developerWorks. I

Next-generation Linux file systems: NiLFS(2) and
exofs

Advancing Linux file systems with logs and objects
Skill Level: Intermediate

M. Tim Jones (mtj@mtjones.com)
Independent Author

03 Nov 2009

Linux® continues to innovate in the area of file systems. It supports the largest
variety of file systems of any operating system. It also provides cutting-edge file
system technology. Two new file systems that are making their way into Linux include
the NILFS(2) log-structured file system and the exofs object-based storage system.
Discover the purpose behind these two new file systems and the advantages that
they bring.

Read more of Tim's articles
Tim is one of our most popular and prolific authors. Browse all of his
articles on developerWorks.

There's something both exciting and frightening about the announcement of a new
Linux file system. It's exciting because file systems represent new territory for
interesting advances. It's frightening because a file system in the early stages tends
to be experimental and not quite ready for prime time. But sometimes these
announcements are about investments in the future of Linux, and a recent
announcement for 2.6.30-rcl indicates a very interesting future, indeed. In the past
few quarters, Linux has had three major file system announcements. Late 2008
brought in the B-Tree File System (Btrfs), and more recently, two other unique file
systems were introduced: NiLFS(2) and exofs.

File system background

Next-generation Linux file systems: NiLFS(2) and exofs
© Copyright IBM Corporation 2009. All rights reserved. Page 1 of 12

mailto:mtj@mtjones.com
http://www.ibm.com/developerworks/views/global/libraryview.jsp?site_id=1&contentarea_by=global&sort_by=Date&sort_order=2&start=1&end=48&topic_by=-1&product_by=-1&type_by=All%20Types&show_abstract=true&search_by=tim%20jones
http://www.ibm.com/developerworks/views/global/libraryview.jsp?site_id=1&contentarea_by=global&sort_by=Date&sort_order=2&start=1&end=48&topic_by=-1&product_by=-1&type_by=All%20Types&show_abstract=true&search_by=tim%20jones
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Let's start with a quick introduction to these non-traditional file system approaches,
and then explore the specifics of NiLFS(2) and exofs.

Log-structured file systems

Log-structured file systems and SSDs
Log-structured file systems are an ideal format for solid-state disks
(SSDs), which are made up of NAND flash. The fundamental
problem with flash is that it has a limited number of write and erase
cycles. Because the log writes over the entire device, it levels the
writes over the device and thus minimizes erase cycles. For this
reason, log-structured file systems perform very well on SSDs
(sequential writes) and also provide better wear-leveling.

Log-structured file systems have a rich history in modern computing systems. The
first log-structured file system was proposed by John Ousterhout and Fred Douglis in
1988 and subsequently implemented in the Sprite operating system in 1992. As the
name implies, a log-structured file system views the file system as a circular log in
which new data and file system metadata are written to the head of the log, and free
space is reclaimed from the tail (see Figure 1). This means that data may appear
two or more times in the log, but as the log is chronologically advancing, the most
recent data is viewed as the active data. Having multiple copies of data in the log
introduces some interesting benefits, which will be covered in more detail below.

Figure 1. Simple view of a log-structured file system

Log tail Log head
Space Mew files
reclaimed here ¥ 4 added here
Empt I 18| 8 I = Log it
mpty space — Log (time
pty sp 218 2 2118 g (time)
Log-structured file system Wrap

Although the log-structured approach is an architectural detail more than a selling
point, the approach does offer some distinct advantages. One key advantage is
recovery from system crashes, which is simpler using the log-structured approach.

Another advantage is the use of the underlying storage system to exploit
performance. You might recall that writing to disks sequentially is much faster than
random 1/O. As all writes occur sequentially, the seek tax is diminished, resulting in
faster disk 1/0 and subsequently a faster file system.

Object-based storage systems

Next-generation Linux file systems: NiLFS(2) and exofs
Page 2 of 12 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Traditional storage systems rely on disk drives and their native interfaces for
persistently storing data. These interfaces rely on block storage semantics, where
small, fixed-sized blocks of data are communicated along with their mappings (file
system metadata). Object storage systems take a very different approach: instead of
managing fixed-size blocks, they manage variable-sized objects and associated
metadata (that provides system-level information about the object).

Object-storage devices and standards

Object storage systems are covered under the T-10 Object Storage
Devices (OSD) standard. This specification details extensions to the
standard SCSI command set to support object-level management.
In addition to defining object-level access methods, the specification
covers security and metadata management.

