource
operations that you perform on the running virtual server.

b. Now you can manage the operation of the virtual server. This consists of:
v Life cycle management:

A virtual server is either shut off, running or paused. (There are other
states as well, which will be mentioned in a later topic.)

Domain
configuration-

XML

libvirt

configure define

libvirt-internal
configuration

Name:

Name

. .

Figure 3. Creating a persistent virtual server definition

4 KVM Virtual Server Management - October 2016

You can issue virsh commands to start, terminate, suspend, or resume a
virtual server (see Figure 4).

v Monitoring, which allows you to display:
– Lists of the defined virtual servers.
– Specific information about a defined virtual server, such as its state or

scheduling information.
– The current libvirt-internal configuration of a defined virtual server.

v Live migration, which allows you to migrate a defined virtual server to
another host.

v System resource management, which allows you to manage the virtual
system resources of a virtual server, such as its virtual CPUs.

v Device management, which allows you to dynamically attach devices to
or detach devices from a defined virtual server. If the virtual server is
running, the devices are hotplugged or unplugged.

c. Undefining a virtual server from libvirt results in the deletion of the virtual
server name and the libvirt-internal configuration.

For a detailed description of these tasks, see Part 4, “Operation,” on page 99.

shut off

running

define

undefine

start

terminate

defined

.

undefined

paused

suspend

resume

Domain
configuration-

XML

Figure 4. Simplified state-transition diagram of a virtual server

Chapter 1. Overview 5

Virtualization components
The virtual server management as described in this document is based on the
following virtualization components.

Linux kernel including the kvm kernel module (KVM)
Provides the core virtualization infrastructure to run multiple virtual
servers on a Linux host.

QEMU
User space component that implements virtual servers on the host using
KVM functionality.

libvirt Provides a toolkit for the virtual server management:
v The XML format is used to configure virtual servers.
v The virsh command-line interface is used to operate virtual servers and

devices.

Figure 5 on page 7 shows the virtual server management tasks using the XML
format and the virsh command-line interface.

6 KVM Virtual Server Management - October 2016

.

KVM host

z Systems
hardware

FCP
channel

libvirt

define

shut off

running

start

terminate

paused

suspend

resume

Device

setup

on the host

Configuration

using XML format

including the prepared

device and network

interface names

Operation

using virsh:

Create a persistent

virtual server

definition

Operation

using virsh:

Manage the

virtual server

life cycle

KVM host

z Systems
hardware

Block device

FCP
channel

Ethernet device

memory

Virtual server

Virtual hardware

virtual block device virtual Ethernet device

CPU CPU

memory
Virtual hardware

CPU
CPU

Dom
ain

co
nfig

ura
tio

n-X
M

L

Figure 5. Virtual server administrator tasks using XML format and the virsh command-line
interface

Chapter 1. Overview 7

8 KVM Virtual Server Management - October 2016

Chapter 2. DASDs and SCSI disks as virtual block devices

DASDs and FC-attached SCSI disks are virtualized as virtio block devices.

On the host, you manage various types of disk devices and their configuration
topology. Path redundancy in the setup of FC-attached SCSI disks guarantees high
availability of the devices. Analogous, multipathing is implemented in the z
Systems hardware of DASDs.

From the virtual server point of view, these are virtual block devices which are
attached by one virtual channel path. There is no difference whether a virtual block
device is implemented as a DASD, a SCSI disk, or a file on the host.

QEMU uses the current libvirt-internal configuration to assign the virtual devices
of a virtual server to the underlying host devices.

To provide virtual block devices for a virtual server:
1. Set up DASDs and FC-attached SCSI disks.

In particular, prepare multipathing to guarantee high availability, because
virtual block devices cannot be multipathed on the virtual server.
It is also important that you provide unique device nodes that are persistent
across host reboots. Unique device nodes ensure that your configuration
remains valid after a host reboot. In addition, device nodes that are unique for
a disk device on different hosts allow the live migration of a virtual server to a
different host, or the migration of a disk to a different storage server or storage
controller.
See Chapter 6, “Preparing DASDs,” on page 29 and Chapter 7, “Preparing SCSI
disks,” on page 31.

2. Configure DASDs, FC-attached SCSI disks, and files as virtual block devices.
You configure devices that are persistent for a virtual server in its domain
configuration-XML file and hotplug devices in a separate device
configuration-XML file.
See Chapter 11, “Configuring devices,” on page 73 and “Configuring virtual
block devices” on page 76.

Virtual block device configuration topology

Figure 6 on page 10 shows how multipathed DASD and SCSI disks are configured
as virtual block devices.

© Copyright IBM Corp. 2015, 2016 9

|
|

Disk device identification

There are multiple ways to identify a disk device on the host or on the virtual
server.

Device bus-ID and device number of an FCP device

On the host, a SCSI device is connected to an FCP device, which has a
device bus-ID of the form:
0.m.dddd

Where:

0 is the channel subsystem-ID.
m is the subchannel set-ID.
dddd is the device number of the FCP device.

Example:

0.0.1700 device bus-ID of the FCP device.

KVM host

FCP
device

SAN
fabric

SAN
fabric

SAN
fabric

SAN
fabric

KVM virtual server

FCP
device

z Systems
hardware

Virtual block devices

vd<x1>vd<x0> vd<x2> vd<x3>

sd<v> sd<z>sd<y>sd<x>

dasd

dasd
<a>

FCP
channel

FCP
channel

FCP
channel

FICON
channel

FICON
channel

DASD storage controller

DASD DASD

SCSI disk controller

disk disk

Virtual devices

identified by:

device bus-ID

target WWPN

FCP LUN

device bus-ID

Host devices

identified by:

<multi-
pathA>

<multi-
pathB>

SCSI tape library controller

medium changerdrive

sg<1>sg<0> sg<2> sg<3>

Figure 6. Multipathed DASD and SCSI disks configured as virtual block devices

10 KVM Virtual Server Management - October 2016

1700 device number of the FCP device.

Device bus-ID and device number of a DASD

On the host, a DASD is attached to a FICON® channel. It has a device
bus-ID of the form:
0.m.dddd

Example:

0.0.e717 device bus-ID of the DASD.
e717 device number of the DASD.

Unique ID (UID) of a DASD

PAV and HyperPAV provide means to create unique IDs to identify
DASDs.

Example:

IBM.75000000010671.5600.00

Device bus-ID and device number of a virtual block device

On the virtual server, all virtual block devices are accessed through a
single virtual channel subsystem. The virtual server directly identifies a
virtual block device through its device bus-ID, which is of the form:
0.m.dddd

Where:

0 is the channel subsystem-ID.
m is the subchannel set-ID.
dddd is the device number of the virtual block device.

Example:

0.0.1a12 device bus-ID of the virtual device.
1a12 device number of the virtual device.

Standard device name

Standard device names are of the form:

dasd<x> for DASDs on the host.
sd<x> for SCSI disks on the host.
vd<x> for virtual block devices on the virtual server.

Where <x> can be one or more letters.

They are assigned in the order in which the devices are detected and thus
can change across reboots.

Example:

dasda on the host.
sda on the host.
vda on the virtual server.

Chapter 2. DASDs and SCSI disks as virtual block devices 11

If there is only one attached SCSI disk, you can be sure that host device
sda is mapped to virtual server device vda.

Standard device node

User space programs access devices through device nodes. Standard device
nodes are of the form:
/dev/<standard-device-name>

Example:

/dev/sda for SCSI disks on the host.
/dev/dasda for DASDs on the host.
/dev/vda for virtual block devices on the virtual server.

udev-created device node

If udev is available with your product or distribution, it creates device
nodes which are based on unique properties of a device and so identify a
particular device. udev creates various device nodes for a device which are
based on the following information:
v Hardware / storage server (by-uid device node)
v Device bus-ID (by-path device node)
v SCSI identifier for SCSI disks or disk label (VOLSER) for DASDs (by-ID

device node)
v File system information (by-uuid device node)

Example for DASDs on the host:

/dev/disk/by-path/ccw-0.0.1607
/dev/disk/by-path/ccw-0.0.1607-part1

where:
0.0.1607 is the device bus-ID of the DASD.
part1 denotes the first partition of the DASD.

/dev/disk/by-id/ccw-IBM.750000000R0021.1600.07
/dev/disk/by-id/ccw-IBM.750000000R0021.1600.07-part1

where:
IBM.750000000R0021.1600.07 is the UID of the DASD.
part1 denotes the first partition of the DASD.

/dev/disk/by-uuid/a6563ff0-9a0f-4ed3-b382-c56ad4653637
where:
a6563ff0-9a0f-4ed3-b382-c56ad4653637

is the universally unique identifier
(UUID) of a file system.

Example for SCSI devices on the host:
/dev/disk/by-path/ccw-0.0.3c40-zfcp-0x500507630300c562:0x401040ea00000000

where:
0.0.3c40 is the device bus-ID of the FCP device.
0x500507630300c562 is the worldwide port name (WWPN) of

the storage controller port.
0x401040ea00000000 is the FCP LUN.

/dev/disk/by-id/scsi-36005076303ffc56200000000000010ea
where:
scsi-36005076303ffc56200000000000010ea

is the SCSI identifier.
/dev/disk/by-uuid/7eaf9c95-55ac-4e5e-8f18-065b313e63ca

12 KVM Virtual Server Management - October 2016

where:
7eaf9c95-55ac-4e5e-8f18-065b313e63ca

is the universally unique identifier
(UUID) of a file system.

Since device-specific information is hidden from the virtual server, udev
creates by-path device nodes on the virtual server. They are derived from
the device number of the virtual block device, which you can specify in the
domain configuration-XML or in the device configuration-XML.

The udev rules to derive by-path device nodes depend on your product or
distribution.

Tip: Prepare a strategy for specifying device numbers for the virtio block
devices, which you provide for virtual servers. This strategy makes it easy
to identify the virtualized disk from the device bus-ID or device number of
the virtual block device.

Virtual server example:

/dev/disk/by-path/ccw-0.0.1a12
/dev/disk/by-path/ccw-0.0.1a12-part1

where:
0.0.1a12 is the device bus-ID.
part1 denotes the first partition of the device.

Device mapper-created device node
The multipath device mapper support assigns a unique device mapper-created
device node to a SCSI disk. The device mapper-created device node can be
used on different hosts to access the same SCSI disk.

Example:

/dev/mapper/36005076305ffc1ae00000000000021d5
/dev/mapper/36005076305ffc1ae00000000000021d5p1

where
p1 denotes the first partition of the device.

Tip: Use device mapper-created device nodes for SCSI disks and udev-created
device nodes for DASDs in your configuration-XML files to support a smooth live
migration of virtual servers to a different host.

Related publications
v Device Drivers, Features, and Commands, SC33-8411
v How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
v KVM for IBM z Systems: System Administration, SC27-8237

Chapter 2. DASDs and SCSI disks as virtual block devices 13

|

14 KVM Virtual Server Management - October 2016

Chapter 3. SCSI tapes and SCSI medium changers as virtual
SCSI devices

FC-attached SCSI tape and medium changer devices are virtualized as virtio SCSI
devices.

To provide high reliability, be sure to set up redundant paths for SCSI tape or
medium changer devices on the host. A device configuration for a SCSI tape or
medium changer device provides one virtual SCSI device for each path. Figure 7
on page 16 shows one virtual SCSI device for sg<0>, and one for sg<1>, although
these devices represent different paths to the same device. The lin_tape device
driver models path redundancy on the virtual server. lin_tape reunites the virtual
SCSI devices that represent different paths to the same SCSI tape or medium
changer device.

To provide a SCSI tape or medium changer device for a virtual server:
1. Set up the SCSI tape or medium changer device.

See Chapter 8, “Preparing SCSI tape and medium changer devices,” on page 35.
2. Configure the SCSI tape or medium changer device as hotplug device.

You need to check this configuration after a host reboot, a live migration, or
when an FCP device or a SCSI tape or medium changer device in the
configuration path is set offline and back online.
See Chapter 11, “Configuring devices,” on page 73 and “Configuring virtual
SCSI devices” on page 84.

Virtual SCSI device configuration topology

Figure 7 on page 16 shows one SCSI tape and one SCSI medium changer, which
are accessible via two different configuration paths. They are configured as virtual
SCSI devices on a virtual server.

© Copyright IBM Corp. 2015, 2016 15

Each generic SCSI host device is configured as a virtual SCSI device.

SCSI device identification

For a SCSI tape or medium changer device configuration, the following device
names are relevant:

Standard device name

Standard device names are of the form:

sg<x> for SCSI tape or medium changer devices on the host using
the SCSI generic device driver.

IBMtape<x> for SCSI tape devices on the virtual server using the
lin_tape device driver.

IBMchanger<x> for SCSI medium changer devices on the virtual server
using the lin_tape device driver.

Where <x> can be one or more digits.

They are assigned in the order in which the devices are detected and thus
can change across reboots.

SCSI device name

multipathed
SCSI
tape

KVM host

FCP
device

SAN
fabric

SAN
fabric

KVM virtual server

FCP
device

z Systems
hardware

virtual SCSI devices

FCP
channel

FCP
channel

sg<0> sg<3>sg<2>sg<1>

IB
M

c
h

a
n

g
e

r<
1

>

IB
M

c
h

a
n

g
e

r<
2

>

IB
M

ta
p

e
<

1
>

IB
M

ta
p

e
<

2
>

IB
M

ta
p

e
<

1
>

virtual HBA

lin_tape
device driver

target

{

multipathed
SCSI
medium
changer {

SCSI tape library controller

medium changerdrive

.

.

target

virtual HBA

Figure 7. Multipathed SCSI tapes and SCSI medium changer devices configured as virtual
SCSI devices

16 KVM Virtual Server Management - October 2016

SCSI device names are of the form:
<SCSI-host-number>:0:<SCSI-ID>:<SCSI-LUN>

Where:

<SCSI-host-number> is assigned to the FCP device in the order in which the FCP
device is detected.

<SCSI-ID> is the SCSI ID of the target port.
<SCSI-LUN> is assigned to the SCSI device by conversion from the

corresponding FCP LUN.

SCSI device names are freshly assigned when the host reboots, or when an
FCP device or a SCSI tape or medium changer device is set offline and
back online.

SCSI device names are also referred to as SCSI stack addresses.

Example: 0:0:1:7

Related publications
v Device Drivers, Features, and Commands, SC33-8411
v KVM for IBM z Systems: System Administration, SC27-8237

Chapter 3. SCSI tapes and SCSI medium changers as virtual SCSI devices 17

18 KVM Virtual Server Management - October 2016

Chapter 4. Network devices as virtual Ethernet devices

Virtualize network devices as virtual Ethernet devices by configuring direct
MacVTap connections or virtual switches.

In a typical virtual network device configuration, you will want to isolate the
virtual server communication paths from the communication paths of the host.
There are two ways to provide network isolation:
v You set up separate network devices for the virtual servers that are not used for

the host network traffic. This method is called full isolation. It allows the virtual
network device configuration using a direct MacVTap connection or a virtual
switch.

v If the virtual server network traffic shares network interfaces with the host, you
can provide isolation by configuring the virtual network device using a
MacVTap interface. Direct MacVTap connections guarantee the isolation of
virtual server and host communication paths.

Whatever configuration you choose, be sure to provide high reliability through
path redundancy as shown in Figure 8:

KVM host

Network
hardware

KVM virtual server

z Systems
hardware

virtual Ethernet device

IB
M

ta
p

e
<

1
>

.

.

Virtual network
device

enccw0.0.1108 enccw0.0.a110

Network
hardware

Ethernet interface

Figure 8. Highly reliable virtual network device configuration

© Copyright IBM Corp. 2015, 2016 19

Network device configuration using a direct MacVTap connection

MacVTap provides a high speed network interface to the virtual server. The
MacVTap network device driver virtualizes Ethernet devices and provides MAC
addresses for virtual network devices.

If you decide to configure a MacVTap interface, be sure to set up a bonded
interface which aggregates multiple network interfaces into a single entity,
balancing traffic and providing failover capabilities. In addition, you can set up a
virtual LAN interface, which provides an isolated communication between the
virtual servers that are connected to it.

When you configure a virtual Ethernet device, you associate it with a network
interface name on the host in the configuration-XML. In Figure 9, this is bond0.
libvirt then creates a MacVTap interface from your network configuration.

Use persistent network interface names to ensure that the configuration-XMLs are
still valid after a host reboot or after you unplug or plug in a network adapter.
Your product or distribution might provide a way to assign meaningful names to
your network interfaces. When you intend to migrate a virtual server, use network
interface names that are valid for the hosts that are part of the migration.

KVM host

Network
hardware

KVM virtual server

z Systems
hardware

virtual Ethernet device

IB
M

ta
p

e
<

1
>

.

.

bond0

macvtap

Virtual network
device

enccw0.0.1108 enccw0.0.a110

Network
hardware

Ethernet interface

Bonded interface

MacVTap interface

Figure 9. Configuration using a direct MacVTap connection

20 KVM Virtual Server Management - October 2016

Network device configuration using virtual switches

Virtual switches are implemented using Open vSwitch. Virtual switches can be
used to virtualize Ethernet devices. They provide means to configure path
redundancy, and isolated communication between selected virtual servers.

With virtual switches, the configuration outlined in Figure 8 on page 19 can be
realized as follows:

Note: Libvirt also provides a default bridged network, called virbr0, which is not
covered in this document. See the libvirt networking documentation reference in
the related publications section for more details.

Related publications
v Device Drivers, Features, and Commands, SC33-8411
v KVM for IBM z Systems: System Administration, SC27-8237
v Libvirt networking documentation at wiki.libvirt.org/page/Networking
Related tasks:
Chapter 9, “Preparing network devices,” on page 39
Consider these aspects when setting up network interfaces for the use of virtual
servers.
“Configuring virtual Ethernet devices” on page 94
Configure network interfaces, such as Ethernet interfaces, bonded interfaces,

KVM host

Network
hardware

KVM virtual server

z Systems
hardware

virtual Ethernet device

IB
M

ta
p

e
<

1
>

.

.

Virtual network
device

enccw0.0.1108 enccw0.0.a110

Network
hardware

Ethernet interface

Virtual switch vswitch0
vsbond0

Figure 10. Configuration using a virtual switch

Chapter 4. Network devices as virtual Ethernet devices 21

http://wiki.libvirt.org/page/Networking

virtual LANs, or virtual switches as virtual Ethernet devices for a virtual server.

22 KVM Virtual Server Management - October 2016

Chapter 5. Migration to a different hypervisor release

The virtual server's machine type determines the hypervisor release which runs the
virtual server on the host.

The hypervisor release is defined by the installed QEMU release, by the hypervisor
product or by your distribution.

Configure the machine type with the alias value “s390-ccw-virtio” in the domain
configuration-XML unless you intend to migrate the virtual server to a destination
host with an earlier hypervisor release.

Virtual server definition

When you define a virtual server, libvirt replaces the alias machine type by the
machine type which reflects the current hypervisor release of the host running the
virtual server. In the libvirt-internal configuration, the machine attribute of the type
element then reflects the installed hypervisor release.

Example:

Domain configuration-XML using the alias machine type:
<type arch=“s390x” machine=“s390-ccw-virtio”>hvm</type>

Libvirt-internal configuration for KVM for IBM z Systems™ V1.1.0:
<type arch=“s390x” machine=“s390-ccw-kvmibm-1.1.0”>hvm</type>

Libvirt-internal configuration for KVM for IBM z Systems V1.1.1:
<type arch=“s390x” machine=“s390-ccw-kvmibm-1.1.1”>hvm</type>

Libvirt-internal configuration for KVM for IBM z Systems V1.1.2:
<type arch=“s390x” machine=“s390-ccw-kvmibm-1.1.2”>hvm</type>

Libvirt-internal configuration for QEMU release 2.5.0:
<type arch=“s390x” machine=“s390-ccw-virtio-2.5”>hvm</type>

Depending on your distribution, there may be additional machine types. The
following command displays the available machine types:

qemu-kvm --machine help

© Copyright IBM Corp. 2015, 2016 23

|

|

|
|

Figure 11 shows that creating virtual servers from the same domain
configuration-XML file on different hosts results in different machine types.

Live virtual server migration

A live virtual server migration preserves the machine type of the virtual server.
The libvirt-internal configuration is not changed, that is, the machine type still
reflects the hypervisor release of the source host. Newer hypervisor releases are
compatible with earlier versions.

However, if you try to migrate a virtual server to a destination host with an earlier
hypervisor release than the currently reflected machine type, you need to explicitly
specify this earlier machine type in the virtual server definition before the
migration.

Example:

1. Before the migration, the virtual server is running on the source host with
hypervisor release KVM for IBM z Systems V1.1.1. The virtual server's machine
type is s390-ccw-kvmibm-1.1.1.

Memory

Virtual hardware

CPU CPU

.

Guest

KVM source host

running KVM for IBM z Systems V1.1

Virtual server of machine type

s390-ccw-kvmibm-1.1.0

blk eth

Memory
CPU CPU CPU

z Systems hardware

.

.

blk

DiskDisk Network

Memory

Virtual hardware

CPU CPU

Guest

blk eth

Memory
CPU CPU CPU

z Systems hardware

.

blk

DiskDisk Network

KVM destination host

running KVM for IBM z Systems V1.1.1

Virtual server of machine type

s390-ccw-kvmibm-1.1.1

define

of alias

machine type

s390-ccw-virtio

Dom
ain

 c
onfig

ura
tio

n-X
M

L

define

Figure 11. Defining virtual servers on different hosts

Memory

Virtual hardware

CPU CPU

.

Guest

KVM source host
running KVM for IBM z Systems V1.1.1

Virtual server of machine type

s390-ccw-kvmibm-1.1.1

blk eth

Memory
CPU CPU CPU

z Systems hardware

blk

Memory
CPU CPU CPU

z Systems hardware

migrate

KVM destination host
running KVM for IBM z Systems V1.1.2

.

.

DiskDisk Network

.

24 KVM Virtual Server Management - October 2016

|

|

|

|
|
|
|

2. After the migration, the virtual server is running on the destination host with
hypervisor release KVM for IBM z Systems V1.1.2. The virtual server's machine
type is still s390-ccw-kvmibm-1.1.1.

The virtual server runs on the earlier hypervisor release and does not exploit
the features of the current release.
As long as you do not change the machine type to the new release, a migration
of this virtual server back to its original source host will succeed.

Related tasks:
Chapter 15, “Live virtual server migration,” on page 117
Migrate a running virtual server from one host to another without affecting the
virtual server. The literature also uses the terms “virtual server, virtual machine, or
guest relocation”.
“Defining a virtual server” on page 102
Create a persistent definition of a virtual server configuration.
“Modifying a virtual server definition” on page 102
Edit the libvirt-internal configuration of a defined virtual server.
“Displaying the current libvirt-internal configuration” on page 114
The current libvirt-internal configuration is based on the domain
configuration-XML file of the defined virtual server, and is enhanced by
libvirt-internal information and the dynamically attached devices.
Related reference:
“Domain configuration-XML” on page 53
Configure a virtual server with a domain configuration-XML file.
“<type>” on page 212
Specifies the machine type.

.

KVM source host
running KVM for IBM z Systems V1.1.1

Memory
CPU CPU CPU

z Systems hardware

.

.

DiskDisk Network

Memory

Virtual hardware

CPU CPU

Guest

blk eth

Memory
CPU CPU CPU

z Systems hardware

.

blk

migrate

KVM destination host
running KVM for IBM z Systems V1.1.2

Virtual server of machine type

s390-ccw-kvmibm-1.1.1

Chapter 5. Migration to a different hypervisor release 25

|

|

|
|
|
|

|
|

|
|

|

26 KVM Virtual Server Management - October 2016

Part 2. Device setup

Chapter 6. Preparing DASDs 29

Chapter 7. Preparing SCSI disks 31

Chapter 8. Preparing SCSI tape and medium
changer devices 35

Chapter 9. Preparing network devices. 39
Creating a network interface. 40
Preparing a network interface for a direct MacVTap
connection. 42

Preparing a bonded interface 42
Preparing a virtual switch 45

Prepare devices on the host for the use of a virtual server.

© Copyright IBM Corp. 2015, 2016 27

28 KVM Virtual Server Management - October 2016

Chapter 6. Preparing DASDs

Consider these aspects when setting up ECKD™ DASDs for the use of a virtual
server.

Before you begin
v You need to know the device number of the base device as defined on the

storage system and configured in the IOCDS.
v If you intend to identify the DASD using the device bus-ID (by-path device

node) and you intend to migrate the virtual server accessing the DASD, make
sure that you use the same IOCDS configuration for the DASD on both the
source and the destination host.

v Make sure that the DASD is accessible, for example by entering the following
command:

lsdasd -a
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.7500 offline

v If the PAV or the HyperPAV feature is enabled on your storage system, it assigns
unique IDs to its DASDs and manages the alias devices.

About this task

The following publications describe in detail how to configure, prepare, and work
with DASDs:
v Device Drivers, Features, and Commands, SC33-8411
v KVM for IBM z Systems: System Administration, SC27-8237

Procedure

The following steps describe a dynamic DASD setup on the host.
To set up DASDs persistently across host reboots, refer to your host administration
documentation (see also “Persistent configuration” on page x).
1. Set the DASD base device and its alias devices online.
2. Obtain the device node of the DASD.
3. You need to format the DASD, because the virtual server cannot format DASDs

by itself.
You can use CDL, and LDL formats.

4. Do not create partitions on behalf of the virtual server.
Establish a process to let the virtual server user know which virtual block
devices are backed up by DASDs, because these devices have to be partitioned
using the Linux command fdasd for CDL formats. The inadvertent use of the
fdisk command to partition the device could lead to data corruption.

Example
1. Set the DASD online using the Linux command chccwdev and the device bus-ID

of the DASD.
For example, for device 0.0.7500, issue:

© Copyright IBM Corp. 2015, 2016 29

chccwdev –e 0.0.7500

2. To obtain the DASD name from the device bus-ID, you can use the Linux
command lsdasd:

lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.7500 active dasde 94:0 ECKD 4096 7043MB 1803060
...

The udev-created by-path device node for device 0.0.7500 is
/dev/disk/by-path/ccw-0.0.7500. You can verify this name by issuing:

ls /dev/disk/by-path -l
total 0
lrwxrwxrwx 1 root root 11 Mar 11 2014 ccw-0.0.7500 -> ../../dasde

3. Format the DASD using the Linux command dasdfmt and the device name.

dasdfmt -b 4096 /dev/disk/by-path/ccw-0.0.7500 -p

4. Establish a procedure to let the virtual server user know which virtual devices
are backed up by DASDs.

What to do next

Configure the DASDs as described in “Configuring a DASD or SCSI disk” on page
76.
Related concepts:
Chapter 2, “DASDs and SCSI disks as virtual block devices,” on page 9
DASDs and FC-attached SCSI disks are virtualized as virtio block devices.

30 KVM Virtual Server Management - October 2016

Chapter 7. Preparing SCSI disks

Consider these aspects when setting up FC-attached SCSI disks for the use of a
virtual server.

Before you begin
1. If you want to allow a migration of a virtual server to another host, use unique

names for the virtualized SCSI disks, which can be used from different hosts.
Device-mapper multipathing groups two or more paths to the same SCSI disk,
thus providing failover redundancy and load balancing. It assigns unique
device mapper-created device nodes to SCSI disks, which are valid for all hosts
that access the SCSI disks.
According to your product or distribution mechanism:
a. Make sure that multipath support is enabled.
b. Configure the multipath device mapper not to use user-friendly names.

User friendly names are symbolic names, which are not necessarily equal on
different hosts.

See your host administration documentation to find out how to prepare
multipath support.

2. Provide either of the following information:
v The device bus-IDs of the FCP devices, target WWPNs, and the FCP LUNs of

the SCSI disk.
v The device mapper-created device node of the SCSI disk.

About this task

The following publications describe in detail how to configure, prepare, and work
with FC-attached SCSI disks:
v Fibre Channel Protocol for Linux and z/VM on IBM System z®, SG24-7266
v How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
v Device Drivers, Features, and Commands, SC33-8411
v KVM for IBM z Systems: System Administration, SC27-8237

Procedure

The following steps describe a dynamic SCSI disk setup on the host.
If you want to set up a SCSI disk persistently across host reboots, refer to your
host administration documentation (see also “Persistent configuration” on page x).
1. Linux senses the available FCP devices.

You can use the lscss command to display the available FCP devices.
The -t option can be used to restrict the output to a particular device type. FCP
devices are listed as 1732/03 devices with control unit type 1731/03.

2. Set the FCP device online.
You can use the chccwdev command to set an FCP device online or offline.

3. Configure the SCSI disks on the host.
For details about this step, refer to your host administration documentation and
Device Drivers, Features, and Commands, SC33-8411.

© Copyright IBM Corp. 2015, 2016 31

If your FCP setup uses N_Port ID virtualization (NPIV), the SCSI LUNs are
automatically detected. If you do not use NPIV or if automatic LUN scanning
is disabled, write the LUN to the sysfs unit_add attribute of the applicable
target port:

echo <fcp_lun> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/unit_add

4. Verify the configuration and display the multipath device mapper-created
device node of the SCSI disk.

5. Do not partition SCSI disks for a virtual server, because the virtual server user
might want to partition its virtual block devices.

Example

For one example path, you provide the device bus-ID of the FCP device, the target
WWPN, and the FCP LUN of the SCSI disk:

/sys/bus/ccw/drivers/zfcp/0.0.1700/0x500507630513c1ae/0x402340bc00000000
provides the information:

Device bus-ID of the FCP device 0.0.1700

WWPN 0x500507630513c1ae

FCP LUN 0x402340bc00000000

1. Display the available FCP devices.

lscss -t 1732/03 | fgrep ’1731/03’
0.0.1700 0.0.06d4 1732/03 1731/03 80 80 ff 50000000 00000000
0.0.1740 0.0.0714 1732/03 1731/03 80 80 ff 51000000 00000000
0.0.1780 0.0.0754 1732/03 1731/03 yes 80 80 ff 52000000 00000000
0.0.17c0 0.0.0794 1732/03 1731/03 yes 80 80 ff 53000000 00000000
0.0.1940 0.0.08d5 1732/03 1731/03 80 80 ff 5c000000 00000000
0.0.1980 0.0.0913 1732/03 1731/03 80 80 ff 5d000000 00000000

2. Set the FCP device online.

chccwdev -e 0.0.1700
Setting device 0.0.1700 online
Done

3. Configure the SCSI disk on the host.

echo 0x402340bc00000000 > /sys/bus/ccw/drivers/zfcp/0.0.1700/0x500507630513c1ae/unit_add

4. Figure out the device mapper-created device node of the SCSI disk.
a. You can use the lszfcp command to display the SCSI device name of a

SCSI disk:

lszfcp -D -b 0.0.1700 -p 0x500507630513c1ae -l 0x402340bc00000000
0.0.1700/0x500507630513c1ae/0x402340bc00000000 2:0:17:1086079011

b. The lsscsi -i command displays the multipathed SCSI disk related to the
SCSI device name:

32 KVM Virtual Server Management - October 2016

lsscsi -i
...
[1:0:16:1086144547]disk IBM 2107900 .166 /dev/sdg 36005076305ffc1ae00000000000023bd
[1:0:16:1086210083]disk IBM 2107900 .166 /dev/sdk 36005076305ffc1ae00000000000023be
[1:0:16:1086275619]disk IBM 2107900 .166 /dev/sdo 36005076305ffc1ae00000000000023bf
[2:0:17:1086079011]disk IBM 2107900 2440 /dev/sdq 36005076305ffc1ae00000000000023bc
...

The device mapper-created device node that you can use to uniquely
reference the multipathed SCSI disk 36005076305ffc1ae00000000000023bc is:
/dev/mapper/36005076305ffc1ae00000000000023bc

What to do next

Configure the SCSI disks as described in “Configuring a DASD or SCSI disk” on
page 76.
Related concepts:
Chapter 2, “DASDs and SCSI disks as virtual block devices,” on page 9
DASDs and FC-attached SCSI disks are virtualized as virtio block devices.

Chapter 7. SCSI disks 33

34 KVM Virtual Server Management - October 2016

Chapter 8. Preparing SCSI tape and medium changer devices

Consider these aspects when setting up FC-attached SCSI tapes and SCSI medium
changers for the use of a virtual server.

Before you begin

Provide the device bus-IDs of the FCP devices, the target WWPNs, and the FCP
LUNs of the SCSI tape or medium changer devices.

You can use the information that is provided as directory names:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<fcp_lun>

The virtual server user can install and use the IBM lin_tape package on the virtual
server for actions such as the mounting and unmounting of tape cartridges into the
affected tape drive. The use of the lin_tape device driver is documented in the IBM
Tape Device Drivers Installation and User's Guide, GC27-2130.

About this task

The following publications describe in detail how to configure, prepare, and work
with FC-attached SCSI devices:
v Fibre Channel Protocol for Linux and z/VM on IBM System z, SG24-7266
v How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
v Device Drivers, Features, and Commands, SC33-8411
v KVM for IBM z Systems: System Administration, SC27-8237

Note: In the libvirt documentation, the term “LUN” is often referenced as “unit”.

Procedure

The following steps describe a dynamic SCSI tape or medium changer setup on the
host.
If you want to set up a SCSI tape or medium changer persistently across host
reboots, refer to your host administration documentation (see also “Persistent
configuration” on page x).
1. Linux senses the available FCP devices.

You can use the lscss command to display the available FCP devices. The -t
option can be used to restrict the output to a particular device type. FCP
devices are listed as 1732/03 devices with control unit type 1731/03.

2. Set the FCP device to which your SCSI device is attached online.
You can use the chccwdev command to set an FCP device online or offline.

3. Register the SCSI tape or medium changer device on the host.
For details about this step, refer to your host administration documentation and
Device Drivers, Features, and Commands, SC33-8411.
If your LUN is not automatically detected, you might add the LUN of the SCSI
tape or medium changer device to the filesystem by issuing:

echo <fcp_lun> > /sys/bus/ccw/devices/<device_bus_id>/<wwpn>/unit_add

© Copyright IBM Corp. 2015, 2016 35

This step registers the SCSI tape or medium changer device in the Linux SCSI
stack and creates a sysfs entry for it in the SCSI branch.

4. Obtain the following information to be able to configure the SCSI tape or
medium changer device:
v The SCSI host number that corresponds to the FCP device
v The SCSI ID of the target port
v The SCSI LUN
You obtain this information by issuing:

lszfcp -D -b <device_bus_ID> -p <wwpn> -l <fcp_lun>

This command displays the SCSI device name of the SCSI tape or the SCSI
medium changer:
<scsi_host_number>:0:<scsi_ID>:<scsi_lun>

Example

For one example path, you provide the device bus-ID of the FCP device, the target
WWPN, and the FCP LUN of the SCSI tape or medium changer device:

/sys/bus/ccw/drivers/zfcp/0.0.1cc8/0x5005076044840242/0x0000000000000000
provides the information:

Device bus-ID of the FCP device 0.0.1cc8

WWPN 0x5005076044840242

FCP LUN 0x0000000000000000

1. Display the available FCP devices:

lscss -t 1732/03 | fgrep ’1731/03’
0.0.1cc8 0.0.0013 1732/03 1731/03 80 80 ff f0000000 00000000
0.0.1f08 0.0.0015 1732/03 1731/03 yes 80 80 ff 1e000000 00000000
0.0.3b58 0.0.0016 1732/03 1731/03 80 80 ff 68000000 00000000

2. Bring the FCP device online:

chccwdev -e 0.0.1cc8
Setting device 0.0.1cc8 online
Done

3. Register the SCSI tape device on the host:

echo 0x0000000000000000 > /sys/bus/ccw/devices/0.0.1cc8/0x5005076044840242/unit_add

4. Obtain the SCSI host number, the SCSI ID, and the SCSI LUN of the registered
SCSI tape device:

lszfcp -D -b 0.0.1cc8 -p 0x5005076044840242 -l 0x0000000000000000
0.0.1cc8/0x5005076044840242/0x0000000000000000 1:0:2:0

where:

SCSI host number 1

SCSI channel 0 (always)

SCSI ID 2

36 KVM Virtual Server Management - October 2016

SCSI LUN 0

What to do next

Configure the SCSI tape and medium changer devices as described in
“Configuring a SCSI tape or medium changer device” on page 85.
Related concepts:
Chapter 3, “SCSI tapes and SCSI medium changers as virtual SCSI devices,” on
page 15
FC-attached SCSI tape and medium changer devices are virtualized as virtio SCSI
devices.

Chapter 8. SCSI tape and medium changer devices 37

38 KVM Virtual Server Management - October 2016

Chapter 9. Preparing network devices

Consider these aspects when setting up network interfaces for the use of virtual
servers.

About this task

Set up the network carefully and be aware that any performance lost in the host
setup usually cannot be recovered in the virtual server.

The following publications describe in detail how to set up network devices on the
host:
v Device Drivers, Features, and Commands, SC33-8411
v KVM for IBM z Systems: System Administration, SC27-8237

For performance relevant information about setting up a network in Linux on z
Systems, see www.ibm.com/developerworks/linux/linux390/perf/
tuning_networking.shtml.

Procedure
1. Create network interfaces as described in “Creating a network interface” on

page 40.
2. Prepare the configuration-specific setup.

a. To configure a MacVTap interface, perform the steps described in
“Preparing a network interface for a direct MacVTap connection” on page
42.

b. To configure a virtual switch, perform the steps described in “Preparing a
virtual switch” on page 45.
Virtual switches provide means to configure highly available or isolated
connections. Nevertheless, you may set up a bonded interface or a virtual
LAN interface.

What to do next

Configure the network interfaces as described in “Configuring virtual Ethernet
devices” on page 94.
Related concepts:
Chapter 4, “Network devices as virtual Ethernet devices,” on page 19
Virtualize network devices as virtual Ethernet devices by configuring direct
MacVTap connections or virtual switches.

© Copyright IBM Corp. 2015, 2016 39

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_networking.shtml
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_networking.shtml

Creating a network interface
Create a network interface for a network device.

Before you begin

You need to know the IP address of the network device and its network interface
name.

To find the interface name of a qeth device, issue:

lsqeth -p

About this task

The following steps describe a dynamic network interface setup on the host. If this
network device is expected to persist over subsequent host reboots, you need to
configure it persistently.

For a description of the necessary steps, refer to your host administration
documentation (see also “Persistent configuration” on page x).

Procedure
1. Determine the available network devices as defined in the IOCDS.

You can use the znetconf -u command to list the unconfigured network
devices and to determine their device bus-IDs.

znetconf -u

2. Configure the network devices in layer 2 mode and set them online.
To provide a good network performance, set the buffer count value to 128.
For a dynamic configuration, use the znetconf -a command with the layer2
sysfs attribute set to 1 and the buffer_count attribute set to 128:

znetconf -a <device-bus-ID> -o layer2=1 -o buffer_count=128

You can use the znetconf -c command to list the configured network interfaces
and to display their interface names:

znetconf -c

3. Activate the network interfaces.
For example, you can use the ip command to activate a network interface.
Using this command can also verify your results.

ip addr add <IP-address> dev <network-interface-name>
ip link set <network-interface-name> up

Issue the first command only if the interface has not already been activated and
subsequently deactivated.

