
Windows Java address space
This article applies to the IBM 32-bit SDK and Runtime Environment for
Windows, Java2 Technology Edition. It explains how the process space
for Java is divided and explores a way of increasing the available space.

How is the space in a basic Win32 process allocated ?

A 32-bit architecture imposes a fundamental limit on an address range
of 4 GB. Hence, on a 32-bit platform any given process can theoretically
achieve a maximum size of 4 GB.

Unfortunately, on Win-32, the process space available to an application
is only 2 GB. Why is this ?

When the NT kernel was being designed, it was decided to conceptually
split the process space into two. One half for the application and one
half for use by the OS. At the time 2 GB must have seemed far more
space than anyone could possibly use. This split had certain
advantages, in that the internal address tables used by NT only needed
to be 31 bits wide.

Inside this 2 GB space, the process code and its memory requirements
are loaded at the ‘bottom’ of the space. (For the purpose of this article
we will refer to virtual address 0x00000000 as the ‘bottom’ of the
process space and address 0x7FFFFFFF as the ‘top’ of the space.)

Every application has at least one thread. A thread has an associated
stack, which is storage space allocated on its behalf from the process
space. In addition, most applications will use dynamic memory space,
either explicitly by calls such as ‘malloc’ and ‘free’, or implicitly for
example by the C++ ‘new’ operator. Stack and dynamic memory
storage is managed by Windows by means of a ‘heap’. The heap is
usually loaded above the application code and grows upwards.

When linking your application, you need to link in certain OS libraries. A
Java process loads a large number of Java libraries - the JVM
executable is very small, most of the VM comprises Dynamic Link
Libraries (DLLs). In addition, most applications link in application
libraries. For the purposes of this article, we consider application native
code libraries to be part of the application; they are loaded at addresses
determined by the application. In the case of the VM, the VM link

libraries are sometimes loaded at the bottom of the process space or
sometimes not, depending on whether you are in a WebSphere
environment and the version of the JVM you are using. The OS libraries
are loaded at the top of the process 2 GB space (address 0x70000000
and upwards). These libraries are important when considering the
memory map of a Java process as we shall see.

The 32-bit Windows secret !

It’s a little known ‘secret’, but the vast majority of Windows applications
are 31-bit code, not 32-bit ! An application’s address range is from
0x00000000 to 0x7FFFFFFF. A default Windows process can never
have a ‘negative’ pointer (where the most significant bit of the pointer is
set).

Structure of a standard Win32 process

4GB
2GB 2GB

libraries

application space OS space

ap
pl

ic
a t

i o
n

he
ap

OS

What are the Win32 java process memory requirements ?

A Java process executable code is the Java Virtual Machine (VM). It
has the same requirements as any other Windows process, but in
addition needs memory space for

Application byte codes (Java classes)
The Java heap
JIT-compiled code

Java Virtual Machine

The virtual machine (VM) is the mechanism for executing the byte codes
in your java application. It is just a C application.

Java heap

The Java heap is where the VM stores Java objects. It should not be
confused with the standard Windows heap space we already alluded to.
A Java process therefore has two heaps. To distinguish them we refer
to the ‘Java heap’ and the ‘native heap’. The Java heap is a single
contiguous chunk of memory. It is a single malloc’d chunk of memory
which is never freed and is internally managed by the VM storage
component, the Garbage Collector.

The Java heap is allocated as a single chunk of memory whose size is
specified by the -Xmx command line parameter. If you don’t specify
Xmx it takes a default value of half of available physical memory up to a
maximum of (2 GB - 1) bytes. It is allocated as virtual memory. The
amount of physical memory initially committed to the heap is specified
by the -Xms parameter. As with Xmx, this parameter takes a default if
not specified.

Tip ! Specify the max heap size you want with -Xmx. Specify Xms
as a low value. These settings allow the Java process to start
with the minimum amount of physical memory and, as the heap
grows, the Garbage Collector can optimise it. It is rarely a
good idea to specify a large value for Xms.

JIT compiled code

A Java process interpreting Java byte codes cannot approach the
performance of compiled code. A VM has a bundled compiler that
compiles Java byte codes into true platform code. Because the
compiler is invoked at runtime and compiles the code ‘just in time’ to
execute, it is known as a Just-In-Time compiler or more commonly by its
initials as a JIT compiler. In fact, we usually just refer to the JIT
compiler as ‘the JIT’ and to JIT-compiled code as ‘JIT’d code’.

