
Mastering Grails: Grails in the enterprise
Using Grails with JMX, Spring, and log4j

Skill Level: Introductory

Scott Davis (scott@aboutgroovy.com)
Editor in Chief
AboutGroovy.com

16 Dec 2008

In this installment of Mastering Grails, series author Scott Davis puts to rest any
qualms about Grails' readiness for the enterprise. You'll see how to use Grails with
enterprise-caliber libraries including the Java™ Management Extensions (JMX),
Spring, and log4j.

I'm often asked if I think that Grails is enterprise-ready. The short answer is yes. But
the long answer I typically give is: "Only if you feel that Spring and Hibernate (the
underlying technologies that Grails is based on) are ready. Only if you feel that
Tomcat or JBoss (or the Java Enterprise Edition (Java EE) application server you
are using) is ready. Only if you feel that MySQL or PostgreSQL (or the database that
you are using) is ready. Only if you feel that Java programming is enterprise-ready."

British Sky Broadcasting Group recently migrated its public-facing Web sites to
Grails. They get 110 million hits a month. LinkedIn.com uses Grails for some of the
commercial parts of its site. Tropicana Juice has a Web site in the United Kingdom
that has been running on Grails for several years. Grails.org itself is written in Grails,
supporting over 70,000 downloads a month. And SpringSource's recent acquisition
of G2One (the company behind Groovy and Grails) should allay any lingering doubts
as to whether Groovy and Grails are ready for the enterprise.

As exotic as Groovy can seem at times, it's important to remember that it is
implemented in plain-old Java code. As different as Grails development is from other
typical Java Web frameworks, you still end up with a Java EE-compliant WAR file.

In this article, you'll explore some enterprise-grade tools for monitoring and

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 23

mailto:scott@aboutgroovy.com
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=mastering+grails
http://www.ibm.com/legal/copytrade.shtml

configuration. You'll learn how to instrument your Grails application with JMX. You'll
get a brief introduction to Spring configuration in Grails. You'll also see how the log4j
settings are initially specified in Config.groovy, and you'll learn how to adjust them
dynamically with JMX.

About this series
Grails is a modern Web development framework that mixes familiar
Java technologies like Spring and Hibernate with contemporary
practices like convention over configuration. Written in Groovy,
Grails give you seamless integration with your legacy Java code
while adding the flexibility and dynamism of a scripting language.
After you learn Grails, you'll never look at Web development the
same way again.

Implementing JMX instrumentation

JMX has been around since 2000. It is one of the oldest JSRs — JSR 3, to be exact.
As the Java language gained popularity on the server, the ability to tune and
configure a live, running application remotely became a critical part of the platform.
In 2004, Sun instrumented the JVM using JMX and shipped supporting tools such as
JConsole with the Java 1.5 JDK.

JMX provides introspection on the JVM, the application server, and your classes all
through a consistent interface. These various components are exposed to the
management console via managed beans — MBeans for short.

For more background information on JMX, see "Java theory and
practice: Instrumenting applications with JMX."

MBeans are like the various gauges, dials, and switches on the dashboard of your
car. Sometimes the instruments are read-only, like your speedometer. Other times,
like the accelerator, they are writable as well. But this dashboard metaphor breaks
down a bit when you consider the fact that MBeans are meant to be managed
remotely. Imagine flipping on the turn signal or changing the radio station in your car
— remotely.

Enabling a local JMX agent

Local or remote?
For development and testing, running both the JMX agent and client
locally is generally the easiest thing to do. In a real production
environment, however, the benefits of JMX become apparent when
you monitor agents remotely. JConsole takes up the same system
resources (RAM, CPU cycles, and so on) that any other Java
process does. This can be problematic, especially if the production
server you are trying to monitor is already under duress. But more

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 2 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/library/j-jtp09196/
http://www.ibm.com/developerworks/library/j-jtp09196/
http://www.ibm.com/legal/copytrade.shtml

important, being able to monitor multiple servers from a single seat
makes you the omniscient ruler of your digital domain.

Of course, monitoring your production servers remotely means
securing them properly as well. You can set up password protection
or ideally use public/private key authentication (see Resources).