Object storage systems are a unique path to very scalable storage that incorporates
multi-tenancy and security. OSD as a standard (see sidebar) can be built in a
number of ways. You can use OSD-compliant components (such as OSD drives and
initiators) or higher-level components (target systems that build OSD behavior over
traditional drives). But the fundamental difference between block-based and
object-based storage systems is that in block-based, you create objects from
collections of blocks that contain both data and metadata using a protocol that
communicates with blocks. In object-based, you communicate instead with objects
and their associated metadata (see Figure 2). Object storage devices then become
flat namespaces of objects, where hierarchy (if necessary) is built higher up in the
storage system stack.

Figure 2. Block-based vs object-based storage systems

Block-based protocol Object storage protocol
(SCSI, ATA) {OSD, ReST, etc)
Mixed data Data and
Fixed-sized and Vanable-sized associated
blocks metadata objects metadata

N ' ' N '

[1 [TTTTTTI

Block-based storage system Object-based storage system

Next-generation Linux file systems: NiLFS(2) and exofs
© Copyright IBM Corporation 2009. All rights reserved. Page 3 of 12

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

This article explores one implementation of a file system over an object-based
storage system.

New implementation of a log-structured file system: NiLFS(2)

NiLFS(2) is the second iteration of a log-structured file system developed in Japan
by Nippon Telegraph and Telephone (NTT). The file system is under very active
development, having recently entered the mainline Linux kernel (in addition to the
NetBSD kernel). The first version of NILFS (version 1) appeared in 2005 but lacked
any form of garbage collection. In mid-2007, version 2 was first released, which
included a garbage collector and the ability to create and maintain multiple
snapshots. This year (2009), the NiLFS(2) file system entered the mainline kernel
and can be enabled simply by installing its loadable module.

An interesting aspects of NiLFS(2) is its technique of continuous snap-shotting. As
NILFS is log structured, new data is written to the head of the log while old data still
exists (until it's necessary to garbage-collect it). Because the old data is there, you
can step back in time to inspect epochs of the file system. These epochs are called
checkpoints in NILFS(2) and are an integral part of the file system. NiLFS(2) creates
these checkpoints as changes are made, but you can also force a checkpoint to
occur.

File systems with snapshots

NILFS(2) is one of numerous file systems that incorporate snapshot
behavior. Other file systems that include snapshots are ZFS, LFS,
and Ext3cow.

As | show further down, checkpoints (recovery points) can be viewed as well as
changed into a snapshot. Snapshots can be mounted into the Linux file system
space just like other file systems, but currently they can be read-only. This is quite
useful, as you can mount a snapshot and recover files that were previously deleted
or check previous versions of files.

In addition to continuous snapshots, NiLFS(2) provides a number of other benefits.
One of the most important from an availability perspective is quick restart. If the
current checkpoint was invalid, the file system need only step back to the last good
checkpoint for a valid file system. That certainly beats the fsck process.

Challenges of NiLFS(2)

NiLFS(2) version and kernel

This demonstration of NiLFS(2) was done in the 2.6.27 Linux kernel.
The 2.6.30-rc1 kernel includes NiLFS(2) in the mainline, but in this
case, the NILFS file system module and tools were installed from
source. See Resources for information on how to install NiLFS(2)

Next-generation Linux file systems: NiLFS(2) and exofs
Page 4 of 12 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

into your kernel.

Although continuous snapshot is a great feature, a cost is associated with it. The
upside, as | mentioned, is that it's log structured, so writes are sequential in nature
(minimizing seek behavior of the physical disk) and thus very fast. The downside is
that it's log structured, and garbage collection is needed to clean up old data and
metadata. Normally, the file system operates very quickly, but when garbage
collection is required, performance slows down.

Exploring NiLFS(2)

Let's look at NiLFS(2) in action. This demonstration shows how to create an
NiLFS(2) file system in a loop device (a simple method to test file systems), then
looks at some of the NiLFS(2) features. Start by installing the NiLFS(2) kernel
module:

$ sudo nodprobe nilfs2
$

Next, create a file that will contain the file system (an area on the host operating
system that you mount as its own file system through the loop device), then build the
NILFS(2) file system within it using nkf s (see Listing 1).

