
Flow-managed persistence in Spring Web Flow 2
Persistence strategies for transactional Web flows

Skill Level: Intermediate

Xinyu Liu (dr.xyliu@gmail.com)
Senior App Dev Consultant
Magellan Health Services

13 Apr 2010

Spring Web Flow 2's JPA/Hibernate persistence architecture is founded on the
concept of flow-managed persistence, which before now has been only briefly
documented. In this in-depth article, Xinyu Liu walks you through the conceptual
building blocks of flow-managed persistence and the flow-scoped persistence
context. He then demonstrates transactional strategies for handling atomic and
non-atomic Web flows in complex, real-world development scenarios.

Spring Web Flow is an innovative Java™ Web framework that extends Spring MVC
technology. Application development with Spring Web Flow is organized around use
cases that are defined as Web flows. Having the development workspace organized
in terms of Web flows results in a more meaningful and contextual development
experience. In addition, Spring Web Flow's support for JPA/Hibernate persistence is
one of its most substantial server-side contributions.

Although Spring Web Flow is well documented by SpringSource and the Spring Web
Flow project team, its persistence support, and particularly its flow-managed
persistence mechanism, are little understood. This article is an in-depth discussion
of Java persistence programming in Spring Web Flow 2, focusing on flow-managed
persistence and its essential component — the flow-scoped persistence context.

Following an overview of Spring Web Flow persistence concepts, I present use
cases that demonstrate strategies for handling read-only and read/write transactions
in atomic and non-atomic Web flows. In each case, I explain the conceptual
underpinning of the preferred transaction-handling strategy and also demonstrate its
shortcomings. The article concludes with my own guidelines for managing

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 1 of 17

mailto:dr.xyliu@gmail.com
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


transactions effectively and safely in Spring Web Flow 2.

This article is intended for experienced Java developers familiar with Spring Web
Flow 2 and its continuations-based architecture. Use cases and sample application
code will especially benefit developers already using JPA/Hibernate in their Spring
Web Flow applications.

Persistence challenges in JPA/Hibernate

In a typical Web application, a user request is processed in two major steps: action
handling and view rendering. The application's primary business logic resides in
action handling. View rendering, which happens afterward, feeds data into a view
template to generate a presentation.

In JPA/Hibernate, data (more specifically, entity relationships) may be eagerly
loaded or lazy-loaded as proxy objects. If the persistence-context object (a JPA
EntityManager or Hibernate Session) has already been closed in the
view-rendering phase, entities become detached. Any attempt to access the
unloaded relationships on the detached entities will lead to a
LazyInitializationException.

The Open Session in View pattern (see Resources) seeks to solve the problem of
the LazyInitializationException. When Open Session in View is
implemented as a filter or interceptor, the persistence-context object remains open
during view rendering. Navigating to an unloaded relationship on a persistent entity
will trigger additional database queries to fetch the relationship on demand.

A downside of the Open Session in View pattern is that the persistence-context
object is effectively scoped to a user request. Consequently, entities stored in
Servlet scopes other than the current request are always detached. Detached
entities require merge/reattach/reload operations to be associated with the current
persistence context.

Spring Web Flow takes a different approach to saving the detached-entity state
trouble via flow-managed persistence and, more specifically, the
flow-scoped persistence-context object.

Flow-managed persistence

Application development in Spring Web Flow is based on the concept of the Web
flow, which typically represents a sole use case. In many instances, data changes
throughout a Web flow are required to be atomic, meaning that changes made at
different stages of the flow either save as a whole to the backend database, or
cancel out completely with no trace left in the database.

developerWorks® ibm.com/developerWorks

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 2 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


Spring Web Flow facilitates JPA/Hibernate programming in transactional atomic
Web flows via the mechanism of flow-managed persistence. Flow-managed
persistence is conceptually identical to Hibernate/Seam conversations (see
Resources), where data changes made during a Web flow (or "page flow" in Seam)
are cached in the same flow-scoped persistence-context object as dirty entities. No
SQL insert/update/delete statements are fired until the end of the flow, when
changes are flushed and committed to the database all at once. (Note that "flush"
and "commit" are distinct concepts: the former fires a series of SQL
insert/update/delete statements to synchronize dirty entities with their corresponding
database values, whereas the latter just commits a database transaction.)