To use JMX for monitoring, you must first enable it. In Java 5, you need to supply a
couple of JMX-related flags to the JVM at run time. (In Java 6, these settings should
already be in place, although you might choose to supply them anyway to override
the defaults.) In JMX vernacular, you are setting up a JMX agent. Listing 1 shows
the JVM parameters:

Listing 1. JVM parameters to enable JMX monitoring

-Dcom.sun.management.jmxremote
-Djava.rmi.server.hostname=localhost

Some tutorials advocate creating a global JAVA_OPTS environment variable to hold
the JMX flags. Others have you type the flags in at the command line: java
-Dcom.sun.management.jmxremote
-Djava.rmi.server.hostname=localhost someExampleClass.

Both suggestions work, but neither is optimal for a production environment. I've
found that it is best to set these values in the server's startup script. Having to
remember to type these esoteric flags each time you need to restart a server is a
fragile solution at best. And setting global variables like CLASSPATH and
JAVA_OPTS should be avoided for two reasons: they add unnecessary additional
configuration steps when you clone servers (a consistent startup script is much
easier to copy among servers), and they force all Java processes on the same
machine to share the same configuration. Yes, you can create a detailed checklist to
remind yourself of these niggling configuration details, but documenting complexity
is far less effective than removing complexity.

For UNIX®, Linux®, and Mac OS X systems, the Grails startup script is
$GRAILS_HOME/bin/grails. Edit this file, adding the two JAVA_OPTS lines shown in
Listing 2:

Listing 2. Enabling JMX monitoring in the Grails startup script for UNIX, Linux,
and Mac OS X

#!/bin/sh
DIRNAME='dirname "$0"'
. "$DIRNAME/startGrails"

export JAVA_OPTS="-Dcom.sun.management.jmxremote"
export JAVA_OPTS="$JAVA_OPTS -Djava.rmi.server.hostname=localhost"

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 23

http://www.ibm.com/legal/copytrade.shtml

startGrails org.codehaus.groovy.grails.cli.GrailsScriptRunner "$@"

For Windows®, the Grails startup script is $GRAILS_HOME/bin/grails.bat. Add the
two lines shown in Listing 3 to grails.bat before the call to startGrails.bat:

Listing 3. Enabling JMX monitoring in the Grails startup script for Windows

set JAVA_OPTS=-Dcom.sun.management.jmxremote
set JAVA_OPTS=%JAVA_OPTS% -Djava.rmi.server.hostname=localhost

In both scripts, note that the first JAVA_OPTS variable assignment overrides the
global environment variable if it exists. (The setting is overridden just for this single
process — it doesn't reassign the global variable for the entire system.) I do this on
purpose to keep global settings from inadvertently polluting my local settings. If you
are dependent on global values already in place, be sure to include the existing
variable at the start of the assignment as I did in the second line of Listings 2 and 3.

Now, start Grails by typing grails run-app. You won't see anything different in
the console output, but your application server is now ready to monitor.

You use a JMX client to monitor JMX agents. This can be a desktop GUI like
JConsole (included with Java 5 and above) or a Web UI (included with most servers
like Tomcat and JBoss). You can even monitor an agent programmatically, as you'll
see toward the end of the article.

Open a second command window and type jconsole. You should see Grails in the
list of local JMX agents, as shown in Figure 1. Click on Grails, and then click the
Connect button.

Figure 1. JConsole listing local JMX agents

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 4 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Note that for security reasons, local JMX access is available only on Windows
systems that use NTFS. If your system uses FAT or FAT32, you might run into
problems. Don't worry. In the next section, I'll show you how to set up your JMX
agent for remote access. Even though both the agent and the client are technically
on the same machine, this will get you past the local security issue.

Once connected, you should see a summary page similar to Figure 2:

Figure 2. The JConsole summary page

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 23

http://www.ibm.com/legal/copytrade.shtml

Take a moment to click through the Memory, Threads, Classes, and VM tabs. They
give you a real-time view of what is going on inside the JVM. You can see if your
server is running low on physical memory, the number of live threads, and even how
long the server has been up and running. These tabs are interesting, but your focus
will shift in just a moment to the MBeans tab — this is where your classes will
appear.