Listing 1. Preparing the NiLFS(2) file system

$ dd if=/dev/zero of =/tnp/disk.in bs=384M count =1
1+0 records in
1+0 records out
402653184 bytes (403 MB) copied, 60.7253 s, 6.6 MB/s
$ nmkfs.nilfs2 /tnp/disk.ing
nkfs.nilfs2 ver 2.0
Start witing file systeminitial data to the device
Bl ocksi ze: 4096 Device:/tnp/disk.inmg Device Size: 402653184
File systeminitialization succeeded !!

You now have your disk image initialized with the NIiLFS(2) file system format. Next,
mount the file system onto a mount point using the loop device (see Listing 2). Note
that when the file system is mounted, a user-space program called

ni | fs_cl eanerd is also started to provide garbage collection services.

Listing 2. Mounting NiLFS(2) using the loop device

$ sudo | osetup /dev/I|oop0 /tnp/disk.ing

$ sudo nkdir /mt/nilfs

$ sudo nmount -t nilfs2 /dev/loop0 /mt/nilfs/

mount . ni | fs2: WARNING - The NILFS on-di sk format may change at any tine.
mount . ni | fs2: WARNING - Do not place critical data on a NILFS fil esystem

Next-generation Linux file systems: NiLFS(2) and exofs
© Copyright IBM Corporation 2009. All rights reserved. Page 5 of 12

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

$Ils /mt/nilfs
$

Now, add a few files to the file system, and then use the | scp command to list the
current checkpoints available (see Listing 3). You define a snapshot using the nkcp
command, and then look at the checkpoints again. At the second | scp, you can see
your newly created snapshot (with all checkpoints and snapshots having a CNO, or
checkpoint number).

Listing 3. Listing checkpoints and creating a snapshot

$cd/mt/nilfs
$ sudo touch filel.txt file2. txt

$ Iscp

CNO DATE TIME MXDE FLG NBLKI NC | CNT
1 2009-08-21 22:29:31 cp - 11 3
2 2009-08-21 22:36:44 cp - 11 5
$ sudo nkcp -s
$ |scp
CNO DATE TIME MXDE FLG NBLKI NC | CNT
1 2009-08-21 22:29:31 cp - 11 3
2 2009-08-21 22:36:44 Ss - 11 5
5 3 2009-08-21 22:39: 47 cp i 7 5

Now that you have a snapshot, add a few more files to your current file system,
again with the t ouch command (see Listing 4).

Listing 4. Adding a few more files to your NiLFS(2) file system

do touch file3.txt filed.txt

s
|
il

$ su
i Zl.txt file2.txt file3d.txt filed.txt

Now, mount your snapshot as a read-only file system. You do this similarly to your
previous mount, but in this case, you need to specify the snapshot to mount. You do
this with the cp option. Note from your prior | scp that your snapshot was CNO=2.
Use this CNO for the nount command to mount the read-only file system. Once
mounted, you first | s your mounted read/write file system and see all files. In the
read-only snapshot, you see only the two files that existed at the time of the

snapshot (see Listing 5).

Listing 5. Mounting the read-only NiLFS(2) snapshot

sudo nkdir /mt/nilfs-ss2

sudo nount.nilfs2 -r /dev/loop0 /mt/nilfs-ss2/ -o cp=2
Is /mt/nilfs

lel.txt file2.txt file3.txt file4. txt

Is /mt/nilfs-ss2/

lel.txt file2. txt

$
$
$
f

$
fi
$

Next-generation Linux file systems: NiLFS(2) and exofs
Page 6 of 12 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Note that these snapshots persist once converted from checkpoints. Checkpoints
can be reclaimed from the file system when space is needed, but snapshots are
persistent.

This demonstration showed two of the command-line utilities for NiLFS(2): | scp (list
checkpoints and snapshots) and nkcp (make checkpoint or snapshot). There's also
a utility called chcp for converting a checkpoint to a snapshot or vice-versa, and

r ncpto invalidate a checkpoint or snapshot.

Given the temporal nature of the file system, NTT has considered some other very
innovative tools for the future—for example, t | s (temporal | s), t di ff (temporal
di ff),andt grep (temporal gr ep). Introducing time-based functionality seems to
be the logical next step.

The Extended Object File System (exofs)

The Extended Object File System (exofs) is a traditional Linux file system built over
an object storage system. Exofs was initially developed by Avnishay Traeger of IBM
and at that time was called the OSD file system, or osdfs. Panasas (a company that
builds object storage systems) has since taken over the project and renamed it exofs
(as its ancestry is from the ext2 file system).

