
Guide to porting from Solaris to Linux on x86
Migrate your projects from Solaris on 32- or 64-bit SPARC to
Linux on x86

Skill Level: Intermediate

Ajay Sood (r1sood@in.ibm.com)
Staff Software Engineer
IBM Global Services, Bangalore, India

29 Apr 2005

Solaris is considered one of the closest flavors of UNIX® to Linux™, but for migration
purposes, there can be differences between the two in the areas of memory
mapping, threading, or natural language support (to name just a few). This porting
guide gives you advice on planning for the port to Linux/x86, and helps you
understand the differences in the development environment and architecture.

Among the flavors of UNIX, Solaris is considered to be the closest to Linux, so
before starting a port of large Unix-based application to Linux, the operating
system-dependent code is generally picked up from Solaris. Even so, differences
can arise in the areas that depend on the architecture, memory maps, threading, or
some specific areas like system administration or natural language support.

This article discusses these differences and gives you comparisons to guide you
through your migration from Solaris running on 32-/64-bit SPARC architectures to
Linux running on x-86 architecture. For Solaris, the discussion is based on Version 8
and later. For Linux, the discussion focuses on the distributions available on x-86
processor-based servers: SUSE LINUX Enterprise Server 9 and Red Hat Enterprise
Linux AS V3 or V4.

This article covers:

• Planning for the port

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 1 of 14

mailto:r1sood@in.ibm.com
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

• Development environment (compilers, make utilities, and so on)

• Architecture- or system-dependent differences

Planning for the port

These six steps provide a complete roadmap for successful migration from Solaris
on SPARC to Linux on x86. If you've ever ported applications from one operating
system to another, these steps probably sound familiar:

1. Preparation

2. Environment and makefile changes

3. Compiler fixes

4. Testing and debugging

5. Performance tuning

6. Packaging and distribution

Step 1. Prepare

The key to proper preparation is to study the differences in such areas as:

• System calls

• Filesystem support

• Machine-dependent code

• Threading

• Memory maps

• System calls

• Endianness

While porting the application, be sure to ensure that the relevant third-party
packages are available on the target platform. For 32-bit applications, consider if it is
necessary to migrate to a 64-bit version. Also, decide which compiler to use on the
target platform. On x86-based Linux platforms, gcc is used as the compiler.

Step 2. Environment and makefile changes

developerWorks® ibm.com/developerWorks

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 2 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

In this step, you'll set up the development environment, which includes deciding on
environment variables, making changes to makefiles, and performing any other
alterations necessary to the environment. At the end of this stage, you should be
ready to start building your application.

This step may require several iterations before you're ready to move to the next
step.

Step 3. Compile and build

At this stage, you will fix compiler errors, linker errors, and the like. This step may
require several iterations before a clean build is produced.

Step 4. Test and debug

After the application is successfully built, test it for runtime errors. Some areas to
look out for while testing are client/server communication, data-exchange formats,
data-code conversions like conversion from single bytecode pages to multi bytecode
pages, and persistent storage.

Step 5. Performance tuning

Now the ported code is running on the target platform. Monitor performance to
ensure the ported code performs as expected; if not, performance tuning is needed.

Two good tools for performance analysis are Performance Inspector and OProfile.
Performance Inspector provides a set of tools to identify performance problems in
the application on Linux. From kernel 2.6 on, OProfile is the suggested tool for
profiling the code. OProfile is also available for RHEL4. (See Resources for more
information on these tools.)

Step 6. Packaging and distribution

Will you have to distribute the resulting code to others? If so, decide on your
packaging method.

Linux provides several ways to package your application, such as a tarball,
self-installing shell script, or RPM. RPM is the package-management system widely
used on Linux. Solaris uses pkgadmin as its package manager.