Enabling a remote JMX agent

Don't try this at work
This configuration should never be used in production. I have turned
off all authentication and encryption for demonstration purposes.
See Resources for detailed instructions on how to secure your JMX
Agent for remote management.

To set up your JMX agent to accept remote connections, you need to pass a few
more JMX-related flags to the JVM. These additional flags open up a management
port and configure security settings (or the lack thereof, in this case).

Add three new lines to your Grails startup script, as shown in Listing 4:

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 6 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Listing 4. Enabling remote JMX monitoring in the Grails startup script

export JAVA_OPTS="-Dcom.sun.management.jmxremote"
export JAVA_OPTS=" $JAVA_OPTS -Djava.rmi.server.hostname=localhost"
export JAVA_OPTS=" $JAVA_OPTS -Dcom.sun.management.jmxremote.port=9004"
export JAVA_OPTS=" $JAVA_OPTS -Dcom.sun.management.jmxremote.authenticate=false"
export JAVA_OPTS=" $JAVA_OPTS -Dcom.sun.management.jmxremote.ssl=false"

Restart Grails with these new settings. Restart JConsole as well. This time, click on
the Remote tab and connect to localhost on Port 9004, as shown in Figure 3:

Figure 3. Connecting to a remote JMX agent in JConsole

Here's a quick way to verify that you are hitting the remote JVM (even though it is
technically running on the same system). Click on the MBeans tab. Expand the
java.lang tree on the left. Click on the Runtime element. Then, in the Attributes
window on the right-hand side of the screen, double-click the InputArguments. You
should see all of the remote JMX settings shown in Figure 4:

Figure 4. JMX remote agent flags passed to the JVM

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 23

http://www.ibm.com/legal/copytrade.shtml

Leave that window open. Open a new connection by clicking on the Connection
menu. Click on the Remote tab, and this time accept the defaults (localhost on
Port 0). Expand the InputArguments for the Runtime MBean. Notice that the remote
JMX flags are not there (as shown in Figure 5):

Figure 5. Monitoring two different JMX agents

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 8 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

If the title bar (Monitoring Self) isn't hint enough, notice that the second JConsole
window that you just opened is monitoring the JConsole application itself.

Now that you have JConsole up and monitoring your Grails application, the time has
come to do something practical with it like adjusting the logging settings. But before
you can do that, you need to understand one last piece of the JMX puzzle: the
MBean server.

The MBean server, Grails, and Spring

The Runtime element that you clicked on in JConsole is an MBean. In order for an
MBean to be exposed to a JMX client, it must be registered with an MBean server
running inside of a JMX agent. Some people use the terms "JMX agent" and
"MBean server" interchangeably, but technically the MBean server is one of many
components running inside the JMX agent.

To register an MBean programmatically, you call

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 23

http://www.ibm.com/legal/copytrade.shtml

MBeanServer.registerMBean(). However, in Grails this is managed by a
configuration file — a Spring configuration file, to be exact.

Spring is at the heart of Grails. It is the dependency-injection framework that controls
how all of the classes interact with one another. (For more information on Spring,
see Resources.)

From a JMX perspective, you can think, "I am registering this MBean with the
MBean server." From the Spring perspective, however, you should think, "I am
injecting the MBean into the MBean server." The verbs may be different, but the end
result is the same: your MBean becomes visible to the JMX client.

To begin, create a file named resources.xml in grails-app/conf/spring. (You'll see the
relationship between resources.groovy and resources.xml later in the article.) Stub
out resources.xml as shown in Listing 5:

Listing 5. Setting up the Spring/JMX infrastructure in resources.xml

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="mbeanServer"
class="org.springframework.jmx.support.MBeanServerFactoryBean">

<property name="locateExistingServerIfPossible" value="true" />
</bean>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="server" ref="mbeanServer"/>
<property name="beans">
<map>
</map>

</property>
</bean>

</beans>

You can reboot Grails now if you'd like to make sure that the basic configuration is
correct, but only half of the puzzle is in place: you have an MBean server but no
MBeans. The two beans you see here — mbeanServer and exporter — are the
infrastructure you need to register MBeans. The mbeanServer bean holds a
reference to the existing MBean server. The mbeanServer bean gets injected into
the exporter bean — the class that exposes the list of MBeans to JMX clients like
JConsole. The only thing left to do now is register an MBean by adding it to the map
of beans inside the exporter bean. You'll do that in the next section.