4. To exploit best performance, increase the transmit queue length of the network
device (txqueuelen) to the recommended value of 2500.

ip link set <network-interface-name> qlen 2500

40 KVM Virtual Server Management - October 2016

Example

In the following example, you determine that OSA-Express® CCW group devices
with, for example, device bus-IDs 0.0.8050, 0.0.8051, and 0.0.8052 are to be used,
and you set up the network interface.
1. Determine the available network devices.

znetconf -u
Scanning for network devices...
Device IDs Type Card Type CHPID Drv.
--
...
0.0.8050,0.0.8051,0.0.8052 1731/01 OSA (QDIO) 90 qeth
...

2. Configure the network devices and set them online.

znetconf -a 0.0.8050 -o layer2=1 -o buffer_count=128
Scanning for network devices...
Successfully configured device 0.0.8050 (enccw0.0.8050)

znetconf -c
Device IDs Type Card Type CHPID Drv. Name State

...
0.0.8050,0.0.8051,0.0.8052 1731/01 OSD_1000 A0 qeth enccw0.0.8050 online
...

3. Activate the network interfaces.

ip link show enccw0.0.8050
32: enccw0.0.8050: <BROADCAST,MULTICAST> mtu 1492 qdisc pfifo_fast state DOWN qlen 1000

link/ether 02:00:00:6c:db:72 brd ff:ff:ff:ff:ff:ff

ip link set enccw0.0.8050 up

4. Increase the transmit queue length.

ip link set enccw0.0.8050 qlen 2500
ip link show enccw0.0.8050
32: enccw0.0.8050: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1492 qdisc pfifo_fast state UNKNOWN

qlen 2500
link/ether 02:00:00:6c:db:72 brd ff:ff:ff:ff:ff:ff

What to do next

Prepare the configuration-specific setup as described in:
v “Preparing a network interface for a direct MacVTap connection” on page 42
v or “Preparing a virtual switch” on page 45

Chapter 9. Network devices 41

Preparing a network interface for a direct MacVTap connection
Prepare a network interface for a configuration as direct MacVTap connection.

Before you begin

libvirt will automatically create a MacVTap interface when you configure a direct
connection.

Make sure that the MacVTap kernel modules are loaded, for example by using the
lsmod | grep macvtap command.

Procedure
1. Create a bonded interface to provide high availability.

See “Preparing a bonded interface.”
2. Optional: Create a virtual LAN (VLAN) interface.

VLAN interfaces provide an isolated communication between the virtual
servers that are connected to it.
Use the ip link add command to create a VLAN on a network interface and to
specify a VLAN ID:

ip link add link <base-network-if-name> name <vlan-network-if-name>
type vlan id <VLAN-ID>

Example:

Create a virtual LAN interface with VLAN ID 623.

ip link add link bond0 name bond0.623 type vlan id 623
ip link show bond0.623
17: bond0.623@bond0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc noqueue state UP mode DEFAULT group default
link/ether 02:00:00:f7:a7:c2 brd ff:ff:ff:ff:ff:ff

Preparing a bonded interface
A bonded network interface allows multiple physical interfaces to be aggregated
into a single link, balancing traffic and providing failover capabilities based on the
selected mode, such as round-robin or active-backup.

Before you begin

Ensure that the channel bonding module is loaded, for example using the
following commands:

modprobe bonding
lsmod | grep bonding
bonding 156908 0

About this task

The following steps describe a dynamic bonded interface setup on the host. If this
bonded interface is expected to persist over subsequent reboots, you need to
configure it persistently.

42 KVM Virtual Server Management - October 2016

|
|

For a description of the necessary steps, refer to your host administration
documentation (see also “Persistent configuration” on page x).

Procedure
1. Define the bonded interface.

If you configure the bonded interface in a configuration-XML that is intended
for a migration, choose an interface name policy which you also provide on the
destination host.

2. Set the bonding parameters for the desired bonding mode.
Dedicate OSA devices planned for 802.3ad mode to a target LPAR. For more
information, see Open Systems Adapter-Express Customer's Guide and Reference,
SA22-7935-17.

3. Configure slave devices.
4. Activate the interface.

Example

This example shows how to set up bonded interface bond1. In your distribution,
bond0 might be automatically created and registered. In this case, omit step 1 to
make use of bond0.
1. Add a new master bonded interface:

echo "+bond1" > /sys/class/net/bonding_masters
ip link show bond1
8: bond1: <BROADCAST,MULTICAST,MASTER> mtu 1500 qdisc noop state DOWN mode DEFAULT

link/ether 9a:80:45:ba:50:90 brd ff:ff:ff:ff:ff:ff

2. Set the bonding parameters for the desired bonding mode. To set the mode to
active-backup:

echo "active-backup 1" > /sys/class/net/bond1/bonding/mode
echo "100" > /sys/class/net/bond1/bonding/miimon
echo "active 1" > /sys/class/net/bond1/bonding/fail_over_mac

3. Add slave interfaces to the bonded interface:

ip link set enccw0.0.8050 master bond1
ip link set enccw0.0.1108 master bond1
ip link show enccw0.0.8050
5: enccw0.0.8050: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond1 state UNKNOWN

mode DEFAULT qlen 1000
link/ether 02:11:10:66:1f:fb brd ff:ff:ff:ff:ff:ff

ip link show enccw0.0.1108
6: enccw0.0.1108: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond1 state UNKNOWN

mode DEFAULT qlen 1000
link/ether 02:00:bb:66:1f:ec brd ff:ff:ff:ff:ff:ff

4. Activate the interface:

ip link set bond1 up
ip link show bond1
8: bond1: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
mode DEFAULT

link/ether 02:11:10:66:1f:fb brd ff:ff:ff:ff:ff:ff

To verify the bonding settings, issue:

Chapter 9. Network devices 43

cat /proc/net/bonding/bond1
Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)

Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active)
Primary Slave: None
Currently Active Slave: enccw0.0.8050
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0

Slave Interface: enccw0.0.8050
MII Status: up
Speed: 1000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 02:11:10:66:1f:fb
Slave queue ID: 0

Slave Interface: enccw0.0.1108
MII Status: up
Speed: 1000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 02:00:bb:66:1f:ec
Slave queue ID: 0

Related tasks:
“Configuring a MacVTap interface” on page 94
Configure network interfaces, such as Ethernet interfaces, bonded interfaces,
virtual LANs, through a direct MacVTap interface.

44 KVM Virtual Server Management - October 2016

Preparing a virtual switch
Consider these aspects when setting up a virtual switch for the use of a virtual
server.

Before you begin

Make sure that:
v All OSA network devices used by a virtual switch are active bridge ports. Active

bridge ports receive all frames addressed to unknown MAC addresses.
You achieve this by enabling the bridge port role of the OSA network devices.
Please note that only one CCW group device sharing the same OSA adapter port
can be configured as a primary bridge port. If available, the primary bridge port
becomes the active bridge port.
To verify whether an OSA network device is an active bridge port, display the
bridge_state sysfs attribute of the device. It should be active:

cat /sys/devices/qeth/<ccwgroup>/bridge_state
active

If an OSA network device is not an active bridge port, use the znetconf
command with the -o option to enable the bridge port role:

znetconf -a <device-bus-ID> -o layer2=1 -o bridge_role=primary

For more information about active bridge ports, see Device Drivers, Features, and
Commands, SC33-8411

v Security-Enhanced Linux (SELinux) is enabled.
v An Open vSwitch package is installed and running. The status openvswitch

command displays the Open vSwitch status:

systemctl status openvswitch
ovsdb-server is not running
ovs-vswitchd is not running

If Open vSwitch is not running, enter the start openvswitch command:

systemctl start openvswitch
Starting openvswitch (via systemctl): [OK]
systemctl status openvswitch
ovsdb-server is running with pid 18727
ovs-vswitchd is running with pid 18737

About this task

Further information:
v KVM for IBM z Systems: System Administration, SC27-8237
v Open vSwitch command reference: openvswitch.org/support/dist-docs

Procedure
1. Create a virtual switch.

Use the ovs-vsctl add-br command to create a virtual switch.

ovs-vsctl add-br <vswitch>

Chapter 9. Network devices 45

http://openvswitch.org/support/dist-docs

The ovs-vsctl show command displays the available virtual switches and their
state.
To delete a virtual switch, use the ovs-vsctl del-br command.

2. Create an uplink port.
To provide high availability, use the ovs-vsctl add-bond command to create a
bonded port. Alternatively, the ovs-vsctl add-port command creates a single
port.

ovs-vsctl add-bond <vswitch> <bonded-interface> <slave1> <slave2>

3. Optional: If you want to create GRE or VXLAN tunnels, see KVM for IBM z
Systems: System Administration, SC27-8237.

Example

Set up a virtual switch vswitch0, which groups the network interfaces
enccw0.0.1108 and enccw0.0.a112 to a bonded interface vsbond0:

Verify that the OSA network devices are configured as bridge ports:

cat /sys/devices/qeth/0.0.1108/bridge_state
active

cat /sys/devices/qeth/0.0.a112/bridge_state
active

1. Create a virtual switch:

KVM host

Network
hardware

z Systems
hardware

IB
M

ta
p

e
<

1
>

.

.

enccw0.0.1108 enccw0.0.a112

Network
hardware

Ethernet interface

Virtual switch vswitch0
vsbond0

Figure 12. Virtual switch with a bonded interface

46 KVM Virtual Server Management - October 2016

ovs-vsctl add-br vswitch0
ovs-vsctl show
3935bfec-241e-4610-a555-9e6f60987f87

Bridge "vswitch0"
Port "vswitch0"

Interface "vswitch0"
type: internal

ovs_version: ...

2. Create an uplink port:

ovs-vsctl add-bond vswitch0 vsbond0 enccw0.0.1108 enccw0.0.a112
ovs-vsctl show
...

Bridge "vswitch0"
Port "vsbond0"

Interface "enccw0.0.1108"
Interface "enccw0.0.a112"

Port "vswitch0"
Interface "vswitch0"

type: internal
...

Related tasks:
“Configuring a virtual switch” on page 96
Configure virtual switches as virtual Ethernet devices.

Chapter 9. Network devices 47

48 KVM Virtual Server Management - October 2016

Part 3. Configuration

Chapter 10. Configuring a virtual server 51
Domain configuration-XML 53
Configuring the boot process 55

Configuring a DASD or SCSI disk as IPL device 55
Configuring an ISO image as IPL device. . . . 56
Configuring a kernel image file as IPL device . . 57
Example of an initial installation 58

Configuring virtual CPUs 62
Configuring the number of virtual CPUs . . . 62
Tuning virtual CPUs 63

Configuring virtual memory. 64
Configuring the collection of QEMU core dumps . . 64
Configuring the user space 65
Configuring persistent devices 66
Configuring the console 67
Configuring a watchdog device. 68
Disabling protected key encryption 69
Suppressing the automatic configuration of a default
memory balloon device 71

Chapter 11. Configuring devices. 73
Device configuration-XML 74
Configuring virtual block devices 76

Configuring a DASD or SCSI disk 76
Example of a DASD configuration 79
Example of a SCSI disk configuration. . . . 80

Configuring a file as storage device 82
Configuring virtual SCSI devices 84

Configuring a virtual HBA 84
Configuring a SCSI tape or medium changer
device 85
Example of a multipathed SCSI tape and
medium changer device configuration 89
Configuring a virtual SCSI-attached CD/DVD
drive 91

Configuring virtual Ethernet devices 94
Configuring a MacVTap interface 94
Configuring a virtual switch. 96

Configuring a random number generator 98

Create configuration-XML files to configure virtual servers and devices.

© Copyright IBM Corp. 2015, 2016 49

||

||

50 KVM Virtual Server Management - October 2016

Chapter 10. Configuring a virtual server

The configuration of a virtual server includes the configuration of properties, such
as a name, system resources, such as CPUs, memory, and a boot device, and
devices, such as storage, and network devices.

Procedure
1. Create a domain configuration-XML file.

See “Domain configuration-XML” on page 53.
2. Specify a name for the virtual server.

Use the name element to specify a unique name according to your naming
conventions.

3. Configure system resources, such as virtual CPUs, or the virtual memory.
a. Configure a boot process.

See “Configuring the boot process” on page 55.
b. Configure virtual CPUs.

See “Configuring virtual CPUs” on page 62.
c. Configure memory.

See “Configuring virtual memory” on page 64.
d. Optional: Configure the collection of QEMU core dumps.

See “Configuring the collection of QEMU core dumps” on page 64.
4. In the domain configuration-XML file, enter the virtual server device

configuration.
a. Optional: Configure the user space.

If you do not configure the user space, libvirt configures an existing user
space automatically.
See “Configuring the user space” on page 65.

b. Configure persistent devices.
See “Configuring persistent devices” on page 66.

c. Configure the console device.
See “Configuring the console” on page 67.

d. Optional: Configure a watchdog device.
See “Configuring a watchdog device” on page 68.

e. Optional: Disable the generation of cryptographic wrapping keys and the
use of protected key management operations on the virtual server.
See “Disabling protected key encryption” on page 69.

f. Optional: Libvirt automatically generates a default memory balloon device
for the virtual server.
To prohibit this automatism, see “Suppressing the automatic configuration of
a default memory balloon device” on page 71.

5. Save the domain configuration-XML file according to your virtual server
administration policy.

© Copyright IBM Corp. 2015, 2016 51

What to do next

Define the virtual server to libvirt based on the created domain configuration-XML
file as described in “Defining a virtual server” on page 102.

52 KVM Virtual Server Management - October 2016

Domain configuration-XML
Configure a virtual server with a domain configuration-XML file.

Root element

domain
Specify:

domain type attribute: kvm

Selected child elements

name Assigns a unique name to the virtual server. You use this name to manage
the virtual server.

memory
Specifies the amount of memory that is allocated for a virtual server at
boot time.

vcpu Specifies the maximum number of CPUs for a virtual server.

cputune
Groups the CPU tuning parameters:

shares Optionally specifies the initial CPU weight. The default is 1024.

os Groups the operating system parameters:

type Specifies the machine type.

kernel Optionally specifies the kernel image file on the host.

initrd Optionally specifies the initial ramdisk on the host.

cmdline
Optionally specifies command-line arguments.

iothreads
Assigns threads that are dedicated to I/O operations on virtual block
devices to the virtual server.

on_poweroff
Configures the behavior of the virtual server when it is shut down.

on_reboot
Configures the behavior of the virtual server when it is rebooted.

on_crash
Configures the behavior of the virtual server when it crashes. Specify the
preserve value.

on_crash element: preserve

devices
Configures the devices that are persistent across virtual server reboots.

Chapter 10. Virtual server 53

Example

<domain type=“kvm”>
<name>vserv1</name>
<memory unit=“GiB”>4</memory>
<vcpu>2</vcpu>
<cputune>
<shares>2048</shares>

</cputune>

<os>
<type arch=“s390x” machine=“s390-ccw-virtio”>hvm</type>

</os>
<iothreads>1</iothreads>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>preserve</on_crash>
<devices>
<emulator>/usr/bin/qemu-kvm</emulator>
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000020d3”/>
<target dev=“vda” bus=“virtio”/>
<boot order=“1”/>

</disk>
<interface type=“direct”>

<source dev=“bond0” mode=“bridge”/>
<model type=“virtio”/>

</interface>
<console type=“pty”>

<target type=“sclp”/>
</console>
<memballoon model=“none”/>

</devices>
</domain>

Related reference:
Chapter 24, “Selected libvirt XML elements,” on page 167
These libvirt XML elements might be useful for you. You find the complete libvirt
XML reference at libvirt.org.

54 KVM Virtual Server Management - October 2016

Configuring the boot process
Specify the device that contains a root file system, or a prepared kernel image file.

Before you begin

Ensure that there is a way to boot a guest.

About this task

When you start a virtual server, an Initial Program Load (IPL) is performed to boot
the guest. You specify the boot process in the domain configuration-XML file:
v If a guest is installed, you usually boot it from a disk.

You specify the boot device as described in “Configuring a DASD or SCSI disk
as IPL device.”

v Alternatively, you can specify an ISO image or an initial ramdisk and a kernel
image file for a guest IPL.
For a description, see “Configuring an ISO image as IPL device” on page 56 or
“Configuring a kernel image file as IPL device” on page 57.
For a description of the guest installation process, see:
– KVM for IBM z Systems: System Administration, SC27-8237
– Installing SUSE Linux Enterprise Server 12 as a KVM Guest, SC34-2755

The running virtual server is able to reboot from different devices.

Configuring a DASD or SCSI disk as IPL device
Boot a guest from a configured disk device.

Before you begin

Prepare a DASD or a SCSI disk, which contains a root file system with a bootable
kernel as described in Chapter 6, “Preparing DASDs,” on page 29 or Chapter 7,
“Preparing SCSI disks,” on page 31.

Procedure
1. Configure the DASD or SCSI disk containing the root file system as a persistent

device.
See “Configuring persistent devices” on page 66 and “Configuring a DASD or
SCSI disk” on page 76.

2. Per default, the guest is booted from the first specified disk device in the
current libvirt-internal configuration. To avoid possible errors, explicitly specify
the boot device with the boot element in the disk device definition (see
“<boot>” on page 174).

boot order attribute: <number>

The guest is booted from the disk with the lowest specified boot order value.

Example

The following domain configuration-XML configures V1, which is booted from the
virtual block device 0xe714:

Chapter 10. Virtual server 55

|

|
|

http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lhvi/lhvi_c_welcome.html

<domain type=“kvm”>
<name>V1</name>
...
<devices>

<emulator>/usr/bin/qemu-kvm</emulator>
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vda” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0xe714”/>

</disk>
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“2”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0xe716”/>

</disk>
...

</devices>
</domain>

The following domain configuration-XML configures V2, which is booted from the
virtual block device 0xe716:

<domain type=“kvm”>
<name>V2</name>
...

<devices>
<emulator>/usr/bin/qemu-kvm</emulator>
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vda” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=0xe714/>

</disk>

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“2”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0xe716”/>
<boot order=“1”/>

</disk>
...

</devices>
</domain>

Configuring an ISO image as IPL device
Boot a guest from an ISO 9660 image following the EL Torito specification.

Before you begin

Usually, your distribution provides an ISO image of the installation DVD.

Procedure
1. Configure a virtual SCSI-attached CD/DVD drive as a persistent device, which

contains the ISO image as virtual DVD.
See “Configuring a virtual SCSI-attached CD/DVD drive” on page 91.
You can also configure the ISO image as a storage device, but usually you
might want to take advantage of the capability to change the virtual media.

56 KVM Virtual Server Management - October 2016

|

|

|

|

|

|
|

|

|
|

2. Per default, the guest is booted from the first specified disk device in the
current libvirt-internal configuration. To avoid possible errors, explicitly specify
the boot device with the boot element in the disk device definition (see
“<boot>” on page 174).

boot order attribute: <number>

The guest is booted from the disk with the lowest specified boot order value.

Example
1. Specify the ISO image.

Configure the ISO image as a virtual DVD:

<devices>
...
<controller type=“scsi” model=“virtio-scsi” index=“4”/>
<disk type=“file” device=“cdrom”>

<driver name=“qemu” type=“raw” io=“native” cache=“none”/>
<source file=“/root/SLE12SP1ServerDVDs390xGMCDVD1.iso”/>
<target dev=“sda” bus=“scsi”/>
<address type=“drive” controller=“4” bus=“0” target=“0” unit=“0”/>
<readonly/>
<boot order=“1”/>

</disk>
...

</devices>

When you start the virtual server, it will be booted from this ISO image:

virsh start vserv1 --console
Domain vserv1 started
Initializing cgroup subsys cpuacct
Linux version 3.12.4911default (geeko@buildhost) (gcc version 4.8.5
(SUSE Linux)) #1 SMP Wed Nov 11 20:52:43 UTC 2015 (8d714a0)
setup.289988: Linux is running under KVM in 64bit mode
Zone ranges:
DMA [mem 0x000000000x7fffffff]
Normal empty
...

2. Provide a disk for the guest installation:

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“2”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0xe716”/>

</disk>

Configuring a kernel image file as IPL device
As an alternative to booting an installed guest from a DASD or a SCSI disk, you
might want to boot from a kernel image file residing on the host for setup
purposes.

Procedure
1. Specify the initial ramdisk, the kernel image file, and the kernel parameters.

You get this information from the installation file and the parameter file of your
product or distribution.

Chapter 10. Virtual server 57

|
|
|
|

|||
|

|

|

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
||

|

||
|
|
|
|
|
|

|

a. Specify the fully qualified path to the initial ramdisk on the host with the
initrd element, which is a child of the os element (see “<initrd>” on page
188).

initrd element: <initial-ramdisk>

b. Specify the fully qualified path to the kernel image file in the kernel
element, which is a child of the os element (see “<kernel>” on page 191).

kernel element: <kernel-image-file>

c. Pass command-line arguments to the installer by using the cmdline element,
which is a child of the os element (see “<cmdline>” on page 176).
You can use the command line parameters that are supported by your
product or distribution.

cmdline element: <command-line-arguments>

2. Configure all disks that are needed for the boot process as persistent devices.
If you are booting from the kernel image file as an initial installation, make
sure to provide a disk for the guest installation.

Example
1. Specify the kernel image file in the os element:

<os>
...
<initrd>initial-ramdisk</initrd>
<kernel>kernel-image</kernel>
<cmdline>command-line-parameters</cmdline>

</os>

2. Provide a disk for the guest installation:

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“2”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0xe716”/>

</disk>

Example of an initial installation
The guest installation process depends on your product or distribution.

Procedure
1. For an initial installation, you need to provide installation files for the virtual

server, such as an ISO image of the installation DVD, the kernel image file, and
the initial ramdisk.
The name and the location of these files depend on your product, your
distribution or your installation process.
You can either mount the ISO image containing the installation files during the
guest installation process, copy the required files to the host file system, or
connect to an FTP server.

2. Create a domain configuration-XML file.

58 KVM Virtual Server Management - October 2016

|

a. If you intend to boot from an ISO image, the domain configuration-XML file
should contain:
v The fully qualified path and filename of the ISO image.
v A persistent device configuration for the device that will contain the

bootable installed guest.

Example:

<domain>
...
<os>

...
</os>
...
<devices>

<emulator>/usr/bin/qemu-kvm</emulator>

<!-- IPL device -->
<controller type=“scsi” model=“virtio-scsi” index=“4”/>
<disk type=“file” device=“cdrom”>

<driver name=“qemu” type=“raw” io=“native” cache=“none”/>
<source file=“/root/SLE12SP1ServerDVDs390xGMCDVD1.iso”/>
<target dev=“sda” bus=“scsi”/>
<address type=“drive” controller=“4” bus=“0” target=“0” unit=“0”/>
<readonly/>
<boot order=“1”/>

</disk>

<!-- guest installation device -->
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none”
io=“native” iothread=“1”/>

<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vda” bus=“virtio”/>

</disk>

<console type=“pty”>
<target type=“sclp”/>

</console>
</devices>

</domain>

b. If you intend to boot from a kernel image file and an initial ramdisk, the
domain configuration-XML file should contain:
v The fully qualified path and filename of the kernel image.
v The fully qualified path and filename of the initial ramdisk.
v The kernel command-line parameters.
v A persistent device configuration for the device that will contain the

bootable installed guest.

Example:

<domain>
...
<os>

...

Chapter 10. Virtual server 59

|
|

|

|
|

|

||
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

||
|

|

|

<!-- Boot kernel - remove 3 lines -->
<!-- after a successful initial installation -->

<initrd>initial-ramdisk</initrd>
<kernel>kernel-image</kernel>
<cmdline>command-line-parameters</cmdline>
...

</os>
...
<devices>

<emulator>/usr/bin/qemu-kvm</emulator>

<!-- guest installation device -->
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none”
io=“native” iothread=“1”/>

<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vda” bus=“virtio”/>

</disk>

<console type=“pty”>
<target type=“sclp”/>

</console>
</devices>

</domain>

3. Start the virtual server for the initial installation.
4. Install the guest as described in your administration documentation or in

Installing SUSE Linux Enterprise Server 12 as a KVM Guest, SC34-2755.
5. When a bootable guest is installed, modify the domain configuration-XML

using virsh edit to boot from the IPL disk containing the boot record.
a. In case you installed the guest using the ISO image:

Example:

<domain>
...
<os>

...
</os>
...
<devices>

<emulator>/usr/bin/qemu-kvm</emulator>

<!-- IPL device -->
<controller type=“scsi” model=“virtio-scsi” index=“4”/>
<disk type=“file” device=“cdrom”>

<driver name=“qemu” type=“raw” io=“native” cache=“none”/>
<source file=“/root/SLE12SP1ServerDVDs390xGMCDVD1.iso”/>
<target dev=“sda” bus=“scsi”/>
<address type=“drive” controller=“4” bus=“0” target=“0” unit=“0”/>
<readonly/>

</disk>

<!-- guest IPL disk -->
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none”
io=“native” iothread=“1”/>

<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vda” bus=“virtio”/>
<boot order=“1”/>

</disk>

60 KVM Virtual Server Management - October 2016

|

||
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lhvi/lhvi_c_welcome.html

<console type=“pty”>
<target type=“sclp”/>

</console>
</devices>

</domain>

b. In case you installed the guest using the kernel image and the initial
ramdisk:

Example:

<domain>
...
<os>

...
</os>
...
<devices>

<emulator>/usr/bin/qemu-kvm</emulator>

<!-- guest IPL disk -->
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none”
io=“native” iothread=“1”/>

<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vda” bus=“virtio”/>
<boot order=“1”/>

</disk>

<console type=“pty”>
<target type=“sclp”/>

</console>
</devices>

</domain>

6. From now on, you can start the virtual server using this domain
configuration-XML. The virtual server boots the installed guest from the IPL
disk.

Chapter 10. Virtual server 61

|
|
|
|
|
|

||
|

|

Configuring virtual CPUs
Configure virtual CPUs for a virtual server.
Related concepts:
Chapter 18, “CPU management,” on page 141
Virtual CPUs are realized as threads within the host, and scheduled by the process
scheduler.
Related tasks:
“Managing virtual CPUs” on page 128
Modify the number of virtual CPUs and the portion of the run time that is
assigned to the virtual CPUs of a defined virtual server.

Configuring the number of virtual CPUs
Configure the number of virtual CPUs for a virtual server.

Procedure
1. You can configure the number of virtual CPUs that are available for the defined

virtual server by using the vcpu element (see “<vcpu>” on page 213).
If you do not specify the vcpu element, the maximum number of virtual CPUs
available for a virtual server is 1.

vcpu element: <number-of-CPUs>

Note: It is not useful to configure more virtual CPUs than available host CPUs.
2. To configure the actual number of virtual CPUs that are available for the virtual

server when it is started, specify the current attribute. The value of the current
attribute is limited by the maximum number of available virtual CPUs.
If you do not specify the current attribute, the maximum number of virtual
CPUs is available at startup.

vcpu current attribute: <number>

Example

This example configures 5 virtual CPUs, which are all available at startup:
<domain type=“kvm”>

...
<vcpu>5</vcpu>
...

</domain>

This example configures a maximum of 5 available virtual CPUs for the virtual
server. When the virtual server is started, only 2 virtual CPUs are available. You
can modify the number of virtual CPUs that are available for the running virtual
server using the virsh setvcpus command (see “Modifying the number of virtual
CPUs” on page 128).
<domain type=“kvm”>

...
<vcpu current=“2”>5</vcpu>
...

</domain>

62 KVM Virtual Server Management - October 2016

|

|

|
|

|
|
|

|
|

|||
|

|

|
|
|
|
|

|
|
|
|
|

Tuning virtual CPUs
Regardless of the number of its virtual CPUs, the CPU weight determines the
shares of CPU time which is dedicated to a virtual server.

About this task

For more information about the CPU weight, see “CPU weight” on page 142.

Procedure

Use the cputune element to group CPU tuning elements.

You specify the CPU weight by using the shares element (see “<shares>” on page
206).

shares element: <CPU-weight>

Example
<domain>

...
<cputune>

<shares>2048</shares>
</cputune>
...

</domain>

Chapter 10. Virtual server 63

|

|

|

Configuring virtual memory
Configure the virtual memory that is available for the virtual server at startup
time.

Procedure

Use the memory element which is a child of the domain element (see “<memory>”
on page 196).

memory element: <memory-size>

memory unit attribute: <memory-unit>

Example
<domain type=“kvm”>

<name>vserv1</name>
<memory unit=“MB”>512</memory>
...

<domain>

The memory that is configured for the virtual server when it starts up is 512 MB.

Configuring the collection of QEMU core dumps
Exclude the memory of a virtual server when collecting QEMU core dumps on the
host.

Procedure

To exclude the memory of a virtual server from a QEMU core dump, specify:

memory dumpCore attribute: off

(see “<memory>” on page 196)

Example
<domain type=“kvm”>

<name>vserv1</name>
<memory unit=“MB” dumpCore=“off”>512</memory>
...

<domain>

64 KVM Virtual Server Management - October 2016

Configuring the user space
The user space process qemu-system-s390x realizes the virtual server on the IBM z
Systems host. You might want to configure it explicitly.

Procedure

The optional emulator element contains path and file name of the user space
process (see “<emulator>” on page 185).
The emulator element is a child of the devices element. If you do not specify it,
libvirt automatically inserts the user space configuration to the libvirt-internal
configuration when you define it.

emulator element: <emulator-file>

In KVM for IBM z Systems, /usr/bin/qemu-kvm is a shell script that will invoke
/usr/bin/qemu-system-s390x. If you do not specify the emulator element, libvirt
will generate /usr/bin/qemu-kvm in the emulator element of the libvirt-internal
configuration.

Example:
<devices>

<emulator>/usr/bin/qemu-kvm</emulator>
...

</devices>

Chapter 10. Virtual server 65

Configuring persistent devices
The domain configuration-XML file specifies virtual devices for the virtual server
that are persistent across virtual server reboots. Hotplug devices are configured in
separate device configuration-XML files.

Before you begin

Ensure that the devices are prepared for the use of the virtual server.

Procedure
1. Optional: For virtual disks which you do not intend to migrate in the context of

a live migration: To improve the performance of I/O operations on DASDs and
SCSI disks, specify the number of I/O threads to be supplied for the virtual
server.
For more information about I/O threads, see “I/O threads” on page 145.

iothreads element: <number-of-IOthreads>

(see “<iothreads>” on page 190)

Example:
<domain>

...
<iothreads>1</iothreads>
...

</domain>

2. Specify a configuration-XML for each device.
Chapter 11, “Configuring devices,” on page 73 describes how to specify a
configuration-XML for a device.

3. For each persistent device, place the configuration-XML as child element of the
devices element in the domain configuration-XML file.
Please note that hotplug devices are configured in separate device
configuration-XML files.

Example
<domain type=“kvm”>

<iothreads>1</iothreads>
...
<devices>

...
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000020d3”/>
<target dev=“vda” bus=“virtio”/>

</disk>
...

</devices>
</domain>

66 KVM Virtual Server Management - October 2016

|
|

Configuring the console
Configure the console by using the console element.

Procedure
1. You configure the host representation of the console by using the console type

attribute (see “<console>” on page 177).
To configure a pty console, enter:

console type attribute: pty

2. You configure the virtual server representation of the console by using the
target type attribute (see “<target> as child element of <console>” on page 210).
To configure a service-call logical processor (SCLP) console interface, enter the
“sclp” value.

target type attribute: sclp

You can also configure a virtio console by entering the target type attribute
value “virtio”.

3. Optional: Specify a log file which collects the console output in addition to the
display in the console window.
Use the log element to specify the log file (see “<log>” on page 193).
Optionally, you can specify whether or not the log file will be overwritten in
case of a virtual server restart. By default, the log file is overwritten.

log file attribute: <log-file>

log append attribute: off | on

Example

This example configures a pty console. The console output is collected in the file
/var/log/libvirt/qemu/vserv-cons0.log. A virtual server restart overwrites the
log file.
<devices>

...
<console type=“pty”>

<target type=“sclp” port=“0”/>
<log file=“/var/log/libvirt/qemu/vserv-cons0.log” append=“off”/>

</console>
<devices/>

Related tasks:
“Connecting to the console of a virtual server” on page 137
Open a console when you start a virtual server, or connect to the console of a
running virtual server.

Chapter 10. Virtual server 67

|
|

|
|
|

|||

||
|

|

|
|
|

|
|
|
|
|
|
|

Configuring a watchdog device
A watchdog device provides a guest watchdog application with access to a
watchdog timer.

About this task

When the guest is loading the watchdog module, it provides the new device node
/dev/watchdog for the watchdog device. The watchdog timer is started when the
watchdog device is opened by the guest watchdog application. The watchdog
application reports a positive status to the watchdog device at regular intervals. If
the watchdog device does not receive a positive report within a specified time, the
watchdog timer elapses, and QEMU assumes that the guest is in an error state.
QEMU then triggers a predefined action against the guest. For example, the virtual
server might be terminated and rebooted, or a dump might be initiated.

Procedure

Use the watchdog element as child of the devices element to configure a watchdog
device (see “<watchdog>” on page 215).

watchdog model attribute: diag288

watchdog action attribute: <timeout-action>

Example
<devices>

...
<watchdog model=“diag288” action=“inject-nmi”/>
...

</devices>

68 KVM Virtual Server Management - October 2016

Disabling protected key encryption

The generation of cryptographic wrapping keys and the use of protected key
management operations on the virtual server is enabled by default.

Before you begin

The use of cryptographic protected key management operations on the virtual
server is enabled by default, if:
1. IBM z Systems Central Processor Assist for Cryptographic Functions (CPACF)

is installed.
2. The logical partition running the host is enabled for CPACF key management

operations.
You enable CPACF key management operations on the security page of the
Customize Activation Profiles task, which is part of the CPC Operational
Customization tasks list.

About this task

The CPACF hardware provides a set of key management operations for clear key
encryption, pseudo random number generation, hash functions, and protected key
encryption. The use of protected key management operations on the virtual server
can be configured.

Symmetric encryption uses a cryptographic key to encrypt messages, files, or disks,
and the identical key to decrypt them. A cryptographic key is created using a
specific algorithm:
v Data Encryption Algorithm (DEA), also known as Data Encryption Standard

(DES)
v Triple DEA (3DEA, TDEA), which is based on DEA and is also known as Triple

DES, 3DES, or TDES
v Advanced Encryption Standard (AES)

A protected key is a cryptographic key which is itself encrypted by a so-called
wrapping key, thus protecting it from unauthorized access.

The unique wrapping keys are associated with the lifetime of a virtual server. Each
time the virtual server is started, its wrapping keys are regenerated. There are two
wrapping keys: one for DEA or TDEA keys, and one for AES keys.

A set of key management operations can be performed on the virtual server.
Protected key management operations are used to encrypt a clear key using a
wrapping key.

If you disable the generation of wrapping keys for DEA/TDEA or for AES, you
also disable the access to the respective protected key management operations on
the virtual server.

Procedure

You configure the generation of wrapping keys by using the keywrap element (see
“<keywrap>” on page 192).
Its child element cipher (see “<cipher>” on page 175) enables or disables the
generation of a wrapping key and the use of the respective protected key

Chapter 10. Virtual server 69

|
|

management operations. By default, both the AES and DEA/TDEA wrapping keys
are generated.

Specify the wrapping key generation that is to be disabled or enabled.

cipher name attribute: aes | dea

cipher state attribute: <state>

<state>

on Default; enables the wrapping key generation.

off Disables the wrapping key generation.

Example

This example disables the generation of an AES wrapping key. The DEA/TDEA
wrapping key is generated by default.
<keywrap>

<cipher name=“aes” state=“off”/>
</keywrap>

The example is equivalent to this one:
<keywrap>

<cipher name=“aes” state=“off”/>
<cipher name=“dea” state=“on”/>

</keywrap>

70 KVM Virtual Server Management - October 2016

|

|
|
|
|

Suppressing the automatic configuration of a default memory balloon
device

By default, libvirt automatically defines a default memory balloon device for a
virtual server configuration.

Procedure

To avoid the automatic creation of a default memory balloon device, specify:

memballoon model attribute: none

(see “<memballoon>” on page 195)

Example
<devices>

...
<memballoon model=“none”/>
...

</devices>

Chapter 10. Virtual server 71

72 KVM Virtual Server Management - October 2016

Chapter 11. Configuring devices

When you configure storage and network devices, you specify the physical
hardware on which the resources are based.

About this task

From the virtual server point of view, all disks, tapes, CD-ROMs, DVDs, or files
you provide for it as storage devices, and all devices you provide for it as network
devices, are accessed as CCW devices. All CCW devices are accessed through a
virtual channel subsystem.

The virtual channel subsystem provides only one virtual channel path that is
shared by all CCW devices. The virtual server views the virtual channel
subsystem-ID 0x00. When you define a device for a virtual server, you use the
reserved channel subsystem-ID 0xfe.

The virtual control unit model is used to reflect the device type.

The virtual server sees the following predefined values:

Virtual channel subsystem-ID 0x00

Virtual channel path type 0x32

Virtual control unit type 0x3832

Virtual control unit model for:

v Network (virtio-net) devices 0x01

v Block (virtio-block) devices

(SCSI disks, DASD disks, CD-ROMs, DVDs, or files)

0x02

v Serial devices

Deprecated

0x03

v Random number generators (RNGs)

Do not configure a virtual random number generator
for a virtual server, unless the host is equipped with
a hardware random number generator, such as the
secure IBM CCA coprocessor of a Crypto Express
adapter.

0x04

v Balloon devices

This device can be suppressed in the configuration of
the virtual server

0x05

v SCSI Host Bus Adapter (virtio-scsi) 0x08

Procedure
1. Configure the device as described in:
v “Configuring virtual block devices” on page 76
v “Configuring virtual SCSI devices” on page 84
v “Configuring virtual Ethernet devices” on page 94

© Copyright IBM Corp. 2015, 2016 73

2. To configure a persistent device, enter the device configuration as child element
of the devices element in the domain configuration-XML file.

3. To configure a hotplug device, enter the device configuration in a separate
device configuration-XML file.

Device configuration-XML
Configure a hotplug device with a device configuration-XML file.

Virtual block device

Root element
disk

Selected child elements
driver, source, target, address

Example

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vda” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x3c1b”/>

</disk>

Virtual SCSI device

Root element
hostdev

Selected child elements
source, address

Example

<hostdev mode=“subsystem” type=“scsi”>
<source>

<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“1” unit=“1”/>

</hostdev>

Virtual Host Bus Adapter

Root element
controller

Selected child elements
address

Example

<controller type=“scsi” model=“virtio-scsi” index=“0”>
<address type=“ccw” cssid=“0xfe” ssid=“0” devno=“0x0002”/>

</controller>

74 KVM Virtual Server Management - October 2016

Virtual Ethernet device

Root element
interface

Selected child elements
mac, source, model

Example

<interface type=“direct”>
<source dev=“bond0” mode=“bridge”/>
<model type=“virtio”/>

</interface>

Related reference:
Chapter 24, “Selected libvirt XML elements,” on page 167
These libvirt XML elements might be useful for you. You find the complete libvirt
XML reference at libvirt.org.

Chapter 11. Devices 75

Configuring virtual block devices
Configure storage devices, such as DASDs, SCSI disks, or files, as virtual block
devices for a virtual server.