OptimisticLockingFailureException in flow-managed persistence

Optimistic locking is an extremely efficient concurrency control method that
guarantees data integrity without placing any physical lock in the database. While
not enforced, optimistic locking is highly recommended in flow-managed
persistence.

The persistence context checks entity versions at flush time, throwing an
OptimisticLockingFailureException (StaleObjectException in
Hibernate) if it detects concurrent modification. The longer an entity lives in memory,
the more likely its corresponding database value will be modified by other
processes.

In the Open Session in View pattern, as previously mentioned, the persistent state of
the entities is subject to the user request. Once an entity becomes detached, a
merge/reattach/reload operation is generally required in subsequent user requests to
restore the persistent state of that entity, as a result, the entity and its corresponding
database value are synchronized.

Entities keep their persistent state across multiple user requests in flow-managed
persistence. Database synchronization is not mandated between user requests,
therefore, there is a higher chance of running into the
OptimisticLockingFailureException. The trick is to handle the
OptimisticLockingFailureException gracefully, just as you would any
checked business exception. (This is true even though
OptimisticLockingFailureException is a runtime exception that rolls back
the database transaction.) Common strategies are to present the user with an
opportunity to merge his changes or to restart the flow with non-stale data.

The flow-scoped persistence context

A Web flow is declared as an XML-formatted flow-definition file. When a Web flow
marked with a <persistence-context/> tag starts, a new persistence-context
object is created and bound to the flow scope. The object is disconnected from the

ibm.com/developerWorks developerWorks®

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 3 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


underlying JDBC connection when waiting for a user request and reconnected when
serving a user request. The same persistence-context object is reused during the
course of the entire flow, eliminating detached-entity state and the corresponding
LazyInitializationException.

The persistence context is also bound to the current request thread and exposed to
developers in two different flavors: as an implicit variable persistenceContext or
injected into any Spring bean via the JPA @PersistenceContext annotation.

The implicit variable is available directly in flow-definition XML files — for instance:

<evaluate expression="persistenceContext.persist(transientEntityInstance)"/>

The injected JPA entity manager may be referenced anywhere in Spring
components, such as in DAOs, service beans, or Web-tier beans.

Types of persistence context: Transaction or extended

The @PersistenceContext annotation has an optional attribute type, which
defaults to PersistenceContextType.TRANSACTION (that is, a
transaction-bound persistence context). You have to use this default setting when
programming with a flow-scoped persistence context. In that case the injected
transaction-bound persistence-context object is just a shared proxy that
transparently delegates to the actual thread-bound persistence context of the flow
scope.

Selecting the other option, PersistenceContextType.EXTENDED, results in a
so-called "extended entity manager", which is not thread-safe and must not be used
in concurrently accessed components such as singleton Spring beans. Using an
extended entity manager as your flow-scoped persistence context will lead to
unpredictable database/transaction behavior in your applications, so avoid it.

Interestingly, a Seam conversation is typically implemented with an extended entity
manager injected into a stateful session bean (EJB). That is a noticeable difference
between Spring Web Flow's flow-managed persistence and a Seam conversation.

The flow-scoped persistence-context object may be used in conjunction with the
@Transactional annotation to fine-tune the persistence characteristics of a flow.

Transaction semantics

The @Transactional annotation, part of the Spring Core package, specifies the
transaction semantics of the annotated class or method. According to the Spring
development team, @Transactional is better applied to concrete classes than

developerWorks® ibm.com/developerWorks

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 4 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


interfaces. Default transaction semantics are:

@Transactional(readOnly=false,propagation=PROPAGATION_REQUIRED,
isolation=ISOLATION_DEFAULT,timeout=TIMEOUT_DEFAULT)

readOnly: Setting up a read/write transaction by specifying
@Transactional(readOnly=false) will make the FlushMode of the
persistence context AUTO. Applying @Transactional(readOnly=true) will
make the FlushMode of the underlying Hibernate session MANUAL.