Using log4j with Grails

Open grails-app/conf/Config.groovy to see the log4j settings (as shown in Listing 6):

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 10 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Listing 6. log4j settings in Config.groovy

log4j {
appender.stdout = "org.apache.log4j.ConsoleAppender"
appender.'stdout.layout'="org.apache.log4j.PatternLayout"
appender.'stdout.layout.ConversionPattern'='[%r] %c{2} %m%n'
// and so on...

}

When you start a Grails application, most of the messages that fly by on the
command prompt are log4j messages. You have the
org.apache.log4j.ConsoleAppender to thank for that. (For more on log4j
basics, see Resources.)

Registering the log4j MBean

If you want to adjust the logging settings of a Grails application without JMX, you
simply edit this file and restart the server. But what if you'd prefer to adjust these
settings without rebooting the server or want to adjust them remotely? This sounds
like a perfect candidate for JMX. Luckily, log4j ships with an MBean to facilitate
these tasks. All you need to do is register the log4j MBean.

Add the XML for the entry (as shown in Listing 7) to resources.xml. This injects the
log4j MBean into the MBean server.

Listing 7. Injecting an MBean into an MBean server

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="server" ref="mbeanServer"/>
<property name="beans">

<map>
<entry key="log4j:hierarchy=default">

<bean class="org.apache.log4j.jmx.HierarchyDynamicMBean"/>
</entry>

</map>
</property>

</bean>

Reboot Grails, and then restart JConsole. If you connect to localhost on Port
9004, your new log4j MBean should appear on the MBeans tab. Expand the log4j
tree element, click on default, and then click on the Info tab. You should recognize
the configuration snippets from the entry you just added to resources.xml (see
Figure 5):

Figure 6. Viewing the default MBean information

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 23

http://www.ibm.com/legal/copytrade.shtml

Now that you can see log4j through JMX, the next step is to adjust some of the
logging settings.

Changing log4j settings on the fly

Pretend for a moment that your Grails application is acting oddly. You'd like to have
a better idea of what is going on under the covers. Looking at
grails-app/conf/Config.groovy, you see that the root logger is sending its output to
the console, but the filter is set to error — rootLogger="error,stdout".
You'd like to reset the log level to trace to increase the amount of console output.

Take a look at JConsole. Under the log4j folder, you should see the root MBean.
You can see that the priority attribute is set to ERROR, just as it is in Config.groovy.
Double-click on the ERROR value and type in TRACE, as shown in Figure 6:

Figure 7. Changing the root logger priority from ERROR to TRACE

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 12 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

To verify that your console is more chatty than before, click on the link to the
AirportMappingController on the home page of your Grails application in a
browser. Amidst the avalanche of new output, you should find some details about
what Grails actually does to bring up the initial list. See Listing 8 for a sample:

Listing 8. Increased log4j output

[11277653] metaclass.RedirectDynamicMethod
Dynamic method [redirect] looking up URL mapping for
controller [airportMapping] and action [list] and
params [["action":"index", "controller":"airportMapping"]]
with [URL Mappings

org.codehaus.groovy.grails.web.mapping.ResponseCodeUrlMapping@1bab0b
/rest/airport/(*)?
/(*)/(*)?/(*)?
]
[11277653] metaclass.RedirectDynamicMethod Dynamic method
[redirect] mapped to URL [/trip/airportMapping/list]

[11277653] metaclass.RedirectDynamicMethod Dynamic method
[redirect] forwarding request to [/trip/airportMapping/list]

[11277653] metaclass.RedirectDynamicMethod Executing redirect
with response
[com.opensymphony.module.sitemesh.filter.PageResponseWrapper@19243f]

When can you safely ignore a Fatal Error?
If you have been running Grails 1.0.3 for some time, you may have
noticed a mysterious error that shows up frequently in the console
output — [Fatal Error] :-1:-1: Premature end of
file. Most folks just ignore it because it doesn't really seem to
cause any errors, fatal or otherwise.