It is important to note that the JIT does NOT compile Java byte codes
the first time those byte codes are executed. If it did this, then the VM
would take a very long time to start up, as thousands of methods were

JIT’d. Also, when a large amount of function was loaded there would be
a big hit on performance as the JIT laboured to compile all the code.
For these reasons, Java byte codes are only JIT’d when they have been
executed a certain number of times - the VM imposes a JIT threshold
value. On Windows, this threshold varies according to the version of the
VM but is of the order of several thousand.

Now, when the JIT runs it generates some executable code. But where
does it put it ? Clearly, this must come out of the process space. What
this means is that the Java VM will make ever-increasing demands for
storage space for JIT’d code as more and more methods hit the JIT
threshold. Eventually, all but rarely used methods get compiled and the
demands of the JIT for storage level off.

Java threads

A Java thread is a wrapper for a real native (windows) thread. Recall
that all threads take stack space out of the process space. So lots of
Java threads take lots of storage in the process 2 GB space. The
Windows VM prior to Java 5 allocates an initial 1 MB of stack space to a
thread. Java 5 initially allocates 32 K to a thread.

In summary, a Java process comprises

Java VM
Application byte code
Native heap space
Java heap space
JIT’d code space
Link libraries

Given that everything has to fit into 2 GB the Java heap theoretical
maximum is around 1.75 GB, but most applications will get
out-of-memory errors at this setting, because of failures to get native
memory. By the time all the code is loaded and space reserved for JIT’d
code, the practical maximum size of the Java heap is around 1.5 GB.

So, a java process looks like this

2GB 2GB

Ap
pl

ic
at

io
n

java heap

JIT'd code
thread

native

VM

na
tiv

e
h e

ap

lib
ra

rie
s

OS space

Hitting the buffers

As applications grow in size and complexity, the demands on the Java
heap grow. Recall that the Java heap must be a contiguous space and
that its practical max size is around 1.5 GB. Many applications are now
finding themselves approaching this limit. If an application needs, in
addition, lots of threads and/or lots of native heap (in native code or
used by JNI code) then that 2 GB space starts to get rather constricted.

Can we extend the Win-32 process space ?

Yes we can. But not on all versions of Windows. There are two
mechanisms

1. Microsoft Physical Address Extensions (PAE)
2. The /LARGEADDRESSAWARE switch

PAE is a mechanism by which processes can effectively address more
than 4 GB. It is supported only on certain platforms and requires use of
a formal Microsoft API. The IBM VM does not currently support PAE.
Even if it did, application native code would also need to be written to
PAE.

The /LARGEADDRESSAWARE switch is often referred to as the /3GB
switch. In a nutshell, using this switch redefines the share of the 4 GB
Win32 process as 3 GB for the application and 1 GB for the OS.

This seems like a good idea. But it does have some problems.

1. Microsoft only support use of this switch on certain Windows versions
(see later). On other platforms, it is unsupported.

2. With the /3GB switch in place, an application’s address range is from
0x0000000 to 0xBFFFFFFF. This has some ‘gotchas’ for
applications that play with pointers if there’s an implicit assumption
the top bit is clear. Microsoft have documented some of these here

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memo
ry/base/4gt_ram_tuning.asp

The Java language has no pointers, so your Java code is quite safe.
But if you have any native code in your application that does pointer
arithmetic such as

 pNext = pStart + pCurrent;

then, clearly, problems might occur if the pointers are effectively
‘signed’ quantities.

3. The /3GB switch does not automatically rebase the OS link libraries.
Hence you end up with a Win32 Java process looking like this

Ap
pl

ic
at

io
n

java heap

3GB

'new' space

1GB

these split the 3GB space

lib
ra

rie
s

OS space

Because the libraries split the 3 GB space the Java heap cannot grow
much, because it requires a contiguous area. Therefore the /3GB switch
does NOT provide for a much bigger Java heap.

Those link libraries are loaded at link time and take default base
addresses. It is possible to ‘rebase’ the libraries when a process is built
and redefine the library base addresses, so the Java executable could
be linked to look like this

java heap

3GB 1GB

lib
ra

rie
s

OS space

Rebasing could extend the java heap up to its theoretical limit. So why
don’t we do it ?