About this task
v “Configuring a DASD or SCSI disk”
v “Configuring a file as storage device” on page 82

Configuring a DASD or SCSI disk
Specify DASDs and FC-attached SCSI disks as virtio block devices in the
configuration-XML.

Before you begin

Make sure that
v DASDs are prepared as described in Chapter 6, “Preparing DASDs,” on page 29.
v SCSI disks are prepared as described in Chapter 7, “Preparing SCSI disks,” on

page 31.

If the virtual server uses Logical Volume Manager (LVM), be sure to exclude these
devices from the host LVM configuration. Otherwise, the host LVM might interpret
the LVM metadata on the disk as its own and cause data corruption. For more
information, see “Logical volume management” on page 145.

About this task

You specify DASDs or SCSI disks by a device node. If you want to identify the
device on the host as it appears to the virtual server, specify a device number for
the virtual block device.

Procedure
1. Configure the device.

a. Configure the device as virtio block device.

disk type attribute: block

disk device attribute: disk

(see “<disk>” on page 181)
b. Specify the user space process that implements the device.

driver name attribute: qemu

driver type attribute: raw
driver cache attribute: none
driver io attribute: native
driver iothread attribute: <IOthread-ID>

Restriction: Do not use an I/O thread if
you intend to migrate the virtual disk in
the context of a live migration.

(see “<driver> as child element of <disk>” on page 183)
<IOthread-ID> indicates the I/O thread dedicated to perform the I/O
operations on the device.

76 KVM Virtual Server Management - October 2016

|
|
|

For persistent devices:
Specify a value between 1 and the number of I/O threads
configured by the iothreads element in the domain
configuration-XML file. To improve performance, be sure that there
is an I/O thread dedicated for this device.

For hotplug devices:
Specify the ID of the I/O thread that is created when the device is
attached.

Example:
<domain>

...
<iothreads>2</iothreads>
...
<devices>

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“2”/>
...

</disk>
</devices>
....

</domain>

In this example, I/O thread with ID 2 is dedicated to perform the input
operations to and the output operations from the device.
For more information about I/O threads, see “I/O threads” on page 145.

c. Specify virtio as the virtual server disk device type.

target bus attribute: virtio

(see “<target> as child element of <disk>” on page 211)
2. Identify the device on the host.

Specify a device node of the device.

source dev attribute: <device-node>

(see “<source> as child element of <disk>” on page 207)

Note: You should be aware that the selection of the specified device node
determines whether or not you will be able to:
v Perform a live migration of the virtual server accessing the device.
v Migrate the storage to another storage server or another storage controller.

For DASDs:
Use udev-created device nodes.

All udev-created device nodes support live migration. By-uuid device
nodes support also storage migration, because they are
hardware-independent.

For SCSI disks:
Use device mapper-created device nodes.

Device mapper-created device nodes are unique and always specify the
same device, irrespective of the host which runs the virtual server.

Please be aware that setting up multipathing on the host without
passing the device mapper-created device nodes to the virtual server
leads to the loss of all multipath advantages regarding high availability
and performance.

Chapter 11. Devices 77

3. Identify the device on the virtual server.
a. Specify a unique logical device name.

Logical device names are of the form vd<x>, where <x> can be one or more
letters. Do not confuse the logical device name with the standard device
name. The standard device name is assigned to the device on the virtual
server in the order the device is detected. It is not persistent across guest
reboots.

target dev attribute: <logical-device-name>

(see “<target> as child element of <disk>” on page 211)
b. Optional: Specify a unique device number.

You specify a device bus-ID, which is of the form
fe.n.dddd

where n is the subchannel set-ID and dddd is the device number. The
channel subsystem-ID 0xfe is reserved to the virtual channel.
The virtual server sees the channel subsystem-ID 0x0 instead.

Tip: Do not mix device specifications with and without device numbers.

address type attribute: ccw

address cssid attribute: 0xfe

(reserved channel subsystem-ID)
address ssid attribute: <subchannel-set-ID>
address devno attribute: <device-number>

(see “<address> as child element of <controller>, <disk>, <interface>, and
<memballoon>” on page 170)

Example: KVM host device bus-ID fe.0.1a12 is seen by the virtual server
as device bus-ID 0.0.1a12.
If you do not specify a device number, a device bus-ID is automatically
generated by using the first available device bus-ID starting with
subchannel set-ID 0x0 and device number 0x0000.
Assign device numbers depending on your policy, such as:
v Assigning identical device numbers on the virtual server and on the host

enable the virtual server user to identify the real device.
v Assigning identical device numbers on the virtual servers allows you to

create identical virtual servers.
Related concepts:
Chapter 2, “DASDs and SCSI disks as virtual block devices,” on page 9
DASDs and FC-attached SCSI disks are virtualized as virtio block devices.

78 KVM Virtual Server Management - October 2016

Example of a DASD configuration

To see the device nodes of the prepared DASDs on the host, enter:

lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.7500 active dasda 94:0 ECKD 4096 7043MB 1803060
0.0.7600 active dasdb 94:4 ECKD 4096 7043MB 1803060

The udev-created by-path device node for device 0.0.7500 is /dev/disk/by-path/
ccw-0.0.7500.

Define the devices:

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/disk/by-path/ccw-0.0.7500”/>
<target dev=“vda” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x7500”/>

</disk>

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“2”/>
<source dev=“/dev/disk/by-path/ccw-0.0.7600”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x7600”/>

</disk>

This example follows the policy to assign the host device number to the virtual
server.

The virtual server sees the standard device nodes, which are of the form
/dev/vd<x>, where <x> represents one or more letters. The mapping between a
name and a certain device is not persistent across guest reboots. To see the current
mapping between the standard device nodes and the udev-created by-path device
nodes, enter:

[root@guest:] # ls /dev/disk/by-path -l
total 0
lrwxrwxrwx 1 root root 9 May 15 15:20 ccw-0.0.7500 -> ../../vda
lrwxrwxrwx 1 root root 10 May 15 15:20 ccw-0.0.7600 -> ../../vdb

The virtual server always sees the control unit type 3832. The control unit model
indicates the device type, where 02 is a block device:

[root@guest:] # lscss
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.7500 0.0.0000 0000/00 3832/02 yes 80 80 ff 00000000 00000000
0.0.7600 0.0.0001 0000/00 3832/02 yes 80 80 ff 00000000 00000000

Chapter 11. Devices 79

Example of a SCSI disk configuration

To see the device mapper-created device nodes of the prepared devices on the host,
enter:

multipathd -k’show topology’
36005076305ffc1ae00000000000021df dm-3 IBM ,2107900
size=30G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’service-time 0’ prio=0 status=active
|- 1:0:7:1088372769 sdm 8:192 active ready running
|- 1:0:3:1088372769 sdn 8:208 active ready running
|- 1:0:5:1088372769 sdo 8:224 active ready running
|- 1:0:4:1088372769 sdl 8:176 active ready running
|- 0:0:3:1088372769 sdbd 67:112 active ready running
|- 0:0:4:1088372769 sdax 67:16 active ready running
|- 0:0:8:1088372769 sdbj 67:208 active ready running
`- 0:0:6:1088372769 sdbp 68:48 active ready running

...
36005076305ffc1ae00000000000021d5 dm-0 IBM ,2107900
size=30G features=’1 queue_if_no_path’ hwhandler=’0’ wp=rw
`-+- policy=’service-time 0’ prio=0 status=active
|- 1:0:4:1087717409 sdg 8:96 active ready running
|- 1:0:7:1087717409 sdq 65:0 active ready running
|- 1:0:5:1087717409 sdi 8:128 active ready running
|- 1:0:3:1087717409 sdf 8:80 active ready running
|- 0:0:4:1087717409 sdaw 67:0 active ready running
|- 0:0:3:1087717409 sdbc 67:96 active ready running
|- 0:0:6:1087717409 sdbo 68:32 active ready running
`- 0:0:8:1087717409 sdbi 67:192 active ready running

Define the devices:

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021df”/>
<target dev=“vda” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x1a10”/>

</disk>

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“2”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x1a12”/>

</disk>

The virtual server sees the standard device nodes, which are of the form
/dev/vd<x>, where <x> represents one or more letters. The mapping between a
name and a certain device is not persistent across guest reboots. To see the current
mapping between the standard device nodes and the udev-created by-path device
nodes, enter:

[root@guest:] # ls /dev/disk/by-path -l
total 0
lrwxrwxrwx 1 root root 9 May 15 15:20 ccw-0.0.1a10 -> ../../vda
lrwxrwxrwx 1 root root 10 May 15 15:20 ccw-0.0.1a12 -> ../../vdb

The virtual server always sees the control unit type 3832. The control unit model
indicates the device type, where 02 is a block device:

80 KVM Virtual Server Management - October 2016

[root@guest:] # lscss
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.1a10 0.0.0000 0000/00 3832/02 yes 80 80 ff 00000000 00000000
0.0.1a12 0.0.0001 0000/00 3832/02 yes 80 80 ff 00000000 00000000

Chapter 11. Devices 81

Configuring a file as storage device
Typically, you provide a file as storage device when you intend to boot the virtual
server from a boot image file.

Before you begin

Make sure that the file exists, is initialized and accessible for the virtual server. You
can provide raw files or qcow2 image files. qcow2 image files occupy only the
amount of storage that is really in use.

Use the QEMU command qemu-img create to create a qcow2 image file. See
“Examples for the use of the qemu-img command” on page 267 for examples.

Procedure
1. Configure the file.

a. Configure the file as virtual disk.

raw file: qcow2 file:

disk type attribute: file file
disk device attribute: disk disk

(see “<disk>” on page 181)
b. Specify the user space process that implements the device.

raw file: qcow2 file:

driver name attribute: qemu qemu
driver io attribute: native native
driver type attribute: raw qcow2
driver cache attribute: <cache-mode> <cache-mode>

(see “<driver> as child element of <disk>” on page 183)
Where <cache-mode> determines the QEMU caching strategy.

Tip: For most configurations, the “none” value is appropriate.
Do not configure the driver iothread attribute if you plan to migrate the
virtual disk in the context of a live migration.

c. Specify virtio as the virtual server disk device type.

target bus attribute: virtio

(see “<target> as child element of <disk>” on page 211)
2. Identify the file on the host.

Specify the file name.

source file attribute: <file-name>

(see “<source> as child element of <disk>” on page 207)
3. Identify the device on the virtual server.

a. Specify a unique logical device name.
Logical device names are of the form vd<x>, where <x> can be one or more
letters. Do not confuse the logical device name with the standard device

82 KVM Virtual Server Management - October 2016

|
|

name. The standard device name is assigned to the device on the virtual
server in the order the device is detected. It is not persistent across guest
reboots.

target dev attribute: <logical-device-name>

(see “<target> as child element of <disk>” on page 211)
b. Optional: Specify a device number.

You specify a device bus-ID of the form
fe.n.dddd

where n is the subchannel set-ID and dddd is the device number. The
channel subsystem-ID 0xfe is reserved to the virtual channel.
The virtual server sees the channel subsystem-ID 0x0 instead.

address type attribute: ccw

address cssid attribute: 0xfe

(reserved channel subsystem-ID)
address ssid attribute: <subchannel-set-ID>
address devno attribute: <device-number>

(see “<address> as child element of <controller>, <disk>, <interface>, and
<memballoon>” on page 170)

Example: KVM host device bus-ID fe.0.0009 is seen by the virtual server
as device bus-ID 0.0.0009.
If you do not specify a device number, a device bus-ID is automatically
generated by using the first available device bus-ID starting with
subchannel set-ID 0x0 and device number 0x0000.

Example
<disk type=“file” device=“disk”>

<driver name=“qemu” type=“raw” io=“native” cache=“none”/>
<source file=“/var/lib/libvirt/images/disk.img”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x0009”/>

</disk>

Related tasks:
“Configuring the boot process” on page 55
Specify the device that contains a root file system, or a prepared kernel image file.

Chapter 11. Devices 83

Configuring virtual SCSI devices
Configure SCSI tape devices, SCSI medium changer devices, and DVD drives as
virtual SCSI devices for a virtual server.

About this task
v “Configuring virtual SCSI devices”
v “Configuring a SCSI tape or medium changer device” on page 85
v “Configuring a virtual SCSI-attached CD/DVD drive” on page 91
v “Example of a multipathed SCSI tape and medium changer device

configuration” on page 89

Configuring a virtual HBA
Configure virtual Host Bus Adapters (HBAs) for virtual SCSI devices.

Procedure
1. Use the controller element, which is a child of the devices element (see

“<controller>” on page 178).

controller type attribute: scsi

controller model attribute: virtio-scsi
controller index attribute: <index>

Where <index> is a unique decimal integer designating in which order the
virtual HBA is set online.

Example:
<devices>

<controller type=“scsi” model=“virtio-scsi” index=“0”/>
</devices>

2. Optional: Specify the address of the device to be created.
The controller element creates the virtual device and subchannel numbers
sequentially. This can be overwritten by expanding the controller element to
include an address element. The device number is used to create the virtual
HBA.

address type attribute: ccw

address cssid attribute: 0xfe

(reserved channel subsystem-ID)
address ssid attribute: <subchannel-set-ID>
address devno attribute: <device-number>

(see “<address> as child element of <controller>, <disk>, <interface>, and
<memballoon>” on page 170)

Example:
<devices>

<controller type=“scsi” model=“virtio-scsi” index=“0”>
<address type=“ccw” cssid=“0xfe” ssid=“0” devno=“0x1111”/>

</controller>
</devices>

84 KVM Virtual Server Management - October 2016

Example

If you do not configure an address for an HBA, libvirt creates an address for you.
You can retrieve this address with the virsh dumpxml command.
1. Domain configuration-XML file:

<domain type=“kvm”>
...
<devices>

<controller type=“scsi” model=“virtio-scsi” index=“0”/>
...

</devices>
</domain>

2. Define the virtual server to libvirt.
3. Issue the command:

virsh dumpxml vserv1

The current libvirt-internal configuration is displayed:

<domain type=“kvm”>
...
<devices>

<controller type=“scsi” model=“virtio-scsi” index=“0”>
<address type=“ccw” cssid=“0xfe” ssid=“0” devno=“0x0000”/>

</controller>
...

</devices>
</domain>

Configuring a SCSI tape or medium changer device
Configure FC-attached SCSI tape devices and SCSI medium changers as host
devices for a virtual server.

Before you begin

Make sure that, as described in Chapter 8, “Preparing SCSI tape and medium
changer devices,” on page 35:
v The SCSI tape or medium changer device is set up.
v You provide the SCSI device name of the SCSI tape or medium changer device.

You need a virtual HBA to connect to.
v Either use a configured virtual HBA (see “Configuring a virtual HBA” on page

84), or
v Connect to a new virtual HBA which will be automatically configured for you.

About this task

SCSI device names are freshly assigned after a host reboot or when a device is set
offline and back online. This means that you have to verify an FC-attached SCSI
tape or medium changer device configuration after one of these events. This
limitation is also important if you plan a live migration.

Chapter 11. Devices 85

Tip: Configure FC-attached SCSI tape or medium changer devices as hotplug
devices, that is, create a separate device configuration-XML file for each device.
Attach the device only if necessary, and detach the device before you migrate the
virtual server, or set one of the devices in the configuration path offline.

Procedure
1. Configure the SCSI tape or medium changer device using the hostdev element

(see “<hostdev>” on page 187).

hostdev mode attribute: subsystem

hostdev type attribute: scsi

2. Specify the SCSI tape or medium changer device on the host as child of the
source element.

adapter name attribute: scsi_host<SCSI-host-number>

address bus attribute: 0
address target attribute: <SCSI-ID>
address unit attribute: <SCSI-LUN>

(see “<adapter> as child element of <source>” on page 169 and “<address> as
child element of <source>” on page 172)

3. Optional: Connect to a virtual HBA and specify a freely selectable SCSI device
name on the virtual server.

address type attribute: scsi

address controller attribute: <controller-index>
address bus attribute: 0
address target attribute: <target>
address unit attribute: <unit>

(see “<address> as child element of <hostdev> or <disk>” on page 171)
Where

<controller-index>
specifies the virtual HBA to which the SCSI device is connected.

Enter the value of the controller index attribute of a configured virtual
HBA or a new index value. The allocated index values must be
contiguous without gaps. If you specify a new index value, a new
virtual HBA is automatically configured.

The virtual HBA is also called the SCSI host of the SCSI device on the
virtual server.

<target>
is a freely selectable natural number: 0 ≤ <target> < 256

<unit> determines the SCSI LUN on the virtual server according to the rules
specified in the SCSI Architecture Model (SAM):

0 ≤ <unit> < 256
SCSI LUN := <unit>

256 ≤ <unit> ≤ 16383
SCSI LUN := 0x<unit> ∨ 0x4000

Tip: Choose a value between 0 and 255, because these values are
identically mapped to the SCSI LUN on the virtual server.

86 KVM Virtual Server Management - October 2016

Example

Obtain the SCSI host number, the SCSI ID, and the SCSI LUN of the FC-attached
SCSI tape or medium changer device:

lszfcp -D
0.0.1cc8/0x5005076044840242/0x0000000000000000 3:0:8:0

where:

Assign a SCSI device name to the virtual SCSI device on the virtual server. The
controller attribute of the address element refers to the index attribute of the
controller element.
v Domain configuration-XML file:

<domain type=“kvm”>
<name>VM1</name>
...
<devices>

...
<controller type=“scsi” model=“virtio-scsi” index=“0”>

<address type=“ccw” cssid=“0xfe” ssid=“0” devno=“0x0002”/>
</controller>

...
</devices>

</domain>

v Device configuration-XML file:

<hostdev mode=“subsystem” type=“scsi”>
<source>

<adapter name=“scsi_host3”/>
<address bus=“0” target=“8” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“1” unit=“1”/>

</hostdev>

0.0.1cc8/0x5005076044840242/0x0000000000000000 3:0:8:0

device bus-ID of the FCP device

<source>
<adapter name=”scsi_host3>
<address bus=”0” target=”8” unit=”0”>

</source>

WWPN FCP LUN

SCSI host number SCSI ID SCSI LUN

Chapter 11. Devices 87

|

|

|
|

|

Display the SCSI tape on the host:

lsscsi
[3:0:8:0] tape IBM 03592E07 35CD

On the virtual server, the SCSI tape will be displayed like this:

[root@guest:] # lsscsi
[0:0:1:1] tape IBM 03592E07 35CD

88 KVM Virtual Server Management - October 2016

|

|
|
||

|

|
|
||

|

Example of a multipathed SCSI tape and medium changer
device configuration

Provide one virtual SCSI device for each configuration path.

About this task

This example provides a configuration for the topology as shown in Figure 7 on
page 16.

Procedure
1. Create a domain configuration-XML file with one configured virtual HBA for

each host device. This configuration groups all virtual SCSI devices that
represent the same host device in an own virtual HBA.

<domain type=“kvm”>
<name>VM1</name>
...
<devices>

...
<controller type=“scsi” model=“virtio-scsi” index=“0”>

<address type=“ccw” cssid=“0xfe” ssid=“0” devno=“0x0002”/>
</controller>
<controller type=“scsi” model=“virtio-scsi” index=“1”>

<address type=“ccw” cssid=“0xfe” ssid=“0” devno=“0x0004”/>
</controller>
...

</devices>
</domain>

2. Create separate device configuration-XML files for the SCSI tape device, both
connected to the virtual HBA 0.
a. The first file configures SCSI device name 0:0:0:0, which is the path of SCSI

LUN 0 via SCSI host 0.

<hostdev mode=“subsystem” type=“scsi”>
<source>

<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“0” unit=“0”/>

</hostdev>

b. The second file configures SCSI device name 1:0:0:0, which is the path via
SCSI host 1.

<hostdev mode=“subsystem” type=“scsi”>
<source>

<adapter name=“scsi_host1”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“0” unit=“100”/>

</hostdev>

3. Create separate device configuration-XML files for the SCSI medium changer
device, both connected to the virtual HBA 1.
a. The first file configures SCSI device name 0:0:0:1, which is the path of SCSI

LUN 1 via SCSI host 0.

Chapter 11. Devices 89

<hostdev mode=“subsystem” type=“scsi”>
<source>

<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“1”/>

</source>
<address type=“scsi” controller=“1” bus=“0” target=“0” unit=“1”/>

</hostdev>

b. The second file configures SCSI device name 1:0:0:1, which is the path via
SCSI host 1.

<hostdev mode=“subsystem” type=“scsi”>
<source>

<adapter name=“scsi_host1”/>
<address bus=“0” target=“0” unit=“1”/>

</source>
<address type=“scsi” controller=“1” bus=“0” target=“0” unit=“101”/>

</hostdev>

90 KVM Virtual Server Management - October 2016

Configuring a virtual SCSI-attached CD/DVD drive
The configuration of a virtual DVD drive as virtual SCSI device allows the virtual
server to access various ISO images as virtual DVDs during its life cycle. You can
replace a provided ISO image during virtual server operation.

Before you begin

You need a virtual HBA to connect to.
v Either use a configured virtual HBA (see “Configuring a virtual HBA” on page

84), or
v Connect to a new virtual HBA which will be automatically configured for you.

About this task

The virtual server accesses a virtual DVD as a virtual block device. You configure
an ISO image, which represents the virtual DVD, and connect it through a
controller as a virtual SCSI device. This allows the virtual server access to a virtual
SCSI-attached CD/DVD drive, and to mount and unmount the file system which is
contained on the currently provided virtual DVD.

You can remove the configured ISO image and provide a different one during the
life cycle of the virtual server.

The virtual server can load it, and then reboot using the new ISO image.

Procedure
1. Configure the virtual DVD.

a. Configure the ISO image, which represents the virtual DVD, as a file of type
cdrom (see “<disk>” on page 181).

disk type attribute: file

disk device attribute: cdrom

b. Specify the user space process that implements the virtual DVD (see
“<driver> as child element of <disk>” on page 183).

driver name attribute: qemu

driver io attribute: native
driver type attribute: raw
driver cache attribute: none

c. Specify the ISO image as virtual block device (see “<target> as child
element of <disk>” on page 211).

target bus attribute: scsi

d. Specify the virtual DVD as read-only using the readonly element (see
“<readonly>” on page 203).

2. Identify the ISO image on the host.
Specify the fully qualified ISO image file name on the host (see “<source> as
child element of <disk>” on page 207). If the virtual SCSI-attached CD/DVD
drive is empty, omit this step.

Chapter 11. Devices 91

|

source file attribute: <iso-image>

3. Identify the virtual SCSI-attached CD/DVD drive on the virtual server.
a. Specify a unique logical device name (see “<target> as child element of

<disk>” on page 211).

target dev attribute: <logical-device-name>

Do not confuse the logical device name with its device name on the virtual
server.

b. Optional: Connect to a virtual HBA and specify a freely selectable SCSI
device name on the virtual server.

address type attribute: drive

address controller attribute: <controller-index>
address bus attribute: 0
address target attribute: <target>
address unit attribute: <unit>

(see “<address> as child element of <hostdev> or <disk>” on page 171)
Where

<controller-index>
specifies the virtual HBA to which the SCSI device is connected.

Enter the value of the controller index attribute of a configured
virtual HBA or a new index value. The allocated index values must
be contiguous without gaps. If you specify a new index value, a
new virtual HBA is automatically configured.

The virtual HBA is also called the SCSI host of the SCSI device on
the virtual server.

<target>
is a freely selectable natural number: 0 ≤ <target> < 256

<unit> determines the SCSI LUN on the virtual server according to the
rules specified in the SCSI Architecture Model (SAM):

0 ≤ <unit> < 256
SCSI LUN := <unit>

256 ≤ <unit> ≤ 16383
SCSI LUN := 0x<unit> ∨ 0x4000

Tip: Choose a value between 0 and 255, because these values are
identically mapped to the SCSI LUN on the virtual server.

Example
<devices>

...
<controller type=“scsi” model=“virtio-scsi” index=“4”/>
<disk type=“file” device=“cdrom”>

<driver name=“qemu” type=“raw” io=“native” cache=“none”/>
<source file=“/var/lib/libvirt/images/cd.iso”/>
<target dev=“sda” bus=“scsi”/>
<address type=“drive” controller=“4” bus=“0” target=“0” unit=“0”/>
<readonly/>

</disk>
...

</devices>

92 KVM Virtual Server Management - October 2016

Related tasks:
“Replacing a virtual DVD” on page 135
The virtual server accesses a provided ISO image as a virtual DVD through the
virtual SCSI-attached CD/DVD drive. You can remove a virtual DVD, and provide
a different one.

Chapter 11. Devices 93

Configuring virtual Ethernet devices
Configure network interfaces, such as Ethernet interfaces, bonded interfaces,
virtual LANs, or virtual switches as virtual Ethernet devices for a virtual server.

Before you begin

Provide network interfaces as described in Chapter 9, “Preparing network devices,”
on page 39.

Procedure
v To configure a MacVTap interface, follow the steps described in “Configuring a

MacVTap interface.”
v To configure a virtual switch, follow the steps described in “Configuring a

virtual switch” on page 96

Configuring a MacVTap interface
Configure network interfaces, such as Ethernet interfaces, bonded interfaces,
virtual LANs, through a direct MacVTap interface.

Procedure

You configure a network interface as direct MacVTap connection by using the
interface element (see “<interface>” on page 189).
Libvirt automatically creates a MacVTap interface when you define the network
device.

interface type attribute: direct

By default, the virtual server cannot change its assigned MAC address and, as a
result, cannot join multicast groups. To enable multicasting, you need set the
interface trustGuestRxFilters attribute to yes. This has security implications,
because it allows the virtual server to change its MAC address and thus to receive
all frames delivered to this address.
1. Optional: Specify a freely selectable Media Access Control (MAC) address for

the virtual server's virtual NIC.

mac address attribute: <MAC-address>

(see “<mac>” on page 194)
If you do not specify the mac address attribute, libvirt assigns a MAC address
to the interface.

2. Specify the host network interface.
To allow virtual server migration to another host, ensure that an interface with
the chosen name is configured on both the source and destination host.

source dev attribute: <interface-name>

source mode attribute: bridge

(see “<source> as child element of <interface>” on page 209)
3. Specify the model type (see “<model>” on page 198).

model type attribute: virtio

94 KVM Virtual Server Management - October 2016

Example
v To configure bonded interface bond0:

<interface type=“direct”>
<source dev=“bond0” mode=“bridge”/>
<model type=“virtio”/>

</interface>

v To configure virtual LAN bond0.623:

<interface type=“direct”>
<source dev=“bond0.623” mode=“bridge”/>
<model type=“virtio”/>

</interface>

KVM host

Network
hardware

KVM virtual server

z Systems
hardware

macvtap

virtual
Ethernet
device

enccw0.0.1108

Network
hardware

bond0

.

.

enccw0.0.a100

.

.

Figure 13. Direct interface type which configures a bonded interface

KVM host

Network
hardware

KVM virtual server

z Systems
hardware

virtual Ethernet device

IB
M

ta
p

e
<

1
>

.

.

bond0

macvtap

Virtual network
device

enccw0.0.1108 enccw0.0.a110

Network
hardware

bond0.623

Ethernet interface

Bonded interface

Virtual LAN interface

MacVTap interface

Figure 14. Direct interface type which configures a virtual LAN interface

Chapter 11. Devices 95

Configuring a virtual switch
Configure virtual switches as virtual Ethernet devices.

Procedure

You configure a virtual switch by using the interface element (see “<interface>” on
page 189).

interface type attribute: bridge

1. Optional: Specify a freely selectable Media Access Control (MAC) address for
the virtual server's virtual NIC.

mac address attribute: <MAC-address>

(see “<mac>” on page 194)
2. Specify the virtual switch that you created before as described in “Preparing a

virtual switch” on page 45.

source bridge attribute: <vswitch>

(see “<source> as child element of <interface>” on page 209)
3. Specify the type.

virtualport type attribute: openvswitch

(see “<virtualport>” on page 214)
4. Specify the model type.

model type attribute: virtio

(see “<model>” on page 198)

Example

Display the available virtual switches:

ovs-vsctl show
...

Bridge "vswitch0"
Port "vsbond0"

Interface "enccw0.0.1108"
Interface "enccw0.0.a112"

Port "vswitch0"
Interface "vswitch0"

type: internal
...

Configure the virtual switch which is shown in Figure 10 on page 21:

<interface type=“bridge”>
<source bridge=“vswitch0”/>
<virtualport type=“openvswitch”/>
<model type=“virtio”/>

</interface>

After the creation and the start of the virtual server, the virtual switch is displayed
as follows:

96 KVM Virtual Server Management - October 2016

ovs-vsctl show
...

Bridge "vswitch0"
Port "vnet0"

Interface "vnet0"
Port "vsbond0"

Interface "enccw0.0.1108"
Interface "enccw0.0.a112"

Port "vswitch0"
Interface "vswitch0"

type: internal
...

Chapter 11. Devices 97

Configuring a random number generator
Provide a virtual random number generator only if the host is equipped with a
hardware random number generator, such as the secure IBM CCA coprocessor of a
Crypto Express adapter.

Procedure

Use the rng element to configure a random number generator (see “<rng>” on
page 204).

rng model attribute: virtio

Use the backend element as child of the rng element to specify the device node of
the input character device (see “<backend>” on page 173).
Currently, /dev/random is the only valid device node.

backend model attribute: random

backend element: <device-node>

Example
<devices>

...
<rng model=“virtio”>

<backend model=“random”>/dev/random</backend>
</rng>
...

</devices>

98 KVM Virtual Server Management - October 2016

|

|
|
|

|

|
|

|||
|

|
|
|

|||

||
|

|

|
|
|
|
|
|
|

Part 4. Operation

Chapter 12. Creating, modifying, and deleting
persistent virtual server definitions 101
Defining a virtual server 102
Modifying a virtual server definition 102
Undefining a virtual server 103

Chapter 13. Managing the virtual server life
cycle 105
Starting a virtual server 106
Terminating a virtual server 106
Suspending a virtual server 108
Resuming a virtual server 108

Chapter 14. Monitoring virtual servers 111
Browsing virtual servers 112
Displaying information about a virtual server . . 112
Displaying the current libvirt-internal configuration 114

Chapter 15. Live virtual server migration . . . 117
Live migration setup 117

Preservation of the virtual server resources . . 117
Host environments 120

Phases of a live migration 121
Performing a live migration 122

Chapter 16. Managing system resources . . . 127
Managing virtual CPUs 128

Modifying the number of virtual CPUs 128
Modifying the virtual CPU weight 131

Chapter 17. Managing devices 133
Attaching a device. 134
Detaching a device 135
Replacing a virtual DVD 135
Connecting to the console of a virtual server . . . 137

Manage the operation of virtual servers using virsh commands.

© Copyright IBM Corp. 2015, 2016 99

||

100 KVM Virtual Server Management - October 2016

Chapter 12. Creating, modifying, and deleting persistent
virtual server definitions

Pass a virtual server configuration to libvirt, modify the libvirt-internal
configuration, or delete it.

Before you begin
v Ensure that the libvirt daemon is running on the host:

systemctl status libvirtd
libvirtd.service - Virtualization daemon
Loaded: loaded (/usr/lib/systemd/system/libvirtd.service; enabled)
Active: active (running) since Thu 2015-04-16 10:55:29 CEST; 2 months 3 days ago
Docs: man:libvirtd(8)
http://libvirt.org
Main PID: 5615 (libvirtd)
CGroup: /system.slice/libvirtd.service
├─5615 /usr/sbin/libvirtd
├─6750 /sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro ...
└─6751 /sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro ...

If the libvirt daemon is not running, enter:

systemctl start libvirtd.service

v Ensure that a domain configuration-XML file, which configures the virtual
server, is created.

About this task
1. To create a persistent virtual server definition, you pass its domain

configuration-XML file to libvirt. From the domain configuration-XML file,
libvirt creates a libvirt-internal configuration, which may differ from the
domain configuration-XML. For example, libvirt generates a UUID or MAC
addresses for virtual Ethernet devices, if they are not specified.
See “Defining a virtual server” on page 102.

2. You can modify the libvirt-internal configuration without deleting the virtual
server definition. Modifications come into effect with the next virtual server
restart.
See “Modifying a virtual server definition” on page 102.

3. When you delete the definition of a virtual server, libvirt destroys the
libvirt-internal configuration. When you create a virtual server definition again,
the generated values, such as UUID or MAC addresses, will differ from the
previous ones.
See “Undefining a virtual server” on page 103.

Related reference:
Chapter 25, “Selected virsh commands,” on page 217
These virsh commands might be useful for you. They are described with a subset
of options that are valuable in this context.

© Copyright IBM Corp. 2015, 2016 101

Defining a virtual server
Create a persistent definition of a virtual server configuration.

Procedure

Define a virtual server to libvirt using the virsh define command (see “define” on
page 224):

virsh define <domain-configuration-XML-filename>

<domain-configuration-XML-filename>
is the path and file name of the domain configuration-XML file.

Results

libvirt creates a persistent virtual server definition and a libvirt-internal
configuration. The name of the virtual server is the unique name specified in the
domain configuration-XML file. The virtual server is in the state “shut off” with
reason “unknown”.

What to do next

To verify your definition, you may:
1. Browse all defined virtual servers (see “Browsing virtual servers” on page 112)

by issuing:

virsh list --all

Virtual servers that are defined but not yet started are listed with state “shut
off”.

2. Display the current libvirt-internal configuration as described in “Displaying
the current libvirt-internal configuration” on page 114.

3. Start the virtual server as described in “Starting a virtual server” on page 106.
4. Check your connection to the virtual server via the configured console as

described in “Connecting to the console of a virtual server” on page 137.
Related reference:
Chapter 23, “Virtual server life cycle,” on page 161
Display the state of a defined virtual server including the reason with the virsh
domstate --reason command.

Modifying a virtual server definition
Edit the libvirt-internal configuration of a defined virtual server.

About this task

Editing the libvirt-internal configuration modifies the virtual server definition
persistently across host reboots. The modification is effective with the next virtual
server restart.

102 KVM Virtual Server Management - October 2016

Procedure

Modify the libvirt-internal configuration of a virtual server by using the virsh edit
command (see “edit” on page 238):

virsh edit <VS>

<VS> Is the name of the virtual server as specified in its domain
configuration-XML file.

By default, the virsh edit command uses the vi editor. You can modify the editor
by setting the environment variables $VISUAL or $EDITOR.

Results

If your configuration does not contain necessary elements, they will be inserted
automatically when you quit the editor. Also, the virsh edit command does not
allow to save and quit corrupted files.

The libvirt-internal configuration is modified and will be effective with the next
virtual server restart.

What to do next

To make the modification of the configuration effective, you might want to
terminate the virtual server and restart it afterwards (see “Terminating a virtual
server” on page 106 and “Starting a virtual server” on page 106).

Undefining a virtual server
Delete the persistent libvirt definition of a virtual server.

Before you begin
v Ensure that the virtual server is in state “shut off”.

To view information about the current state of a virtual server, use the virsh
domstate command.

Procedure

Delete the definition of a virtual server from libvirt by using the virsh undefine
command (see “undefine” on page 264):

virsh undefine <VS>

<VS> Is the name of the virtual server as specified in its domain
configuration-XML file.

Chapter 12. Definitions 103

104 KVM Virtual Server Management - October 2016

Chapter 13. Managing the virtual server life cycle

Use libvirt commands to start, terminate, suspend, or resume a defined virtual
server.

Before you begin
v Ensure that the libvirt daemon is running on the host.
v Use the virsh list command (see “list” on page 245) to verify whether the

virtual server is defined:

virsh list --all

If the virtual server is not displayed, see “Defining a virtual server” on page 102.

About this task
v “Starting a virtual server” on page 106

Start a defined virtual server.
v “Terminating a virtual server” on page 106

Properly shut down a virtual server, save a system image, or, if necessary,
immediately terminate it.

v “Suspending a virtual server” on page 108
Pause a virtual server.

v “Resuming a virtual server” on page 108
Transfer a paused virtual server to the running state.

Related reference:
Chapter 23, “Virtual server life cycle,” on page 161
Display the state of a defined virtual server including the reason with the virsh
domstate --reason command.
Chapter 25, “Selected virsh commands,” on page 217
These virsh commands might be useful for you. They are described with a subset
of options that are valuable in this context.

© Copyright IBM Corp. 2015, 2016 105

Starting a virtual server
Use the virsh start command to start a shut off virtual server.

About this task

When you start a virtual server, usually, an Initial Program Load (IPL) is
performed, for example to boot the guest. But if there is a saved system image for
the virtual server, the guest is restored from this system image. It depends on the
command that terminated a virtual server whether the system image was saved or
not (see “Terminating a virtual server”).

The “saved shut off” state indicates the availability of a saved system image. To
display the state and the reason of a virtual server, enter the command:

virsh domstate <VS> --reason
shut off (saved)

where <VS> is the name of the virtual server.

Refer to Chapter 23, “Virtual server life cycle,” on page 161 to see the effect of the
virsh start command depending on the virtual server state.

Procedure

Start a defined virtual server in “shut off” state using the virsh start command
(see “start” on page 261):

virsh start <VS>

Using the --console option grants initial access to the virtual server console and
displays all messages that are issued to the console:

virsh start <VS> --console

<VS> Is the name of the virtual server as specified in its domain
configuration-XML file.

If there is a saved system image, you can avoid that the virtual server is restored
from this image by using the --force-boot option.

Terminating a virtual server
Terminate a running, paused, or crashed virtual server with or without saving its
system image.

About this task

Refer to Chapter 23, “Virtual server life cycle,” on page 161 to see the effect of the
virsh commands to terminate a virtual server depending on its state.

106 KVM Virtual Server Management - October 2016

Procedure

Description Command Comments

To properly terminate a
virtual server:

“shutdown” on page 258

To save a system image and
terminate a virtual server
properly:

“managedsave” on page 247

To terminate a virtual server
immediately:

“destroy” on page 225 Use the --graceful option to
try to properly terminate the
virtual server before
terminating it forcefully.

v In most cases, you use the virsh shutdown command to properly terminate a
virtual server.
If the virtual server does not respond, it is not terminated. While the virtual
server is shutting down, it traverses the state “in shutdown” and finally enters
the “shutdown shut off” state.

virsh shutdown <VS>

Example:

To properly shut down virtual server vserv1, issue:

virsh shutdown vserv1
Domain vserv1 is being shutdown

v Save the system image of a running or a paused virtual server and terminate it
thereafter with the virsh managedsave command.

virsh managedsave <VS>

Example:

To save the system image of virtual server vserv2 and properly shut it down,
issue:

virsh managedsave vserv2
Domain vserv2 state saved by libvirt

The system image of the virtual server is resumed at the time of the next start.
Then, the state of the virtual server is either running or paused, depending on
the last state of the virtual server and the managedsave command options.

Note: The managedsave operation will save the virtual server state in a file in
the host filesystem. This file has at least the size of the virtual server memory.
Make sure the host filesystem has enough space to hold the virtual server state.

v When a virtual server is not responding, you can terminate it immediately with
the virsh destroy command.
The virtual server enters the “destroyed shut off” state. This command might
cause a loss of data.

virsh destroy <VS>

Chapter 13. Life cycle 107

||||

|
|
||

|
|
|

||

|
|
||
|
|
|
|

|

The --graceful option tries to properly terminate the virtual server, and only if
it is not responding in a reasonable amount of time, it is forcefully terminated:

virsh destroy <VS> --graceful

Example:

To force a shutdown of virtual server vserv3, issue:

virsh destroy vserv3
Domain vserv3 destroyed

<VS> Is the name of the virtual server as specified in its domain
configuration-XML file.