A file system over an object storage system

Conceptually, an object storage system can be viewed as a flat namespace of
objects and their associated metadata. Compare this to traditional storage systems
based on blocks, with metadata occupying some blocks to provide the semantic
glue. At a high level, exofs is built as shown in Figure 3. The Virtual File System
Switch (VFS) provides the path to exofs, where exofs communicates with the object
storage system through a local OSD initiator. The OSD initiator implements the OSD
T-10 standard SCSI command set.

Figure 3. High-level view of the exofs/OSD ecosystem

Next-generation Linux file systems: NiLFS(2) and exofs
© Copyright IBM Corporation 2009. All rights reserved. Page 7 of 12

http://www.ibm.com/legal/copytrade.shtml

developerWorks®

Traditional filesystem

User-space

VFS

ibm.com/developerWorks

Object slorage system

— exofs

<

OsD initator

SCSILLD

QsD
Target

0sD
Target

0sD
Target

Service delivery subsystem

The idea behind exofs is to provide a traditional file system over an OSD backstore.
In this way, it's easier to migrate to object-level storage, because the file system
presented is a traditional file system.

File system mapping

Each object in an OSD is represented by a 64-bit identifier in a flat namespace. To
overlay the standard POSIX interface onto an object storage system, a mapping is
required. Exofs provides a simple mapping that is also scalable and extensible.

Files within a file system are represented uniquely as inodes. Exofs maps inodes to
the object identifiers (OIDs) in the object system. From there, objects are used to
represent all the elements of the file system. Files are mapped directly to objects,
and directories are simply files that reference the files contained within the directory
(as file name and inode-OID pairs). This is illustrated in simple form in Figure 4.
Other objects exist to support things like inode bitmaps (for inode allocation).

Figure 4. High-level view of OSD representations

Next-generation Linux file systems: NiLFS(2) and exofs

Page 8 of 12

© Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks

exofs representation

fvolume/
filel.txt
file2. txt
filed. txt
mydir/
file.txt

file.txt

developerWorks®
OSD representation
]]w}
filey.txt QID
OID my dir
» filex.txt 0ID
01D filed.txt
filel ., Txt
e oID
QID File2.txt
volume
7
Filename inode
filed.t=t QLD
filal b=t oI
filaeZ.t=t QID
my Jdir oD

The OIDs used to represent objects within the object space are 64 bits in size,
thereby supporting a large space of objects.

Why object storage?

Object storage is an interesting idea and makes for a much more scalable system. It
removes portions of the file system from the host and pushes them into the storage
subsystem. There are trade-offs here, but by distributing portions of the file system
to multiple endpoints, you distribute the workload, making the object-based method

simpler to scale to much larger storage systems. Rather than the host operating

system needing to worry about block-to-file mapping, the storage device itself
provides this mapping, allowing the host to operate at the file level.

Next-generation Linux file systems: NiLFS(2) and exofs
© Copyright IBM Corporation 2009. All rights reserved.

Page 9 of 12

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Object storage systems also provide the ability to query the available metadata. This
provides some additional advantages, because the search capability can be
distributed to the endpoint object systems.

Object storage has made a comeback recently in the area of cloud storage. Cloud
storage providers (which sell storage as a service) represent their storage as objects
instead of the traditional block API. These providers implement APIs for object
transfer, management, and metadata management.

What's ahead?

Although NILFS(2) and exofs will be interesting and useful additions to the Linux file
system inventory, there's more on the way. We've seen Bitrfs introduced recently
(from Oracle), which offers a Linux alternative to Sun Microsystems' Zettabyte File
System (ZFS). Another recent file system is Ceph, which provides a reliable
POSIX-based distributed file system with no single point of failure. Today, we find a
new log-structured file system and the introduction of a file system over an object
store. Linux continues to prove that it's the research platform of choice as well as an
enterprise-class operating system.

Next-generation Linux file systems: NiLFS(2) and exofs
Page 10 of 12 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Resources

Learn

Visit the NILFS(2) file system project Web site for the latest information. At this
site, you'll find an FAQ, links, and a sample demonstration of the file system,
including checkpoints and snapshots.

Exofs was initially developed by IBM, with continuing development provided by
Panasas. Visit the Exofs project Web site at open-osd.org for details.