JPA 1.0 does not support MANUAL flush nor read-only transactions, so
@Transactional(readOnly=true) is only meaningful when the underlying JPA
provider, like Hibernate, supports read-only database transactions. Moreover,
Hibernate uses this setting as a database hint against certain database types for
optimized query performance.

propagation: The propagation attribute determines whether the current method
is running under an inherited transaction, or in a new transaction by
suspending/resuming the enclosing transaction, or in no transaction at all.

isolation: JPA 1.0 doesn't support custom isolation levels, so developers are
required to specify the default transaction isolation level on the database side.
Read-Committed is the minimum level required for optimistic locking to work.

timeout: The timeout attribute specifies how long the transaction may run before
timing out (and automatically being rolled back by the underlying transaction
infrastructure).

rollbackFor, rollbackForClassname, noRollbackFor, noRollbackForClassname:
As a general rule, a transaction always rolls back on a RuntimeException
representing a system error and commits on a checked Exception with a
predefined business meaning. It is possible to customize the default semantics
through these four rollback attributes.

The Spring Core's robust transaction infrastructure makes transaction management
easier in most real-world development scenarios. In the sections that follow, we'll
see how Spring Web Flow makes use of the Spring transaction infrastructure in
conjunction with its own flow-scoped persistence-context object to handle
persistence programming in a variety of Web flows, including some use cases that
demonstrate the limitations of flow-managed persistence.

Atomic Web flows

Flow-managed persistence is intended to address Spring Web Flow use cases that
are considered atomic from the perspective of transactions. For instance, let's say

ibm.com/developerWorks developerWorks®

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 5 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


that you have an online banking system that allows a user to move his money from a
checking account to a savings account or a to-be-created CD account. The
transaction has to be conducted in several steps:

1. The user selects a checking account to be transferred.

2. The system displays the account balance.

3. The user enters the amount to be transferred.

4. The user selects a savings or CD account as the target.

5. The system displays a summary of the transaction for review.

6. The user decides to commit or cancel the transaction.

Due to the obvious concurrency requirement, you would first enable optimistic
locking on entity classes. For this you could use the JPA @Version annotation or a
Hibernate proprietary OptimisticLockType.ALL attribute. You could then map
the complete use case into a single Web flow marked with Spring Web Flow's
<persistence-context/> tag.

Non-transactional data access in Web flows

In Spring Web Flow, all data access, by default, is non-transactional. For
non-transactional data access, Hibernate sets the auto-commit mode of the
underlying database to true, such that each SQL statement is immediately
executed in its own "short transaction", commit or rollback. From an application
perspective, a database short transaction is equivalent to no transaction at all. More
critical, Hibernate disables the default FlushMode.AUTO for non-transactional
operations. It effectively works as FlushMode.MANUAL.

Disabling FlushMode.AUTO is crucial to flow-managed persistence. Entity
lazy-reads in the view-rendering phase are also executed in non-transactional mode.
If a flush ever happened during the rendering of different views, there would be no
chance to accomplish the deferred flush at the end of the flow. In essence,
non-transactional reads in auto-commit mode are equivalent to reads within a
transaction of isolation-level Read-Committed. Similarly, flush never happens to
non-transactional write operations.

In the above use case, each user action can be executed outside of a database
transaction, without the @Transactional annotation or XML-configured
transaction advisors specified. The flow-scoped persistence-context object manages
data loaded during the flow as persistent entities, and data changes cached as the
entities' dirty states.

developerWorks® ibm.com/developerWorks

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 6 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


If a user confirms the money-transfer transaction at the end of the flow, via
<end-state commit="true"/>, the Spring Web Flow runtime will call
entityManager.flush() implicitly within a read/write database transaction. It will
then commit the transaction, unbind the persistence context, and close it. If the user
chooses to cancel the transaction via <end-state commit="false"/>, all
cached data changes will be discarded from memory upon the closing of the
flow-scoped persistence context.