Suspending a virtual server
Transfer a virtual server into the paused state.

Before you begin

Use the virsh domstate command to display the state of the virtual server.

About this task

Refer to Chapter 23, “Virtual server life cycle,” on page 161 to see the effect of the
virsh suspend command depending on the virtual server state.

Procedure

Suspend a virtual server by using the virsh suspend command (see “suspend” on
page 263):

virsh suspend <VS>

<VS> Is the name of the virtual server.

What to do next

To transfer the virtual server back to the running state, issue the virsh resume
command.

Resuming a virtual server
Transfer a virtual server from the paused into the running state.

Before you begin

The virsh list command with the --state-paused option displays a list of paused
virtual servers.

About this task

Refer to Chapter 23, “Virtual server life cycle,” on page 161 to see the effect of the
virsh resume command depending on the virtual server state.

108 KVM Virtual Server Management - October 2016

Procedure

Resume a virtual server using the virsh resume command (see “resume” on page
256):

virsh resume <VS>

<VS> Is the name of the virtual server.

Chapter 13. Life cycle 109

110 KVM Virtual Server Management - October 2016

Chapter 14. Monitoring virtual servers

Use libvirt commands to display information about a defined virtual server.

Before you begin
v Ensure that the libvirt daemon is running on the host.
v Use the virsh list command (see “list” on page 245) to verify whether the

virtual server is defined:

virsh list --all

If the virtual server is not displayed, see “Defining a virtual server” on page 102.

About this task
v “Browsing virtual servers” on page 112

View lists of all defined or of all running virtual servers.
v “Displaying information about a virtual server” on page 112

View information about a virtual server, its state, its devices, or scheduling
properties.

v “Displaying the current libvirt-internal configuration” on page 114
The current libvirt-internal configuration is based on the domain
configuration-XML file of the defined virtual server, and is enhanced by
libvirt-internal information and the dynamically attached devices.

Related reference:
Chapter 25, “Selected virsh commands,” on page 217
These virsh commands might be useful for you. They are described with a subset
of options that are valuable in this context.

© Copyright IBM Corp. 2015, 2016 111

Browsing virtual servers
View lists of all defined or of all running virtual servers.

Procedure
v To view a list of all defined virtual servers, use the virsh list command with

the --all option (see “list” on page 245):

virsh list --all

v To view a list of all running or paused virtual servers, enter:

virsh list

Example

View a list of all running or paused virtual servers:

virsh list
Id Name State

3 vserv1 paused
8 vserv2 running

Displaying information about a virtual server
View information about a virtual server, its state, its devices, or scheduling
properties.

Procedure

You can display information about a defined virtual server using one of the
following commands:

Displayed information Command Comments

General information “dominfo” on page 233

Current state “domstate” on page 235 Display the reason of the
current state by using the
--reason option.

Scheduling information “schedinfo” on page 257

Number of virtual CPUs “vcpucount” on page 265

Virtual block devices “domblkstat” on page 229 To retrieve the device name,
use the virsh domblklist
command.

Virtual Ethernet interfaces “domifstat” on page 232 To retrieve the interface
name, use the virsh
domiflist command.

I/O threads “iothreadinfo” on page 244

112 KVM Virtual Server Management - October 2016

|

Example
v View information about a defined virtual server:

virsh dominfo vserv2
Id: 8
Name: vserv2
UUID: f4fbc391-717d-4c58-80d5-1cae505f89c8
OS Type: hvm
State: running
CPU(s): 4
CPU time: 164.6s
Max memory: 2097152 KiB
Used memory: 2097152 KiB
Persistent: yes
Autostart: disable
Managed save: no
Security model: selinux
Security DOI: 0
Security label: system_u:system_r:svirt_t:s0:c383,c682 (enforcing)

v View information about the current state:

virsh domstate vserv2
running

virsh domstate vserv2 --reason
running (unpaused)

v View scheduling information:

virsh schedinfo vserv1
Scheduler : posix
cpu_shares : 1024
vcpu_period : 100000
vcpu_quota : -1
emulator_period: 100000
emulator_quota : -1

v Display the number of virtual CPUs:

virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 3
current live 3

v View information about the virtual block devices:

virsh domblklist vserv1
Target Source
--
vda /dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc

virsh domblkstat vserv1 /dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc
/dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc rd_req 17866
/dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc rd_bytes 180311040
/dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc wr_req 11896
/dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc wr_bytes 126107648
/dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc flush_operations 3884
/dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc rd_total_times 14496884715
/dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc wr_total_times 9834388979
/dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023bc flush_total_times 755568088

v View information about the virtual Ethernet interfaces:

Chapter 14. Monitoring 113

|

|
|
|
|
|
||

virsh domiflist vserv1
Interface Type Source Model MAC

vnet0 network iedn virtio 02:17:12:01:ff:01

virsh domifstat vserv1 vnet0
vnet0 rx_bytes 2377970
vnet0 rx_packets 55653
vnet0 rx_errs 0
vnet0 rx_drop 0
vnet0 tx_bytes 831453
vnet0 tx_packets 18690
vnet0 tx_errs 0
vnet0 tx_drop 0

v View information about the I/O threads of a virtual server with 8 virtual CPUs:

virsh iothreadinfo vserv1
IOThread ID CPU Affinity

1 0-7
2 0-7
3 0-7

Displaying the current libvirt-internal configuration
The current libvirt-internal configuration is based on the domain
configuration-XML file of the defined virtual server, and is enhanced by
libvirt-internal information and the dynamically attached devices.

Procedure

To display the domain configuration-XML of a defined virtual server, use the virsh
dumpxml command (see “dumpxml” on page 237):

virsh dumpxml <VS>

<VS> Is the name of the virtual server as specified in its domain
configuration-XML.

114 KVM Virtual Server Management - October 2016

Example

Domain configuration-XML file vserv1.xml configures virtual server vserv1:

vserv1.xml

<domain type=“kvm”>
<name>vserv1</name>
<memory unit=“GiB”>4</memory>
<vcpu>2</vcpu>
<cputune>
<shares>2048</shares>

</cputune>

<os>
<type arch=“s390x” machine=“s390-ccw-virtio”>hvm</type>

</os>
<iothreads>2</iothreads>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>preserve</on_crash>
<devices>
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000020d3”/>
<target dev=“vda” bus=“virtio”/>
<boot order=“1”/>

</disk>
<interface type=“direct”>

<source dev=“bond0” mode=“bridge”/>
<model type=“virtio”/>

</interface>
<console type=“pty”>

<target type=“sclp”/>
</console>
<memballoon model=“none”/>

</devices>
</domain>

Device configuration-XML file dev1.xml configures a hotplug device:

dev1.xml

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“2”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vdb” bus=“virtio”/>

</disk>

You can define and start the virtual server and then attach the configured device
with the commands:

virsh define vserv1.xml
virsh start vserv1 --console
virsh attach-device vserv1 dev1.xml

Chapter 14. Monitoring 115

The virsh dumpxml command displays the current libvirt-internal configuration, as
for example:

virsh dumpxml vserv1
<domain type=“kvm”>
<name>quickstart1</name>
<uuid>4a461da8-0253-4989-b267-bd4db02bfac4</uuid>
<memory unit=“KiB”>4194304</memory>
<currentMemory unit=“KiB”>4194304</currentMemory>
<vcpu placement=“static”>2</vcpu>
<iothreads>2</iothreads>
<os>

<type arch=“s390x” machine=“s390-ccw-kvmibm-1.1.2”>hvm</type>
</os>
<clock offset=“utc”/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>preserve</on_crash>
<devices>

<emulator>/usr/bin/qemu-kvm</emulator>
<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000020d3”/>
<target dev=“vda” bus=“virtio”/>
<boot order=“1”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x0000”/>

</disk>
<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“2”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x0002”/>

</disk>
<interface type=“direct”>
<mac address=“52:54:00:6a:0b:53”/>
<source dev=“bond0” mode=“bridge”/>
<model type=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x0001”/>

</interface>
<console type=“pty”>
<target type=“sclp” port=“0”/>

</console>
<memballoon model=“none”/>

</devices>
</domain>

libvirt added a number of XML elements to the current representation of the
virtual server configuration. They are shown in bold typeface: a UUID, the current
machine type which depends on the host setup and might be of the form
“s390-virtio-ccw-<x.x>” as well, the emulator, mac address and address elements,
and the dynamically attached device.

116 KVM Virtual Server Management - October 2016

Chapter 15. Live virtual server migration

Migrate a running virtual server from one host to another without affecting the
virtual server. The literature also uses the terms “virtual server, virtual machine, or
guest relocation”.

Live migration setup
To perform a live migration, the source and destination hosts must be connected
and must have access to the same or equivalent system resources, the same storage
devices and networks.

The destination host may also run on another z System, but do not perform a live
migration from a z13™ to a zEC12 system. The migration might lead to unexpected
results, because the guest might use processor-specific features that are not
available on the destination host.

Preservation of the virtual server resources
Prepare a migration carefully to preserve the resources of the virtual server.

System resources

Provide access to the same or equivalent system resources, such as memory and
CPUs, on both hosts.

Storage

Storage devices that are configured for the virtual server must be accessible from
the destination host.

DASDs:

v Make sure that DASDs are configured using udev-created device nodes.
v If the DASDs are configured using the device bus-ID (by-path device

node), make sure that you use identical device numbers in the IOCDS of
both hosts.

v Make sure that there is a migration process for setting both the base
devices and the alias devices online on the destination host.

SCSI disks:

v Make sure that SCSI disks are configured using device mapper-created
device nodes.

Image files residing on a network file system (NFS):

v Make sure that both hosts have a shared access to the image files.
If Security-Enhanced Linux (SELinux) is enabled on the destination host,
using the following command can provide access to the NFS:

setsebool -P virt_use_nfs 1

Please note that depending on the NFS configuration the image files
could be accessible by other virtual servers.

© Copyright IBM Corp. 2015, 2016 117

|
|
|
|

Disk images residing on the host:
There are options to migrate files that back up virtual block devices to the
destination host. This process is called disk migration.

For each file which is to be migrated:
v Make sure that the file has write permission. That is, the virtual block

device which is backed by the file is not configured as a virtual DVD or
by using the readonly element.

v Make sure that the respective virtual block devices are not configured to
use an I/O thread.

SCSI tapes or medium changer devices:

v When you migrate a virtual server that uses a configured virtual SCSI
device, be aware that the SCSI device name, which is used to specify the
source device, might change on the destination host.

Tip: Make sure that SCSI tapes or medium changer devices are
configured as hotplug devices. Detach them before you perform a
migration. After the migration, reconfigure the devices before you
reattach them.

“Disk device identification” on page 10 and “SCSI device identification” on page
16 explain various device nodes.

Networking

To ensure that the virtual server's network access is not interrupted by the
migration:
v Make sure that the network administrator uses identical network interface

names for the access to identical networks on both hosts.
v Make sure that the OSA channels are not shared between the source and the

destination host.

118 KVM Virtual Server Management - October 2016

|
|
|

|

|
|
|

|
|

Example

Source host

FCP
device

SAN
fabric

SAN
fabric

SAN
fabric

SAN
fabric

KVM virtual server

FCP
device

z Systems
hardware

virtual block devices

vd<x1>vd<x0> vd<x2> vd<x3>

sd<v> sd<z>sd<y>sd<x>

dasd

dasd
<a>

FCP
channel

FCP
channel

FCP
channel

FICON
channel

FICON
channel

DASD
storage

controller

DASD

DASD

SCSI
disk

controller

disk

disk

<multi-
pathA>

<multi-
pathB>

SCSI tape
library

controller

medium
changer

drive

sg<1>sg<0> sg<2> sg<3>

virtual Ethernet device

OSA
channel

OSA
channel

enccw0.
m.dddd

bond0

<macvtap>

virtio-net
device

enccw0.
m.eeee

KVM virtual server

virtual block devices

vd<x1>vd<x0> vd<x2> vd<x3>

dasd

dasd
<a>

<multi-
pathA>

<multi-
pathB>

sg<1>sg<0> sg<2> sg<3>

virtual Ethernet device

bond0

<macvtap>

virtio-net
device

z Systems
hardware

Destination host

FICON
channel

FICON
channel

FCP
channel

FCP
channel

OSA
channel

OSA
channel

virtual
Ethernet
device

virtual
Ethernet
device

Figure 15. Example of a device setup on the source and destination hosts that allows the
migration of the virtual server using these devices

Chapter 15. Live migration 119

Host environments
These settings and conditions on the involved hosts are relevant for a successful
migration.

Hypervisor release

Newer hypervisor releases are compatible with earlier ones. A migration keeps the
libvirt-internal configuration. Especially the machine type of the virtual server is
not changed and still reflects the hypervisor release of the source host.

If you intend to migrate to a destination host with an earlier hypervisor release
than the one of the source host, modify the machine type of the virtual server to
the value that reflects the hypervisor release of the destination host (see also
Chapter 5, “Migration to a different hypervisor release,” on page 23).

Concurrency

Maximum number of concurrent connections
If you connect to the destination host using ssh, increase the maximum
number of unauthenticated concurrent connections to perform more than
10 concurrent migrations.
1. On the destination host, modify the OpenSSH SSH daemon

configuration file /etc/ssh/sshd_config. The MaxStartups parameter
specifies the maximum number of concurrent connections that have not
yet been authenticated. The default is 10, which is specified as follows:
#MaxStartups 10:30:100

To allow a maximum number of 100 unauthenticated concurrent
connections, change the MaxStartups parameter to:
#MaxStartups 100

2. Restart the SSH daemon:

[root@destination]# systemctl restart sshd.service

Migration port range
In a non-tunneled migration which has an URI of the form
qemu+ssh://<destination-host>/system, each virtual server that is
migrated uses a distinct destination port.

In addition, both tunneled and non-tunneled migrations use a separate
destination port for each virtual disk that is to be migrated.

By default, libvirt uses the destination ports in the range from 49152 to
49215 for a migration. If you need more than 64 destination ports
concurrently, increase the migration port range.

To allow for a backward migration, you might want to modify the
migration port range of the source host, too.

To increase the migration port range:
v Change the migration_port_max parameter in /etc/libvirt/qemu.conf to

a higher value than the default 49215.
v Make sure that the firewall configuration is changed to reflect the higher

destination port number (see “Firewall configuration” on page 121).

120 KVM Virtual Server Management - October 2016

|
|
|
|

|
|
|
|

|

|
|

|

|

|
||

|
|
|
|

|
|

|
|
|

|
|

|

|
|

|
|

Firewall configuration

Make sure that the firewall configuration of the involved systems allows access to
all required network resources.

Open the required migration port range in the firewall of the destination host. If
you modified the migration port range which is used by libvirt, open the
additional destination ports as well.

Example:

[root@destination]# firewall-cmd --zone=public --add-port=49152-49215/tcp \
--permanent
[root@destination]# firewall-cmd --reload

Deadlock prevention

Make sure that the migration is not blocked. In particular:
v Close all tape device nodes and unload online tape drives.
v A virtual server program should not be blocked by time-consuming or stalled

I/O operations, such as rewinding a tape.

Performance considerations

In most cases, live virtual server migration does not directly affect the host system
performance. However, it might have an impact if either the source system or the
destination system is heavily loaded or constrained in the areas of CPU utilization,
paging, or network bandwidth.

Phases of a live migration
The migration of a virtual server from a source to a destination host consists of
two phases, the live phase and the stopped phase.

Live phase

While the virtual server is running, its memory pages are transferred to the
destination host. During the live phase, the virtual server might continue to
modify memory pages. These pages are called dirty pages, which must be
retransmitted.

QEMU continuously estimates the time it will need to complete the migration
during the stopped phase. If this estimated time is less than the specified
maximum downtime for the virtual server, the virtual server enters the stopped
phase of the migration.

If the virtual server changes memory pages faster than the host can transfer them
to the destination, the migration command option --auto-converge can be used to
throttle down the CPU time of the virtual server until the estimated downtime is
less than the specified maximum downtime. If you do not specify this option, it
might happen that the virtual server never enters the stopped phase because there
are too many dirty pages to migrate.

This mechanism works for average virtual server workloads. Workloads that are
very memory intensive might require the additional specification of the --timeout

Chapter 15. Live migration 121

|

|
|

|
|
|

|

|
|
|
||

|

option. This option suspends the virtual server after a specified amount of time
and avoids the situation where throttling down the CPU cannot catch up with the
memory activity and thus, in the worst case, the migration operation never stops.

Stopped phase

During the stopped phase, the virtual server is paused. The host uses this
downtime to transfer the rest of the dirty pages and the virtual server's system
image to the destination.

If the virtual server makes use of storage keys, they are also migrated during this
phase.

Performing a live migration
These commands are useful in the context of a live migration.

Procedure
1. Optional: You may specify a tolerable downtime for a virtual server during a

migration operation by using the virsh migrate-setmaxdowntime command (see
“migrate-setmaxdowntime” on page 253). The specified value is used to
estimate the point in time when to enter the stopped phase.
You can still issue this command during the process of a migration operation:

virsh migrate-setmaxdowntime <VS> <milliseconds>

2. Optional: You might want to limit the bandwidth that is provided for a
migration.
To set or to modify the maximum bandwidth, use the virsh migrate-setspeed
command (see “migrate-setspeed” on page 254):

virsh migrate-setspeed <VS> --bandwidth <mebibyte-per-second>

You can display the maximum bandwidth that is used during a migration with
the virsh migrate-getspeed command (see “migrate-getspeed” on page 252):

virsh migrate-getspeed <VS>

3. To start a live migration of a virtual server, use the virsh migrate command
with the --live option (see “migrate” on page 249):

virsh migrate --live <command-options> <VS> qemu+ssh://<destination-host>/system

When virsh connects to the destination host via SSH, you will be prompted for
a password. See libvirt.org/remote.html to avoid entering a password.

<command-options>
Are options of the virsh migrate command.

<destination-host>
Is the name of the destination host.

<mebibyte-per-second>
Is the migration bandwidth limit in MiB/s.

<milliseconds>
Is the number of milliseconds used to estimate the point in time when
the virtual server enters the stopped phase.

122 KVM Virtual Server Management - October 2016

http://libvirt.org/remote.html

<VS> Is the name of the virtual server as specified in its domain
configuration-XML file.

a. Optional: The use of the --auto-converge and the --timeout options ensure
that the migration operation completes.

b. Optional: To avoid a loss of connectivity during a time-consuming
migration process, increase the virsh keepalive interval (see Chapter 25,
“Selected virsh commands,” on page 217):

virsh --keepalive-interval <interval-in-seconds>

The use of the virsh --keepalive-interval and --keepalive-count options
preserves the communication connection between the host that initiates the
migration and the libvirtd service on the source host during
time-consuming processes.
Use the keepalive options if:
v The virtual server is running a memory intensive workload, so that it

might need to be suspended to complete the migration.
v You make use of an increased timeout interval.

Defaults:

keepalive interval 5 seconds
keepalive count 6

These defaults can be changed in /etc/libvirt/libvirtd.conf.

Example:

virsh --keepalive-interval 10 migrate --live --persistent --undefinesource \
--timeout 1200 --verbose vserv1 qemu+ssh://kvmhost/system

This example increases the keepalive interval of the connection to the host
to 10 seconds.

c. Optional: If the virtual server accesses virtual block devices that are backed
by a file on the source host, these disks have to be migrated to the
destination host (disk migration).
Specify the option --copy-storage-all or --copy-storage-inc in
combination with the option --migrate-disks to copy files that back up
virtual block devices to the destination host.

Restriction:

v Disk migration is only possible for virtual disks that are configured
without I/O threads.

v Disk migration is only possible for writable virtual disks.
One example of a read-only disk is a virtual DVD. If in doubt, check your
domain configuration-XML. If the disk device attribute of a disk element
is configured as cdrom, or contains a readonly element, then the disk
cannot be migrated.

Example:

This example copies the qcow2 image /var/libvirt/images/vdd.qcow2 to
the destination host, assuming that vdd is configured as follows:

Chapter 15. Live migration 123

|
|
|
|

|
|
|

|
|
|

|

|
|

|

|
|
|
|

|

|
|

<disk type=“file” device=“disk”>
<driver name=“qemu” type=“qcow2” io=“native” cache=“none”/>
<source file=“/var/lib/libvirt/images/vdd.qcow2”/>
<target dev=“vdd” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x0004”/>

</disk>

1) Create a qcow2 image on the destination host:

[root@destination]# qemu-img create -f qcow2 \
/var/lib/libvirt/images/vdd.qcow2 1G

2) Issue the virsh migrate command on the source host:

[root@source]# virsh migrate --live --copy-storage-all --migrate-disks vdd \
vserv2 qemu+ssh://zhost/system

Results

The virtual server is not destroyed on the source host until it has been completely
migrated to the destination host.

In the event of an error during migration, the resources on the destination host are
cleaned up and the virtual server continues to run on the source host.

Example
v This example starts a live migration of the virtual server vserv3 to the

destination host zhost. The virtual server will be transient on zhost, that is, after
vserv3 is stopped on zhost, its definition will be deleted. After a successful
migration, the virtual server will be destroyed on the source host, but still be
defined.
If the migration operation is not terminated within three hundred seconds, the
virtual server is suspended while the migration continues.

virsh migrate --live --auto-converge --timeout 300 vserv3 qemu+ssh://zhost/system

v This example starts a live migration of vserv3 to the destination host zhost. After
a successful migration, vserv3 will be destroyed and undefined on the source
host. The virtual server definition will be persistent on the destination host.
If the migration operation is not terminated within three hundred seconds, the
virtual server is suspended while the migration continues.

virsh migrate --live --auto-converge --timeout 300 --undefinesource --persistent \
vserv3 qemu+ssh://zhost/system

What to do next
v You can verify whether the migration completed successfully by looking for a

running status of the virtual server on the destination, for example by using the
virsh list command:

virsh list

Id Name State

10 kvm1 running

124 KVM Virtual Server Management - October 2016

||
|
|
|
|
|
|

|

|
|
||

|

|
|
||

v You can cancel an ongoing migration operation by using the virsh domjobabort
command:

virsh domjobabort <VS>

Chapter 15. Live migration 125

126 KVM Virtual Server Management - October 2016

Chapter 16. Managing system resources

Use libvirt commands to manage the system resources of a defined virtual server,
such as virtual CPUs.

Before you begin
v Ensure that the libvirt daemon is running on the host.
v Use the virsh list command (see “list” on page 245) to verify whether the

virtual server is defined:

virsh list --all

If the virtual server is not displayed, see “Defining a virtual server” on page 102.

About this task
v “Managing virtual CPUs” on page 128

Modify the portion of the run time that is assigned to the CPUs of a defined
virtual server.

Related reference:
Chapter 25, “Selected virsh commands,” on page 217
These virsh commands might be useful for you. They are described with a subset
of options that are valuable in this context.

© Copyright IBM Corp. 2015, 2016 127

Managing virtual CPUs
Modify the number of virtual CPUs and the portion of the run time that is
assigned to the virtual CPUs of a defined virtual server.

About this task
v “Modifying the number of virtual CPUs”

describes how to modify the number of virtual CPUs of a running virtual server.
v “Modifying the virtual CPU weight” on page 131

describes how to modify the portion of the run time that is assigned to the
virtual server CPUs.

Related concepts:
Chapter 18, “CPU management,” on page 141
Virtual CPUs are realized as threads within the host, and scheduled by the process
scheduler.
Related tasks:
“Configuring virtual CPUs” on page 62
Configure virtual CPUs for a virtual server.

Modifying the number of virtual CPUs
Modify the number of virtual CPUs or the maximum number of available virtual
CPUs for a defined virtual server.

About this task

The number of virtual CPUs that you can assign to a virtual server is limited by
the maximum number of available virtual CPUs. Both numbers are configured
with the vcpu element and can be modified during operation.

To display the number of virtual CPUs, use the virsh vcpucount command. For
example, issue:

virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 3
current live 3

where

maximum config
Specifies the maximum number of virtual CPUs that can be made available
for the virtual server after the next restart.

maximum live
Specifies the maximum number of virtual CPUs that can be made available
for the running or paused virtual server.

current config
Specifies the actual number of virtual CPUs which will be available for the
virtual server with the next restart.

current live
Specifies the actual number of virtual CPUs which are available for the
running or paused virtual server.

128 KVM Virtual Server Management - October 2016

|

|

|

|

|

|
|

|

|
|
|

|
|

|
|
|
|
|
||

|

|
|
|

|
|
|

|
|
|

|
|
|

You can modify the following values:

maximum config
The maximum value can be modified only in combination with a virtual
server restart.

The maximum number of available virtual CPUs is not limited. If no value
is specified, the maximum number of available virtual CPUs is 1.

current config
The current value can be modified in combination with a virtual server
restart. It is limited by the maximum number of available virtual CPUs.
Consider to set the surplus virtual CPUs offline until the next restart.

current live
You can increase the actual number of virtual CPUs for a running or
paused virtual server. This number is limited by the maximum number of
available CPUs.

Additional virtual CPUs are provided in the halted state. Depending on
the guest setup, the virtual server user has to bring them online.

Procedure

Use the virsh setvcpus command to modify the number of virtual CPUs or the
maximum number of available virtual CPUs for a defined virtual server (see
“setvcpus” on page 259).
v Modify maximum config:

To modify the maximum number of available virtual CPUs with the next virtual
server restart, use the --maximum and the --config options:

virsh setvcpus <VS> <max-number-of-CPUs> --maximum --config

This modification takes effect after the termination of the virtual server and a
subsequent restart. Please note that a virtual server reboot does not modify the
libvirt-internal configuration.

v Modify current config:

To increase or reduce the number of virtual CPUs with the next virtual server
restart, use the --config option:

virsh setvcpus <VS> <number-of-CPUs> --config

The virtual CPUs are not removed until the next virtual server reboot. Until
then, the virtual server user might set the corresponding number of virtual
CPUs offline.

v Modify current live:

To increase the number of virtual CPUs of a running or paused virtual server,
use the --live option:

virsh setvcpus <VS> <number-of-CPUs> --live

The virtual server user has to bring the additional virtual CPUs online.

<VS> Is the name of the virtual server as specified in its domain
configuration-XML file.

Chapter 16. System resources 129

|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|

|

|
|

|
||

|
|
|

|

|
|

|
||

|
|
|

|

|
|

|
||

|

||
|

<max-number-of-CPUs>
Is the maximum number of available virtual CPUs for the virtual server
after the next restart.

<number-of-CPUs>
Is the number of virtual CPUs assigned to the virtual server.

Example
v Change the maximum number of available virtual CPUs with the next virtual

server restart.

virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 4
current live 4

virsh setvcpus vserv1 6 --maximum --config

virsh vcpucount vserv1
maximum config 6
maximum live 5
current config 4
current live 4

v You cannot remove virtual CPUs from a running virtual server.
1. This example removes two virtual CPUs from the virtual server vserv1 with

the next virtual server restart:

virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 4
current live 4

virsh setvcpus vserv1 2 --config

virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 2
current live 4

2. To set the CPUs offline until the next virtual server restart, the virtual server
user might set the virtual CPUs offline:

[root@guest:] # chcpu -d 2
CPU 2 disabled
[root@guest:] # chcpu -d 3
CPU 3 disabled

v Add virtual CPUs to a running virtual server.
1. This example adds a virtual CPU to the virtual server vserv1:

130 KVM Virtual Server Management - October 2016

|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
||

|

|

virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 3
current live 3

virsh setvcpus vserv1 4 --live

virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 3
current live 4

2. To set the additional CPU online, the virtual server user might enter:

[root@guest:] # chcpu -e 3
CPU 3 enabled

Modifying the virtual CPU weight
Modify the share of run time that is assigned to a virtual server.

About this task

The available CPU time is shared between the running virtual servers. Each virtual
server receives the share that is configured with the shares element, or the default
value.

To display the current CPU weight of a virtual server, enter:

virsh schedinfo <VS>

You can modify this share for a running virtual server or persistently across virtual
server restarts.

Procedure
v To modify the current CPU weight of a running virtual server, use the virsh

schedinfo command with the --live option (see “schedinfo” on page 257):

virsh schedinfo <VS> --live cpu_shares=<number>

v To modify the CPU weight in the libvirt-internal configuration of the virtual
server, which will persistently affect the CPU weight beginning with the next
restart, use the --config option:

virsh schedinfo <VS> --config cpu_shares=<number>

<number>
Specifies the CPU weight.

<VS> Is the name of the virtual server.

Example
v A virtual server with a CPU weight of 2048 receives twice as much run time as a

virtual server with a CPU weight of 1024.

Chapter 16. System resources 131

|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|
|
||

|

v The following example modifies the CPU weight of vserv1 to 2048 while it is
running:

virsh schedinfo vserv1 --live cpu_shares=2048
Scheduler : posix
cpu_shares : 2048
vcpu_period : 100000
vcpu_quota : -1
emulator_period: 100000
emulator_quota : -1

v The following example changes the libvirt-internal configuration, which will
persistently affect the CPU weight, beginning with the next restart of vserv1.

virsh schedinfo vserv1 --config cpu_shares=2048
Scheduler : posix
cpu_shares : 2048
vcpu_period : 0
vcpu_quota : 0
emulator_period: 0
emulator_quota : 0

Related tasks:
“Tuning virtual CPUs” on page 63
Regardless of the number of its virtual CPUs, the CPU weight determines the
shares of CPU time which is dedicated to a virtual server.

132 KVM Virtual Server Management - October 2016

Chapter 17. Managing devices

Add, remove, or access devices of a running virtual server.

Before you begin
v Ensure that the libvirt daemon is running on the host.
v Use the virsh list command (see “list” on page 245) to verify whether the

virtual server is defined:

virsh list --all

If the virtual server is not displayed, see “Defining a virtual server” on page 102.

About this task
v “Attaching a device” on page 134

Dynamically attach a hotplug device to a virtual server. If the virtual server is
running, the device is hotplugged.

v “Detaching a device” on page 135
Dynamically detach a hotplug device from a virtual server. If the virtual server
is running, the device is unplugged.

v “Replacing a virtual DVD” on page 135
Remove the currently provided ISO image, or provide a different one.

v “Connecting to the console of a virtual server” on page 137
Connect to the console of a virtual server.

Related reference:
Chapter 25, “Selected virsh commands,” on page 217
These virsh commands might be useful for you. They are described with a subset
of options that are valuable in this context.

© Copyright IBM Corp. 2015, 2016 133

Attaching a device
Dynamically attach a hotplug device to a virtual server. If the virtual server is
running, the device is hotplugged.

Before you begin
v Ensure that the new device is not yet assigned to the virtual server.

To list the devices that are assigned to a virtual server, you can
– Display the current libvirt-internal configuration.
– Use the virsh domblklist command to display a list of currently assigned

block devices or the virsh domiflist command to display a list of currently
assigned interface devices.

v Ensure that there is a device configuration-XML file for the device.

Procedure
1. Optional: If you do not plan to migrate the virtual disk in the context of a live

migration, provide an I/O thread for each virtual block device to improve the
performance of a disk access.
If you attach a virtual block device, and the current libvirt-internal
configuration does not provide an I/O thread for the hotplug device:
Add an I/O thread dedicated for the hotplug device by using the virsh
iothreadadd command (see “iothreadadd” on page 240):

virsh iothreadadd <VS> <IOthread-ID>

2. Attach the hotplug device using the virsh attach-device command (see
“attach-device” on page 219).
This command attaches a hotplug device that remains available for the virtual
server until the virtual server is terminated or you detach the device:

virsh attach-device <VS> <device-configuration-XML-filename>

This command persistently attaches a hotplug device to a virtual server with
the next virtual server restart:

virsh attach-device <VS> <device-configuration-XML-filename> --config

<device-configuration-XML-filename>
Is the name of the device configuration-XML file.

<IOthread-ID>
Is the ID of the I/O thread to be added to the virtual server. Be sure
that the I/O thread ID matches the I/O thread ID which is used in the
hotplug device configuration-XML.

<VS> Is the name of the virtual server as defined in the domain
configuration-XML file.

Related concepts:
“I/O threads” on page 145
I/O threads are dedicated to perform I/O operations on virtual block devices.
Related tasks:
Chapter 11, “Configuring devices,” on page 73
When you configure storage and network devices, you specify the physical
hardware on which the resources are based.

134 KVM Virtual Server Management - October 2016

|
|
|

“Displaying the current libvirt-internal configuration” on page 114
The current libvirt-internal configuration is based on the domain
configuration-XML file of the defined virtual server, and is enhanced by
libvirt-internal information and the dynamically attached devices.

Detaching a device
Dynamically detach a hotplug device from a virtual server. If the virtual server is
running, the device is unplugged.

Before you begin

Ensure that the device to be detached was dynamically attached to the virtual
server.

To list the devices that are assigned to a virtual server, you can display the current
libvirt-internal configuration. To see whether the device was dynamically attached
to the virtual server, compare it to your copy of the domain configuration-XML
file.

Procedure
1. Detach the device using the virsh detach-device command (see

“detach-device” on page 226):

virsh detach-device <VS> <device-configuration-XML-filename>

2. Optional: If you detach a virtual block device, you might want to remove the
I/O thread which is dedicated for the hotplug device.
The virsh iothreadinfo command displays the I/O threads that are available
for a virtual server.
Use the virsh iothreaddel command to remove an I/O thread (see
“iothreaddel” on page 242):

virsh iothreaddel <VS> <IOthread-ID>

<device-configuration-XML-filename>
Is the name of the device configuration-XML file.

<IOthread-ID>
Is the ID of the I/O thread to be deleted from the virtual server.

<VS> Is the name of the virtual server as defined in the domain
configuration-XML file.

Replacing a virtual DVD
The virtual server accesses a provided ISO image as a virtual DVD through the
virtual SCSI-attached CD/DVD drive. You can remove a virtual DVD, and provide
a different one.

Before you begin

Make sure that the virtual DVD drive is configured as a virtual SCSI device (see
“Configuring a virtual SCSI-attached CD/DVD drive” on page 91).

Chapter 17. Devices 135

About this task

The guest is able to mount and to unmount the file system residing on a virtual
DVD. You can remove the ISO image which represents the virtual DVD and
provide a different one during the life time of the virtual server. If you try to
remove an ISO image that is still in use by the guest, QEMU forces the guest to
release the file system.

Procedure
1. Optional: Remove the current ISO image by using the virsh change-media

command with the --eject option (see “change-media” on page 221):

virsh change-media <VS> <logical-device-name> --eject

2. Provide a different ISO image by using the virsh change-media command with
the --insert option:

virsh change-media <VS> <logical-device-name> --insert <iso-image>

In case the current ISO image has not been removed before, it is replaced by
the new one.

<iso-image>
Is the fully qualified path to the ISO image on the host.

<logical-device-name>
Identifies the virtual SCSI-attached CD/DVD drive by its logical device
name, which was specified with the target dev attribute in the domain
configuration-XML file.

<VS> Is the name of the virtual server as defined in the domain
configuration-XML file.

Example

After the guest has unmounted the file system on the virtual DVD, this example
removes the currently provided virtual DVD from the virtual DVD drive:

virsh domblklist vserv1
Target Source
--
vda /dev/storage1/vs1_disk1
sda /var/lib/libvirt/images/cd2.iso

virsh change-media vserv1 sda --eject
Successfully ejected media.

virsh domblklist vserv1
Target Source
--
vda /dev/storage1/vs1_disk1
sda -

If the virtual DVD is still in use by the guest, the change-media command with the
--eject option forces the guest to unmount the file system.

This example inserts a virtual DVD, which is represented by the ISO image, into a
virtual DVD drive:

136 KVM Virtual Server Management - October 2016

virsh change-media vserv1 sda --insert /var/lib/libvirt/images/cd2.iso
Successfully inserted media.

Connecting to the console of a virtual server
Open a console when you start a virtual server, or connect to the console of a
running virtual server.

Procedure

Connect to a pty console of a running virtual server by using the virsh console
command (see “console” on page 223):

virsh console <VS>

However, if you want to be sure that you do not miss any console message,
connect to the console when you start a virtual server by using the --console
option (see “start” on page 261):

virsh start <VS> --console

What to do next

To leave the console, press Control and Right bracket (Ctrl+]) when using the US
keyboard layout.
Related tasks:
“Starting a virtual server” on page 106
Use the virsh start command to start a shut off virtual server.
“Configuring the console” on page 67
Configure the console by using the console element.

Chapter 17. Devices 137

138 KVM Virtual Server Management - October 2016

Part 5. Best practices and performance considerations

Chapter 18. CPU management 141
Linux scheduling 141
CPU weight 142

Chapter 19. Storage management 145
I/O threads 145
Logical volume management 145

Avoid common pitfalls and tune the virtual server.

© Copyright IBM Corp. 2015, 2016 139

140 KVM Virtual Server Management - October 2016

Chapter 18. CPU management

Virtual CPUs are realized as threads within the host, and scheduled by the process
scheduler.
Related tasks:
“Configuring virtual CPUs” on page 62
Configure virtual CPUs for a virtual server.
“Managing virtual CPUs” on page 128
Modify the number of virtual CPUs and the portion of the run time that is
assigned to the virtual CPUs of a defined virtual server.

Linux scheduling
Based on the hardware layout of the physical cores, the Linux scheduler maintains
hierarchically ordered scheduling domains.

Basic scheduling domains consist of those processes that are run on physically
adjacent cores, such as the cores on the same chip. Higher level scheduling
domains group physically adjacent scheduling domains, such as the chips on the
same book.

The Linux scheduler is a multi-queue scheduler, which means that for each of the
logical host CPUs, there is a run queue of processes waiting for this CPU. Each
virtual CPU waits for its execution in one of these run queues.

Moving a virtual CPU from one run queue to another is called a (CPU) migration.
Be sure not to confuse the term “CPU migration” with a “live migration”, which is
the migration of a virtual server from one host to another. The Linux scheduler
might decide to migrate a virtual CPU when the estimated wait time until the
virtual CPU will be executed is too long, the run queue where it is supposed to be
waiting is full, or another run queue is empty and needs to be filled up.

Migrating a virtual CPU within the same scheduling domain is less cost intensive
than to a different scheduling domain because of the caches being moved from one
core to another. The Linux scheduler has detailed information about the migration
costs between different scheduling domains or CPUs. Migration costs are an
important factor for the decision if the migration of a virtual CPU to another host
CPU is valuable.

© Copyright IBM Corp. 2015, 2016 141

|

|

|

libvirt provides means to assign virtual CPUs to groups of host CPUs in order to
minimize migration costs. This process is called CPU pinning. CPU pinning forces
the Linux scheduler to migrate virtual CPUs only between those host CPUs of the
specified group. Likewise, the execution of the user space process or I/O threads
can be assigned to groups of host CPUs.

Attention: Do not use CPU pinning, because a successful CPU pinning depends
on a variety of factors which can change over time:
v CPU pinning can lead to the opposite effect of what was desired when the

circumstances for which it was designed change. This may occur, for example,
when the host reboots, the workload on the host changes, or the virtual servers
are modified.

v Deactivating operating CPUs and activating standby CPUs (CPU hotplug) on the
host may lead to a situation where host CPUs are no longer available for the
execution of virtual server threads after their reactivation.