The format of the package-specification template files used by pkgadmin in Solaris is
different from the spec file used by RPM -- translating packaging information from
template file into spec files requires a substantial effort. Using a software package
like the InstallShield for Multiplatforms (ISMP) could deliver common packaging
software across both operating systems and reduce the porting effort. By using
ISMP, application developers can use a common spec file across platforms.

ibm.com/developerWorks developerWorks®

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 3 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Development environments

Now let's look at some of the differences in the development environments of Solaris
and Linux, including the following:

• Makefiles

• Compiler and linker options

• Considerations in moving from 32 to 64 bits

GNU Make versus Solaris Make

If you use Solaris Make in the source platform, you need to modify your makefile in
order to use GNU Make on Linux. Chapter 6 of the AIX 5L Porting Guide (see
Resources for a link) gives detailed information on the differences between the two.

Compiler and linker options

As mentioned earlier, a compiler available for Linux on x86 is GNU GCC. Following
is a list of widely used compiler options for the SUN Studio C/C++ compiler and the
equivalent options for the GNU GCC.

Table 1. Solaris-to-Linux equivalent compiler options
SUN Studio GNU GCC Description

-# -v Instructs the
compiler to report
information on the
progress of the
compilation.

-### -### Traces the
compilation
without invoking
anything.

-Bstatic -static Causes the link
editor to look only
for files named
libx.a.

-Bdynamic (Default) Instructs the link
editor to look for
files named libx.so
and then libx.a
when given the lx
option.

-G -shared Produces a shared
object rather than
a dynamically

developerWorks® ibm.com/developerWorks

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 4 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

linked executable.

-xmemalign -malign-natural, Specifies the
maximum
assumed memory
alignment and the
behavior of
misaligned data
accesses.

-xO1, -xO2, -xO3,
-xO4, -xO5

-O, -O2, -O3 Optimizes code at
a choice of levels
during compilation.
Something about
O2.

-KPIC -fPIC Generates
position-independent
code for use in
shared libraries
(large model).

-Kpic -fpic Generates
position-independent
code for use in
shared libraries
(small model).

-mt -pthread Compiles and links
for multithreaded
code.

-R dirlist -Wl, -rpath, dirlist Builds dynamic
library search path
into the executable
file.

-xarch -mcpu, -march Specifies the
target architecture
instruction set.

Table 2 explains the difference in levels for the C compilers for the different flavors
of Linux.

Table 2. Differences in levels of C compilers
Operating
system

Kernel
level

GCC
level

Glibc
level

Gnu
binutils
level

JDK
level

SLES9 2.6 3.3.3 2.3.3 2.15.90 1.4.2*

RHEL3 2.4 3.2.3 2.3.2 2.14.90 1.4.2

RHEL4 2.6 3.4.3 2.3.4-2 2.15.92.0.2-10.EL41.4.2*

Solaris
10

Solaris
10

3.3.2 2.2.3 1.4.2

ibm.com/developerWorks developerWorks®

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 5 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Notes: *LinuxThreads is not supported with the 64-bit version of the IBM JDK 1.4.2
for Linux on x86. Only the NPTL 64-bit threading libraries are supported for Java.

Also, if you build your C++ applications on SLES9 and deploy them on RHEL4, you
will need to use the compat library packaged as
compat-libstdc++-33-3.2.3-47.3.i386.rpm. This compat is required because of the
different level of ABI compatibility between SLES9 and RHEL4. While SLES9 follows
the LSB 1.3 standards, RHEL4 follows the LSB 2.0 standards.

Considerations for moving from 32 bits to 64 bits

To the application from a 32-bit environment to a 64-bit environment, you have two
alternatives:

• Making the application 64-bit tolerant

• Exploiting the 64-bit capabilities of the target platform

First, enable the application for a 64-bit environment and then try to exploit the 64-bit
capabilities of the target platform.

Even though the 32-bit applications normally run fine on a 64-bit target, enabling the
application for 64-bit environment is important because some of the relevant
third-party products will start operating in 64-bit modes but do not ship the 32-bit
versions of their library objects.

While migrating to a 64-bit environment, you need to decide if support for the 32-bit
version of the product should be continued. If both of the versions have to be
supported, allow appropriate time for packaging and testing.

Exploiting the 64-bit capabilities should be the next step after becoming 64-bit
tolerant. You should carefully weigh the advantages of exploiting the 64-bit
capabilities before starting the exercise.

The topic of migrating applications from 32- to 64-bit environments is covered
extensively in other publications (such as Chapter 3 of the AIX 5L Porting Guide
listed in Resources).