This approach to flow-managed persistence matches exactly how JPA 1.0 interprets
the handling of a conversation. The JpaFlowExecutionListener class is the
underlying Spring Web Flow component that makes it happen. Apart from the
non-transactional data access approach to flow-managed persistence, the
alternative is to use read-only transactions.

Read-only transactions in Web flows

In some cases, you might prefer read-only transactions over non-transactional ones.
If you look at the sample "Hotel Booking" application in Spring Web Flow releases
(see Resources), you'll notice that @Transactional(readOnly=true) is used
universally for all data access during the "booking" Web flow, regardless of the
read/insert/update/delete nature of the operations.

Read-only transactions are not supported by the JPA 1.0 specification, so this
setting is useable only in some JPA providers. In its JPA implementation, Hibernate
sets the FlushMode of the underlying Hibernate session to MANUAL and the
auto-commit mode to false.

Effectively, read-only transactions to flow-managed persistence act just like
non-transactional data access, in that changed entities are only flushed at the end of
an atomic Web flow via <end-state commit="true"/>.

If you want a flush to happen prior to the <end-state/>, you'll need to invoke
entityManager.flush() in one of your Spring bean's methods, annotated with
@Transactional.

A direct call from the Web flow, <evaluate
expression="persistenceContext.flush()"/>, wouldn't work, as no
transaction is bound to any Spring Web Flow tag other than <end-state
commit="true"/>. You would get the following error message:

"javax.persistence.TransactionRequiredException: no transaction is in progress"

We'll return to the "Hotel Booking" example later in the article, for a look at the
challenges of persistence programming without the flow-scoped persistence context.

More about transaction propagation

ibm.com/developerWorks developerWorks®

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 7 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


I've touched on how a transaction is propagated based on the value of its
propagation attribute, but I ignored one particular use case: If a method marked
@Transactional(readOnly=true,
propagation=Propagation.REQUIRED) were to call another method marked
@Transactional(readOnly=false,
propagation=Propagation.REQUIRED), or the other way around, then how
would the transaction propagate?

Spring Web Flow handles this in a simple but elegant way: it ignores the readOnly
attribute value on the second method. To put it simply, a transaction initiated as
read-only remains read-only until it ends, and vice versa.

This has interesting implications for the question of whether to use no transactions
or read-only transactions in flow-managed persistence.

A use case for read-only transactions

Spring beans in an application's service layer can be exposed as reusable
SOAP/REST Web services through some JAX-WS/JAX-RS annotations. Applying
@Transactional on these @Service beans or their methods binds the Web
services invocations with database transactions. (There are no obvious reasons to
use @Transactional on DAO @Repository beans, unless the application has a
collapse layer architecture, where there are no other places for developers to specify
transaction properties.)

Think again about the non-transactional data access approach to flow-managed
persistence in Spring Web Flow. If you apply @Transactional to Web
services-enabled @Service beans, the non-transactional context could be
overridden. All pending data changes in the flow-scoped persistence context will be
flushed when a read/write transaction specified in the service layer is met in the
method-calling chain, leading to so-called "premature flush."

Avoid the premature flush
If an entity identifier is generated during an insertion (i.e., identity
column), even with manual flush, a flush occurs after a call to the
entityManager.persist() or entityManager.merge()
method. This is necessary because each managed (persistent)
entity in the persistence context must be assigned an identifier. To
avoid this premature flush, you need to set the ID-generation
strategy to sequence.

On the other hand, specifying @Transactional(readOnly=true) on your
view-tier Spring beans will override the read/write transaction settings on the service
beans; the transaction will remain read-only to prevent premature flush. In cases
where the entire Web tier is bypassed for SOAP/REST Web services
communications, the @Transactional annotation applied to the service beans
ensures that a Web services invocation runs within a database transaction.

developerWorks® ibm.com/developerWorks

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 8 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


This is a great advantage of using read-only transactions over non-transactional
data access in flow-managed persistence.