CPU weight
The host CPU time which is available for the execution of the virtual CPUs
depends on the system utilization.

The available CPU time is divided up between the virtual servers running on the
host.

The Linux scheduler and the Linux kernel feature cgroups allocate the upper limit
of CPU time shares (or simply: CPU shares) which a virtual server is allowed to use
based on the CPU weight of all virtual servers running on the host.

You can configure the CPU weight of a virtual server, and you can modify it
during operation.

The CPU shares of a virtual server are calculated by forming the virtual server's
weight-fraction.

.

.

.

.

.

.

.

.

.

.

.

.
Run queues

Host CPUs

.

migration costs

m
ig

ra
tio

n
c
o

s
ts

m
ig

ra
tio

n
c
o
s
ts

logical
CPU

logical
CPU

logical
CPU

logical
CPU

Scheduling
domain

Scheduling
domain

Scheduling
domain

Figure 16. Linux scheduling

142 KVM Virtual Server Management - October 2016

Example:

Virtual server CPU weight Weight-sum
Weight-
fraction

CPU shares

A 1024 3072 1024/3072 1/3

B 2048 3072 2048/3072 2/3

The number of virtual CPUs does not affect the CPU shares of a virtual server.

Example:

Virtual server CPU weight Number of virtual CPUs

A 1024 2

B 1024 4

The CPU shares are the same for both virtual servers:

Virtual server CPU weight Weight-sum
Weight-
fraction

CPU shares

A 1024 2048 1024/2048 1/2

B 1024 2048 1024/2048 1/2

The CPU shares of each virtual server are spread across its virtual CPUs,
such as:

CPU shares on

host CPU 0:

CPU shares on

host CPU 1:

A’s virtual

CPU 0

A’s virtual

CPU 1

B’s virtual

CPU 0

B’s virtual

CPU 1

B’s virtual

CPU 2

B’s virtual

CPU 3

50%

25%

25%

Steal time Steal time

Host

overhead

Host

overhead

50%

25%

25%

Chapter 18. CPU management 143

144 KVM Virtual Server Management - October 2016

Chapter 19. Storage management

Consider these aspects when setting up and configuring the virtual server storage.

I/O threads
I/O threads are dedicated to perform I/O operations on virtual block devices.

They are used for persistent devices as well as for hotplug devices.

For a good performance of I/O operations, provide one I/O thread for each virtual
block device. Estimate no more than one or two I/O threads per host CPU and no
more I/O threads than virtual block I/O devices that will be available for the
virtual server. Too many I/O threads will reduce system performance by increasing
the system overhead.

Restriction: Do not configure I/O threads for virtual disks that you plan to
migrate in the context of a live migration. Disk migration is only possible for
virtual disks that are configured without I/O threads.

You can configure I/O threads in the domain configuration-XML of a virtual
server. For more information, see:
v “Configuring persistent devices” on page 66
v “Configuring a DASD or SCSI disk” on page 76

When you attach a virtual block device to a virtual server, you can provide an I/O
thread for this device during operation and remove it after use. For more
information, see:
v “Attaching a device” on page 134
v “Detaching a device” on page 135

Logical volume management
Consider these aspects when the virtual server utilizes logical volumes.

Path redundancy

As discussed in Chapter 2, “DASDs and SCSI disks as virtual block devices,” on
page 9, it is important to ensure that you provide path redundancy for all physical
volumes. Especially, all LVM physical volumes on SCSI disks have to be assembled
from device mapper-created device nodes.

Data integrity

There are two ways to manage logical volumes:
v On the host:

This example shows multipathed DASDs. The logical volumes that are managed
on the host are configured as virtual block devices.

© Copyright IBM Corp. 2015, 2016 145

|
|
|

v On the virtual server:
When you configure physical volumes as virtual block devices, the logical
volumes are managed on the virtual server. In this case you need to prohibit a
logical volume management of the configured physical volumes on the host.
Else, the host might detect the physical volumes and try to manage them on the
host, too. Storing host metadata on the physical volumes might cause a loss of
virtual server data.

To prohibit a logical volume management for physical volumes that are
managed on the virtual server, provide an explicit whitelist in
/etc/lvm/lvm.conf which explicitly contains all disk block devices to be
managed on the host, or a blacklist that contains all physical volumes that are to
be managed on the virtual server.
The filter section in the device settings allows to specify a whitelist using the
prefix “a”, and to specify a blacklist using the prefix “r”.

blk

.

blk

Physical volumes

Extents

Volume group

Logical volumes

Virtual server

Virtual hardware

KVM host

z Systems
hardware

.

.

dasd
<a>

dasd

blk

.

blk

Physical volumes

Extents

Volume group

Logical volumes

Virtual server

Virtual hardware

KVM host

z Systems
hardware

.

dasd
<a>

dasd

146 KVM Virtual Server Management - October 2016

Example

This whitelist in /etc/lvm/lvm.conf filters the physical volumes which are to be
managed on the host. The last line (“r|.*|”) denotes that all other physical
volumes that are not listed here are not to be managed on the host.

devices
{filter = ["a|/dev/mapper/36005076305ffc1ae00000000000021d5p1|",

"a|/dev/mapper/36005076305ffc1ae00000000000021d7p1|",
"a|/dev/disk/by-path/ccw-0.0.1607-part1|",
"r|.*|"]

}

The following physical volumes are to be managed on the host:
v /dev/mapper/36005076305ffc1ae00000000000021d5p1

v /dev/mapper/36005076305ffc1ae00000000000021d7p1

v /dev/disk/by-path/ccw-0.0.1607-part1

You can verify that SCSI disks are referenced correctly by issuing the following
pvscan command:

pvscan -vvv 2>&1 | fgrep ’/dev/sd’
...

/dev/sda: Added to device cache
/dev/block/8:0: Aliased to /dev/sda in device cache
/dev/disk/by-path/ccw-0.0.50c0-zfcp-0x1234123412341234:\
0x0001000000000000: Aliased to /dev/sda in device cache

...
/dev/sda: Skipping (regex)

The output must contain the string “Skipping (regex)” for each SCSI disk standard
device name which is configured for the virtual server.

Related publications

KVM for IBM z Systems: System Administration, SC27-8237

Chapter 19. Storage management 147

148 KVM Virtual Server Management - October 2016

Part 6. Diagnostics and troubleshooting

Chapter 20. Logging 151
Log messages 151
Specifying the logging level of the libvirt log
messages 151

Chapter 21. Dumping 153

Creating a virtual server dump on the host . . . 153
Creating a dump on the virtual server 153

Chapter 22. Collecting performance metrics . . 155

Monitor and display information that helps to diagnose and solve problems.

© Copyright IBM Corp. 2015, 2016 149

|
|

150 KVM Virtual Server Management - October 2016

Chapter 20. Logging

Adapt the logging facility to your needs.

Log messages
These logs are created.

libvirt log messages
You define where libvirt log messages are stored. By default they will be
stored in the system journal.

/var/log/libvirt/qemu/<VS>.log
QEMU log file of the specified virtual server.

<VS> is the name of the virtual server.

Console log file
If the log element is specified in the console configuration, the log file
attribute indicates the console log file.

Example:

The following console configuration specifies the console log file
/var/log/libvirt/qemu/vserv-cons0.log:
<devices>

...
<console type=“pty”>

<target type=“sclp” port=“0”/>
<log file=“/var/log/libvirt/qemu/vserv-cons0.log” append=“on”/>

</console>
<devices/>

Specifying the logging level of the libvirt log messages
Specify the level of logging information that is displayed in the libvirt log
messages file.

About this task

For further information, see: libvirt.org/logging.html

Procedure
1. In the libvirt configuration file /etc/libvirt/libvirtd.conf, specify:

log_level = <n>

Where <n> is the logging level:

4 Displays errors.

3 Is the default logging level, which logs errors and warnings.

2 Provides more information than logging level 3.

1 Is the most verbose logging level.
2. Restart the libvirt daemon to enable the changes.

© Copyright IBM Corp. 2015, 2016 151

|
|
|

|

|
|

|
|
|
|
|
|
|

|
|

|
|

https://libvirt.org/logging.html

systemctl restart libvirtd.service

152 KVM Virtual Server Management - October 2016

Chapter 21. Dumping

Create dumps of a crashed virtual server on the host or on the virtual server.

Creating a virtual server dump on the host
When the virtual server is crashed, you can create a dump on the host.

Procedure

Create a dump of the crashed virtual server using the virsh dump command with
the --memory-only option:

virsh dump --memory-only <VS> <dumpfile>

<dumpfile>
Is the name of the dump file. If no fully qualified path to the dump file is
specified, it is written to the current working directory of the user who
issues the virsh dump command.

<VS> Is the name of the virtual server as specified in its domain
configuration-XML file.

Results

The dump is written to the file <dumpfile>.

What to do next

To inspect the dump, enter the command:

crash <dumpfile> <kernel-image-filename>

<kernel-image-filename>
Is the name of the kernel image file of the guest running on the dumped
virtual server.

Creating a dump on the virtual server
When a virtual server is crashed, you can provide a dump for the virtual server
user.

Before you begin

Ensure that kdump is installed and enabled on the virtual server.

If kdump is not enabled on the virtual server, the following procedure causes only
a restart of the virtual server.

For more information about kdump, see Using the Dump Tools, SC33-8412.

© Copyright IBM Corp. 2015, 2016 153

Procedure
v In case of a virtual server kernel panic, a dump is automatically created.
v In case of a non-responding virtual server, you can trigger a restart interrupt.

The interrupt handling of a restart interrupt depends on the PSW restart
configuration and ends up in a dump.
To trigger a restart interrupt, use the virsh inject-nmi command:

virsh inject-nmi <VS>

<VS> Is the name of the virtual server as specified in its domain
configuration-XML file.

Results

The virtual server creates a dump and then restarts in kdump mode.

What to do next

To verify your action, you might want to see the dump on the virtual server:
1. Log in to the virtual server as root.
2. Use the makedumpfile command to create a dump file from the vmcore file:

[root@guest:] # makedumpfile -c <vmcore> <dumpfile>

3. To inspect the dump, enter:

[root@guest:] # crash <dumpfile> <kernel-image-filename>

The crash command is available with the kernel-debuginfo package.

<dumpfile>
Is the fully qualified path and file name of the dump file.

<kernel-image-filename>
Is the name of the kernel image file of the guest running on the
dumped virtual server.

<vmcore>
Is the fully qualified path and file name of the vmcore file of the guest.

154 KVM Virtual Server Management - October 2016

Chapter 22. Collecting performance metrics

You can monitor virtual server machine code instructions.

Before you begin
v Make sure that your kernel is built using the common source options

CONFIG_TRACEPOINTS, CONFIG_HAVE_PERF_EVENTS, and CONFIG_PERF_EVENTS.
v Make sure that the perf tool is installed.

You can check this by issuing:

perf list
...
kvm:kvm_s390_sie_enter [Tracepoint event]
...

If the command returns a list of supported events, such as the tracepoint event
kvm_s390_sie_enter, the tool is installed.

Procedure

You collect, record, and display performance metrics with the perf kvm stat
command.
v The record subcommand records performance metrics and stores them in the file

perf.data.guest.
– The perf tool records events until you terminate it by pressing Control and c

(Ctrl+c).
– To display the recorded data, use the report subcommand.
– It is recommended to save perf.data.guest before you collect new statistics,

because a new record may overwrite this file.
v The live subcommand displays the current statistics without saving them.

The perf tool displays events until you terminate it by pressing Control and c
(Ctrl+c).

© Copyright IBM Corp. 2015, 2016 155

Example
./perf kvm stat record -a
^C[perf record: Woken up 7 times to write data]
[perf record: Captured and wrote 13.808 MB perf.data.guest (~603264 samples)]

./perf kvm stat report

Analyze events for all VMs, all VCPUs:

VM-EXIT Samples Samples% Time% Min Time Max Time Avg time

Host interruption 14999 35.39% 0.39% 0.45us 1734.88us 0.82us (+- 19.59%)
DIAG (0x44) time slice end 13036 30.76% 0.57% 1.06us 1776.08us 1.39us (+- 9.81%)

DIAG (0x500) KVM virtio functions 13011 30.70% 1.90% 1.15us 2144.75us 4.65us (+- 5.08%)
0xE5 TPROT 512 1.21% 0.01% 0.79us 2.18us 0.83us (+- 0.42%)
0xB2 TSCH 406 0.96% 0.19% 7.35us 109.43us 14.95us (+- 2.97%)
0xB2 SERVC 117 0.28% 0.15% 10.97us 339.00us 40.46us (+- 9.17%)

External request 113 0.27% 0.01% 0.75us 2.58us 1.56us (+- 1.55%)
0xB2 STSCH 57 0.13% 0.02% 7.30us 26.40us 9.47us (+- 5.99%)
Wait state 40 0.09% 96.48% 3334.30us 464600.00us 76655.28us (+- 32.97%)
0xB2 MSCH 14 0.03% 0.00% 7.22us 9.19us 7.74us (+- 2.13%)
0xB2 SSCH 14 0.03% 0.01% 8.67us 35.41us 16.16us (+- 16.38%)
0xB2 CHSC 10 0.02% 0.00% 7.51us 22.90us 11.06us (+- 15.20%)

I/O request 8 0.02% 0.00% 1.37us 1.97us 1.55us (+- 5.77%)
0xB2 STPX 8 0.02% 0.00% 1.04us 7.10us 1.98us (+- 37.25%)
0xB2 STSI 7 0.02% 0.00% 1.65us 62.09us 22.26us (+- 41.95%)
0xB2 STIDP 4 0.01% 0.00% 1.12us 3.62us 2.62us (+- 21.07%)

SIGP set architecture 3 0.01% 0.00% 1.05us 2.68us 1.60us (+- 33.74%)
0xB2 STAP 3 0.01% 0.00% 1.05us 7.61us 3.39us (+- 62.25%)
0xB2 STFL 3 0.01% 0.00% 1.78us 3.88us 2.84us (+- 21.31%)

DIAG (0x204) logical-cpu utilization 2 0.00% 0.00% 4.58us 39.48us 22.03us (+- 79.19%)
DIAG (0x308) ipl functions 2 0.00% 0.01% 19.34us 329.25us 174.30us (+- 88.90%)

DIAG (0x9c) time slice end directed 1 0.00% 0.00% 1.09us 1.09us 1.09us (+- 0.00%)
0xB2 SPX 1 0.00% 0.00% 4.58us 4.58us 4.58us (+- 0.00%)
0xB2 SETR 1 0.00% 0.00% 56.97us 56.97us 56.97us (+- 0.00%)
0xB2 SSKE 1 0.00% 0.25% 7957.94us 7957.94us 7957.94us (+- 0.00%)
0xB2 STCRW 1 0.00% 0.00% 11.24us 11.24us 11.24us (+- 0.00%)

DIAG (0x258) page-reference services 1 0.00% 0.00% 4.87us 4.87us 4.87us (+- 0.00%)
0xB9 ESSA 1 0.00% 0.00% 8.72us 8.72us 8.72us (+- 0.00%)
0xEB LCTLG 1 0.00% 0.00% 9.27us 9.27us 9.27us (+- 0.00%)

Total Samples:42377, Total events handled time:3178166.35us.

What to do next

For more information about the perf subcommand kvm stat, see the man page or
issue the full subcommand with the --help option:

►► perf kvm stat record --help
report
live

►◄

With the collected statistics, you can watch the virtual server behavior and time
consumption and then analyze the recorded events. So you may find hints for
possible sources of error.
v You can find a description of the general instructions in the z/Architecture®

Principles of Operation, SA22-7832, for example:

Mnemonic Instruction Opcode

TPROT TEST PROTECTION E501

TSCH TEST SUBCHANNEL B235

v Signal-processor orders (SIGP) are also described in the z/Architecture Principles of
Operation, SA22-7832.

v Table 1 on page 157 lists all diagnoses (DIAG) as supported by KVM on z
Systems.

156 KVM Virtual Server Management - October 2016

Table 1. Supported Linux diagnoses

Number Description Linux use
Required/
Optional

0x010 Release pages CMM Required

0x044 Voluntary time-slice end In the kernel for spinlock and
udelay

Required

0x09c Voluntary time slice
yield

Spinlock Optional

0x258 Page-reference services In the kernel, for pfault Optional

0x288 Virtual server time
bomb

The watchdog device driver Required

0x308 Re-ipl Re-ipl and dump code Required

0x500 Virtio functions Operate virtio-ccw devices Required

Required means that a function is not available without the diagnose; optional
means that the function is available but there might be a performance impact.
You may also find other DIAG events on your list, but those are not supported
by KVM on z Systems. A list of all Linux diagnoses is provided in Device
Drivers, Features, and Commands, SC33-8411.

Chapter 22. Performance metrics 157

158 KVM Virtual Server Management - October 2016

Part 7. Reference

Chapter 23. Virtual server life cycle 161
shut off 162
running 163
paused 164
crashed 165
in shutdown. 166

Chapter 24. Selected libvirt XML elements . . . 167
<adapter> as child element of <source> 169
<address> as child element of <controller>, <disk>,
<interface>, and <memballoon> 170
<address> as child element of <hostdev> or <disk> 171
<address> as child element of <source> 172
<backend> 173
<boot> 174
<cipher> 175
<cmdline> 176
<console> 177
<controller> 178
<cputune> 179
<devices> 180
<disk> 181
<domain> 182
<driver> as child element of <disk> 183
<emulator> 185
<geometry> 186
<hostdev> 187
<initrd> 188
<interface> 189
<iothreads> 190
<kernel> 191
<keywrap> 192
<log> 193
<mac>. 194
<memballoon> 195
<memory> 196
<model> 198
<name> 199
<on_crash> 200
<on_reboot>. 201
<os> 202
<readonly> 203
<rng> 204
<shareable> 205
<shares> 206
<source> as child element of <disk>. 207
<source> as child element of <hostdev> 208
<source> as child element of <interface> 209
<target> as child element of <console> 210
<target> as child element of <disk> 211

<type> 212
<vcpu> 213
<virtualport> 214
<watchdog> 215

Chapter 25. Selected virsh commands 217
attach-device 219
change-media 221
console 223
define 224
destroy 225
detach-device 226
domblklist 228
domblkstat 229
domiflist 231
domifstat 232
dominfo 233
domjobabort. 234
domstate 235
dump 236
dumpxml. 237
edit. 238
inject-nmi 239
iothreadadd 240
iothreaddel 242
iothreadinfo 244
list 245
managedsave 247
migrate 249
migrate-getspeed 252
migrate-setmaxdowntime 253
migrate-setspeed 254
reboot 255
resume 256
schedinfo 257
shutdown 258
setvcpus 259
start 261
suspend 263
undefine 264
vcpucount 265

Chapter 26. Selected QEMU commands. . . . 267
QEMU monitor commands 267
Examples for the use of the qemu-img command 267

Chapter 27. Hypervisor information for the
virtual server user 269

Get an overview of the virtual server states and the elements and commands that
are specific to configure and operate a virtual server on z Systems. The virtual
server user can retrieve information about the z Systems hardware and the LPAR
on which the KVM host runs.

© Copyright IBM Corp. 2015, 2016 159

||

||

||

||

|
||

|
|
|
|

160 KVM Virtual Server Management - October 2016

Chapter 23. Virtual server life cycle

Display the state of a defined virtual server including the reason with the virsh
domstate --reason command.

Figure 17 shows the life cycle of a defined virtual server: States, their reasons, and
state transitions which are caused by the virsh virtual server management
commands. The state transitions shown in this figure do not comprise command
options that you can use to further influence the state transition.

shut off
unknown

saved

destroyed

paused

booted running

restoredbooted

paused

userunpaused

in
shutdown

in
shutdown

shutdown

crashed

migrate

migrating

saved

from running from paused

m
a
n

a
g
e

d
s
a
v
e

d
e
s
tr

o
y

migrated

Figure 17. State-transition diagram of a virtual server including reasons

© Copyright IBM Corp. 2015, 2016 161

shut off
The virtual server is defined to libvirt and has not yet been started, or it was
terminated.

Reasons

unknown The virtual server is defined to the host.
saved The system image of the virtual server is saved in the file

/var/lib/libvirt/qemu/save/<VS>.save and can be restored.

The system image contains state information about the virtual server.
Depending on this state, the virtual server is started in the state running or
paused.

shutdown The virtual server was properly terminated. The virtual server's resources
were released.

destroyed The virtual server was immediately terminated. The virtual server's resources
were released.

Commands

Command From state (reason) To state (reason)

start shut off (unknown) running (booted)

start shut off (saved from running) running (restored)

start shut off (saved from paused) paused (migrating)

start shut off (shutdown) running (booted)

start shut off (destroyed) running (booted)

start --force-boot shut off (unknown) running (booted)

start --force-boot shut off (saved from running) running (booted)

start --force-boot shut off (saved from paused) paused (user)

start --force-boot shut off (shutdown) running (booted)

start --force-boot shut off (destroyed) running (booted)

start --paused shut off (unknown) paused (user)

start --paused shut off (saved from running) paused (migrating)

start --paused shut off (saved from paused) paused (migrating)

start --paused shut off (shutdown) paused (user)

start --paused shut off (destroyed) paused (user)

shut off

162 KVM Virtual Server Management - October 2016

running
The virtual server was started.

Reasons

booted The virtual server was started from scratch.
migrated The virtual server was restarted on the destination host after the stopped

phase of a live migration.
restored The virtual server was started at the state indicated by the stored system

image.
unpaused The virtual server was resumed from the paused state.

Commands

Command Transition state To state (reason)

destroy n/a shut off (destroyed)

managedsave n/a shut off (saved from running)

managedsave --running n/a shut off (saved from running)

managedsave --paused n/a shut off (saved from paused)

migrate paused (migrating) running (migrated)

migrate --suspend paused (migrating) paused (user)

shutdown in shutdown shut off (shutdown)

suspend n/a paused (user)

running

Chapter 23. Life cycle 163

paused
The virtual server has been suspended.

Reasons

user The virtual server was suspended with the virsh suspend command.
migrating The virtual server's system image is saved and the virtual server is halted -

either because it is being migrated, or because it is started from a saved shut
off state.

Commands

Command Transition state To state (reason)

destroy n/a shut off (destroyed)

managedsave n/a shut off (saved from paused)

managedsave --running n/a shut off (saved from running)

managedsave --paused n/a shut off (saved from paused)

resume n/a running (unpaused)

shutdown in shutdown shut off (shutdown)

paused

164 KVM Virtual Server Management - October 2016

crashed
The virtual server crashed and is not prepared for a reboot.

You can create memory dumps of the virtual server.

Then, you can terminate the virtual server and restart it.

For testing purposes, you can crash a virtual server with the virsh inject-nmi
command.

Commands

Command To state (reason)

destroy shut off (destroyed)

crashed

Chapter 23. Life cycle 165

in shutdown
While the virtual server is shutting down, it traverses the “in shutdown” state.

in shutdown

166 KVM Virtual Server Management - October 2016

Chapter 24. Selected libvirt XML elements

These libvirt XML elements might be useful for you. You find the complete libvirt
XML reference at libvirt.org.
v “<adapter> as child element of <source>” on page 169
v “<address> as child element of <controller>, <disk>, <interface>, and

<memballoon>” on page 170
v “<address> as child element of <hostdev> or <disk>” on page 171
v “<address> as child element of <source>” on page 172
v “<backend>” on page 173
v “<boot>” on page 174
v “<cipher>” on page 175
v “<cmdline>” on page 176
v “<console>” on page 177
v “<controller>” on page 178
v “<cputune>” on page 179
v “<devices>” on page 180
v “<disk>” on page 181
v “<domain>” on page 182
v “<driver> as child element of <disk>” on page 183
v “<emulator>” on page 185
v “<geometry>” on page 186
v “<hostdev>” on page 187
v “<initrd>” on page 188
v “<interface>” on page 189
v “<iothreads>” on page 190
v “<kernel>” on page 191
v “<keywrap>” on page 192
v “<log>” on page 193
v “<mac>” on page 194
v “<memballoon>” on page 195
v “<memory>” on page 196
v “<model>” on page 198
v “<name>” on page 199
v “<on_crash>” on page 200
v “<on_reboot>” on page 201
v “<os>” on page 202
v “<readonly>” on page 203
v “<rng>” on page 204
v “<shareable>” on page 205
v “<shares>” on page 206
v “<source> as child element of <disk>” on page 207
v “<source> as child element of <hostdev>” on page 208

© Copyright IBM Corp. 2015, 2016 167

|

|

|

v “<source> as child element of <interface>” on page 209
v “<target> as child element of <console>” on page 210
v “<target> as child element of <disk>” on page 211
v “<type>” on page 212
v “<vcpu>” on page 213
v “<virtualport>” on page 214
v “<watchdog>” on page 215

168 KVM Virtual Server Management - October 2016

<adapter> as child element of <source>
Specifies an FCP device (Host Bus Adapter).

Text content

None.

Selected attributes

name=scsi_host<n>
Specifies the name of the FCP device, where <n> is a nonnegative integer.

Usage

“Configuring a SCSI tape or medium changer device” on page 85

Parent elements

“<source> as child element of <hostdev>” on page 208.

Child elements

None.

Example
<devices>

...
<controller type=“scsi” model=“virtio-scsi” index=“0”/>
<hostdev mode=“subsystem” type=“scsi”>

<source>
<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“0” unit=“0”/>

</hostdev>
...

</devices>

<adapter> as child element of <source>

Chapter 24. Selected libvirt XML elements 169

<address> as child element of <controller>, <disk>, <interface>, and
<memballoon>

Specifies the address of a device on the virtual server.

Text content

None.

Selected attributes

type=ccw
Specifies a virtio CCW device, such as a block device or a network device.

You can specify the device bus-ID with the address attributes cssid, ssid,
and devno.

cssid Specifies the channel subsystem number of the virtual device. Must be
“0xfe”.

ssid Specifies the subchannel set of the virtual device. Valid values are between
“0x0” and “0x3”.

devno Specifies the device number of the virtio device. Must be a unique value
between “0x0000” and “0xffff”.

Usage
v “Configuring a DASD or SCSI disk” on page 76
v “Configuring a file as storage device” on page 82

Parent elements
v “<controller>” on page 178
v “<disk>” on page 181
v “<interface>” on page 189
v “<memballoon>” on page 195

Child elements

None.

Example
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vda” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x1108”/>

</disk>

<address>

170 KVM Virtual Server Management - October 2016

<address> as child element of <hostdev> or <disk>
Specifies the address of a device, which is connected to the virtual server through
a controller.

Text content

None.

Selected attributes

type=scsi
Specifies a SCSI device.

controller
Specifies the virtual controller of the virtual device. Enter the index
attribute value of the respective controller element.

bus Specifies the virtual SCSI bus of the virtual device.

target Specifies the virtual SCSI target of the virtual device. This value can be
between 0 and 255.

unit Specifies the unit number (LUN) of the virtual SCSI device.

Usage
v “Configuring a SCSI tape or medium changer device” on page 85
v “Configuring a virtual SCSI-attached CD/DVD drive” on page 91

Parent elements
v “<hostdev>” on page 187
v “<disk>” on page 181

Child elements

None.

Example
<devices>

...
<controller type=“scsi” model=“virtio-scsi” index=“0”/>
<hostdev mode=“subsystem” type=“scsi”>

<source>
<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“0” unit=“0”/>

</hostdev>
...
<controller type=“scsi” model=“virtio-scsi” index=“1”/>
<disk type=“file” device=“cdrom”>

<driver name=“qemu” type=“raw” io=“native” cache=“none”/>
<source file=“/var/lib/libvirt/images/cd.iso”/>
<target dev=“vda” bus=“scsi”/>
<address type=“drive” controller=“1” bus=“0” target=“0” unit=“0”/>
<readonly/>

</disk>
...

</devices>

<address> as child element of <hostdev>

Chapter 24. Selected libvirt XML elements 171

<address> as child element of <source>
Specifies a device address from the host point of view.

Text content

None.

Selected attributes

bus=0 For a SCSI device the value is zero.

target Specifies the SCSI ID.

unit Specifies the SCSI LUN.

Usage

“Configuring a SCSI tape or medium changer device” on page 85

Parent elements

“<source> as child element of <hostdev>” on page 208

Child elements

None.

Example
<devices>

...
<controller type=“scsi” model=“virtio-scsi” index=“0”/>
<hostdev mode=“subsystem” type=“scsi”>

<source>
<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“0” unit=“0”/>

</hostdev>
...

</devices>

<address> as child element of <source>

172 KVM Virtual Server Management - October 2016

<backend>
Specifies the character device which generates the random numbers.

Text content

Specifies the device node of the input character device. The default value and
currently the only valid value is /dev/random.

Selected attributes

model=random
Specifies the source model.

Usage

“Configuring a random number generator” on page 98

Parent elements

“<rng>” on page 204

Child elements

None.

Example
<devices>

...
<rng model=“virtio”>

<backend model=“random”>/dev/random</backend>
</rng>
...

</devices>

<backend>

Chapter 24. Selected libvirt XML elements 173

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

<boot>
Specifies that the virtual block device is bootable.

Text content

None.

Selected attributes

order=number
Specifies the order in which a device is considered as boot device during
the boot sequence.

Usage

“Configuring the boot process” on page 55

Parent elements

“<disk>” on page 181

Child elements

None.

Example
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0xa30e”/>
<boot order=“1”/>

</disk>

<boot>

174 KVM Virtual Server Management - October 2016

<cipher>
Configures the generation of an AES or DEA/TDEA wrapping key and the use of
the respective protected key management operations on the virtual server.

Text content

None.

Selected attributes

name=aes | dea
Specifies the AES or DEA/TDEA wrapping key.

state=on | off

on Enables wrapping key generation.

The respective protected key management operations are available
on the virtual server.

off Disables wrapping key generation.

The respective protected key management operations are not
available on the virtual server.

Usage

“Disabling protected key encryption” on page 69

Parent elements

“<keywrap>” on page 192

Child elements

None.

Example
<domain type=“kvm”>

...
<keywrap>

<cipher name=“aes” state=“off”/>
</keywrap>
...

</domain>

<cipher>

Chapter 24. Selected libvirt XML elements 175

<cmdline>
Specifies arguments to be passed to the kernel (or installer) at boot time.

Text content

Command line arguments using the same syntax as if they were specified in the
command line.

Selected attributes

None.

Usage

“Configuring a kernel image file as IPL device” on page 57

Parent elements

“<os>” on page 202

Child elements

None.

Example
<os>

<type arch='s390x' machine='s390-virtio'>hvm</type>
<kernel>/boot/vmlinuz-3.1.0-7.fc16.s390x</kernel>
<initrd>/boot/initramfs-3.1.0-7.fc16.s390x.img</initrd>
<cmdline>printk.time=1</cmdline>

</os>

<cmdline>

176 KVM Virtual Server Management - October 2016

<console>
Configures the host representation of the virtual server console.

Text content

None.

Selected attributes

type=pty
Configures a console which is accessible via PTY.

Usage

“Configuring the console” on page 67

Parent elements

“<devices>” on page 180

Child elements
v “<log>” on page 193
v <protocol>
v “<target> as child element of <console>” on page 210

Example
<devices>

...
<console type=“pty”>

<target type=“sclp” port=“0”/>
<log file=“/var/log/libvirt/qemu/vserv-cons0.log” append=“off”/>

</console>
<devices/>

<console>

Chapter 24. Selected libvirt XML elements 177

|

<controller>
Specifies a device controller for a virtual server.

Text content

None.

Selected attributes

type=scsi | virtio-serial
Specifies the type of controller.

index This decimal integer specifies the controller index, which is referenced by
the attached host device.

To reference a controller, use the controller attribute of the address element
as child of the hostdev element.

scsi type-specific attributes:

model=virtio-scsi
Optional; specifies the model of the controller.

Usage

“Configuring a SCSI tape or medium changer device” on page 85

Parent elements

“<devices>” on page 180

Child elements

None.

Example
<devices>

<controller type=“scsi” model=“virtio-scsi” index=“0”/>
<hostdev mode=“subsystem” type=“scsi”>

<source>
<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“0” unit=“0”/>

</hostdev>
</devices>

<controller>

178 KVM Virtual Server Management - October 2016

<cputune>
Groups CPU tuning parameters.

Text content

None.

Selected attributes

None.

Usage

“Tuning virtual CPUs” on page 63

Parent elements

“<domain>” on page 182

Child elements

“<shares>” on page 206

The use of the emulator_period, emulator_quota, period, and quota elements might
affect the runtime behavior of the virtual server and interfere with the use of the
shares element. Use the shares element for CPU tuning unless there is a specific
need for the use of one of those elements.

Example
<domain>

...
<cputune>

<shares>2048</shares>

</cputune>
...

</domain>

<cputune>

Chapter 24. Selected libvirt XML elements 179

<devices>
Specifies the virtual network and block devices of the virtual server.

Text content

None.

Selected attributes

None.

Usage

Chapter 11, “Configuring devices,” on page 73

Parent elements

“<domain>” on page 182

Child elements
v “<console>” on page 177
v “<controller>” on page 178
v “<disk>” on page 181
v “<emulator>” on page 185
v “<hostdev>” on page 187
v “<interface>” on page 189
v “<memballoon>” on page 195
v “<watchdog>” on page 215

Example
<devices>

<interface type=“direct”>
<source dev=“enccw0.0.1108” mode=“bridge”/>
<model type=“virtio”/>

</interface>

<disk type=“block” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x3c1b”/>

</disk>
</devices>

<devices>

180 KVM Virtual Server Management - October 2016

<disk>
Specifies a virtual block device, such as a SCSI device, or a file.

Text content

None.

Selected attributes

type=block | file
Specifies the underlying disk source.

device=disk | cdrom
Optional; Indicates how the virtual block device is to be presented to the
virtual server.

Usage
v Chapter 11, “Configuring devices,” on page 73
v “Configuring a virtual SCSI-attached CD/DVD drive” on page 91

Parent elements

“<devices>” on page 180

Child elements
v “<address> as child element of <controller>, <disk>, <interface>, and

<memballoon>” on page 170
v <blockio>
v “<boot>” on page 174
v “<driver> as child element of <disk>” on page 183
v “<geometry>” on page 186
v “<readonly>” on page 203
v “<shareable>” on page 205
v “<source> as child element of <disk>” on page 207
v “<target> as child element of <disk>” on page 211

Example
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0x0009”/>

</disk>

<disk>

Chapter 24. Selected libvirt XML elements 181

<domain>
Is the root element of a domain configuration-XML.

Text content

None.

Selected attributes

None.

Attributes

type=kvm
Specifies the virtual server type.

Usage

“Domain configuration-XML” on page 53

Parent elements

None.

Child elements
v <clock>
v “<console>” on page 177
v “<controller>” on page 178
v “<cputune>” on page 179
v <currentMemory>
v “<devices>” on page 180
v “<iothreads>” on page 190
v <memory>
v <name>
v “<on_crash>” on page 200
v <on_poweroff>
v <on_reboot>
v <os>
v <uuid>
v “<vcpu>” on page 213

<domain>

182 KVM Virtual Server Management - October 2016

<driver> as child element of <disk>
Specifies details that are related to the user space process used to implement the
block device.

Text content

None.

Selected attributes

name=qemu
Name of the user space process. Use “qemu”.

type=raw | qcow2
Use subtype “raw”, except for qcow2 image files, which require the
“qcow2” subtype.

iothread=<IOthread-ID>
Assigns a certain I/O thread to the user space process. Use this attribute to
ensure best performance.

<IOthread-ID> is a value between 1 and the number of I/O threads which
is specified by the iothreads element.

I/O threads are currently incompatible with live virtual server disk
migration. If you intend to migrate a disk during a live migration, do not
configure an I/O thread for this disk.

cache=none
Optional; controls the cache mechanism.

error_policy=report | stop | ignore | enospace
Optional; the error_policy attribute controls how the host will behave if a
disk read or write error occurs.

rerror_policy=report | stop | ignore
Optional; controls the behavior for read errors only. If no rerror_policy is
given, error_policy is used for both read and write errors. If rerror_policy
is given, it overrides the error_policy for read errors. Also, note that
“enospace” is not a valid policy for read errors. Therefore, if error_policy is
set to “enospace” and no rerror_policy is given, the read error policy is left
at its default (“report”).

io=threads | native
Optional; controls specific policies on I/O. For a better performance,
specify “native”.

ioeventfd=on | off
Optional; allows users to set domain I/O asynchronous handling for the
disk device. The default is left to the discretion of the host. Enabling this
attribute allows QEMU to run the virtual server while a separate thread
handles I/O. Typically virtual servers experiencing high system CPU
utilization during I/O will benefit from this. On the other hand, on
overloaded host it could increase virtual server I/O latency. Note: Only
very experienced users should attempt to use this option!

event_idx=on | off
Optional; controls some aspects of device event processing. If it is on, it
will reduce the number of interrupts and exits for the virtual server. The
default is determined by QEMU; usually if the feature is supported, the

<driver> as child element of <disk>

Chapter 24. Selected libvirt XML elements 183

|
|
|

default is “on”. If the situation occurs where this behavior is suboptimal,
this attribute provides a way to force the feature “off”. Note: Only
experienced users should attempt to use this option!

Usage
v “Configuring a DASD or SCSI disk” on page 76
v “Configuring a virtual SCSI-attached CD/DVD drive” on page 91

Parent elements

“<disk>” on page 181

Child elements

None.

Example
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0xd501”/>

</disk>

<driver> as child element of <disk>

184 KVM Virtual Server Management - October 2016

<emulator>
Specifies the user space process.

Text content

Fully qualified path and file name of the user space process.

Selected attributes

None.

Usage
v “Configuring the user space” on page 65
v “Displaying the current libvirt-internal configuration” on page 114

Parent elements

“<devices>” on page 180

Child elements

None.

Example

<emulator>/usr/bin/qemu-kvm</emulator>

<emulator>

Chapter 24. Selected libvirt XML elements 185

<geometry>
Overrides the geometry settings of DASDs or FC-attached SCSI disks.

Text content

None.

Selected attributes

cyls Specifies the number of cylinders.

heads Specifies the number of heads.

secs Specifies the number of sectors per track.

Usage

“Configuring a DASD or SCSI disk” on page 76

Parent elements

“<disk>” on page 181

Child elements

None.

Example
<geometry cyls=“16383” heads=“16” secs=“64” trans=“lba”/>

<geometry>

186 KVM Virtual Server Management - October 2016

<hostdev>
Passes host-attached devices to a virtual server.

Ensure that the device that is passed through to the virtual server is not in use by
the host.

Text content

None.

Selected attributes

mode=subsystem
Specifies the pass-through mode.

type=scsi
Specifies the type of device that is assigned to a virtual server.

rawio=no| yes
Indicates whether the device needs raw I/O capability. If any device in a
device configuration-XML file is specified in raw I/O mode, this capability
is enabled for all such devices of the virtual server.

sgio=filtered | unfiltered
Indicates whether the kernel will filter unprivileged SG_IO commands for
the device.