If you turn the log level up to trace, you can see the details
surrounding the supposedly fatal error:
converters.XMLParsingParameterCreationListener
Error parsing incoming XML request: Error parsing
XML.

As the more verbose log output explains, Grails is trying to parse
every incoming request as if it were XML. Most requests aren't
XML, so the request handler duly reports the error but processes
the request correctly anyway.

This "little bug that cried wolf" is fixed in version 1.0.4.

Changing the log4j ConversionPattern

Now you'd like to change the pattern used for the output. In Config.groovy, the
pattern is set using this line:
appender.'stdout.layout.ConversionPattern'='[%r] %c{2} %m%n'.
Looking at the log4j documentation, you decide to set it to something more
descriptive.

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 23

http://www.ibm.com/legal/copytrade.shtml

Click on the stdout MBean in JConsole. Change the conversionPattern
attribute from its original value to [%5p] %d{hh:mm:ss} (%F:%M:%L)%n%m%n%n.
After you generate some new log output, I'll describe what this magic incantation
does. (See Resources for more information on setting the conversionPattern.)

Figure 8. Changing the conversionPattern in PatternLayout

Now click on the home link and the AirportMappingController link again in
your Web browser. The format of the output changes dramatically, as shown in
Listing 9:

Listing 9. Console output using the new conversionPattern

[DEBUG] 09:04:47 (RedirectDynamicMethod.java:invoke:127)
Dynamic method [redirect] looking up URL mapping for controller
[airportMapping] and action [list] and params
[["action":"index", "controller":"airportMapping"]] with [URL Mappings

org.codehaus.groovy.grails.web.mapping.ResponseCodeUrlMapping@e73cb7
/rest/airport/(*)?
/(*)/(*)?/(*)?
]

[DEBUG] 09:04:47 (RedirectDynamicMethod.java:invoke:144)
Dynamic method [redirect] mapped to URL [/trip/airportMapping/list]

[DEBUG] 09:04:47 (RedirectDynamicMethod.java:redirectResponse:162)
Dynamic method [redirect] forwarding request to [/trip/airportMapping/list]

[DEBUG] 09:04:47 (RedirectDynamicMethod.java:redirectResponse:168)
Executing redirect with response

[com.opensymphony.module.sitemesh.filter.PageResponseWrapper@47b2e7]

Now that you can see the output, here's what is going on. %p writes out the priority
level. These messages are clearly DEBUG level. %d{hh:mm:ss} shows the date
stamp in hours:minutes:seconds. (%F:%M:%L) puts the filename, method, and line
number in parentheses. Finally, %n%m%n%n writes a new line, the message, and two
more new lines.

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 14 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

No changes that you make to log4j via JMX are permanent. If you reboot Grails, it
reverts to the persistent settings in Config.groovy. This means that you can play
around with the JMX settings all you like without worrying about messing things up
permanently. In the case of ConversionPatterns, using JMX is a great way to
experiment with the setting until you find the one that you like best. Just don't forget
to copy the pattern back into Config.groovy to make the change permanent.

Looking at Hibernate DEBUG output

Getting back to the hypothetical story of you debugging a live Grails application, you
still haven't found what you are looking for yet. Set the priority attribute of the root
MBean back to ERROR to cut down the noise level.

Maybe the problem is in Hibernate. Looking back at Config.groovy, you notice that
logging output for the org.hibernate package is set to off. Rather than cranking
up the output level for the entire application, perhaps focusing in on a specific
package will yield more information.

In JConsole, click on the default MBean. In addition to changing attribute values, you
can also call methods on an MBean. Click on the Operations tab. Type
org.hibernate for the name parameter and click on the addLoggerMBean
button. You should see a new MBean appear in the tree on the left.