As previously mentioned, flow-managed persistence resolves use cases involving
atomic Web flows. For the remainder of the article we'll focus on use cases that call
for non-atomic Web flows, where flow-managed persistence does not apply. Note
that in some of these use cases we are still able to use the flow-scoped
persistence-context object.

Non-atomic Web flows

From a business process management (BPM) perspective, one kind of long-running
process lives longer than the lifespan of a typical Web session. If such a
long-running process involves human tasks, then a user can work on the process for
any time span and come back in hours, days, even months to restore the execution
of the process. Obviously, such a process should survive server crashes, as well.

All of these factors suggest that the state of the long-running process after each
progression needs to be persisted to a backend database. Implementing the human
activities of this long-running process as a Web flow would be a sound technical
solution. The flow would be executed repeatedly in different Web sessions to
emulate the lifecycle of the long-running process.

Apart from the above scenario, some applications consist of non-contextual Web
pages, which a user can navigate between arbitrarily. Those Web pages could be
grouped into flows according to their business functions, even though there would be
no logical sequential flows, nor begin or end states. Data changes made during
every user request would need to be saved. Persistence programming in these
applications is not different from the long-running process discussed above, in that
transactional atomicity is scoped to each user action instead of a series of user
actions — a Web flow.

A use case for non-atomic Web flows

In the health care industry, service providers periodically approach members who
have chronic diseases to evaluate their health status and potential risks. Health
providers subsequently offer them medical and behavioral health suggestions. This
is known as case management.

A case management system is centered on a series of contact tasks. In one typical
task, a case manager contacts a member by phone, asks assessment questions
and, based on the responses, makes the appropriate suggestions, creates referrals,
records the contact outcome, and sets up follow-up tasks.

Complications are many. The list of assessment questions could be long: the call

ibm.com/developerWorks developerWorks®

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 9 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


could be interrupted for various reasons, certain tasks could be unable to complete
without referrals being logged, and so on. A contact task contains concurrent or
asynchronous operations is a long-running process, and progress at every step
needs to be saved to a database. The contact task can be emulated as a single Web
flow, which can be entered and executed repeatedly during the course of the
long-running process.

This non-atomic Web flow scenario is not covered by the Spring Web Flow
documentation. Is it possible to still leverage the flow-scoped persistence-context
object in this use case? The answer is yes.

Specifying the scope of transactions

We know that the <persistence-context/> tag in a flow-definition file gives us a
thread-bound and flowScoped persistence context, with the benefits of no
detached entities and no LazyInitializationException. So, we choose to
keep that tag. Compared with flow-managed persistence in atomic flows, the most
significant change happens to the scope of transactions: atomicity applies to each
step of the process rather than the entire flow. Quite often, an atomic step in the
process is a user action represented by a <transition> tag in the Web-flow
definition.

It is disappointing that Spring Web Flow doesn't support transaction demarcation on
any of its tags, including <transition> and <evaluate>. The next option for
developers is to initiate a database transaction from a Spring bean's method
annotated with @Transactional and call that method from an <evaluate> tag.
(The <transition> tag doesn't support method invocation.)

In essence, the transaction is scoped to the <evaluate> tag in the flow. Applying
@Transactional(readyOnly=false) will make the JPA/Hibernate FlushMode
AUTO, so that Hibernate determines when to flush the data changes within the
context of the same transaction. For the sake of programming convenience and SQL
optimization, auto flush is preferred over manual in these cases. Note that multiple
<evaluate> tags are allowed under the same <transition>, resulting in multiple
database transactions per user action.

If each user action/request is considered atomic, which in general is true, we want to
group all database write operations inside a single @Transactional method of
one Spring bean, such that they are bound with the same transaction context and
invoked through the same <evaluate> tag. Listing 1 shows how we specify the
transaction context for an atomic request.