Usage

“Configuring a SCSI tape or medium changer device” on page 85

Parent elements

“<devices>” on page 180

Child elements
v “<address> as child element of <hostdev> or <disk>” on page 171
v “<readonly>” on page 203
v “<shareable>” on page 205
v “<source> as child element of <hostdev>” on page 208

Example
<devices>

<controller type=“scsi” model=“virtio-scsi” index=“0”/>
<hostdev mode=“subsystem” type=“scsi”>

<source>
<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“0” unit=“0”/>

</hostdev>
</devices>

<hostdev>

Chapter 24. Selected libvirt XML elements 187

<initrd>
Specifies the fully qualified path of the ramdisk image in the host operating
system.

Text content

Fully qualified path and file name of the initial ramdisk.

Selected attributes

None.

Usage

“Configuring a kernel image file as IPL device” on page 57

Parent elements

“<os>” on page 202

Child elements

None.

Example
<os>

<type arch='s390x' machine='s390-virtio'>hvm</type>
<kernel>/boot/vmlinuz-3.1.0-7.fc16.s390x</kernel>
<initrd>/boot/initramfs-3.1.0-7.fc16.s390x.img</initrd>
<cmdline>printk.time=1</cmdline>

</os>

<initrd>

188 KVM Virtual Server Management - October 2016

<interface>
Specifies a virtual Ethernet device for a virtual server.

Text content

None.

Selected attributes

type = direct | bridge

Specifies the type of connection:

direct Creates a MacVTap interface.

bridge Attaches to a bridge, as for example implemented by a virtual
switch.

trustGuestRxFilters = no | yes
Only valid if type = “direct”.

Set this attribute to “yes” to allow the virtual server to change its MAC
address. As a consequence, the virtual server can join multicast groups.
The ability to join multicast groups is a prerequisite for the IPv6 Neighbor
Discovery Protocol (NDP).

Setting trustGuestRxFilters to “yes” has security implications, because it
allows the virtual server to change its MAC address and thus to receive all
frames delivered to this address.

Usage

“Configuring virtual Ethernet devices” on page 94

Parent elements

“<devices>” on page 180

Child elements
v “<address> as child element of <controller>, <disk>, <interface>, and

<memballoon>” on page 170
v “<mac>” on page 194
v “<model>” on page 198
v “<source> as child element of <interface>” on page 209
v “<virtualport>” on page 214

Example
<interface type=“direct”>

<source dev=“bond0” mode=“bridge”/>
<model type=“virtio”/>

</interface>

<interface>

Chapter 24. Selected libvirt XML elements 189

|
|

<iothreads>
Assigns threads that are dedicated to I/O operations on virtual block devices to a
virtual server.

The use of I/O threads improves the performance of I/O operations of the virtual
server. If this element is not specified, no I/O threads are provided. Do not use
I/O threads for virtual disks which you plan to migrate in the context of a live
migration.

Text content

Natural number specifying the number of threads.

Selected attributes

None.

Usage

“Configuring persistent devices” on page 66

Parent elements

“<domain>” on page 182

Child elements

None.

Example
<iothreads>3</iothreads>

<iothreads>

190 KVM Virtual Server Management - October 2016

|
|
|

<kernel>
Specifies the kernel image file.

Text content

Fully qualified path and file name of the kernel image file.

Selected attributes

None.

Usage

“Configuring a kernel image file as IPL device” on page 57

Parent elements

“<os>” on page 202

Child elements

None.

Example
<kernel>/boot/vmlinuz-3.9.3-60.x.20130605-s390xrhel</kernel>

<kernel>

Chapter 24. Selected libvirt XML elements 191

<keywrap>
Groups the configuration of the AES and DEA/TDEA wrapping key generation.

The keywrap element must contain at least one cipher element.

Text content

None.

Selected attributes

None.

Usage

“Disabling protected key encryption” on page 69

Parent elements

“<domain>” on page 182

Child elements

“<cipher>” on page 175

Example
<domain type=“kvm”>

...
<keywrap>

<cipher name=“aes” state=“off”/>
</keywrap>
...

</domain>

<keywrap>

192 KVM Virtual Server Management - October 2016

<log>
Specifies a log file which is associated with the virtual server console output.

Text content

None.

Selected attributes

file Specifies the fully qualified path and filename of the log file.

append=off | on
Specifies whether the information in the file is preserved (append=“on”) or
overwritten (append=“off”) on a virtual server restart.

Usage

“Configuring the console” on page 67

Parent elements

“<console>” on page 177

Child elements

None.

Example
<devices>

...
<console type=“pty”>

<target type=“sclp”/>
<log file=“/var/log/libvirt/qemu/vserv-cons0.log” append=“off”/>

</console>
</devices>

<log>

Chapter 24. Selected libvirt XML elements 193

|

|

|

|

|

||

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

<mac>
Specifies a host network interface for a virtual server.

Text content

None.

Selected attributes

address
Specifies the mac address of the interface.

Usage

“Configuring virtual Ethernet devices” on page 94

Parent elements

“<interface>” on page 189

Child elements

None.

Example
<interface type=’direct’>

<mac address=’02:10:10:f9:80:00’/>
<model type=’virtio’/>

</interface>

<mac>

194 KVM Virtual Server Management - October 2016

<memballoon>
Specifies memory balloon devices.

Text content

None.

Selected attributes

model=none
Suppresses the automatic creation of a default memory balloon device.

Usage

“Suppressing the automatic configuration of a default memory balloon device” on
page 71

Parent elements

“<devices>” on page 180

Child elements

None.

Example
<memballoon model=“none”/>

<memballoon>

Chapter 24. Selected libvirt XML elements 195

<memory>
Specifies the amount of memory allocated for a virtual server at boot time and
configures the collection of QEMU core dumps.

Text content

Natural number specifying the amount of memory. The unit is specified with the
unit attribute.

Selected attributes

dumpCore=on | off
Specifies whether the memory of a virtual server is included in a generated
core dump.

on Specifies that the virtual server memory is included.

off Specifies that the virtual server memory is excluded.

unit=b | KB | k | KiB | MB | M | MiB | GB | G | GiB | TB | T | TiB
Specifies the units of memory used:

b bytes

KB kilobytes (1,000 bytes)

k or KiB
kibibytes (1024 bytes), the default

MB megabytes (1,000,000 bytes)

M or MiB
mebibytes (1,048,576 bytes)

GB gigabytes (1,000,000,000 bytes)

G or GiB
gibibytes (1,073,741,824 bytes)

TB terabytes (1,000,000,000,000 bytes)

T or TiB
tebibytes (1,099,511,627,776 bytes

Usage
v “Configuring virtual memory” on page 64
v “Configuring the collection of QEMU core dumps” on page 64

Parent elements

“<domain>” on page 182

Child elements

None.

Example

This example:
v Configures 524,288 KB of virtual memory.

<memory>

196 KVM Virtual Server Management - October 2016

v Excludes the virtual memory from QEMU core dumps.
<memory dumpCore=“off” unit=“KB”>524288</memory>

<memory>

Chapter 24. Selected libvirt XML elements 197

<model>
Specifies the interface model type.

Text content

None.

Selected attributes

type=virtio
Specifies the interface model type virtio.

Usage
v “Configuring a MacVTap interface” on page 94
v “Configuring a virtual switch” on page 96

Parent elements

“<interface>” on page 189

Child elements

None.

Example

This example configures a virtio interface:
<interface type=“direct”>

<source dev=“enccw0.0.a100” mode=“bridge”/>
<model type=“virtio”/>

</interface>

<model>

198 KVM Virtual Server Management - October 2016

<name>
Assigns a unique name to the virtual server.

Text content

Unique alphanumeric name for the virtual server.

Selected attributes

None.

Usage

“Domain configuration-XML” on page 53

Parent elements

“<domain>” on page 182

Child elements

None.

Example
<domain type=“kvm”>

<name>Virtual_server_25</name>
<uuid>12345678abcd12341234abcdefabcdef</uuid>
....

</domain>

On the virtual server, the name will display as follows:

[root@guest:] # cat /proc/sysinfo | grep VM
VM00 Name: Virtual_
VM00 Control Program: KVM/Linux
...
VM00 Extended Name: Virtual_server_25
VM00 UUID: 12345678abcd12341234abcdefabcdef

<name>

Chapter 24. Selected libvirt XML elements 199

|

|
|
|
|
|

|

|
|
|
|
|
|
||

<on_crash>
Configures the behavior of the virtual server in the crashed state.

Set to preserve to ensure that virtual server crashes are detected.

Text content

preserve
Preserves the crashed state.

Selected attributes

None.

Usage

“Domain configuration-XML” on page 53

Parent elements

“<domain>” on page 182

Child elements

None.

Example
<on_crash>preserve</on_crash>

<on_crash>

200 KVM Virtual Server Management - October 2016

<on_reboot>
Configures the behavior of the virtual server when it is rebooted.

See also “reboot” on page 255.

Text content

restart Terminates the virtual server using the shutdown command and then boots
the guest using the previous libvirt-internal configuration without
modifying it.

destroy
Terminates the virtual server using the destroy command and then boots
the guest using the previous libvirt-internal configuration without
modifying it.

Selected attributes

None.

Usage

“Domain configuration-XML” on page 53

Parent elements

“<domain>” on page 182

Child elements

None.

Example
<on_reboot>restart</on_reboot>

<on_reboot>

Chapter 24. Selected libvirt XML elements 201

|
|
|

|
|
|

<os>
Groups the operating system parameters.

Text content

None.

Selected attributes

None.

Usage

“Domain configuration-XML” on page 53

Parent elements

“<domain>” on page 182

Child elements
v “<type>” on page 212
v “<kernel>” on page 191
v “<initrd>” on page 188
v “<cmdline>” on page 176

Example
<os>

<type arch=“s390x” machine=“s390-ccw-virtio”>hvm</type>
<initrd>/boot/initramfs-3.9.3-60.x.20130605-s390xrhel.img</initrd>
<kernel>/boot/vmlinuz-3.9.3-60.x.20130605-s390xrhel</kernel>
<cmdline>rd.md=0 rd.lvm=0 LANG=en_US.UTF-8

KEYTABLE=us SYSFONT=latarcyrheb-sun16 rd.luks=0
root=/dev/disk/by-path/ccw-0.0.e714-part1
rd.dm=0 selinux=0 CMMA=on
crashkernel=128M plymouth.enable=0

</cmdline>
</os>

<os>

202 KVM Virtual Server Management - October 2016

<readonly>
Indicates that a device is readonly.

Text content

None.

Selected attributes

None.

Usage

“Configuring a virtual SCSI-attached CD/DVD drive” on page 91

Parent elements
v “<disk>” on page 181
v “<hostdev>” on page 187

Child elements

None.

Example
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vdb” bus=“virtio”/>
<readonly/>

</disk>

<readonly>

Chapter 24. Selected libvirt XML elements 203

<rng>
Specifies a random number generator.

Text content

None.

Selected attributes

model=virtio
Specifies the random number generator device type.

Usage

“Configuring a random number generator” on page 98

Parent elements

“<devices>” on page 180

Child elements

“<backend>” on page 173

Example
<devices>

...
<rng model=“virtio”>

<backend model=“random”>/dev/random</backend>
</rng>
...

</devices>

<rng>

204 KVM Virtual Server Management - October 2016

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

<shareable>
Indicates that a device can be shared between various virtual servers.

Text content

None.

Selected attributes

None.

Parent elements
v “<disk>” on page 181
v “<hostdev>” on page 187

Child elements

None.

Example
<devices>

<controller type=“scsi” model=“virtio-scsi” index=“0”/>
<hostdev mode=“subsystem” type=“scsi”>

<source>
<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“0” unit=“0”/>
<shareable/>

</hostdev>
</devices>

<shareable>

Chapter 24. Selected libvirt XML elements 205

<shares>
Specifies the initial CPU weight.

The CPU shares of a virtual server are calculated from the CPU weight of all
virtual servers running on the host. For example, a virtual server that is configured
with value 2048 gets twice as much CPU time as a virtual server that is configured
with value 1024.

Text content

Natural number specifying the CPU weight.
v Valid values are in the natural numbers between 2 and 262144.
v The default value is 1024.

Selected attributes

None.

Usage
v “Tuning virtual CPUs” on page 63
v “CPU weight” on page 142

Parent elements

“<cputune>” on page 179

Child elements

None.

Example
<cputune>

<shares>2048</shares>
</cputune>

<shares>

206 KVM Virtual Server Management - October 2016

|

<source> as child element of <disk>
Specifies the host view of a device configuration.

Text content

None.

Selected attributes

file Must be specified for disk type=“file”. Specifies the fully qualified host file
name.

dev Must be specified for disk type=“block”. Specifies a host device node of
the block device.

startupPolicy=mandatory | requisite | optional
For disk type file that represents a CD or diskette, you may define a policy
what to do with the disk if the source file is not accessible:

mandatory
fail if missing for any reason

requisite
fail if missing on boot up, drop if missing on migrate/restore/
revert

optional
drop if missing at any start attempt

Usage
v “Configuring a DASD or SCSI disk” on page 76
v “Configuring a file as storage device” on page 82
v “Configuring a virtual SCSI-attached CD/DVD drive” on page 91

Parent elements

“<disk>” on page 181

See also:
v “<source> as child element of <interface>” on page 209

Child elements

<seclabel>

Examples
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d5”/>
<target dev=“vdb” bus=“virtio”/>

</disk>

<disk type=“file” device=“disk”>
<driver name=“qemu” type=“raw” cache=“none” io=“native”/>
<source file=“/var/lib/libvirt/images/disk.img”/>
<target dev=“vda1” bus=“virtio”/>

</disk>

<source> as child element of <disk>

Chapter 24. Selected libvirt XML elements 207

<source> as child element of <hostdev>
Specifies the host view of a host device configuration.

Text content

None.

Selected attributes

None.

Usage

“Configuring a SCSI tape or medium changer device” on page 85

Parent elements

“<hostdev>” on page 187

Child elements
v “<address> as child element of <source>” on page 172
v “<adapter> as child element of <source>” on page 169

Example
<devices>

...
<hostdev mode=“subsystem” type=“scsi”>

<source>
<adapter name=“scsi_host0”/>
<address bus=“0” target=“0” unit=“0”/>

</source>
<address type=“scsi” controller=“0” bus=“0” target=“0” unit=“0”/>

</hostdev>
...

</devices>

<source> as child element of <hostdev>

208 KVM Virtual Server Management - October 2016

<source> as child element of <interface>
Specifies the host view of a network interface configuration.

Text content

None.

Selected attributes

dev Specifies the network interface.

mode=bridge | vepa
Optional; indicates whether packets are delivered to the target device or to
the external bridge.

bridge If packets have a destination on the host from which they
originated, they are delivered directly to the target. For direct
delivery, both origin and destination devices need to be in bridge
mode. If either the origin or destination is in vepa mode, a
VEPA-capable bridge is required.

vepa All packets are sent to the external bridge. If packets have a
destination on the host from which they originated, the
VEPA-capable bridge will return the packets to the host.

Usage

“Configuring virtual Ethernet devices” on page 94

Parent elements

“<interface>” on page 189

Child elements

None.

Example
<interface type=“direct”>

<source dev=“bond0” mode=“bridge”/>
<model type=“virtio”/>

</interface>

<source> as child element of <interface>

Chapter 24. Selected libvirt XML elements 209

<target> as child element of <console>
Specifies the virtual server view of a console that is provided from the host.

Text content

None.

Selected attributes

type=virtio | sclp
Must be specified for the console.

virtio Specifies a virtio console.

sclp Specifies an SCLP console.

Usage

“Configuring the console” on page 67

Parent elements

“<console>” on page 177

See also:
v “<target> as child element of <disk>” on page 211

Child elements

None.

Example
<console type=“pty”>

<target type=“sclp”/>
</console>

<target> as child element of <console>

210 KVM Virtual Server Management - October 2016

<target> as child element of <disk>
Specifies the virtual server view of a device that is provided from the host.

Text content

None.

Selected attributes

dev Unique name for the device of the form vd<x>, where <x> can be one or
more letters.

If no address element is specified, the order in which device bus-IDs are
assigned to virtio block devices is determined by the order of the target
dev attributes.

bus=virtio
Specifies the device type on the virtual server. Specify “virtio”.

Usage
v “Configuring a DASD or SCSI disk” on page 76
v “Configuring a file as storage device” on page 82
v “Configuring a virtual SCSI-attached CD/DVD drive” on page 91

Parent elements

“<disk>” on page 181

See also: “<target> as child element of <console>” on page 210

Child elements

None.

Example
<disk type=“block” device=“disk”>

<driver name=“qemu” type=“raw” cache=“none” io=“native” iothread=“1”/>
<source dev=“/dev/mapper/36005076305ffc1ae00000000000021d7”/>
<target dev=“vdb” bus=“virtio”/>
<address type=“ccw” cssid=“0xfe” ssid=“0x0” devno=“0xa30e”/>

</disk>

<target> as child element of <disk>

Chapter 24. Selected libvirt XML elements 211

<type>
Specifies the machine type.

The use of this element is mandatory.

Text content

hvm Indicates that the operating system needs full virtualization.

Selected attributes

arch=s390x
Specifies the system architecture.

machine=s390-ccw-virtio | <machine-type>
Specifies the machine type. If you specify the alias machine type
“s390-ccw-virtio”, libvirt replaces this value by the current machine type,
which depends on the installed QEMU release on the host or on the
hypervisor release. Use this value unless you intend to migrate to a host
with an earlier hypervisor release.

If you intend to migrate the virtual server to a destination host with earlier
hypervisor release than the source host, specify the machine type reflecting
this earlier release.

To display the available machine types, enter:

qemu-kvm --machine help

Usage
v “Domain configuration-XML” on page 53
v Chapter 5, “Migration to a different hypervisor release,” on page 23

Parent elements

“<os>” on page 202

Child elements

None.

Example
<type arch=“s390x” machine=“s390-ccw-virtio”>hvm</type>

<type> as child element of <os>

212 KVM Virtual Server Management - October 2016

<vcpu>
Specifies the number of virtual CPUs for a virtual server.

Text content

Natural number specifying the maximum number of available virtual CPUs.

Selected attributes

current
Optional; specifies the number of virtual CPUs available at startup.

The value of the current attribute is limited by the maximum number of
available virtual CPUs. If you do not specify the current attribute, the
maximum number of virtual CPUs is available at startup.

Usage

“Configuring virtual CPUs” on page 62

Parent elements

“<domain>” on page 182

Child elements

None.

Example
<domain type=“kvm”>

<name>vserv1</name>
<memory>524288</memory>
<vcpu current=“2”>5</vcpu>
....

</domain>

<vcpu>

Chapter 24. Selected libvirt XML elements 213

|

|

|
|
|

|

<virtualport>
Specifies the type of a virtual switch.

Text content

None.

Selected attributes

type=openvswitch
Specifies the type of the virtual switch.

Usage
v “Configuring a virtual switch” on page 96

Parent elements

“<interface>” on page 189

Child elements

None.

Example
<interface>

...
<virtualport type=“openvswitch”>

</interface>

<virtualport>

214 KVM Virtual Server Management - October 2016

<watchdog>
Specifies a watchdog device, which provides a guest watchdog application with
access to a watchdog timer.

You can specify no more than one diag288 watchdog device. A watchdog device
can be configured only as persistent device.

Text content

None.

Selected attributes

model=diag288
Specifies the diag288 watchdog device.

action=reset | poweroff | pause | dump | inject-nmi | none | shutdown
Optional; specifies an action that is automatically performed when the
watchdog timer expires:

reset Default; immediately terminates the virtual server and restarts it
afterwards.

poweroff
Immediately terminates the virtual server.

pause Suspends the virtual server.

dump Creates a virtual server dump on the host.

inject-nmi
Causes a restart interrupt for the virtual server including a dump
on the virtual server, if it is configured respectively.

none Does not perform any command.

shutdown
Tries to properly shut down the virtual server.

Since the usage of this action assumes that the virtual server is not
responding, it is unlikely that the virtual server will respond to the
shutdown command. It is recommended not to use this action.

Usage

“Configuring a watchdog device” on page 68

Parent elements

“<devices>” on page 180

Child elements

None.

<watchdog>

Chapter 24. Selected libvirt XML elements 215

Example
<devices>

...
<watchdog model=“diag288” action=“inject-nmi”/>
...

</devices>

<watchdog>

216 KVM Virtual Server Management - October 2016

Chapter 25. Selected virsh commands

These virsh commands might be useful for you. They are described with a subset
of options that are valuable in this context.

Syntax

►► ▼virsh
<option>

<virsh-command> ►◄

Where:

<option>
Is a command option.

<VS> Is the name, the ID, or the UUID of the virtual server.

<virsh-command>
Is a virsh command.

For a complete list of the virsh commands, see libvirt.org/
virshcmdref.html.

<XML-filename>
Is the name of the XML file, which defines the device to be attached to the
running virtual server.

Selected options

--help Displays the virsh online help.

--keepalive-interval <interval-in-seconds>
Sets an interval for sending keepalive messages to the virtual server to
confirm the connection between the host and the virtual server. If the
virtual server does not answer for a number of times which is defined by
the --keepalive-count option, the host closes the connection. Setting the
interval to 0 disables this mechanism. The default is 5 seconds.

--keepalive-count <keepalive-count>
Sets the number of times keepalive message can be sent without getting an
answer from the virtual server without closing the connection. If the
keepalive interval is set to 0, this option has no effect. The default is 6.

--version
Displays the installed libvirt version.

Selected virsh commands

These virsh commands are listed in the following chapters:
v “attach-device” on page 219
v “change-media” on page 221

© Copyright IBM Corp. 2015, 2016 217

http://libvirt.org/virshcmdref.html
http://libvirt.org/virshcmdref.html

v “console” on page 223
v “define” on page 224
v “destroy” on page 225
v “detach-device” on page 226
v “domblklist” on page 228
v “domblkstat” on page 229
v “domiflist” on page 231
v “domifstat” on page 232
v “dominfo” on page 233
v “domjobabort” on page 234
v “domstate” on page 235
v “dump” on page 236
v “dumpxml” on page 237
v “edit” on page 238
v “inject-nmi” on page 239
v “iothreadadd” on page 240
v “iothreaddel” on page 242
v “iothreadinfo” on page 244
v “list” on page 245
v “managedsave” on page 247
v “migrate” on page 249
v “migrate-getspeed” on page 252
v “migrate-setmaxdowntime” on page 253
v “migrate-setspeed” on page 254
v “reboot” on page 255
v “resume” on page 256
v “schedinfo” on page 257
v “shutdown” on page 258
v “setvcpus” on page 259
v “start” on page 261
v “suspend” on page 263
v “undefine” on page 264
v “vcpucount” on page 265

Example

This example displays the virsh online help of the virsh migrate command:

virsh help migrate

This example increases the keepalive interval of the connection to the host to 10
seconds during a live migration:

virsh --keepalive-interval 10 migrate --live --persistent --undefinesource \
--timeout 1200 --verbose vserv1 qemu+ssh://kvmhost/system

218 KVM Virtual Server Management - October 2016

|

attach-device
Attaches a device to a defined virtual server.

Syntax

►►
--domain --file

attach-device <VS> <XML-filename> ►

►
--live

--config
--current
--persistent

►◄

Where:

<VS> Is the name, the ID, or the UUID of the virtual server.

<XML-filename>
Is the name of the XML file, which defines the device to be attached to the
running virtual server.

Selected options

--config
Persistently attaches the device to the virtual server with the next restart.

--current
Depending on the virtual server state:

running, paused
Attaches the device to the virtual server until it is detached or the
virtual server is terminated.

shut off
Persistently attaches the device to the virtual server with the next
restart.

--domain
Specifies the virtual server.

--file Specifies the device configuration-XML file.

--live Attaches the device to the running virtual server until it is detached or the
virtual server is terminated.

--persistent
Depending on the virtual server state:

running, paused
Attaches the device to the virtual server.

The device remains persistently attached across restarts.

shut off
Persistently attaches the device to the virtual server with the next
restart.

attach-device

Chapter 25. Selected virsh commands 219

Usage

“Attaching a device” on page 134

Example

This example attaches the devices that are defined in device configuration-XML file
dev1.xml to the virtual server vserv1.

virsh attach-device vserv1 dev1.xml

See also the example on page 115.

attach-device

220 KVM Virtual Server Management - October 2016

change-media
Removes a currently provided ISO image from a virtual SCSI-attached CD/DVD
drive, or provides a different ISO image.

Syntax

►► change-media
--domain

<VS>
--path

<logical-device-name> ►

►

--update

<iso-image>
--eject
--insert <iso-image> --force

►

►
--live

--config
--current

►◄

Where:

<logical-device-name>
Identifies the virtual SCSI-attached CD/DVD drive as specified with the
target dev attribute in the domain configuration-XML file.

<iso-image>
Is the fully qualified path to the ISO image on the host.

<VS> Is the name, ID or UUID of the virtual server.

Selected options

--config
Persistently adds or removes the ISO image with the next virtual server
restart.

--current
Depending on the virtual server state:

running, paused
Adds or removes the ISO image until the virtual server is
terminated.

shut off
Persistently removes the ISO image from the virtual server or
provides a different one with the next restart.

--domain
Specifies the virtual server.

--eject Removes the currently provided ISO image from the virtual SCSI-attached
CD/DVD drive.

change-media

Chapter 25. Selected virsh commands 221

--force Forces the guest to release the file system residing on the virtual DVD,
even if it is currently in use.

--insert
Provides a different ISO image for the virtual server.

--live Removes an ISO image from the running virtual server or provides an ISO
image for a running virtual server until the virtual server is terminated.

--path Specifies the virtual SCSI-attached CD/DVD drive.

--update

If no ISO image is specified:
Removes the currently provided ISO image, just like the --eject
option.

If an ISO image is specified:
Provides the specified ISO image. In case the current disk image
has not been removed before, it is replaced by the new one.

Usage

“Replacing a virtual DVD” on page 135

Example

This command replaces the currently provided virtual DVD by a different one:

virsh change-media vserv1 vdc -update /var/lib/libvirt/images/cd2.iso
Successfully inserted media.

change-media

222 KVM Virtual Server Management - October 2016

console
Displays the console of a virtual server.

Syntax

►► console <VS>
<alternate-console-name> --safe --force

►◄

Where:

<alternate-console-name>
Is the device alias name of an alternative console that is configured for the
virtual server.

<VS> Is the name, the ID, or the UUID of the virtual server.

Selected options

--force Disconnects any session in a case the connection is disrupted.

--safe Only connects to the console if the host ensures exclusive access to the
console.

Usage

“Connecting to the console of a virtual server” on page 137

Example

This example connects to the console of virtual server vserv1.

virsh console vserv1

console

Chapter 25. Selected virsh commands 223

define
Creates a persistent virtual server definition.

Syntax

►► define <XML-filename>
--validate

►◄

Where:

<XML-filename>
Is the name of the domain configuration-XML file.

Selected options

--validate
Validates the domain configuration-XML file against the XML schema.

Usage
v Chapter 1, “Overview,” on page 3
v “Defining a virtual server” on page 102

Example

This example defines the virtual server, which is configured in domain
configuration-XML file vserv1.xml.

virsh define vserv1.xml

define

224 KVM Virtual Server Management - October 2016

destroy
Immediately terminates a virtual server and releases any used resources.

Syntax

►►
--domain

destroy <VS>
--graceful

►◄

Where:

<VS> Is the name, the ID, or the UUID of the virtual server.

Selected options

--domain
Specifies the virtual server.

--graceful
Tries to properly terminate the virtual server, and only if it is not
responding in a reasonable amount of time, it is forcefully terminated.

Virtual server state transitions

From State To State (reason)

running shut off (destroyed)

paused shut off (destroyed)

crashed shut off (destroyed)

Usage

“Terminating a virtual server” on page 106

Example

This example immediately terminates virtual server vserv1.

virsh destroy vserv1

destroy

Chapter 25. Selected virsh commands 225

detach-device
Detaches a device from a defined virtual server.

Syntax

►►
--domain --file

detach-device <VS> <XML-filename> ►

►
--live

--config
--current
--persistent

►◄

Where:

<VS> Is the name, the ID, or the UUID of the virtual server.

<XML-filename>
Is the name of the XML file, which defines the device to be detached from
the running virtual server.

Selected options

--config
Persistently detaches the device with the next restart.

--current
Depending on the virtual server state:

running, paused
Immediately detaches the device from the virtual server.

If the device was attached persistently, it will be reattached with
the next restart.

shut off
Persistently detaches the device from the virtual server with the
next restart.

--domain
Specifies the virtual server.

--file Specifies the device configuration-XML file.

--live Detaches the device from the running virtual server.

--persistent
Depending on the virtual server state:

running, paused
Immediately detaches the device from the virtual server.

The device remains persistently detached across restarts.

shut off
Persistently detaches the device from the virtual server with the
next restart.

detach-device

226 KVM Virtual Server Management - October 2016

Usage

“Detaching a device” on page 135

Example

This example detaches the device that is defined in device configuration-XML file
vda.xml from virtual server vserv1.

virsh detach-device vserv1 vda.xml

detach-device

Chapter 25. Selected virsh commands 227

domblklist
Displays information about the virtual block devices of a virtual server.

Syntax

►►
--domain

domblklist <VS>
--inactive --details

►◄

Where:

<VS> Is the name, the ID, or the UUID of the virtual server.

Selected options

--details
Display details, such as device type and value.

--domain
Specifies the virtual server.

--inactive
Lists the block devices that will be used with the next virtual server reboot.

Usage

“Displaying information about a virtual server” on page 112

Example
virsh domblklist vserv1
Target Source
--
vda /dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023be

domblklist

228 KVM Virtual Server Management - October 2016

domblkstat
Displays status information about a virtual block device.

Syntax

►►
--domain

domblkstat <VS> <device-name>
--human

►◄

Where:

<device-name>
Is the name of the virtual block device.

<VS> Is the name, the ID, or the UUID of the virtual server.

Selected options

--domain
Specifies the virtual server.

--human
Replaces abbreviations by written-out information.

Usage

“Displaying information about a virtual server” on page 112

Example

Obtain the device names of the block devices of virtual server vserv1:

virsh domblklist vserv1
Target Source
--
vda /dev/disk/by-id/dm-uuid-mpath-36005076305ffc1ae00000000000023be

Obtain information about the virtual block device vda:

virsh domblkstat vserv1 vda
vda rd_req 20359
vda rd_bytes 235967488
vda wr_req 4134
vda wr_bytes 52682752
vda flush_operations 1330
vda rd_total_times 49294200385
vda wr_total_times 4403369039
vda flush_total_times 256032781

Alternatively, display written-out information:

domblkstat

Chapter 25. Selected virsh commands 229

virsh domblkstat vserv vda --human
Device: vda
number of read operations: 20359
number of bytes read: 235967488
number of write operations: 4348
number of bytes written: 54353920
number of flush operations: 1372
total duration of reads (ns): 49294200385
total duration of writes (ns): 4626108064
total duration of flushes (ns): 265417103

domblkstat

230 KVM Virtual Server Management - October 2016

domiflist
Displays network interface information for a running virtual server.

Syntax

►►
--domain

domiflist <VS>
--inactive

►◄

Where:

<VS> Is the name, the ID, or the UUID of the virtual server.

Selected options

--domain
Specifies the virtual server.

--inactive
Lists the interfaces that will be used with the next virtual server reboot.

Usage

“Displaying information about a virtual server” on page 112

Example
virsh domiflist vserv1
Interface Type Source Model MAC

vnet2 network iedn virtio 02:17:12:03:ff:01

domiflist

Chapter 25. Selected virsh commands 231

domifstat
Displays network interface statistics for a running virtual server.

Syntax

►►
--domain

domifstat <VS> <interface> ►◄

Where:

<VS> Is the name, the ID, or the UUID of the virtual server.

<interface>
Is the name of the network interface as specified as target dev attribute in
the configuration-XML file.

Selected options

--domain
Specifies the virtual server.

Usage

“Displaying information about a virtual server” on page 112

Example
virsh domifstat vserv1 vnet0
vnet0 rx_bytes 7766280
vnet0 rx_packets 184904
vnet0 rx_errs 0
vnet0 rx_drop 0
vnet0 tx_bytes 5772
vnet0 tx_packets 130
vnet0 tx_errs 0
vnet0 tx_drop 0

domifstat

232 KVM Virtual Server Management - October 2016

dominfo
Displays information about a virtual server.

Syntax

►►
--domain

dominfo <VS> ►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--domain
Specifies the virtual server.

Usage

“Displaying information about a virtual server” on page 112

Example
virsh dominfo e20
Id: 55
Name: e20
UUID: 65d6cee0-ca0a-d0c1-efc7-faacb8631497
OS Type: hvm
State: running
CPU(s): 2
CPU time: 1.2s
Max memory: 4194304 KiB
Used memory: 4194304 KiB
Persistent: yes
Autostart: enable
Managed save: no
Security model: none
Security DOI: 0

dominfo

Chapter 25. Selected virsh commands 233

domjobabort
Aborts the currently running virsh command related to the specified virtual server.

Syntax

►► domjobabort
--domain

<VS> ►◄

Where:

<VS> Is the name, ID or UUID of the virtual server.

Selected options

None.

Usage

Chapter 15, “Live virtual server migration,” on page 117

Example

This example aborts the currently running dump request for vserv1.

virsh dump vserv1 vserv1.txt
error: Failed to core dump domain vserv1 to vserv1.txt
error: operation aborted: domain core dump job: canceled by client

virsh domjobabort vserv1

domjobabort

234 KVM Virtual Server Management - October 2016

domstate
Displays the state of a virtual server.

Syntax

►► domstate <VS>
--reason

►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--reason
Displays information about the reason why the virtual server entered the
current state.

Usage

“Displaying information about a virtual server” on page 112

Example
virsh domstate vserv1
crashed
virsh domstate vserv1 --reason
crashed (panicked)

domstate

Chapter 25. Selected virsh commands 235

dump
Creates a virtual server dump on the host.

Syntax

►► dump <VS> <filename>
--memory-only

►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

<filename>
Is the name of the target dump file.

Selected options

--memory-only
Issues ELF dumps, which can be inspected by using the crash command.

Usage

“Creating a virtual server dump on the host” on page 153

Example

This example dumps the virtual server vserv1 to the file dumpfile.name.

virsh dump --memory-only vserv1 dumpfile.name

dump

236 KVM Virtual Server Management - October 2016

dumpxml
Displays the current libvirt-internal configuration of a defined virtual server.

Syntax

►►
--domain

dumpxml <VS>
--inactive

►

►
--security-info --update-cpu --migratable

►◄

Where:

<VS> Is the name, the ID, or the UUID of the virtual server.

Selected options

--domain
Specifies the virtual server.

--migratable
Displays a version of the current libvirt-internal configuration that is
compatible with older libvirt releases.

--inactive
Displays a defined virtual server, which is not in “running” state.

--security-info
Includes security-sensitive information.

--update-cpu
Updates the virtual server according to the host CPU.

Usage

“Displaying the current libvirt-internal configuration” on page 114

Example

This example displays the current domain configuration-XML of virtual server
vserv1.

virsh dumpxml vserv1

dumpxml

Chapter 25. Selected virsh commands 237

edit
Edits the libvirt-internal configuration of a virtual server.

Syntax

►►
--domain

edit <VS> ►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--domain
Specifies the virtual server.

Usage

“Modifying a virtual server definition” on page 102

Example

This example edits the libvirt-internal configuration of virtual server vserv1.

virsh edit vserv1

edit

238 KVM Virtual Server Management - October 2016

inject-nmi
Causes a restart interrupt for a virtual server including a dump on the virtual
server, if it is configured respectively.

The dump is displayed in the virtual server file /proc/vmcore.

Syntax

►► inject-nmi <VS> ►◄

Where:

<VS> Is the name, the ID, or the UUID of the virtual server.

Selected options

None.

Usage

“Creating a dump on the virtual server” on page 153

Example

This example causes a restart interrupt for the virtual server vserv1 including a
core dump.

virsh inject-nmi vserv1

inject-nmi

Chapter 25. Selected virsh commands 239

iothreadadd
Provides an additional I/O thread for a virtual server.

To improve performance, provide an I/O thread for each virtual block device. But
please be aware that a disk migration in the context of a live migration is only
possible for virtual disks that are configured without I/O threads.

Syntax

►►
--domain

iothreadadd <VS>
--id

<IOthread-ID> ►

►
--config
--live
--current

►◄

Where:

<IOthread-ID>
Is the ID of the I/O thread to be added to the virtual server. The I/O
thread ID must be beyond the range of available I/O threads.

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--config
Affects the virtual server the next time it is restarted.

--current
Affects the current virtual server.

--domain
Specifies the virtual server.

--id Specifies the ID of the I/O thread that will be added to the I/O threads of
the virtual server.

--live Affects the current virtual server only if it is running.

Usage

“Attaching a device” on page 134

iothreadadd

240 KVM Virtual Server Management - October 2016

|
|
|

Example

This example shows the iothreadinfo command for 8 virtual CPUs:

virsh iothreadinfo vserv1
IOThread ID CPU Affinity

1 0-7
2 0-7
3 0-7

virsh iothreadadd vserv1 4

virsh iothreadinfo vserv1
IOThread ID CPU Affinity

1 0-7
2 0-7
3 0-7
4 0-7

iothreadadd

Chapter 25. Selected virsh commands 241

iothreaddel
Removes an I/O thread from a virtual server.

If the specified I/O thread is assigned to a virtual block device that belongs to the
current configuration of the virtual server, it is not removed.

Syntax

►►
--domain

iothreaddel <VS>
--id

<IOthread-ID> ►

►
--config
--live
--current

►◄

Where:

<IOthread-ID>
Is the ID of the I/O thread to be deleted from the virtual server.

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--config
Affects the virtual server the next time it is restarted.

--current
Affects the current virtual server.

--domain
Specifies the virtual server.

--id Specifies the ID of the I/O thread that will be removed from the I/O
threads of the virtual server.

--live Affects the current virtual server only if it is running.

Usage

“Detaching a device” on page 135

iothreaddel

242 KVM Virtual Server Management - October 2016

Example

This example shows the iothreadinfo command for 8 virtual CPUs:

virsh iothreadinfo vserv1
IOThread ID CPU Affinity

1 0-7
2 0-7
3 0-7

virsh iothreaddel vserv1 3

virsh iothreadinfo vserv1
IOThread ID CPU Affinity

1 0-7
2 0-7

iothreaddel

Chapter 25. Selected virsh commands 243

iothreadinfo
Displays information about the I/O threads of a virtual server.

Syntax

►►
--domain

iothreadinfo <VS>
--config
--live
--current

►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--config
Affects the virtual server the next time it is restarted.

--current
Affects the current virtual server.

--domain
Specifies the virtual server.

--live Affects the current virtual server only if it is running.

Usage

“Displaying information about a virtual server” on page 112

Example

This example shows the iothreadinfo command for 8 virtual CPUs:

virsh iothreadinfo vserv1
IOThread ID CPU Affinity

1 0-7
2 0-7
3 0-7

iothreadinfo

244 KVM Virtual Server Management - October 2016

list
Browses defined virtual servers.

Syntax

►►
--state-running

list
--all
--inactive
--state-paused
--state-shutoff
--state-other

--with-snapshot
--without-snapshot

--transient
--persistent

►

►
--autostart
--no-autostart

--with-managed-save
--without-managed-save

--name
--id
--uuid

►

►
--table

--managed-save --title
►◄

Selected options

--all Lists all defined virtual servers.

--autostart
Lists all defined virtual servers with autostart enabled.