The design of Windows is such that the OS link libraries are loaded into
physical memory and then all processes access that copy provided that
the process link libraries are linked at the default base. If they are
rebased, then Windows loads separate copies of the OS code for that
process. This occupies extra physical memory and increases paging for
the process. Performance is severely degraded. And, in any event, the
Win32 Garbage Collector design imposes a maximum heap size of (2
GB - 1) bytes. Rebasing would provide only a small heap size
advantage. Rebasing is not a worthwhile proposition.

So what does the /3GB switch do for Java then ?

The /3GB switch does enable the Java heap to grow a bit from a
practical max of about 1.5 GB up to 1.7 GB or maybe even 1.8 GB. If
you are already struggling to fit everything into your Java heap, the /3GB
switch is not going to be of much help.

The key advantage lies in the extra space available for threads (stack
space), and native code (either for JIT’d code or application
requirements).

A big java process

The picture below compares the memory usage of a Java process with a
big Java heap, with and without the /3GB switch

Ap
pl

ic
at

io
n

java heap

lib
ra

rie
s

A p
p l

ic
at

io
n

java heap

lib
ra

rie
s

thread stacks
native memory

JIT'd code

thread stacks
native memory

JIT'd code

OS space

OS space

Which IBM JVMs support the /3GB switch ?

The /3GB switch can be used on any NT-kernel based version of
Windows, - Windows NT, Windows 2000, Windows XP and Windows
2003. However; as stated previously, it is not supported except as
defined here

http://support.microsoft.com/kb/291988/

The IBM Windows VM supports the /3GB switch as follows

6.1 and beyondYes5.0 and beyond

5.1.0 - 6.0.xFrom SR41.4.2
4.0.3 - 5.0.2No1.3.1

Associated Websphere version/3GB switch ?Java version

How do I get this extra space goodness ?

The extra space available by using the /3GB switch does NOT
automatically appear when you start such a Windows process. By
default, Windows ignores the /3GB switch. To make Windows check for
and effect the /3GB switch, you must edit your BOOT.INI file. The edit
has to be done manually on an as-needed basis; the Java install
process will not make this change for you. The edit is described here

http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.m
spx

After BOOT.INI is changed, all processes (not just Java) linked with the
/LARGEADDRESSAWARE option will have access to the extra 1 GB of
space. Note that this link option merely sets a bit in the internal process
header. The Microsoft ‘editbin’ tool can also be used to flip this bit in a
process binary if you do not control access to the source. EDITBIN is a
tool provided with Microsoft Visual C toolkits. There is also a freeware
licenced version bundled with the MASM32 project

http://www.masm32.com

 How can I tell my process is LARGEADDRESSAWARE ?

The counterpart to the EDITBIN tool is the DUMPBIN tool, available from
the same sources. If you run DUMPBIN against an executable like this

>dumpbin /headers java.exe

Then you should see a line something like the one shown below in the
process ‘characteristics’

Application can handle large (>2GB) addresses

If this characteristic is missing, then the process can exist only in the 2:2
GB split configuration. But, as noted, the presence of this characteristic
does not, in itself, cause the process 3:1 GB split - BOOT.INI must also
be changed.

Summary

If you are having problems sharing a large Java heap with one or
more of the following conditions

I need lots of threads
I need lots of dynamic memory
I have a lot of java code and it takes a lot of JIT’d space

.. then the /3GB switch is for you !

To get extra space in your Java process

1. Install a /3GB version of the Windows VM
2. Edit your BOOT.INI (then reboot, of course !)

But note

1. We will support the /3GB switch only on platforms where
Microsoft also supports it.

2. The maximum Java heap size will not increase much when the
/3GB switch is used

3. If you are inclined to try it out for yourself, albeit in an
unsupported mode for Java, then you can use the EDITBIN tool
as noted above.

4. Watch out for ‘gotchas’ with “negative” pointers in your native
code.

Phil Vickers Java Technology Centre, Hursley, IBM UK
Amar Devegowda Java Technology Centre, Bangalore, IBM India
Contact: philvickers@uk.ibm.com or adevegow@in.ibm.com
December 2005

Websphere is a registered trademark of the IBM Corporation