Learn more about Btrfs in the Btrfs wiki and also in "Linux kernel advances"
(developerWorks, March 2009).

Read "The Design and Implementation of a Log-Structured File System" (PDF),
the seminal paper by the authors of the Sprite LFS, for a great historical
perspective on log-structured file systems. This paper introduces the ideas and
challenges behind log-structured file systems.

See Wikipedia for intros to both Log-structured file systems and object storage
devices. Along with the current state of the art, these references provide some
historical perspective on the technologies.

Check out the NILFS Web site for instructions on how to install NiLFS(2) and
user-land tools into a pre-2.6.30 kernel. You'll find instructions for a variety of
Linux distributions.

Relevant notes for both NiILFS(2) and exofs are in the
Documentation/filesystems subdirectory in the Linux kernel tree. It provides a
wealth of information for the specific kernel version.

The presentation "About SSD" (PDF) from Samsung Electronics provides an
interesting review of SSD performance using SSD drives for a variety of file
systems, including NILFS. Phoronix also provides a more recent analysis of file
system performance, comparing EXT4, Btrfs, EXT3, XFS, and NIiLFS(2).

This white paper from Seagate, "The Advantages of Object-Based
Storage—Secure, Scalable, Dynamic Storage Devices," provides a great
introduction to object storage devices. You can also learn more about object
storage from this Storage Networking Industry Association (SNIA) presentation
on "Object Storage and Applications" (PDF) and this presentation on "OSD
Architecture and Systems" (PDF).

Seagate developed a prototype Fibre Channel drive that implemented the OSD
command set. This drive was demonstrated with IBM and Emulex in the context
of an object storage system. IBM provided metadata servers, while Seagate
provided OSD-enabled drives and Emulex provided FC host-bus adapters
enabled with OSD support.

Browse all of Tim's articles on developerWorks.

Next-generation Linux file systems: NiLFS(2) and exofs
© Copyright IBM Corporation 2009. All rights reserved. Page 11 of 12

http://www.nilfs.org/en/
http://en.wikipedia.org/wiki/EXOFS
http://www.panasas.com
http://www.open-osd.org/bin/view
http://btrfs.wiki.kernel.org/index.php/Main_Page
http://www.ibm.com/developerworks/linux/library/l-kernel-advances/
http://en.wikipedia.org/wiki/Log-structured_file_system
http://en.wikipedia.org/wiki/Object_storage_device
http://en.wikipedia.org/wiki/Object_storage_device
http://www.nilfs.org/en/download.html
http://www.mjmwired.net/kernel/Documentation/filesystems/nilfs2.txt
http://www.mjmwired.net/kernel/Documentation/filesystems/exofs.txt
http://www.phoronix.com/scan.php?page=article&item=ext4_btrfs_nilfs2&num=1
http://www.phoronix.com/scan.php?page=article&item=ext4_btrfs_nilfs2&num=1
http://www2.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/04-12-2005/0003386312&EDATE=
http://www.ibm.com/developerworks/views/global/libraryview.jsp?site_id=1&contentarea_by=global&sort_by=Date&sort_order=2&start=1&end=48&topic_by=-1&product_by=-1&type_by=All%20Types&show_abstract=true&search_by=tim%20jones
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

* In the developerWorks Linux zone, find more resources for Linux developers,
and scan our most popular articles and tutorials.

» See all Linux tips and Linux tutorials on developerWorks.
» Stay current with developerWorks technical events and Webcasts.
Get products and technologies

« With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

* Getinvolved in the My developerWorks community; with your personal profile
and custom home page, you can tailor developerWorks to your interests and
interact with other developerWorks users.

About the author

M. Tim Jones

M. Tim Jones is an embedded firmware architect and the author of Artificial
Intelligence: A Systems Approach, GNU/Linux Application Programming (now in its
second edition), Al Application Programming (in its second edition), and BSD
Sockets Programming from a Multilanguage Perspective. His engineering
background ranges from the development of kernels for geosynchronous spacecraft
to embedded systems architecture and networking protocols development. Tim is a
Senior Architect for Emulex Corp. in Longmont, Colorado.

Next-generation Linux file systems: NiLFS(2) and exofs
Page 12 of 12 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	File system background
	New implementation of a log-structured file system: NiLFS(2)
	The Extended Object File System (exofs)
	What's ahead?
	Resources
	About the author