Listing 1. Specifying the transaction context for an atomic user action

<transition>
<evaluate expression="beanA.readAlpha()"/>
<evaluate expression="beanA.readBeta()"/>

developerWorks® ibm.com/developerWorks

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 10 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


<evaluate expression="beanB.readGamma()"/>
<evaluate expression="beanA.writeAll()"/> <!-- a single read/write transaction -->
<evaluate expression="beanB.readEta()"/>

</transition>

Listing 2 shows an atypical case where multiple read/write transactions (committing
or rolling back on their own) are involved in the same user request. Consequently,
the user request becomes non-atomic, which in most development scenarios is
catastrophic.

Listing 2. Specifying the transaction context for a non-atomic user action

<transition>
<evaluate expression="beanA.readAlpha()"/>
<evaluate expression="beanA.readBeta()"/>
<evaluate expression="beanB.readGamma()"/>
<evaluate expression="beanA.writeDelta()"/> <!-- read/write transaction -->
<evaluate expression="beanA.writeEpsilon()"/> <!-- read/write transaction -->
<evaluate expression="beanB.writeZeta()"/> <!-- read/write transaction -->
<evaluate expression="beanB.readEta()"/>

</transition>

How will we handle those read-only operations referenced by other <evaluate>
tags under the same <transition>? We have three options:

1. Run the read-only operations with no database transactions, as discussed
previously.

2. Mark them @Transactional(readOnly=false) such that the SQL
queries are executed under read/write database transactions. In this
case, the FlushMode of the flow-scoped persistence context will always
be AUTO.

3. Mark them with @Transactional(readOnly=true). In this case, the
FlushMode becomes MANUAL for these read-only transactions and
transitions to AUTO once a read/write transaction is reached.

JPA/Hibernate automatically flushes pending changes in the persistence context
before a read/write transaction commits. For the sake of simplicity, the Hibernate
team encourages developers to apply read/write transactions consistently across all
data operations under such circumstances. Just set readOnly=false to wherever
@Transactional applies.

What about one transaction per request?
You may ask why not encapsulate each user request with one big
transaction. The problem is that a transaction at the request level
would keep the associated database locks open until view-rendering
was complete. Unfortunately, view-rendering involves blocking I/O
operations, which may be slow enough to impact the performance
and scalability of the underlying database.

ibm.com/developerWorks developerWorks®

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 11 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


Unexpected OptimisticLockingFailureException

When using the flow-scoped persistence context in non-atomic Web flows, you may
encounter some unexpected OptimisticLockingFailureExceptions.

Optimistic locking is still highly recommended for non-atomic Web flows to protect
the data integrity of each user action. When the @Version field of an entity is a
database-generated integer or timestamp, following an update operation, the entity
needs to be queried explicitly to refresh its state in the persistence context. If not, the
@Version field would carry a stale value and subsequent updates on the same
entity in different transactions would result in an
OptimisticLockingFailureException. Ironically, this would happen without
multi-user concurrency. In contrast, this query-after-update operation must be
avoided in atomic flows, or a premature flush will happen. After all, no matter how
many times an entity object is updated in memory during an atomic Web flow, the
SQL flush happening at the end of the flow only sees the final state of the entity
instance.

It's clear that the flow-scoped persistence context makes persistence programming
in both atomic and non-atomic Web flows smoother and simpler. Programming
persistence in Web flows without the flow-scoped persistence context object is still
feasible but incurs many hurdles and pitfalls.

Persistence programming without the flow-scoped persistence
context

In some cases, as the Hotel Booking sample application demonstrates, it is possible
to implement a Web flow without the <persistence-context/> tag. The most
obvious impact of that approach is on atomic Web flows, which are no longer
achievable once you've omitted the flow-scoped persistence-context object. I
discuss other inconveniences in the sections below.