--inactive
Lists all defined virtual servers that are not running.

--managed-save
Only when --table is specified.

--name
Lists only virtual server names.

--no-autostart
Lists only virtual servers with disabled autostart option.

--persistent
Lists persistent virtual servers.

--state-other
Lists virtual servers in state “shutting down”.

--state-paused
Lists virtual servers in state “paused”.

--state-running
Lists virtual servers in state “running”.

--state-shutoff
Lists virtual servers in state “shut off”.

--table Displays the listing as a table.

list

Chapter 25. Selected virsh commands 245

--title Displays only a short virtual server description.

--transient
Lists transient virtual servers.

--uuid Lists only UUIDs.

--with-managed-save
Lists virtual servers with managed save state.

--with-snapshot
Lists virtual servers with existing snapshot.

--without-managed-save
Lists virtual servers without managed save state.

--without-snapshot
Lists virtual servers without existing snapshot.

Usage

“Browsing virtual servers” on page 112

Example

This example lists all defined virtual servers.

virsh list --all

list

246 KVM Virtual Server Management - October 2016

managedsave
Saves the system image of a running or a paused virtual server and terminates it
thereafter. When the virtual server is started again, the saved system image is
resumed.

Per default, the virtual server is in the same state as it was when it was
terminated.

Use the dominfo command to see whether the system image of a shut off virtual
server was saved.

Syntax

►► managedsave
--bypass-cache

--domain
<VS>

--running
--paused

►

►
--verbose

►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--bypass-cache
Writes virtual server data directly to the disk bypassing the filesystem
cache. This sacrifices write speed for data integrity by getting the data
written to the disk faster.

--running
When you restart the virtual server, it will be running.

--paused
When you restart the virtual server, it will be paused.

--verbose
Displays the progress of the save operation.

Virtual server state transitions

Command option From state To state (reason)

managedsave running shut off (saved from running)

managedsave paused shut off (saved from paused)

managedsave --running running shut off (saved from running)

managedsave --running paused shut off (saved from running)

managedsave --paused running shut off (saved from paused)

managedsave --paused paused shut off (saved from paused)

managedsave

Chapter 25. Selected virsh commands 247

Usage
v “Terminating a virtual server” on page 106
v Chapter 23, “Virtual server life cycle,” on page 161

Example
virsh managedsave vserv1 --running
Domain vserv1 state saved by libvirt

virsh dominfo vserv1
Id: -
Name: vserv1331
UUID: d30a4c80-2670-543e-e73f-30c1fa7c9c20
OS Type: hvm
State: shut off
CPU(s): 2
Max memory: 1048576 KiB
Used memory: 1048576 KiB
Persistent: yes
Autostart: disable
Managed save: yes
Security model: none
Security DOI: 0

virsh start vserv1
Domain vserv1 started

virsh list
Id Name State
--
13 vserv1 running

virsh managedsave vserv1 --paused --verbose
Managedsave: [100 %]
Domain vserv1 state saved by libvirt

virsh domstate vserv1
shut off

virsh start vserv1
Domain vserv1 started

virsh list
Id Name State
--
13 vserv1 paused

managedsave

248 KVM Virtual Server Management - October 2016

migrate
Migrates a virtual server to a different host.

Syntax

►►
--offline

migrate
--live --p2p

--tunnelled
--persistent

►

►
--undefinesource --suspend --change-protection --unsafe

►

►
--verbose --auto-converge --abort-on-error

►

►
--domain

<VS>
--desturi

<destination-host> ►

►
--migrateuri <migrateen-address> --dname

<destination-name>

►

►
--timeout <seconds> --xml <XML-filename>

►

►

▼

,

--copy-storage-all --migrate-disks <logical-device-name>
--copy-storage-inc

►◄

where

<destination-host>
The libvirt connection URI of the destination host.

Normal migration:
Specify the address of the destination host as seen from the virtual
server.

Peer to-peer migration:
Specify the address of the destination host as seen from the source
host.

<destination-name>
Is the new name of the virtual server on the destination host.

<logical-device-name>
The logical device name of the virtual block device.

<migrateen-address>
The host specific URI of the destination host.

<VS> Is the name, ID, or UUID of the virtual server.

migrate

Chapter 25. Selected virsh commands 249

||||

|
|

<XML-filename>
The domain configuration-XML for the source virtual server.

Selected options

--abort-on-error
Causes an abort on soft errors during migration.

--auto-converge
Forces auto convergence during live migration.

--change-protection
Prevents any configuration changes to the virtual server until the migration
ends

--copy-storage-all
Copies files that back up virtual block devices to the destination. Make
sure that a file with the same path and filename exists on the destination
host before you issue the virsh migrate command. The regarding virtual
block devices are specified by the --migrate-disks option.

--copy-storage-inc
Incrementally copies non-readonly files that back up virtual block devices
to the destination. Make sure that a file with the same path and filename
exists on the destination host before you issue the virsh migrate command.
The regarding virtual block devices are specified by the --migrate-disks
option.

--dname
Specifies that the virtual server is renamed during migration (if supported).

--domain
Specifies the virtual server.

--live Specifies the migration of a running or a paused virtual server.

--migrate-disks
Copies the files which back up the specified virtual block devices to the
destination host. Use the --copy-storage-all or the --copy-storage-inc
option in conjunction with this option. The regarding files must be
writable. Please note that virtual DVDs are read-only disks. If in doubt,
check your domain configuration-XML. If the disk device attribute of a
disk element is configured as cdrom, or contains a readonly element, then
the disk cannot be migrated.

Make sure that the virtual disks do not use I/O threads. Disk migration is
only possible for virtual disks that are configured without I/O threads.

--migrateuri
Specifies the host specific URI of the destination host.

If not specified, libvirt automatically processes the host specific URI from
the libvirt connection URI. In some cases, it is useful to specify a
destination network interface or port manually.

--offline
Specifies the migration of the virtual server in “shut off” state. A copy of
the libvirt-internal configuration of the virtual server on the source host is
defined on the destination host.

If you specify this option, specify the --persistent option, too.

migrate

250 KVM Virtual Server Management - October 2016

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

--persistent
Specifies to persistent the virtual server on the destination system.

--p2p Specifies peer-to-peer migration:

libvirt establishes a connection from the source to the destination host and
controls the migration process. The migration continues even if virsh
crashes or loses the connection.

Without the --p2p option, virsh handles the communication between the
source and the destination host.

--suspend
Specifies that the virtual server will not be restarted on the destination
system.

--timeout seconds
The number of seconds allowed before the virtual server is suspended
while live migration continues.

--tunnelled
Specifies a tunneled migration:

libvirt pipes the migration data through the libvirtd communication socket.
Thus, no extra ports are required to be opened on the destination host.
This simplifies the networking setup required for migration.

The tunneled migration has a slight performance impact, because the data
is copied between the libvirt daemons of the source host and the
destination host.

Nevertheless, also in a tunneled migration, disk migration requires one
extra destination port per disk.

--undefinesource
Specifies to undefine the virtual server on the source system.

--unsafe
Forces a migration even if it may cause data loss or corruption on the
virtual server.

--verbose
Displays messages which indicate the migration progress.

Usage

Chapter 15, “Live virtual server migration,” on page 117

Example

This example migrates the virtual server vserv1 to the host zhost.

virsh migrate –-auto-converge –-timeout 300 vserv1 qemu+ssh://zhost/system

More information

libvirt.org/migration.html

migrate

Chapter 25. Selected virsh commands 251

|
|

http://libvirt.org/migration.html

migrate-getspeed
Displays the maximum migration bandwidth for a virtual server in MiB/s.

Syntax

►► migrate-getspeed
--domain

<VS> ►◄

Where:

<VS> Is the name, ID or UUID of the virtual server.

Selected options

None.

Usage

Chapter 15, “Live virtual server migration,” on page 117

Example
virsh migrate-getspeed vserv1
8796093022207

migrate-getspeed

252 KVM Virtual Server Management - October 2016

migrate-setmaxdowntime
Specifies a tolerable downtime for the virtual server during the migration, which is
used to estimate the point in time when to suspend it.

Syntax

►►
--domain

migrate-setmaxdowntime <VS> ►

►
--downtime

<milliseconds> ►◄

where

<milliseconds>
Is the tolerable downtime of the virtual server during migration in
milliseconds.

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

None.

Usage

Chapter 15, “Live virtual server migration,” on page 117

Example

This example specifies a tolerable downtime of 100 milliseconds for the virtual
server vserv1 in case it is migrated to another host.

virsh migrate-setmaxdowntime vserv1 --downtime 100

migrate-setmaxdowntime

Chapter 25. Selected virsh commands 253

migrate-setspeed
Sets the maximum migration bandwidth for a virtual server in MiB/s.

Syntax

►► migrate-setspeed
--domain

<VS> ►

► <mebibyte-per-second>
--bandwidth

►◄

Where:

<mebibyte-per-second>
Is the migration bandwidth limit in MiB/s.

<VS> Is the name, ID or UUID of the virtual server.

Selected options

--bandwidth
Sets the bandwidth limit during a migration in MiB/s.

Usage

Chapter 15, “Live virtual server migration,” on page 117

Example
virsh migrate-setspeed vserv1 --bandwidth 100
virsh migrate-getspeed vserv1
100

migrate-setspeed

254 KVM Virtual Server Management - October 2016

reboot
Reboots a guest using the current libvirt-internal configuration.

For making virtual server configuration changes effective, shut down the virtual
server and start it again instead of rebooting it.

The exact reboot behavior of a virtual server is configured by the on_reboot
element in the domain configuration-XML (see “<on_reboot>” on page 201.

Syntax

►► reboot <VS> ►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Virtual server state transition

If on_reboot is configured as “restart”:

From State Transfer State (reason) To State (reason)

running shut off (shutdown) running (booted)

paused shut off (shutdown) running (booted)

If on_reboot is configured as “destroy”:

From State Transfer State (reason) To State (reason)

running shut off (destroyed) running (booted)

paused shut off (destroyed) running (booted)

Example
virsh reboot vserv1
Domain vserv1 is being rebooted

reboot

Chapter 25. Selected virsh commands 255

|

|
|

resume
Resumes a virtual server from the paused to the running state.

Syntax

►► resume <VS> ►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

None.

Virtual server state transition

From State To State (reason)

paused running (unpaused)

Usage

“Resuming a virtual server” on page 108

Example
virsh list
Id Name State
--
13 vserv1 paused

virsh resume vserv1
Domain vserv1 resumed

virsh list
Id Name State
--
13 vserv1 running

resume

256 KVM Virtual Server Management - October 2016

schedinfo
Displays scheduling information about a virtual server, and can modify the portion
of CPU time that is assigned to it.

Syntax

►► schedinfo <VS>
--live cpu_shares = <number>
--config

►◄

Where:

<number>
Specifies the CPU weight.

<VS> Is the name, the ID, or the UUID of the virtual server.

Selected options

--live Specifies the modification of the current CPU weight of the running virtual
server.

--config
Specifies the modification of the virtual server's CPU weight after the next
restart.

Usage

“Modifying the virtual CPU weight” on page 131

Examples

This example sets the CPU weight of the running virtual server vserv1 to 2048.

virsh schedinfo vserv1 --live cpu_shares=2048

This example modifies the domain configuration-XML, which will be effective from
the next restart.

virsh schedinfo vserv1 --config cpu_shares=2048

This example displays scheduling information about the virtual server vserv1.

virsh schedinfo vserv1
Scheduler : posix
cpu_shares : 1024
vcpu_period : 100000
vcpu_quota : -1
emulator_period: 100000
emulator_quota : -1

schedinfo

Chapter 25. Selected virsh commands 257

shutdown
Properly shuts down a running virtual server.

Syntax

►►
--domain

shutdown <VS> ►◄

Where:

<VS> Is the name, the ID, or the UUID of the virtual server.

Selected options

--domain
Specifies the virtual server.

Virtual server state transitions

From State To State (reason)

running shut off (shutdown)

Usage
v Chapter 1, “Overview,” on page 3
v “Terminating a virtual server” on page 106

Example

This example terminates virtual server vserv1.

virsh shutdown vserv1
Domain vserv1 is being shutdown

shutdown

258 KVM Virtual Server Management - October 2016

setvcpus
Changes the number of virtual CPUs of a virtual server.

Syntax

►►
--domain --live

setvcpus <VS> <count>
--current

--config
--live
--maximum

►◄

Where:

<count>

If the --maximum option is not specified:
Specifies the actual number of virtual CPUs which are made
available for the virtual server.

This value is limited by the maximum number of virtual CPUs.
This number is configured with the vcpu element and can be
modified during operation. If no number is specified, the
maximum number of virtual CPUs is 1.

If <count> is less than the actual number of available virtual CPUs,
specify the --config option to remove the appropriate number of
virtual CPUs with the next virtual server reboot. Until then, the
virtual server user might set the corresponding number of virtual
CPUs offline.

If the --maximum option is specified:
Specifies the maximum number of virtual CPUs which can be
made available after the next virtual server reboot.

Do not specify more virtual CPUs than available host CPUs.

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--config
Changes the number the next time the virtual server is started.

--current, --live
Changes the number of available virtual CPUs immediately.

--domain
Specifies the virtual server.

--maximum
Changes the maximum number of virtual CPUs that can be made available
after the next virtual server reboot.

Usage

“Modifying the number of virtual CPUs” on page 128

setvcpus

Chapter 25. Selected virsh commands 259

|

|

|
|

||||||||||||||||||||||||||||||||||||

|
||

|

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

||

|

|
|

|
|

|
|

|
|
|

|

|

Example

This example persistently adds a virtual CPU to the running virtual server vserv1:

virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 3
current live 3

virsh setvcpus vserv1 4 --live --config

virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 4
current live 4

setvcpus

260 KVM Virtual Server Management - October 2016

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

start
Starts a defined virtual server that is shut off or crashed.

Syntax

►►
--domain

start <VS>
--console --paused

►

►
--autodestroy --bypass-cache --force-boot

►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--autodestroy
Destroys the virtual server when virsh disconnects from libvirt.

--bypass-cache
Does not load the virtual server from the cache.

--console
Connects to a configured pty console.

--domain
Specifies the virtual server.

--force-boot
Any saved system image is discarded before booting.

--paused
Suspends the virtual server as soon as it is started.

Virtual server state transitions

Command option From state (reason) To state (reason)

start shut off (unknown) running (booted)

start shut off (saved from running) running (restored)

start shut off (saved from paused) paused (migrating)

start shut off (shutdown) running (booted)

start shut off (destroyed) running (booted)

start crashed running (booted)

start --force-boot shut off (unknown) running (booted)

start --force-boot shut off (saved from running) running (booted)

start --force-boot shut off (saved from paused) paused (user)

start --force-boot shut off (shutdown) running (booted)

start --force-boot shut off (destroyed) running (booted)

start

Chapter 25. Selected virsh commands 261

Command option From state (reason) To state (reason)

start --paused shut off (unknown) paused (user)

start --paused shut off (saved from running) paused (migrating)

start --paused shut off (saved from paused) paused (migrating)

start --paused shut off (shutdown) paused (user)

start --paused shut off (destroyed) paused (user)

Usage
v Chapter 1, “Overview,” on page 3
v “Starting a virtual server” on page 106
v “Connecting to the console of a virtual server” on page 137

Example

This example starts virtual server vserv1 with initial console access.

virsh start vserv1 --console
Domain vserv1 started

start

262 KVM Virtual Server Management - October 2016

suspend
Transfers a virtual server from the running to the paused state.

Syntax

►► suspend <VS> ►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

None.

Virtual server state transition

From State To State (reason)

running paused (user)

Usage

“Suspending a virtual server” on page 108

Example

This example suspends virtual server vserv1.

virsh list
Id Name State
--
13 vserv1 running

virsh suspend vserv1
Domain vserv1 suspended

virsh list
Id Name State
--
13 vserv1 paused

suspend

Chapter 25. Selected virsh commands 263

undefine
Deletes a virtual server from libvirt.

Purpose

Syntax

►► undefine <VS> ►◄

Where:

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

None.

Usage
v Chapter 1, “Overview,” on page 3
v “Undefining a virtual server” on page 103

Example

This example removes virtual server vserv1 from the libvirt definition.

virsh undefine vserv1

undefine

264 KVM Virtual Server Management - October 2016

vcpucount
Displays the number of virtual CPUs associated with a virtual server.

Syntax

►►
--domain

vcpucount <VS>
--maximum --config
--active --live

--current

►◄

where

<VS> Is the name, ID, or UUID of the virtual server.

Selected options

--active
Displays the number of virtual CPUs being used by the virtual server.

--config
Displays the number of virtual CPUs available to an inactive virtual server
the next time it is restarted.

--current
Displays the number of virtual CPUs for the current virtual server.

--domain
Specifies the virtual server.

--live Displays the number of CPUs for the active virtual server.

--maximum
Displays information on the maximum cap of virtual CPUs that a virtual
server can add.

Usage

“Modifying the number of virtual CPUs” on page 128

Example
virsh vcpucount vserv1
maximum config 5
maximum live 5
current config 3
current live 3

vcpucount

Chapter 25. Selected virsh commands 265

|

|

vcpucount

266 KVM Virtual Server Management - October 2016

Chapter 26. Selected QEMU commands

QEMU monitor commands
Do not use the QEMU monitor commands, because their use can change the state
of a virtual server, might disturb the correct operation of libvirt and lead to
inconsistent states or even a crash of the virtual server.

info Displays information about the virtual server.

Examples for the use of the qemu-img command
v This example creates a qcow2 image with a maximum size of 10GB:

qemu-img create -f qcow2 /var/lib/libvirt/images/disk1.img 10G
Formatting ’/var/lib/libvirt/images/disk1.img’, fmt=qcow2
size=10737418240 encryption=off cluster_size=65536
lazy_refcounts=off
Format specific information:
compat: 1.1
lazy refcounts: false
refcount bits: 16
corrupt: false

v This example displays attributes of a qcow2 image:

qemu-img info /var/lib/libvirt/images/disk1.img
image: /var/lib/libvirt/images/disk1.img
file format: qcow2
virtual size: 10G (10737418240 bytes)
disk size: 136K
cluster_size: 65536

v This example increases the size of a qcow2 image:

qemu-img resize /var/lib/libvirt/images/disk1.img 20G
Image resized.

qemu-img info /var/lib/libvirt/images/disk1.img
image: /var/lib/libvirt/images/disk1.img
file format: qcow2
virtual size: 20G (21474836480 bytes)
disk size: 140K
cluster_size: 65536

v This example creates a RAW image with a maximum size of 10GB:

qemu-img create -f raw /var/lib/libvirt/images/disk1.img 10G
Formatting ’/var/lib/libvirt/images/disk1.img’, fmt=raw
size=10737418240

v This example displays attributes of a RAW image:

qemu-img info /var/lib/libvirt/images/disk1.img
image: /var/lib/libvirt/images/disk1.img
file format: raw
virtual size: 10G (10737418240 bytes)
disk size: 0

v This example increases the size of a RAW image:

© Copyright IBM Corp. 2015, 2016 267

qemu-img resize -f raw /var/lib/libvirt/images/disk1.img 20G
Image resized.

qemu-img info /var/lib/libvirt/images/disk1.img
image: /var/lib/libvirt/images/disk1.img
file format: raw
virtual size: 20G (21474836480 bytes)
disk size: 0

268 KVM Virtual Server Management - October 2016

Chapter 27. Hypervisor information for the virtual server user

The virtual server user can use the emulated Store Hypervisor Information
(STHYI) instruction to retrieve information about the z Systems hardware and the
LPAR on which the KVM host runs.

The instruction provides applications with details about the maximum processing
capacity that is available to the KVM guest. The information includes:
v The CPU count, by type (CP or IFL)
v Limitations for shared CPUs
v CEC and LPAR identifiers

KVM guests use the qclib and the GCC inline assembly to run the emulated
instruction. For an example, see arch/s390/kvm/sthyi.c in the Linux source tree.

The emulated STHYI instruction provides information through a response buffer
with three data sections:
v The header section, at the beginning of the response buffer, which identifies the

locations and length of the sections that follow.
v The machine section.
v The partition section.

© Copyright IBM Corp. 2015, 2016 269

|

|

|
|
|

|
|

|

|

|

|
|

|
|

|
|

|

|

Header section

Length Data Type Offset (dec) Name Contents

1 Bitstring 0 INFHFLG1 Header Flag Byte 1

These flag settings indicate the environment
that the instruction was executed in and may
influence the value of the validity bits. The
validity bits, and not these flags, should be
used to determine if a field is valid.

0x80
Global Performance Data unavailable.

0x40
One or more hypervisor levels below this
level does not support the STHYI
instruction. When this flag is set the value
of INFGPDU is not meaningful because
the state of the Global Performance Data
setting cannot be determined.

0x20
Virtualization stack is incomplete. This bit
indicates one of two cases:

v One or more hypervisor levels does not
support the STHYI instruction. For this
case, INFSTHYI will also be set.

v There were more than three levels of
guest/hypervisor information to report.

0x10
Execution environment is not within a
logical partition.

1 Bitstring 1 INFHFLG2 Header Flag Byte 2 reserved for IBM use

1 Bitstring 2 INFHVAL1 Header Validity Byte 1 reserved for IBM use

1 Bitstring 3 INFHVAL2 Header Validity Byte 2 reserved for IBM use

3 4 Reserved for future IBM use

1 Unsigned Binary
Integer

7 INFHYGCT Count of Hypervisor and Guest Sections

2 Unsigned Binary
Integer

8 INFHTOTL Total length of response buffer

2 Unsigned Binary
Integer

10 INFHDLN Length of Header Section mapped by
INF0HDR

2 Unsigned Binary
Integer

12 INFMOFF Offset to Machine Section mapped by
INF0MAC

2 Unsigned Binary
Integer

14 INFMLEN Length of Machine Section

2 Unsigned Binary
Integer

16 INFPOFF Offset to Partition Section mapped by
INF0PAR

2 Unsigned Binary
Integer

18 INFPLEN Length of Partition Section

2 Unsigned Binary
Integer

20 INFHOFF1 Offset to Hypervisor Section1 mapped by
INF0HYP

2 Unsigned Binary
Integer

22 INFHLEN1 Length of Hypervisor Section1

270 KVM Virtual Server Management - October 2016

|

||||||

|||||

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|||||

|||||

|||||

|||||

||
|
|||

||
|
|||

||
|
|||
|

||
|
|||
|

||
|
|||

||
|
|||
|

||
|
|||

||
|
|||
|

||
|
|||

Length Data Type Offset (dec) Name Contents

2 Unsigned Binary
Integer

24 INFGOFF1 Offset to Guest Section1 mapped by INF0GST

2 Unsigned Binary
Integer

26 INFGLEN1 Length of Guest Section1

2 Unsigned Binary
Integer

28 INFHOFF2 Offset to Hypervisor Section2 mapped by
INF0HYP

2 Unsigned Binary
Integer

30 INFHLEN2 Length of Hypervisor Section2

2 Unsigned Binary
Integer

32 INFGOFF2 Offset to Guest Section2 mapped by INF0GST

2 Unsigned Binary
Integer

34 INFGLEN2 Length of Guest Section2

2 Unsigned Binary
Integer

36 INFHOFF3 Offset to Hypervisor Section3 mapped by
INF0HYP

2 Unsigned Binary
Integer

38 INFHLEN3 Length of Hypervisor Section3

2 Unsigned Binary
Integer

40 INFGOFF3 Offset to Guest Section3 mapped by INF0GST

2 Unsigned Binary
Integer

42 INFGLEN3 Length of Guest Section3

4 44 Reserved for future IBM use

Format machine section

Length Data Type Offset (dec) Name Contents

1 Bitstring 0 INFMFLG1 Machine Flag Byte 1 reserved for IBM use

1 Bitstring 1 INFMFLG2 Machine Flag Byte 2 reserved for IBM use

1 Bitstring 2 INFMVAL1 Machine Validity Byte 1

0x80
Processor Count Validity. When this bit is
on, it indicates that INFMSCPS,
INFMDCPS, INFMSIFL, and INFMDIFL
contain valid counts. The validity bit may
be off when:

v STHYI support is not available on a
lower level hypervisor, or

v Global Performance Data is not enabled.

0x40
Machine ID Validity. This bit being on
indicates that a SYSIB 1.1.1 was obtained
from STSI and information reported in the
following fields is valid: INFMTYPE,
INFMMANU, INFMSEQ, and
INFMPMAN.

0x20
Machine Name Validity. This bit being on
indicates that the INFMNAME field is
valid.

1 Bitstring 3 INFMVAL2 Machine Validity Byte 2 reserved for IBM use

Chapter 27. Hypervisor information for the virtual server user 271

|||||

||
|
|||

||
|
|||

||
|
|||
|

||
|
|||

||
|
|||

||
|
|||

||
|
|||
|

||
|
|||

||
|
|||

||
|
|||

|||||
|

|

||||||

|||||

|||||

|||||

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|

|||||

Length Data Type Offset (dec) Name Contents

2 Unsigned Binary
Integer

4 INFMSCPS Number of shared CPs configured in the
machine or in the physical partition if the
system is physically partitioned

2 Unsigned Binary
Integer

6 INFMDCPS Number of dedicated CPs configured in this
machine or in the physical partition if the
system is physically partitioned

2 Unsigned Binary
Integer

8 INFMSIFL Number of shared IFLs configured in this
machine or in the physical partition if the
system is physically partitioned.

2 Unsigned Binary
Integer

10 INFMDIFL Number of dedicated IFLs configured in this
machine or in the physical partition if the
system is physically partitioned.

8 EBCDIC 12 INFMNAME Machine Name

4 EBCDIC 20 INFMTYPE Type

16 EBCDIC 24 INFMMANU Manufacturer

16 EBCDIC 40 INFMSEQ Sequence Code

4 EBCDIC 56 INFMPMAN Plant of Manufacture

4 60 Reserved for future IBM use

Format partition section

Length Data Type Offset (dec) Name Contents

1 Bitstring 0 INFPFLG1 Partition Flag Byte 1

0x80
Multithreading (MT) is enabled.

1 Bitstring 1 INFPFLG2 Partition Flag Byte 2 reserved for IBM use

1 Bitstring 2 INFPVAL1 Partition Validity Byte 1

0x80
This bit being on indicates that INFPSCPS,
INFPDCPS, INFPSIFL, and INFPDIFL
contain valid counts.

0x40
This bit being on indicates that
INFPWBCP and INFPWBIF are valid

0x20
This bit being on indicates that INFPABCP
and INFPABIF are valid.

0x10
This bit being on indicates that a SYSIB
2.2.2 was obtained from STSI and
information reported in the following
fields is valid: INFPPNUM and
INFPPNAM.

0x08
This bit being on indicates that
INFPLGNM, INFPLGCP, and INFPLGIF
are valid.

1 Bitstring 3 INFPVAL2 Partition Validity Byte 2 reserved for IBM use

272 KVM Virtual Server Management - October 2016

|||||

||
|
|||
|
|

||
|
|||
|
|

||
|
|||
|
|

||
|
|||
|
|

|||||

|||||

|||||

|||||

|||||

|||||
|

|

||||||

|||||

|
|

|||||

|||||

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|||||

Length Data Type Offset (dec) Name Contents

2 Unsigned Binary
Integer

4 INFPPNUM Logical partition number

2 Unsigned Binary
Integer

6 INFPSCPS Number of shared logical CPs configured for
this partition. Count of cores when MT is
enabled.

2 Unsigned Binary
Integer

8 INFPDCPS Number of dedicated logical CPs configured
for this partition. Count of cores when MT is
enabled.

2 Unsigned Binary
Integer

10 INFPSIFL Number of shared logical IFLs configured for
this partition. Count of cores when MT is
enabled.

2 Unsigned Binary
Integer

12 INFPDIFL Number of dedicated logical IFLs configured
for this partition. Count of cores when MT is
enabled.

2 14 Reserved for future IBM use

8 EBCIDIC 16 INFPPNAM Logical partition name

4 Unsigned Binary
Integer

24 INFPWBCP Partition weight-based capped capacity for
CPs, a scaled number where X'00010000'
represents one core. Zero if not capped.

4 Unsigned Binary
Integer

28 INFPABCP Partition absolute capped capacity for CPs, a
scaled number where X'00010000' represents
one core. Zero if not capped.

4 Unsigned Binary
Integer

32 INFPWBIF Partition weight-based capped capacity for
IFLs, a scaled number where X'00010000'
represents one core. Zero if not capped.

4 Unsigned Binary
Integer

36 INFPABIF Partition absolute capped capacity for IFLs, a
scaled number where X'00010000' represents
one core. Zero if not capped.

8 EBCIDIC 40 INFPLGNM LPAR group name. Binary zeros when the
partition is not in an LPAR group. EBCDIC
and padded with blanks on the right when in
a group. The group name is reported only
when there is a group cap on CP or IFL CPU
types and the partition has the capped CPU
type.

4 Unsigned Binary
Integer

48 INFPLGCP LPAR group absolute capacity value for CP
CPU type when nonzero. This field will be
nonzero only when INFPLGNM is nonzero
and a cap is defined for the LPAR group for
the CP CPU type. When nonzero, contains a
scaled number where X'00010000' represents
one core.

4 Unsigned Binary
Integer

52 INFPLGIF LPAR group absolute capacity value for IFL
CPU type when nonzero. This field will be
nonzero only when INFPLGNM is nonzero
and a cap is defined for the LPAR group for
the IFL CPU type. When nonzero, contains a
scaled number where X'00010000' represents
one core.

Chapter 27. Hypervisor information for the virtual server user 273

|||||

||
|
|||

||
|
|||
|
|

||
|
|||
|
|

||
|
|||
|
|

||
|
|||
|
|

|||||

|||||

||
|
|||
|
|

||
|
|||
|
|

||
|
|||
|
|

||
|
|||
|
|

|||||
|
|
|
|
|
|

||
|
|||
|
|
|
|
|
|

||
|
|||
|
|
|
|
|
|
|
|

274 KVM Virtual Server Management - October 2016

Part 8. Appendixes

© Copyright IBM Corp. 2015, 2016 275

276 KVM Virtual Server Management - October 2016

Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Documentation accessibility

The Linux on z Systems publications are in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when you use the PDF file and want to request a Web-based format for
this publication, use the Readers' Comments form in the back of this publication,
send an email to eservdoc@de.ibm.com, or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility at
www.ibm.com/able

© Copyright IBM Corp. 2015, 2016 277

http://www.ibm.com/able

278 KVM Virtual Server Management - October 2016

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

© Copyright IBM Corp. 2015, 2016 279

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems
Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

280 KVM Virtual Server Management - October 2016

http://www.ibm.com/legal/copytrade.shtml

Index

Special characters
--active option

of the vcpucount virsh command 265
--all option

of the list virsh command 103, 112, 245
--auto-converge option

of the migrate virsh command 121, 122
--autodestroy option

of the start virsh command 261
--autostart option

of the list virsh command 245
--bandwidth option

of the migrate-setspeed virsh command 122, 254
--bypass-cache option

of the managedsave virsh command 247
of the start virsh command 261

--change-protection option
of the migrate virsh command 249

--compressed option
of the migrate virsh command 249

--config option
of the attach-device virsh command 134, 219
of the change-media virsh command 221
of the detach-device virsh command 226
of the iothreadadd virsh command 240
of the iothreaddel virsh command 242
of the iothreadinfo virsh command 244
of the schedinfo virsh command 131, 257
of the setvcpus virsh command 259
of the vcpucount virsh command 265

--console option
of the start virsh command 106, 137, 261

--copy-storage-all option
of the migrate virsh command 122, 249

--copy-storage-inc option
of the migrate virsh command 122, 249

--current option
of the change-media virsh command 221
of the detach-device virsh command 226
of the iothreadadd virsh command 240
of the iothreaddel virsh command 242
of the iothreadinfo virsh command 244
of the setvcpus virsh command 259
of the vcpucount virsh command 265

--direct option
of the migrate virsh command 249

--domain option
of the attach-device virsh command 219
of the change-media virsh command 221
of the destroy virsh command 225
of the detach-device virsh command 226
of the dumpxml virsh command 237
of the shutdown virsh command 258
of the start virsh command 261

--eject option
of the change-media virsh command 135, 221

--file option
of the attach-device virsh command 219
of the detach-device virsh command 226

--force option
of the change-media virsh command 221

--force option (continued)
of the console virsh command 223

--force-boot option
of the start virsh command 106, 261

--graceful option
of the destroy virsh command 106, 225

--id option
of the iothreadadd virsh command 240
of the iothreaddel virsh command 242
of the list virsh command 245

--inactive option
of the dumpxml virsh command 237
of the list virsh command 245

--insert option
of the change-media virsh command 135, 221

--keepalive-count option
of the virsh command 122

--keepalive-interval option
of the virsh command 122

--live option
of the change-media virsh command 221
of the detach-device virsh command 226
of the iothreadadd virsh command 240
of the iothreaddel virsh command 242
of the iothreadinfo virsh command 244
of the migrate virsh command 249
of the schedinfo virsh command 131, 257
of the setvcpus virsh command 259
of the vcpucount virsh command 265

--managed-save option
of the list virsh command 245

--maximum option
of the setvcpus virsh command 259
of the vcpucount virsh command 265

--memory-only option
of the dump virsh command 153, 236

--migratable option
of the dumpxml virsh command 237

--migrate-disks option
of the migrate virsh command 122, 249

--mode option
of the shutdown virsh command 258

--name option
of the list virsh command 245

--no-autostart option
of the list virsh command 245

--offline option
of the migrate virsh command 249

--p2p option
of the migrate virsh command 249

--path option
of the change-media virsh command 221

--paused option
of the managedsave virsh command 247
of the start virsh command 261

--persisent option
of the migrate virsh command 249

--persistent option
of the detach-device virsh command 226
of the list virsh command 245
of the migrate virsh command 249

© Copyright IBM Corp. 2015, 2016 281

--reason option
of the domstate virsh command 112, 235

--running option
of the managedsave virsh command 247

--safe option
of the console virsh command 223

--security-info option
of the dumpxml virsh command 237

--state-other option
of the list virsh command 245

--state-paused option
of the list virsh command 245

--state-running option
of the list virsh command 245

--state-shutoff option
of the list virsh command 245

--suspend option
of the migrate virsh command 249

--table option
of the list virsh command 245
of the migrate virsh command 249

--timeout option
of the migrate virsh command 121, 122, 249

--title option
of the list virsh command 245

--transient option
of the list virsh command 245
of the migrate virsh command 249

--tunnelled option
of the migrate virsh command 249

--undefinesource option
of the migrate virsh command 249

--unsafe option
of the migrate virsh command 249

--update option
of the change-media virsh command 221

--update-cpu option
of the dumpxml virsh command 237

--uuid option
of the list virsh command 245

--verbose option
of the managedsave virsh command 247
of the migrate virsh command 249

--with-managed-save option
of the list virsh command 245

--with-snapshot option
of the list virsh command 245

--without-managed-save option
of the list virsh command 245

--without-snapshot option
of the list virsh command 245

--xml option
of the migrate virsh command 249

/etc/hosts 102
/etc/libvirt/libvirtd.conf 122, 151
/etc/libvirt/qemu.conf 120
/etc/lvm/lvm.conf 145
/etc/ssh/sshd_config 120
/etc/zfcp.conf 31
/var/log/libvirtd/qemu/<VS>.log 151
/var/log/messages 151
$EDITOR environment variable 102
$VISUAL environment variable 102

Numerics
0xfe value

of the address cssid attribute 84
3DEA 69
3DES 69

A
accessibility 277
action attribute

of the watchdog element 215
activating

bonded interfaces 42
network interfaces 40

active bridge port 45
adapter element 85, 169

name attribute 85, 169
adding

CPUs 128
I/O threads 134

address attribute
of the mac element 94, 96, 194
of the target element 210

address element 74, 76, 82, 84, 85, 91, 170, 171, 172
bus attribute 85, 91, 171, 172
controller attribute 85, 91, 171
cssid attribute 76, 82, 84, 170

0xfe value 84
devno attribute 76, 82, 84, 170
ssid attribute 76, 82, 84, 170
target attribute 85, 91, 171, 172
type attribute 76, 82, 84, 85, 170, 171

ccw value 76, 82, 84, 170
drive value 91
scsi value 85

unit attribute 85, 91, 171, 172
Advanced Encryption Standard 69
AES 69
aes value

of the cipher name attribute 69, 175
alias device 29
alias machine type 23
append attribute

of the log element 67, 193
arch attribute

of the target element 212
of the type element 53

attach-device command
--config option 134

attach-device virsh command 134, 219
attaching

devices 134
auto value

of the controller model attribute 178
of the geometry trans attribute 186

B
backend element 173

model attribute 173
balloon device 71
base device 29
block device 9, 73

attaching 134
detaching 135
displaying 112

282 KVM Virtual Server Management - October 2016

block device (continued)
hotplugging 134
unplugging 135

block device driver 4
block value

of the disk type attribute 76, 181
bonded interface 19, 42

activating 42
configuring 94
preparing 42
setting up 42

bonded network interface 42
bonding

mode 42
parameter 42

boot element 55, 174
order attribute 55, 174

boot process
configuring 55

bootable kernel 55, 57
booted reason

of the running state 163
booting

from a DASD 55
from a kernel image file 57
from a SCSI disk 55
from an ISO image 56

bridge attribute
of the source element 96

bridge port 45
active 45
primary 45

bridge port role
enabling 45

bridge value
of the interface type attribute 96, 189
of the source mode attribute 94

bridge_state sysfs attribute 45
browsing

virtual servers 112
bus attribute

of the address element 85, 91, 171, 172
of the target element 76, 82, 91, 211

by-ID device node 9
by-path device node 9, 29, 76
by-uuid device node 9

C
cache attribute

of the driver element 76, 82, 91, 183
canceling

a live migration 122
CCW device 73
CCW group device 40, 45
ccw value

of the address type attribute 76, 82, 84, 170
CD-ROM 73
cdrom value

of the disk device attribute 91, 181
Central Processor Assist for Cryptographic Functions 69
cgroups 142
change-media command

--eject option 135
--insert option 135

change-media virsh command 135, 221
channel bonding 42

channel bonding module 42
channel path 9, 73
channel path type 73
channel subsystem 9, 73
channel subsystem-ID 9, 73, 76, 82
chccwdev command 29, 31, 35
chcpu command 128
cipher element 69, 175

name attribute 69, 175
aes value 69, 175
dea value 69, 175

state attribute 69, 175
off value 69, 175
on value 69, 175

clear key 69
cmdline element 53, 57, 176
collecting

performance metrics 155
command

chccwdev 31, 35
chcpu 128
crash 153
fdisk 31
ip 39, 40
ls 76
lscss 35, 76
lsqeth 40, 45
lsscsi 31
lszfcp 31, 35
modprobe 42
multipath 31, 76
ovs-vsctl add-bond 45
ovs-vsctl add-br 45
ovs-vsctl add-port 45
ovs-vsctl del-br 45
ovs-vsctl show 45
perf kvm stat 155
pvscan 145
QEMU monitor info 267
qemu-kvm 23
start openvswitch 45
status openvswitch 45
virsh attach-device 134, 219
virsh change-media 135, 221
virsh console 137, 223
virsh define 102, 224
virsh destroy 106, 225
virsh detach-device 135, 226
virsh domblklist 112, 228
virsh domblkstat 112, 229
virsh domiflist 112, 231
virsh domifstat 112, 232
virsh dominfo 112, 233
virsh domjobabort 122, 234
virsh domstate 112, 235
virsh dump 153, 236
virsh dumpxml 84, 114, 237
virsh edit 102, 238
virsh inject-nmi 239
virsh iothreadadd 240
virsh iothreaddel 242
virsh iothreadinfo 244
virsh list 103, 112, 133, 137, 245
virsh managedsave 106, 247
virsh migrate 122, 249
virsh migrate-getspeed 122, 252
virsh migrate-setmaxdowntime 122