Click on the new org.hibernate MBean and change the priority attribute to DEBUG,
as shown in Figure 8:

Figure 9. Changing the priority on the org.hibernate MBean

Now go back to your Web browser, click on the home link, and click on
AirportMappingController again. You should see a long series of DEBUG log

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 23

http://www.ibm.com/legal/copytrade.shtml

statements, as shown in Listing 10:

Listing 10. Hibernate log4j output

[DEBUG] 10:05:52 (AbstractBatcher.java:logOpenPreparedStatement:366)
about to open PreparedStatement (open PreparedStatements: 0, globally: 0)

[DEBUG] 10:05:52 (ConnectionManager.java:openConnection:421)
opening JDBC connection

[DEBUG] 10:05:52 (AbstractBatcher.java:log:401)
select this_.airport_id as airport1_0_0_, this_.locid as locid0_0_,
this_.latitude as latitude0_0_, this_.longitude as longitude0_0_,
this_.airport_name as airport5_0_0_, this_.state as state0_0_
from usgs_airports this_ limit ?

[DEBUG] 10:05:52 (AbstractBatcher.java:logOpenResults:382)
about to open ResultSet (open ResultSets: 0, globally: 0)

[DEBUG] 10:05:52 (Loader.java:getRow:1173)
result row: EntityKey[AirportMapping#1]

[DEBUG] 10:05:52 (Loader.java:getRow:1173)
result row: EntityKey[AirportMapping#2]

Take a moment to scroll through the Hibernate DEBUG output. You'll get a detailed,
step-by-step look at what happens when your data is culled from the database and
transformed into an ArrayList of beans.

Using the Spring Bean Builder

Now that you know how to configure JMX through resources.xml, it's time to add a
new twist. Grails supports Spring configuration through an alternate file:
resources.groovy. Rename grails-app/conf/spring/resources.xml to
resources.xml.old. Add the code shown in Listing 11 to resources.groovy:

Listing 11. Configuring Spring using Bean Builder

import org.springframework.jmx.support.MBeanServerFactoryBean
import org.springframework.jmx.export.MBeanExporter
import org.apache.log4j.jmx.HierarchyDynamicMBean

beans = {
log4jBean(HierarchyDynamicMBean)

mbeanServer(MBeanServerFactoryBean) {
locateExistingServerIfPossible=true

}

exporter(MBeanExporter) {
server = mbeanServer

beans = ["log4j:hierarchy=default":log4jBean]
}

}

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 16 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

As you can see, the Spring beans are being configured in Groovy code instead of
XML. You saw the Groovy MarkupBuilder in action in "Grails and legacy
databases" as well as "RESTful Grails." This is a slight variation on the theme — a
Bean Builder specifically defines beans for Spring configuration.

Reboot Grails and JConsole. Confirm that nothing has changed from the XML
configuration.

Using the XML dialect to configure Spring puts the collective wisdom of the Web at
your fingertips — you can copy and paste snippets from a wide variety of sources.
But using the Bean Builder dialect is more in line with the rest of the configuration in
Grails. By this point in your Grails career, you've seen DataSource.groovy,
Config.groovy, BootStrap.groovy, and Events.groovy, to name just a few. You are
doing your configuration in code, which means that you can do things like
conditionally expose an MBean based on the environment you are running in.

For example, Listing 12 shows you how to expose the log4jBean in production but
hide it in development:

Listing 12. Conditionally exposing JMX beans

import org.springframework.jmx.support.MBeanServerFactoryBean
import org.springframework.jmx.export.MBeanExporter
import org.apache.log4j.jmx.HierarchyDynamicMBean
import grails.util.GrailsUtil

beans = {
log4jBean(HierarchyDynamicMBean)

mbeanServer(MBeanServerFactoryBean) {
locateExistingServerIfPossible=true

}

switch(GrailsUtil.environment){
case "development":
break

case "production":
exporter(MBeanExporter) {

server = mbeanServer
beans = ["log4j:hierarchy=default":log4jBean]

}
break

}
}

Type grails run-app and confirm in JConsole that the log4j MBean doesn't show
up in development mode. Now type grails prod run-app (or grails war and
deploy the WAR file to the application server of your choice). The MBean should be
waiting for you when you relaunch JConsole.

JMX in Groovy

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 23

http://www.ibm.com/developerworks/java/library/j-grails07158/index.html
http://www.ibm.com/developerworks/java/library/j-grails07158/index.html
http://www.ibm.com/developerworks/java/library/j-grails09168/index.html
http://www.ibm.com/legal/copytrade.shtml

The last thing I'll show you how to do is tweak your JMX MBeans programmatically.
As nice as the JConsole GUI is, it's even nicer being able to make changes from a
Groovy script.