Persistence context scoped to a database transaction

Without a flow-scoped persistence context, the persistence context injected through
the @PersistenceContext annotation is by default scoped to a database
transaction. To better understand why this is problematic, review the following code
snippet from the Hotel Booking sample application:

Listing 3. A fragment of the "main-flow" definition in Hotel Booking

<view-state id="enterSearchCriteria">
<on-render>

<evaluate expression="bookingService.findBookings(currentUser.name)"
result="viewScope.bookings" result-type="dataModel" />

developerWorks® ibm.com/developerWorks

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 12 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


</on-render>
<transition on="cancelBooking">

<evaluate expression="bookingService.cancelBooking(bookings.selectedRow)" />
<render fragments="bookingsFragment" />

</transition>
</view-state>

If the cancelBooking method referenced in Listing 3 is defined as follows:

Listing 4. The cancelBooking method

@Service("bookingService")
@Repository
public class JpaBookingService implements BookingService {

//...

@Transactional
public cancelBooking(Booking booking){

if (booking != null) {
em.remove(booking);

}
}

Then we'll get the following error when we run the code:

Caused by: java.lang.IllegalArgumentException: Removing a detached instance

The booking entities returned from the <on-render> tag become detached in the
subsequent action <transition on="cancelBooking">. The two methods
findBookings and cancelBooking of the same bookingService bean are
executed under different database transactions and therefore are associated with
two distinct persistence-context objects. The booking entities managed by one
persistence context are detached from the perspective of the other.

To circumvent this problem, in the actual cancelBooking method shown in Listing
5, the same booking entity is reloaded through its primary key before it is removed.

Listing 5. The fixed cancelBooking method

@Service("bookingService")
@Repository
public class JpaBookingService implements BookingService {

//...

@Transactional
public cancelBooking(Booking booking){

booking = em.find(Booking.class, booking.getId()); // reinstate the persistent entity

if (booking != null) {
em.remove(booking);

}

ibm.com/developerWorks developerWorks®

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 13 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


}

Effectively, the transaction-scoped persistence context works the same way as
OpenSessionInViewFilter/Interceptor with singleSession=false. This
means each transaction in the same request has its own associated session. But
here we lose the benefit of Open Session in View's "deferred close mode.".

During view-rendering, lazy reads will lead to LazyInitializationExceptions,
because the transaction-scoped persistence context is closed immediately after the
completion of each transaction. Implementing something similar to
OpenSessionInViewInterceptor /
OpenEntityManagerInViewInterceptor is an option, but the ones provided by
the Spring Core do not work out of the box for Spring Web Flow. It is much more
handy to use the built-in flow-scoped persistence-context object!

Persistence context scoped to each invocation

Non-transactional data access without the assistance of the flow-scoped persistence
context is a worst-case scenario and should be avoided, if at all possible.

Outside of a transaction, the persistence context is scoped to each invocation with
FlushMode AUTO and auto-commit true. (Remember that Hibernate disables
auto flush for non-transactional data access.) In other words, each method
invocation on the same persistence-context proxy injected through
@PersistenceContext will return a different entity-manager instance, which
opens and closes immediately.

Essentially, the entity manager is scoped to a "short transaction." The same code
snippet you saw in Listing 5 would then give you the following error message:

java.lang.IllegalArgumentException: Removing a detached instance

Passing entities in different flows

Here's one last scenario that sometimes causes problems: what happens when you
are required to pass entities in different flows?

A flow-scoped persistence-context object is subject to the scope of the flow,
therefore, entities once passed from one flow to another immediately become
detached. The solution is to either merge/reattach those entities to the persistence
context of the current flow or reload them with their primary keys, a strategy that
mirrors the Open Session in View approach.

developerWorks® ibm.com/developerWorks

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 14 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


In conclusion

Spring Web Flow as an advanced Web development framework offers unique
features to support persistence programming and transaction management with
JPA/Hibernate. This article has explored the complexities and challenges Java
developers face in programming Spring Web Flow applications.