Architecture- and system-specific differences

Now, let's look at the architecture- and system-specific differences between Solaris
and Linux on x86, including base data types, settings for kernel parameters,
architecture-dependent differences, endianness, system calls, signals, data types,
and threading libraries.

Resources offers a practical checklist of things to consider while doing a large

developerWorks® ibm.com/developerWorks

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 6 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

porting exercise.

Base data type and alignment

There are two different classes of data types available on a system: base data types
and derived data types.

Base data types are all data types defined by the C and C++ language specification.
Table 3 compares base data types for Linux on x86 and Solaris on SPARC.

Table 3. Comparing Linux and Solaris base data types
Linux (x86) Solaris

(SPARC)

Base type ILP32
(sizeof)
(in bytes)

LP64
(for IA64-
based
systems)
(sizeof)
(in bytes)

ILP32
(sizeof)
(in bytes)

LP64
(sizeof)
(in
bytes)

char 1 1 1 1

short 2 2 2 2

Int 4 4 4 4

float 4 4 4 4

long 4 8 4 8

pointer 4 8 4 8

long long 8 8 8 8

double 8 8 8 8

long
double

12 16 16 16

When porting applications between platforms or between 32-bit and 64-bit modes,
you need to take into account the differences between alignment settings available
in the different environments to avoid possible degradation in performance and data
corruption.

Table 4 shows the alignment values in bytes for Linux on x86.

Table 4. Alignment values (in bytes) for Linux on x86
Data type Linux IA-32

(ILP32)
Linux IA-64
(LP64)

Bool 1 1

Char 1 1

wchar_t 4 4

ibm.com/developerWorks developerWorks®

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 7 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

int 4 4

Short 2 2

long 4 8

long long 8 8

Float 4 4

Double 4 8

long double 4* 16

Note: Alignment depends the compiler switches being used. These switches control
the size of the "long double" type. The i386 application binary interface specifies the
size to be 96 bits, so -m96bit-long-double is the default in 32-bit mode. Modern
architectures (Pentium and newer) would prefer "long double" to be aligned to an 8-
or 16-byte boundary. In arrays or structures conforming to the ABI, this would not be
possible. So specifying a -m128bit-long-double will align "long double" to a
16-byte boundary by padding the "long double" with an additional 32-bit zero.

System-derived data types

A derived data type is a derivative or structure of existing base types or other
derived types. System-derived data types can have different byte sizes depending
on the employed data model (32-bit or 64-bit) and the hardware platforms.

Table 5 shows some of the derived data types on Linux that are different from those
on Solaris.

Table 5. Derived data types on Solaris and Linux
OS gid_t mode_t pid_t uid_t wint_t

Solaris
ILP32 l

long unsigned
long

long long long

Solaris
LP64

int unsigned
int

int int int

Linux
ILP32

unsigned
int

unsigned
int

int unsigned
int

unsigned
int

Linux
LP64

unsigned
int

unsigned
int

int unsigned
int

unsigned
int

Examples of machine-dependent code

Machine dependent-code is needed in these cases:

• Getting the stack pointer

developerWorks® ibm.com/developerWorks

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 8 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

• Atomic locking

Getting the stack pointer on Linux-x86 can be implemented as:

Listing 1. Getting the stack pointer on Linux-x86

int get_stack(void **StackPtr)
{
*StackPtr = 0;

__asm__ __volatile__ ("movl %%esp, %0": "=m" (StackPtr));

return(0);
}

On Solaris, this sample code allows you to get the stack pointer:

Listing 2. Getting the stack pointer on Solaris

.section ".text"

.align 8

.global my_stack

.type my_stack,2
my_stack:

! Save stack pointer through 1st parameter
st %sp,[%o0]
! Compute size of frame in return result reg
retl
sub %fp,%sp,%o0
.size my_stack,(.-my_stack)

On Linux x86, you can use a compare and swap operation to implement atomic
locking. For example, a sample implementation for compare and swap on Linux x86
can be the following:

Listing 3. Compare and swap on Linux x86

bool_t My_CompareAndSwap(IN int *ptr, IN int old, IN int new)
{

unsigned char ret;

/* Note that sete sets a 'byte' not the word */

__asm__ __volatile__ (
" lock\n"
" cmpxchgl %2,%1\n"
" sete %0\n"
: "=q" (ret), "=m" (*ptr)
: "r" (new), "m" (*ptr), "a" (old)
: "memory");

return ret;

}

On Solaris SPARC, atomic operation for locking can be implemented as the

ibm.com/developerWorks developerWorks®

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 9 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

following:

Listing 4. Atomic locking on Solaris

.section ".text"

.align 8

.global My_Ldstub

.type My_Ldstub,2
My_Ldstub:

ldstub [%o0],%o0 ! Atomic load + set
sll %o0,24,%o0 ! Zero fill ...
retl ! ... result register
srl %o0,24,%o0 ! ... and retrn
.size My_Ldstub,(.-My_Ldstub)

Byte ordering (endianness)

Since SPARC is big-endian and x86 is little-endian, you need to consider
endianness issues.

Endianness issues become important when porting the pieces of the application that
relate to client communication over a heterogeneous network, persistent data
storage on the disk, product tracing (it is important that trace generated on SPARC
gets formatted correctly on x86), and other related areas. The IA-64 Linux kernel
uses little-endian by default, but allows for the possibility of using big-endian byte
order.

System calls

Solaris system calls that use a different name or signature, or are not available on
Linux, are listed in the "Guide to porting from Solaris to Linux on POWER". The
following system calls are now available on RHEL4:

• Waitid

• Putmsg

• putpmsg

• Getmsg

• getpmsg

Curses library

Linux library functions for the curses library are closer to AIX than Solaris. For
example, functions like addwch are not supported in Linux. Some functions calls like
mvchgat are not available in Solaris. Much of the code could require a rewrite when
you port the curses-related code from Solaris to Linux.

Terminal IO

developerWorks® ibm.com/developerWorks

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 10 of 14

http://www.ibm.com/developerworks/linux/library/l-pow-portsolaris
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The termio structure in Solaris is different from that in Linux. The termio structure
has some extra fields in Linux with which you can mention the input and output
speeds.

The definition of termio structure for Linux is in /usr/include/bits/termios.h, and for
Solaris it is in /usr/include/sys/termios.h.

IOCTL

Options available for performing ioctl are different in Solaris and Linux. For example,
to get the resource usage, you can pass the option PIOCUSAGE to the ioctl system
call:

Return_code = ioctl("/proc/<pid>", PIOCUSAGE, &buff) ;

In Linux, you must read the relevant files from the /proc/<pid> directory to get the
relevant details, and the option PIOCUSAGE is not available. In both cases, pid is
the process id of the current process executing the command.

Another example is when you want to get the process heap info. To get the process
heap info in Solaris, you can use the following:

Return_code = Ioctl("/proc/<pid>",PIOCPSINFO,&psinfo)

In this bit of code, psinfo is of type struct prpsinfo; Prpsinfo.pr_size
gives the process heap size.

In Linux, the number of pages in use is available from /proc/<pid>/mem and
/proc/<pid>/stat. The pagesize is available by the system call getpagesize.
Multiplying the two values -- number of pages and the pagesize -- gives the current
size of the heap.

Getopt

In Linux, the getopt call follows the POSIX standards only if the environment
variable POSIXLY_CORRECT is set.

If the environment variable POSIXLY_CORRECT is set, parsing stops as soon as the
first non-option parameter (a parameter that does not start with a "-") is found that is
not an option argument. The remaining parameters are all interpreted as non-option
parameters.

Differences while invoking shell scripts

If the shell script uses the su command, a child shell will be spawned. This behavior
is different from Solaris, where the su command does not spawn a new shell.

ibm.com/developerWorks developerWorks®

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 11 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

If you issue the command su - root on Linux, the output of ps command will look
like this:

30931 pts/4 00:00:00 su
31004 pts/4 00:00:00 ksh

In this code, 30931 is the parent process for the process 31004. You might have to
modify some scripts that could be affected by this relationship.