Index 283

command (continued)
virsh migrate-setspeed 122, 254
virsh reboot 255
virsh resume 108, 256
virsh schedinfo 112, 131, 257
virsh setvcpus 128, 259
virsh shutdown 106, 258
virsh start 106, 137, 261
virsh suspend 108, 263
virsh undefine 103, 264
virsh vcpucount 112, 128, 265
zipl 55, 57
znetconf 39, 40, 45, 94

concurrency 120
concurrent connections 120
CONFIG_HAVE_PERF_EVENTS 155
CONFIG_PERF_EVENTS 155
CONFIG_TRACEPOINTS 155
configuration

libvirt-internal 114
of devices 4
of virtual servers 4

configuration file
libvirt 151
of the OpenSSH SSH daemon configuration file 120

configuration topology 9
configuration-XML file 9, 73

of a device 4, 9, 74
of a domain 4, 9, 53

configuring
an ISO image as IPL device 56
bonded interfaces 94
boot devices 51, 55
boot process 55, 56, 57
consoles 67
CPUs 51, 62
DASDs 76
devices 4, 73
Ethernet interfaces 94
FC-attached SCSI tape devices 85
files as storage devices 82
I/O threads 66
logical volumes 145
memory 51, 64
multipath device mapper support 31
network devices 51
network interfaces 94
operating systems 51
persistent devices 66
physical volumes 145
protected key encryption 69
random number generators 98
removable ISO images 91
SCSI disks 76
SCSI medium changer devices 84, 85
SCSI tapes 84, 85
storage devices 51
user space 51, 65
virtual CPUs 62
virtual Host Bus Adapters 84
virtual memory 64
virtual servers 4
virtual switches 94, 96
watchdog devices 68

connecting
to the console of a virtual server 137

connections 120

console 67, 137
configuring 67
connecting 137

console element 67, 177
type attribute 67, 177

pty value 67, 177
console log file 67, 151
console output

logging 67
console virsh command 137, 223
control unit model 73
controller attribute

of the address element 85, 91, 171
controller element 74, 84, 178

index attribute 84, 178
model attribute 84, 178

virtio-scsi value 84
ports attribute 178
type attribute 84, 178

scsi value 84
vectors attribute 178

core dump
configurable 64

CPACF 69
CPU

adding 128
configuring 62
management 141
modifying the number 128
pinning 141, 142

CPU migration 141
CPU shares 131, 142
CPU time 131, 142
CPU weight 63, 131, 142

modifying 131
cpu_shares parameter

of the schedinfo virsh command 131, 257
cputune element 53, 63, 179
crash command 153
crashed state 161, 165
creating

file systems 31
network interfaces 40
partitions 31
persistent virtual server definitions 101
uplink ports 45
virtual server dumps 153
virtual servers 4
virtual switches 45

cryptographic key 69
cssid attribute

of the address element 76, 82, 84, 170
current attribute

of the vcpu element 213
current live 128
cyls attribute

of the geometry element 186

D
DASD 76

configuring 76
preparing 29
setting up 29
virtualization 9

DASD configuration
example 79

284 KVM Virtual Server Management - October 2016

dasdfmt command 29
Data Encryption Algorithm 69
Data Encryption Standard 69
DEA 69
dea value

of the cipher name attribute 69, 175
deadlock prevention 120
default value

of the driver cache attribute 183
define virsh command 102, 224
defined virtual server 4
defining

virtual servers 4, 102
definition 4, 23

creating 102
deleting 103
modifying 102

deleting
virtual server definitions 101

DES 69
destination port 120
destroy text content

of the on_reboot element 201
destroy virsh command 106, 225

--graceful option 106, 225
destroyed reason

of the shut off state 162
destroying

virtual servers 106
detach-device virsh command 135, 226
detaching

devices 135
dev attribute

of the source element 76, 82, 94, 207, 209
of the target element 76, 82, 91, 211

device
attaching 134
configuring 73
detaching 135
hotplugging 134
managing 133
unplugging 135

device attribute
of the disk element 76, 82, 91, 181

device bus-ID 9, 39
of a virtual block device 9, 76, 82
of an FCP device 9, 31

device configuration topology 9
device configuration-XML 4
device configuration-XML file 4, 73, 74

child elements 74
root element 74

device driver
lin_tape 15, 35
MacVTap 19
SCSI generic 15
watchdog 155

device mapper-created device node 9, 31, 76
device name 9

logical 76, 82
standard 9

device node 9, 76
device mapper 9
device mapper-created 31, 76
standard 9, 76
udev-created 9, 76

device number 9

device number (continued)
of a virtual block device 9, 76, 82
of an FCP device 9

device type 9, 73
device-mapper multipathing 31
devices element 53, 180
devno attribute

of the address element 76, 82, 84, 170
DIAG event 155
diagnose 155
direct connection 94
direct MacVTap connection 42
direct value

of the interface type attribute 94, 189
directsync value

of the driver cache attribute 183
dirty pages 121
disabling

protected key encryption 69
disk 73
disk element 74, 76, 82, 91, 181

device attribute 76, 82, 91, 181
cdrom value 91, 181
disk value 76, 82, 181

type attribute 76, 82, 91, 181
block value 76, 181
file value 82, 91, 181

disk migration 117, 122
disk value

of the disk device attribute 76, 82, 181
displaying

block devices 112
information about a virtual server 112
network interfaces 112
performance metrics 155
scheduling information 112
states 112
the libvirt-internal configuration 114

domain 3, 4
domain configuration-XML 4, 9
domain configuration-XML file 4, 51, 53, 73

child elements 53
root element 53

domain element 182
type attribute 53, 182

domblklist virsh command 112, 228
domblkstat virsh command 112, 229
domiflist virsh command 112, 231
domifstat virsh command 112, 232
dominfo virsh command 112, 233
domjobabort virsh command 122, 234
domstate virsh command 112, 235

--reason option 112, 235
drive value

of the address type attribute 91
driver element 74, 76, 82, 91, 183

cache attribute 76, 82, 91, 183
default value 183
directsync value 183
none value 82, 91, 183
unsafe value 183
writeback value 183
writethrough value 82, 183

error_policy attribute 183
enospace value 183
ignore value 183
report value 183

Index 285

driver element (continued)
error_policy attribute (continued)

stop value 183
event_idx attribute 183

off value 183
on value 183

io attribute 76, 82, 91, 183
native value 82, 91, 183
of the driver element 82
threads value 183

ioeventfd attribute 183
off value 183
on value 183

iothread attribute 76
name attribute 76, 82, 91, 183

qemu value 91, 183
rerror_policy attribute 183

ignore value 183
report value 183
stop value 183

type attribute 76, 82, 91, 183
qcow2 value 82
raw value 82, 91, 183

driver value
of the error_policy attribute 183
of the rerror_policy attribute 183

dump 153
configurable 64

dump file 153
dump location 153
dump virsh command 153, 236

--memory-only option 153, 236
dumpCore attribute

of the memory element 64
dumping

virtual servers 153
dumpxml virsh command 84, 114, 237
DVD 73

E
edit virsh command 102, 238
editing

libvirt-internal configurations 102
persistent virtual server definitions 102

emulator element 65, 185
enabling

bridge port roles 45
encryption 69
enospace value

of the driver error_policy attribute 183
environment variable

$EDITOR 102
$VISUAL 102

error_policy attribute
of the driver element 183

Ethernet interface
configuring 94
preparing 39

event_idx attribute
of the driver element 183

example
of a DASD configuration 79
of a multipathed SCSI device configuration 89
of a SCSI disk configuration 80
of an initial installation 58

F
failover redundancy 31
FC-attached SCSI medium changer device 15
FC-attached SCSI tape device 15

configuring 85
preparing 35

FCP device 9, 31
FCP LUN 9, 31
fdasd command 29
fdisk command 29, 31
file 73
file attribute

of the log element 67, 193
of the source attribute 91
of the source element 82, 207

file value
of the disk type attribute 82, 91, 181

filtered value
of the hostdev sgio attribute 187

firewall configuration 120
full isolation 19

G
geometry element 186

cyls attribute 186
heads attribute 186
secs attribute 186
trans attribute 186

GRE tunnel 45
guest x, 3, 4

relocation
See live migration

H
hardware information 269
HBA 73

configuring 84
heads attribute

of the geometry element 186
high reliability 9, 15, 19
host x, 4, 42
Host Bus Adapter 73

configuring 84
host device 85
host network

OSA-Express device 42
hostdev element 74, 85, 187

mode attribute 85, 187
subsystem value 85

rawio attribute 187
sgio attribute 187
type attribute 85, 187

scsi value 85
hotplug device 4, 74, 85, 134, 135
hotplugging

devices 73, 134
hvm text content

of the type element 212
hypervisor

release 23
hypervisor information for the virtual server user 269
hypervisor release 120

286 KVM Virtual Server Management - October 2016

I
I/O operations

improving performance 66, 145
I/O thread 76, 145

adding 134
configuring 66
providing 66
removing 135

ignore value
of the driver error_policy attribute 183
of the driver rerror_policy attribute 183

image file
qcow2 82
raw 82

improving
the performance of I/O operations 66, 145

index attribute
of the controller element 84, 178

info QEMU command 267
initial installation

example 58
Initial Program Load 55, 106
initial ramdisk 55, 57, 58
initrd element 53, 57, 188
inject-nmi virsh command 153, 239
installation DVD 56
installation file 57
installing a guest

from a kernel image file 57
from an ISO image 56

interface
bonded 42
MacVTap 42
virtual LAN 42
VLAN 42

interface element 74, 94, 96, 189
trustGuestRxFilters attribute 94, 189

no value 189
yes value 189

type attribute 94, 96, 189
bridge value 96, 189
direct value 94, 189

interface name 39
io attribute

of the driver element 76, 91, 183
IOCDS 29, 39, 40
ioeventfd attribute

of the driver element 183
iothread attribute

of the driver element 76
iothreadadd virsh command 240

--config option 240
--current option 240
--id option 240
--live option 240

iothreaddel virsh command 242
--config option 242
--current option 242
--id option 242
--live option 242

iothreadinfo virsh command 244
--config option 244
--current option 244
--live option 244

iothreads element 53, 66, 76, 190
IP address 39
ip command 39, 40

IPL 55, 106
ISO image 15, 58, 91, 135

as IPL device 56
removable 91, 135

K
kdump 153
keepalive interval

of the virsh command 122
kernel element 53, 55, 57, 191
kernel image file 55, 57, 58
kernel parameters 55, 57

specifying 57
keywrap element 69, 192
KVM 6
KVM guest x, 3, 4
KVM host x
kvm kernel module 6
kvm value

of the domain type attribute 53, 182
KVM virtual server x, 3, 4
kvm_s390_sie_enter tracepoint event 155

L
layer 2 mode 40
lba value

of the geometry trans attribute 186
libvirt 4, 6, 35
libvirt configuration file 151
libvirt daemon 105, 133

starting 105, 133
libvirt XML attribute

adapter name 85
address bus 85, 91, 171, 172
address controller 85, 91, 171
address cssid 76, 82, 84, 170
address devno 76, 82, 84, 170
address ssid 76, 82, 84, 170
address target 85, 91, 171, 172
address type 76, 82, 84, 85, 91, 170, 171
address unit 85, 91, 171, 172
boot order 55, 174
cipher name 69, 175
cipher state 69, 175
console type 67, 177
controller index 84, 178
controller model 84, 178
controller ports 178
controller type 84, 178
controller vectors 178
disk device 76, 82, 91, 181
disk type 76, 82, 91, 181
domain type 53, 182
driver cache 76, 82, 91, 183
driver error_policy 183
driver event_idx 183
driver io 76, 82, 91, 183
driver ioeventfd 183
driver iothread 76
driver name 76, 82, 91, 183
driver rerror_policy 183
driver type 76, 82, 91, 183
geometry cyls 186
geometry heads 186

Index 287

libvirt XML attribute (continued)
geometry secs 186
geometry trans 186
hostdev mode 85, 187
hostdev rawio 187
hostdev sgio 187
hostdev type 85, 187
interface trustGuestRxFilters 189
interface type 94, 96, 189
log append 67, 193
log file 67, 193
mac address 94, 96
memballoon model 71, 195
memory dumpCore 64
memory unit 64
model type 96
source bridge 96
source dev 76, 94, 207
source file 82, 91, 207
source mode 94
source startupPolicy 207
target address 210
target bus 76, 82, 91, 211
target dev 76, 82, 91, 211
target port 210
target type 67, 210
type arch 53, 212
type machine 53, 212
vcpu current 213
virtualport type 96, 214
watchdog action 215
watchdog model 215

libvirt XML element
adapter 85
address 74, 76, 82, 84, 85, 91, 170, 171, 172
backend 173
boot 55, 174
cipher 69, 175
cmdline 53, 57, 176
console 67, 177
controller 74, 84, 178
cputune 53, 63, 179
devices 53, 180
disk 74, 76, 82, 91, 181
domain 182
driver 74, 76, 82, 91, 183
emulator 65, 185
geometry 186
hostdev 74, 85, 187
initrd 53, 57, 188
interface 74, 94, 96, 189
iothreads 53, 66, 76, 190
kernel 53, 57, 191
keywrap 69, 192
log 67, 193
mac 74, 94, 96, 194
memballoon 71, 195
memory 53, 64, 196
model 74, 96, 198
name 53, 199
on_crash 53, 200
on_poweroff 53
on_reboot 53, 201
os 53, 57, 202
readonly 91, 203
rng 204
shareable 205

libvirt XML element (continued)
shares 53, 63, 206
source 74, 76, 82, 91, 94, 96, 207
target 67, 74, 76, 82, 91, 210, 211
type 53, 212
vcpu 53, 62, 213
virtualport 96, 214
watchdog 215

libvirt-internal configuration 101, 102
displaying 114

libvirtd log messages 151
lin_tape device driver 15, 35
Linux scheduling 141
list virsh command 103, 112, 133, 137, 245

--all option 103, 112
live migration 23, 76, 85, 117

cancellation 122
concurrency 120
concurrent connections 120
connections 120
deadlock prevention 120
destination port 120
firewall configuration 120
host environments 120
host setup 120
hypervisor release 120
image files 117
live phase 121
maximum downtime 121
MaxStartups parameter 120
memory intensive workload 121
memory intensive workloads 122
messages 249
migration port range 120
migration_port_max parameter 120
non-tunneled 120
performance considerations 120
phases 121
port range 120
prerequisites 117
preserving virtual server resources 117
process 122
setup 117
stopped phase 121
storage keys 121
verification 122
virtual server CPUs 117
virtual server memory 117
virtual server network 117
virtual server storage 117

live phase of a migration 121
live subcommand

or perf kvm stat 155
live virtual server migration

See live migration
load balancing 31
log element 67, 193

append attribute 193
off value 193
on value 193

file attribute 193
log file

for console output 67
log messages 151
logging

console output 67
logging level 151

288 KVM Virtual Server Management - October 2016

logical device name 76, 82
logical volume

configuration 145
management 145

Logical Volume Manager 76, 145
ls command 76
lscss command 35, 76
lsdasd command 29
lsqeth command 40, 45
lsscsi command 31
lsscss command 31
lszfcp command 31, 35
LUN 35
LVM 76, 145

M
MAC address 19, 45, 96
mac element 74, 94, 96, 194

address attribute 94, 96, 194
machine attribute

of the target element 212
of the type element 23, 53

machine type
alias value 23

machine type of the virtual server 120
MacVTap

direct connection 42
kernel modules 42
network device driver 19

MacVTap interface 19, 94
preparing 42
setting up 42

makedumpfile command 153
managedsave state 106, 161
managedsave virsh command 106, 247

--bypass-cache option 247
--paused option 247
--running option 247
--verbose option 247

managing
devices 133
system resources 127
virtual CPUs 128
virtual servers 105

mandatory value
of the source startupPolicy attribute 207

mapping a virtio block device to a host device 9
master bonded interface 42
maximum downtime 121
maximum number of available virtual CPUs 128
MaxStartups parameter 120
memballoon element 71, 195

model attribute 71, 195
none value 71, 195

memory 64
configuring 64

memory balloon device 71, 73
memory element 53, 64, 196

dumpCore attribute 64, 196
unit attribute 64, 196

memory intensive workloads 121, 122
migrate virsh command 122, 249

--auto-converge option 122
--timeout option 122

migrate-getspeed virsh command 122, 252
migrate-setmaxdowntime virsh command 122

migrate-setspeed virsh command 122, 254
--bandwidth option 122, 254

migrated reason
of the running state 163

migrating
CPUs 141
image files 117
running virtual servers 117, 122
storage 9

migrating reason
of the paused state 164

migration 141
of a running virtual server to another host 76, 85

See live migration
of the storage server 9, 76
of virtual disks

See disk migration
preparing virtual servers for 9, 31
to a different hypervisor release 23

migration costs 141
migration port range 120
migration_port_max parameter 120
mode attribute 187

of the hostdev element 85, 187
of the source element 94, 209
subsystem value 187

model attribute
of the backend element 173
of the controller element 84, 178
of the memballoon element 71, 195
of the rng element 204
of the watchdog element 215

model element 74, 94, 96, 198
type attribute 94, 96, 198

virtio value 94, 96
modifying

persistent virtual server definitions 102
the CPU weight 131
the number of virtual CPUs 128
virtual server definitions 101

modprobe command 42
monitoring

virtual servers 111
multipath command 31, 76
multipath device mapper support 9, 31

configuring 31
preparing 31

multipathed SCSI device configuration
example 89

N
N_Port ID virtualization 31
name attribute

of the adapter element 85, 169
of the cipher element 69, 175
of the driver element 76, 82, 91, 183

name element 53, 199
name property

of virtual servers 4, 51
native value

of the driver io attribute 76, 82, 91, 183
NDP 189
Neighbor Discovery Protocol 189
network device 19, 40, 73

attaching 134
detaching 135

Index 289

network device (continued)
hotplugging 134
preparing 39
unplugging 135

network device driver 4
network file system 117
network interface

activating 40
configuring 94
creating 40
displaying 112
preparing 40
setting up 39, 40

network isolation 19
NFS

See network file system
NIC 96
no value

of the hostdev rawio attribute 187
of the interface trustGuestRxFilters attribute 189

node 3
non-tunneled migration 120
none value

of the driver cache attribute 76, 82, 91, 183
of the geometry trans attribute 186
of the memballoon model attribute 71, 195

NPIV 31
number of virtual CPUs 128

O
off value

of the cipher state attribute 69, 175
of the driver event_idx attribute 183
of the driver ioeventfd attribute 183
of the log append attribute 67, 193
of the memory dumpCore attribute 64

on value
of the cipher state attribute 69, 175
of the driver event_idx attribute 183
of the driver ioeventfd attribute 183
of the log append attribute 67, 193

on_crash element 53, 200
on_poweroff element 53
on_reboot element 53, 201
Open vSwitch 19, 45

package 45
openvswitch command

start 45
status 45

openvswitch value
of the virtualport type attribute 96, 214

optional value
of the source startupPolicy attribute 207

order attribute
of the boot element 55, 174

os element 53, 57, 202
OSA adapter port 45
OSA network device 45
OSA-Express feature 39
ovs-vsctl command

add-bond 45
add-br 45
add-port 45
del-br 45
show 45

P
para-virtualized device driver 4
parameter file 57
partition 9
path redundancy

of DASDs 9
of network devices 19
of physical volumes 145
of SCSI disks 9
of SCSI medium changer devices 15
of SCSI tape devices 15

paused state 4, 161
migrating reason 164
user reason 164

perf kvm stat command
live subcommand 155
record subcommand 155
report subcommand 155

perf tool 155
perf.data.guest 155
performance considerations 120
performance metrics

collecting 155
displaying 155
recording 155

performing
a live migration 122

persistent device
configuring 66

physical volume
configuration 145
filter 145

port attribute
of the target element 210

port range for migration 120
ports attribute

of the controller element 178
preparing

bonded interfaces 42
DASDs 29
devices for virtual servers 4
host devices 29
MacVTap interfaces 42
multipath device mapper support 31
network devices 39
network interfaces 42
physical volumes 145
SCSI disks 31
SCSI medium changer devices 35
SCSI tapes 35
virtual Ethernet devices 39
virtual LAN interfaces 42
virtual servers for migration 9, 31
virtual switches 39, 45
VLAN interfaces 42

preserve text content
of the on_crash element 53, 200
of the on_reboot element 201

preserve value
of the on_crash element 53

primary bridge port 45
property

name 51
protected key 69

management operations 69
providing

I/O threads 66, 134

290 KVM Virtual Server Management - October 2016

providing (continued)
ISO images 135

pty value
of the console type attribute 67, 177

pvscan command 145

Q
qcow2 image file 82
qcow2 value

of the driver type attribute 82
QEMU 6, 9, 35
QEMU command

info 267
qemu-img create 82

QEMU core dump
configuring 64

qemu value
of the driver name attribute 76, 82, 91, 183

qemu-kvm command 23
qemu-system-s390x user space process 65
qethconf 45

R
ramdisk 55, 57
random number generator 73

configuring 98
raw image file 82
raw value

of the driver type attribute 76, 82, 91, 183
rawio attribute 187

no value 187
of the hostdev element 187
yes value 187

readonly element 91, 203
reboot virsh command 255
record subcommand

or perf kvm stat 155
recording

performance metrics 155
redundant paths 9, 15, 19
relocating

virtual servers
See live migration

relocation
See live migration

removable ISO image
configuring 91
removing 135
replacing 135

removing
I/O threads 135
ISO images 135

replacing
ISO images 135

report subcommand
or perf kvm stat 155

report value
of the driver error_policy attribute 183
of the driver rerror_policy attribute 183

requisite value
of the source startupPolicy attribute 207

rerror_policy attribute
of the driver element 183

restart text content
of the on_reboot element 201

restored reason
of the running state 163

resume virsh command 108, 256
resuming

virtual servers 4, 108
retrieving hardware information

as a virtual server user 269
RNG device 73, 98
rng element 204

model attribute 204
root file system 55, 57
root path 55, 57
run queue 141
running state 4, 161

booted reason 163
migrated reason 163
restored reason 163
unpaused reason 163

S
s390-ccw-virtio value

of the type machine attribute 23, 53, 212
s390x value

of the type arch attribute 53, 212
SAM 85
SAN fabric 9
saved reason

of the shut off state 162
saved system image 106
saving

system images 106
schedinfo virsh command 112, 131, 257

--config option 131, 257
--live option 131, 257
cpu_shares attribute 131, 257

scheduling domain 141
scheduling information

displaying 112
sclp value

of the target type attribute 67, 210
SCSI Architecture Model 85
SCSI device driver 4
SCSI device name 15, 35, 85
SCSI disk 9, 76

configuring 76
preparing 31
setting up 31

SCSI disk configuration
example 80

SCSI generic device driver 15
SCSI host 85
SCSI Host Bus Adapter 73
SCSI host number 15, 85
SCSI ID 15, 85
SCSI identifier 9
SCSI LUN 15, 85
SCSI medium changer 15

configuring 84, 85
preparing 35
setting up 35

SCSI stack 35
SCSI stack address 15
SCSI tape 15

configuring 84, 85

Index 291

SCSI tape (continued)
preparing 35
setting up 35

scsi value
of the address type attribute 85, 171
of the controller type attribute 84, 178
of the hostdev type attribute 85, 187
of the target bus attribute 91

secs attribute
of the geometry element 186

Security-Enhanced Linux 45
SELinux 45
serial device 73
setting up

bonded interfaces 42
host devices 29
MacVTap interfaces 42
network interfaces 39, 42
the host for live migration 120
virtual LAN interfaces 42
virtual switches 45
VLAN interfaces 42

setvcpus command
setvcpus 259

setvcpus virsh command 128, 259
sgio attribute 187

filtered value 187
of the hostdev element 187
unfiltered value 187

shareable element 205
shares element 53, 63, 206
shut off state 4, 103, 161

destroyed reason 162
saved reason 162
shutdown reason 162
unknown reason 162

shutdown reason
of the shut off state 162

shutdown virsh command 106, 258
shutting down

virtual servers 4, 106
shutting down state 161
slave device 42
source element 74, 76, 82, 91, 94, 96, 207, 208, 209

bridge attribute 96
dev attribute 76, 82, 94, 207, 209
file attribute 82, 91, 207
mode attribute 94, 209

bridge value 94
startupPolicy attribute 207

mandatory value 207
optional value 207
requisite value 207

SSH daemon 120
configuration file 120

ssid attribute
of the address element 76, 82, 84, 170

standard device name 9
of a SCSI medium changer 15
of a SCSI tape 15

standard device node 9, 76
standard interface name 39
start openvswitch command 45
start virsh command 106, 137, 261

--console option 106, 137
--force-boot option 106

starting
libvirt daemon 105, 133
virtual servers 4, 106

startupPolicy attribute
of the source element 207

state 4, 161
crashed 161, 165
displaying 112
managedsave 106, 161
paused 4, 161, 164
running 4, 161, 163
shut off 4, 103, 161, 162
shutting down 161

state attribute
of the cipher element 69, 175

state-transition diagram 161
simplified 4

status openvswitch command 45
STHYI instruction 269
stop value

of the driver error_policy attribute 183
of the driver rerror_policy attribute 183

stopped phase of a migration 121
storage controller 9

port 9
storage keys 121
storage migration 76, 145
Store Hypervisor Information instruction 269
subchannel set-ID 9, 76, 82
subsystem value

of the hostdev mode attribute 85, 187
suspend virsh command 108, 263
suspending

virtual servers 4, 108
symmetric encryption 69
sysfs attribute

bridge_state 45
system image 247

saved 106
saving 106

system journal 151
system resources

configuring 51
managing 127

T
tape 73
target attribute

of the address element 85, 91, 171, 172
target element 67, 74, 76, 82, 91, 210, 211

address attribute 210
bus attribute 76, 82, 211

scsi value 91
virtio value 76, 82, 211

dev attribute 76, 82, 91, 211
port attribute 210
type attribute 67, 210

sclp value 67, 210
virtio value 67, 210

TDEA 69
TDES 69
terminating

virtual servers 4, 106
threads value

of the driver io attribute 183
topology 9

292 KVM Virtual Server Management - October 2016

trademarks 280
trans attribute

of the geometry element 186
Triple DEA 69
Triple DES 69
trustGuestRxFilters attribute

of the interface element 94, 189
tuning

virtual CPUs 63
type

of the virtual channel path 73
type attribute 187

of the address element 76, 82, 84, 85, 91, 170, 171
of the console element 67, 177
of the controller element 84, 178
of the disk element 76, 82, 91, 181
of the domain element 53, 182
of the driver element 76, 82, 91, 183
of the hostdev element 85, 187
of the interface element 94, 96, 189
of the model element 94, 96, 198
of the target element 67, 210
of the virtualport element 96, 214
scsi value 171, 178, 187
virtio-serial value 178

type element 53, 212
arch attribute 212
machine attribute 212

U
udev-created by-path device node 76
udev-created device node 9, 76
UID 9
undefine virsh command 103, 264
undefined virtual server 4
undefining

virtual servers 4, 103
unfiltered value

of the hostdev sgio attribute 187
unique ID 9
unit 35
unit attribute

of the address element 85, 91, 171, 172
of the memory element 64

universally unique identifier 9
unknown reason

of the shut off state 162
unpaused reason

of the running state 163
unplugging

devices 135
unsafe value

of the driver cache attribute 183
uplink port

creating 45
user reason

of the paused state 164
user space 51

configuring 65
user space process 183
user-friendly name 31
UUID 9

V
vcpu element 53, 62, 213

current attribute 213
vcpucount virsh command 112, 128, 265

--active option 265
--config option 265
--current option 265
--live option 265
--maximum option 265

vectors attribute
of the controller element 178

verifying
a live migration 122

virsh command 4
attach-device 134, 219
change-media 135, 221
console 137, 223
define 102, 224
destroy 106, 225
detach-device 135, 226
domblklist 112, 228
domblkstat 112, 229
domiflist 112, 231
domifstat 112, 232
dominfo 112, 233
domjobabort 122, 234
domstate 112, 235
dump 153, 236
dumpxml 84, 114, 237
edit 102, 238
inject-nmi 153, 239
iothreadadd 240
iothreaddel 242
iothreadinfo 244
list 103, 112, 133, 137, 245
makedumpfile 153
managedsave 106, 247
migrate 122
migrate-getspeed 122, 252
migrate-setmaxdowntime 122
migrate-setspeed 122, 254
reboot 255
resume 108, 256
schedinfo 112, 131, 257
setvcpus 128
shutdown 106, 258
start 106, 137, 261
suspend 108, 263
undefine 103, 264
vcpucount 112, 128, 265

virsh command option
--all 245
--autodestroy 261
--autostart 245
--bypass-cache 247, 261
--config 131, 219, 221, 226, 257
--console 261
--current 221, 226
--domain 219, 221, 225, 226, 237, 258, 261
--eject 221
--file 219, 226
--force 221, 223
--force-boot 261
--graceful 225
--id 245
--inactive 237, 245
--insert 221

Index 293

virsh command option (continued)
--live 131, 221, 226, 257
--managed-save 245
--memory-only 236
--migratable 237
--mode 258
--name 245
--no-autostart 245
--path 221
--paused 247, 261
--persistent 226, 245
--reason 112, 235
--running 247
--safe 223
--security-info 237
--state-other 245
--state-paused 245
--state-running 245
--state-shutoff 245
--table 245
--title 245
--transient 245
--update 221
--update-cpu 237
--uuid 245
--verbose 247
--with-managed-save 245
--with-snapshot 245
--without-managed-save 245
--without-snapshot 245

virsh command-line interface 6
virtio 4

block device 9, 76, 82
block device driver 4
device driver 4
network device driver 4

virtio value
of the model type attribute 94, 96
of the target bus attribute 76, 82, 211
of the target type attribute 67, 210

virtio-block device 73
virtio-net device 73
virtio-scsi device 73
virtio-scsi value

of the controller model attribute 84, 178
virtio-serial value

of the controller type attribute 178
virtual block device 9, 76

attaching 134
detaching 135
device configuration-XML 74
hotplugging 134
unplugging 135

virtual channel 76, 82
virtual channel path 9, 73
virtual channel path type 73
virtual channel subsystem 73
virtual channel subsystem-ID 73
virtual control unit model 73
virtual CPU 141

configuring 62
configuring the number 62
Linux management of 141
managing 128
modifying the weight 131
tuning 63

virtual CPUs
actual number 128
current config 128
maximum config 128
maximum live 128
maximum number 128

virtual DVD 15, 91, 135
virtual DVD drive 15, 135
virtual Ethernet device 19

attaching 134
detaching 135
device configuration-XML 74
hotplugging 134
unplugging 135

virtual Ethernet interface
preparing 39

virtual HBA 73
attaching 134
configuring 84
detaching 135
device configuration-XML 74
hotplugging 134
unplugging 135

virtual Host Bus Adapter
configuring 84
device configuration-XML 74

virtual LAN interface 19, 42
virtual machine relocation

See live migration
virtual memory 64

configuring 64
virtual SCSI device 15, 84

attaching 134
detaching 135
device configuration-XML 74
hotplugging 134
unplugging 135

virtual SCSI-attached CD/DVD drive 91
virtual server x, 3, 4

browsing 112
configuration 9
configuring 4
crashed 153
defining 4, 102
destroying 106
devices 51
displaying block devices 112
displaying information 112
displaying network interfaces 112
displaying scheduling information 112
displaying the state 112
dumping 153
kernel panic 153
managing 105
migrating 117
monitoring 111
name 4, 51, 53
persistent definition

creating 101
defining 101
deleting 101
editing 102
modifying 101, 102

preparing 4
properties 51
relocation

See live migration

294 KVM Virtual Server Management - October 2016

virtual server (continued)
resuming 4, 108
shutting down 4, 106
starting 4, 106
state 4, 161

crashed 161, 165
paused 4, 161, 164
running 4, 161, 163
shut off 4, 161, 162
shutting down 161

stopping 4
suspending 4, 108
system resources 51
terminating 106
undefining 4, 103

virtual switch 19
configuring 94, 96
creating 45
preparing 39, 45
setting up 45

virtualization
of DASDs 9
of network devices 19
of SCSI disks 9
of SCSI medium changer devices 15
of SCSI tapes 15

virtualization components 6
virtualport element 96, 214

type attribute 96, 214
openvswitch value 96, 214

VLAN ID 42
VLAN interface 42
VXLAN tunnel 45

W
watchdog device

configuring 68
watchdog device driver 155
watchdog element 215

action attribute 215
model attribute 215

watchdog timer 68
weight-fraction 142
workload

memory intensive 121, 122
worldwide port name 9
wrapping key 69
writeback value

of the driver cache attribute 183
writethrough value

of the driver cache attribute 82, 183
WWPN 9, 31

X
XML format 6

Y
yes value

of the hostdev rawio attribute 187
of the interface trustGuestRxFilters attribute 189

Z
zipl

command 55, 57
configuration file 55, 57

znetconf command 39, 40, 45, 94

Index 295

296 KVM Virtual Server Management - October 2016

Readers’ Comments — We'd Like to Hear from You

Linux on z Systems and LinuxONE
KVM Virtual Server Management
October 2016

Publication No. SC34-2752-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via email to: eservdoc@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2752-02

SC34-2752-02

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

SC34-2752-02

	Contents
	About this document
	How this document is organized
	Conventions and assumptions used in this publication
	Where to get more information
	Other publications for Linux on z Systems

	Part 1. General concepts
	Chapter 1. Overview
	Virtual server management tasks
	Virtualization components

	Chapter 2. DASDs and SCSI disks as virtual block devices
	Chapter 3. SCSI tapes and SCSI medium changers as virtual SCSI devices
	Chapter 4. Network devices as virtual Ethernet devices
	Chapter 5. Migration to a different hypervisor release
	Part 2. Device setup
	Chapter 6. Preparing DASDs
	Chapter 7. Preparing SCSI disks
	Chapter 8. Preparing SCSI tape and medium changer devices
	Chapter 9. Preparing network devices
	Creating a network interface
	Preparing a network interface for a direct MacVTap connection
	Preparing a bonded interface

	Preparing a virtual switch

	Part 3. Configuration
	Chapter 10. Configuring a virtual server
	Domain configuration-XML
	Configuring the boot process
	Configuring a DASD or SCSI disk as IPL device
	Configuring an ISO image as IPL device
	Configuring a kernel image file as IPL device
	Example of an initial installation

	Configuring virtual CPUs
	Configuring the number of virtual CPUs
	Tuning virtual CPUs

	Configuring virtual memory
	Configuring the collection of QEMU core dumps
	Configuring the user space
	Configuring persistent devices
	Configuring the console
	Configuring a watchdog device
	Disabling protected key encryption
	Suppressing the automatic configuration of a default memory balloon device

	Chapter 11. Configuring devices
	Device configuration-XML
	Configuring virtual block devices
	Configuring a DASD or SCSI disk
	Example of a DASD configuration
	Example of a SCSI disk configuration

	Configuring a file as storage device

	Configuring virtual SCSI devices
	Configuring a virtual HBA
	Configuring a SCSI tape or medium changer device
	Example of a multipathed SCSI tape and medium changer device configuration
	Configuring a virtual SCSI-attached CD/DVD drive

	Configuring virtual Ethernet devices
	Configuring a MacVTap interface
	Configuring a virtual switch

	Configuring a random number generator

	Part 4. Operation
	Chapter 12. Creating, modifying, and deleting persistent virtual server definitions
	Defining a virtual server
	Modifying a virtual server definition
	Undefining a virtual server

	Chapter 13. Managing the virtual server life cycle
	Starting a virtual server
	Terminating a virtual server
	Suspending a virtual server
	Resuming a virtual server

	Chapter 14. Monitoring virtual servers
	Browsing virtual servers
	Displaying information about a virtual server
	Displaying the current libvirt-internal configuration

	Chapter 15. Live virtual server migration
	Live migration setup
	Preservation of the virtual server resources
	Host environments

	Phases of a live migration
	Performing a live migration

	Chapter 16. Managing system resources
	Managing virtual CPUs
	Modifying the number of virtual CPUs
	Modifying the virtual CPU weight

	Chapter 17. Managing devices
	Attaching a device
	Detaching a device
	Replacing a virtual DVD
	Connecting to the console of a virtual server

	Part 5. Best practices and performance considerations
	Chapter 18. CPU management
	Linux scheduling
	CPU weight

	Chapter 19. Storage management
	I/O threads
	Logical volume management

	Part 6. Diagnostics and troubleshooting
	Chapter 20. Logging
	Log messages
	Specifying the logging level of the libvirt log messages

	Chapter 21. Dumping
	Creating a virtual server dump on the host
	Creating a dump on the virtual server

	Chapter 22. Collecting performance metrics
	Part 7. Reference
	Chapter 23. Virtual server life cycle
	shut off
	running
	paused
	crashed
	in shutdown

	Chapter 24. Selected libvirt XML elements
	<adapter> as child element of <source>
	<address> as child element of <controller>, <disk>, <interface>, and <memballoon>
	<address> as child element of <hostdev> or <disk>
	<address> as child element of <source>
	<backend>
	<boot>
	<cipher>
	<cmdline>
	<console>
	<controller>
	<cputune>
	<devices>
	<disk>
	<domain>
	<driver> as child element of <disk>
	<emulator>
	<geometry>
	<hostdev>
	<initrd>
	<interface>
	<iothreads>
	<kernel>
	<keywrap>
	<log>
	<mac>
	<memballoon>
	<memory>
	<model>
	<name>
	<on_crash>
	<on_reboot>
	<os>
	<readonly>
	<rng>
	<shareable>
	<shares>
	<source> as child element of <disk>
	<source> as child element of <hostdev>
	<source> as child element of <interface>
	<target> as child element of <console>
	<target> as child element of <disk>
	<type>
	<vcpu>
	<virtualport>
	<watchdog>

	Chapter 25. Selected virsh commands
	attach-device
	change-media
	console
	define
	destroy
	detach-device
	domblklist
	domblkstat
	domiflist
	domifstat
	dominfo
	domjobabort
	domstate
	dump
	dumpxml
	edit
	inject-nmi
	iothreadadd
	iothreaddel
	iothreadinfo
	list
	managedsave
	migrate
	migrate-getspeed
	migrate-setmaxdowntime
	migrate-setspeed
	reboot
	resume
	schedinfo
	shutdown
	setvcpus
	start
	suspend
	undefine
	vcpucount

	Chapter 26. Selected QEMU commands
	QEMU monitor commands
	Examples for the use of the qemu-img command

	Chapter 27. Hypervisor information for the virtual server user
	Part 8. Appendixes
	Accessibility
	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Readers’ Comments — We'd Like to Hear from You