From real-world use cases like the ones discussed in this article, I have devised the
following "rules of thumb" for coding transactional atomic and non-atomic Web
applications in Spring Web Flow:

• As a first choice, always use a flow-scoped persistence context

• Apply read-only transactions universally to all methods referenced in an
atomic Web flow

• Apply read/write transactions universally to all methods referenced in a
non-atomic Web flow

ibm.com/developerWorks developerWorks®

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 15 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• Spring Web Flow Reference Guide: A comprehensive online reference
published by the Spring framework team.

• "Hibernate Article: Open Session in View" (Anthony Patricio, August 2009,
JBoss.org): Learn more about the OSIV pattern, including using it for
non-transactional data access.

• "Seamless JSF, Part 2: Conversations with Seam" (Dan Allen, developerWorks,
May 2007): Part of an in-depth introduction to Seam, focusing on Seam
conversations.

• "Seam and Spring comparison" (Andy Gibson, Software Development Blog,
2008): A high-level comparison that looks, among other things, at the difference
between using Web flows versus conversations.

• "Extended Persistence Context in Stateful Session Beans" (Mahesh Kannan,
Sun Developer Network, February 2008): Presents an application where a
container-managed entity manager is used with an extended persistence
context to handle a long conversation.

• "Spring Web Flow 2: A boon to JSF developers" (Xinyu Liu, JavaWorld,
November 2008): A brief introduction of the new features available in the Spring
Web Flow 2 release.

• "Use continuations to develop complex Web applications (Abhijit Belapurkar,
developerWorks, December 2004): An introduction to Spring MVC's
continuations-based programming paradigm.

• Spring Web Flow 2 Web Development: A practical guide to designing powerful
Web applications with the Spring Web Flow framework.

• Browse the technology bookstore for books on these and other technical topics.

• developerWorks Java technology zone: Find hundreds of articles about every
aspect of Java programming.

Get products and technologies

• Spring Web Flow Project homepage: Get the latest updates to the Spring Web
Flow project.

Discuss

• Get involved in the My developerWorks community.

developerWorks® ibm.com/developerWorks

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 16 of 17

http://static.springsource.org/spring-webflow/docs/2.0.x/reference/htmlsingle/spring-webflow-reference.html
http://community.jboss.org/wiki/OpenSessioninView
http://www.ibm.com/developerworks/java/library/j-seam2/
http://www.andygibson.net/articles/seam_spring_comparison/html/index.html
http://blogs.sun.com/enterprisetechtips/entry/extended_persistence_context_in_stateful
http://www.javaworld.com/javaworld/jw-11-2008/jw-11-intro-to-swf2.html
http://www.ibm.com/developerworks/library/j-contin.html
http://www.packtpub.com/develop-powerful-web-applications-with-spring-web-flow-2/book
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/java
http://www.springsource.org/webflow
http://www.ibm.com/developerworks/mydeveloperworks
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


About the author

Xinyu Liu
As a Sun Microsystems certified enterprise architect, Xinyu Liu has
intensive application design and development experience on the Java
EE, Java SE, and Java ME platforms. He took his graduate degree
from George Washington University and currently is a key contributor to
the IT department of a healthcare company. Dr. Liu has written for
Java.net and JavaWorld.com on topics such as JSF, Spring Security,
Hibernate Search, Spring Web Flow, and the Servlet 3.0 specification.
He also has worked for Packt Publishing reviewing the books Spring
Web Flow 2 Web Development and Grails 1.1 Web Application
Development. This is his first article for IBM developerWorks.

Trademarks

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

ibm.com/developerWorks developerWorks®

Flow-managed persistence in Spring Web Flow 2 Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 17 of 17

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Persistence challenges in JPA/Hibernate
	Flow-managed persistence
	The flow-scoped persistence context
	Types of persistence context: Transaction or extended
	Transaction semantics
	Atomic Web flows
	Non-atomic Web flows
	Persistence programming without the flow-scoped persistence context
	Passing entities in different flows
	In conclusion
	Resources
	About the author
	Trademarks