Device handling on reboot

From RHEL4 onwards, Linux employs the concept of hotplug-subsystem udev. It
provides the configurable dynamic device-naming support. The device configuration
is built up dynamically on every reboot.

For example, if you make a new directory /dev/dsk, the system might be unaware of
its existence, and the directory will disappear on reboot. To avoid the disappearance
of the /dev/dsk directory, make a directory /etc/udev/devices/dsk, and the system will
be able to retain the information on reboot, and /dev/dsk will be available even after
a reboot.

Kernel parameters

In Solaris, the kernel parameters can be set in the file /etc/system. In Linux, the
kernel parameters can be changed using sysctl system call. The parameters that
can be changed are available in /proc/sys/kernel, and procfs support is required
for sysctlto work.

Signals

Differences in signaling include the fact that Solaris has 38 signals and Linux uses
31, and the sigaction structures are different. For example, in Linux, the
sigaction structure looks like this:

Listing 5. sigaction structure in Linux

struct sigaction
{

/* Signal handler. */
#ifdef __USE_POSIX199309

union
{

/* Used if SA_SIGINFO is not set. */
__sighandler_t sa_handler;
/* Used if SA_SIGINFO is set. */
void (*sa_sigaction) (int, siginfo_t *, void *);

}
__sigaction_handler;

define sa_handler __sigaction_handler.sa_handler
define sa_sigaction __sigaction_handler.sa_sigaction
#else

developerWorks® ibm.com/developerWorks

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 12 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

__sighandler_t sa_handler;
#endif

/* Additional set of signals to be blocked. */
__sigset_t sa_mask;

/* Special flags. */
int sa_flags;

/* Restore handler. */
void (*sa_restorer) (void);

};

In Solaris, the sigaction structure looks like this:

Listing 6. sigaction structure in Solaris

struct sigaction {
int sa_flags;
union {

#ifdef __cplusplus
void (*_handler)(int);

#else
void (*_handler)();

#endif
#if defined(__EXTENSIONS__) || ((__STDC__ - 0 == 0) && \

!defined(_POSIX_C_SOURCE) && !defined(_XOPEN_SOURCE)) || \
(_POSIX_C_SOURCE > 2) || defined(_XPG4_2)

void (*_sigaction)(int, siginfo_t *, void *);
#endif

} _funcptr;
sigset_t sa_mask;

#ifndef _LP64
int sa_resv[2];

#endif
};

siginfo_t structures are different because the number of supported signals are
different. They can be found in /usr/include/bits/signal.h for Linux and in
/usr/include/sys/siginfo.h for Solaris.

Threading support and IPC

The publication on porting from Linux on POWER and Solaris covers the differences
between Solaris threads and POSIX threads on Linux (provided by the NPTL
library).

My experience has been that if the application is already using POSIX threads on
Solaris, the migration to Linux using NPTL-based threading is relatively
straightforward. Features like process-shared mutexes are also available on Linux,
and thus the Solaris code related to IPC mechanisms using pthread mutex locks and
condition variable can be used on Linux.

Natural language support

The code pages on natural language support in Solaris may be different from those

ibm.com/developerWorks developerWorks®

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 13 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

in Linux, or they could just be named differently. Most of the locales and code pages
in Solaris have an equivalent in Linux, though.

Conclusion

The porting effort from Solaris to Linux on x86 in most cases involves just a
recompile or minor changes in compiler/linker switches. Some platform-specific
changes in the areas of locking, memory maps, threading, and so on may also be
required. You should study the differences and plan the port to reduce the time to
port.

About the author

Ajay Sood
Ajay Sood is an Senior Software Engineer at IBM in Bangalore, India.
He has been with IBM for more than 13 years, and has been a
developer on such product development team efforts as DB2
DataLinks, and TXSeries-CICS. His experiences include work in
transaction processing, middleware, and system programming on UNIX
platforms.

developerWorks® ibm.com/developerWorks

Guide to porting from Solaris to Linux on x86 Trademarks
© Copyright IBM Corporation 2005 Page 14 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Planning for the port
	Development environments
	Architecture- and system-specific differences
	Conclusion
	About the author