To begin, create a file named testJmx.groovy. Add the code in Listing 13 to it:

Listing 13. Calling a remote JMX agent in Groovy

import javax.management.MBeanServerConnection
import javax.management.remote.JMXConnectorFactory
import javax.management.remote.JMXServiceURL

def agentUrl = "service:jmx:rmi:///jndi/rmi://localhost:9004/jmxrmi"
def connector = JMXConnectorFactory.connect(new JMXServiceURL(agentUrl))
def server = connector.mBeanServerConnection

println "Number of registered MBeans: ${server.mBeanCount}"

println "\nRegistered Domains:"
server.domains.each{println it}

println "\nRegistered MBeans:"
server.queryNames(null, null).each{println it}

If Grails is running, you should see the output shown in Listing 14:

Listing 14. Output from the testJmx.groovy script

$ groovy testJmx.groovy
Number of registered MBeans: 20

Registered Domains:
java.util.logging
JMImplementation
java.lang
log4j

Registered MBeans:
java.lang:type=MemoryManager,name=CodeCacheManager
java.lang:type=Compilation
java.lang:type=GarbageCollector,name=Copy
java.lang:type=MemoryPool,name=Eden Space
log4j:appender=stdout
java.lang:type=Runtime
log4j:hierarchy=default
log4j:logger=root
log4j:appender=stdout,layout=org.apache.log4j.PatternLayout
java.lang:type=ClassLoading
java.lang:type=MemoryPool,name=Survivor Space
java.lang:type=Threading
java.lang:type=GarbageCollector,name=MarkSweepCompact
java.util.logging:type=Logging
java.lang:type=Memory
java.lang:type=OperatingSystem
java.lang:type=MemoryPool,name=Code Cache
java.lang:type=MemoryPool,name=Tenured Gen
java.lang:type=MemoryPool,name=Perm Gen
JMImplementation:type=MBeanServerDelegate

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 18 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

A word of warning
The testJmx.groovy script might throw a
groovy.lang.MissingMethodException similar to Listing 15:

Listing 15. A possible JMX exception

Caught: groovy.lang.MissingMethodException: No signature of method:
javax.management.remote.rmi.RMIConnector$RemoteMBeanServerConnection.queryNames()
is applicable for argument types: (java.lang.String, null)

If this happens, delete mx4j-3.0.2.jar from $GROOVY_HOME/lib. It
is included in the Groovy distribution to bring JMX support to the 1.4
JDK, but it conflicts with later versions of the Java platform.

The interesting part of this script comes from the
javax.management.MBeanServer returned from the
connector.mBeanServerConnection call. (Remember that a getFoo()
method call in Java can be shortened to foo in Groovy.) Calling
server.mBeanCount returns the number of registered MBeans. Calling
server.domains returns a String[] of domain names. Domain names are the
first part of the MBean identifier — the comma-delimited list of name/value pairs fully
qualifies the name. Calling server.queryNames(null, null) returns a Set of
all of the registered MBeans. (For more information on the methods available on an
MBeanServer class, see Resources.)

To get a specific MBean, add the code in Listing 16 to the bottom of the script:

Listing 16. Getting an MBean

println "\nHere is the Runtime MBean:"
def mbean = new GroovyMBean(server, "java.lang:type=Runtime")
println mbean

Once you have a connection to an MBean server and know the name of an MBean,
getting a new GroovyMBean is a one-line exercise. Listing 17 shows the script
output:

Listing 17. GroovyMBean output

Here is the Runtime MBean:
MBean Name:
java.lang:type=Runtime

Attributes:
(r) javax.management.openmbean.TabularData SystemProperties
(r) java.lang.String VmVersion
(r) java.lang.String VmName
(r) java.lang.String SpecName

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 23

http://www.ibm.com/legal/copytrade.shtml

(r) [Ljava.lang.String; InputArguments
(r) java.lang.String ManagementSpecVersion
(r) java.lang.String SpecVendor
(r) long Uptime
(r) long StartTime
(r) java.lang.String LibraryPath
(r) java.lang.String BootClassPath
(r) java.lang.String VmVendor
(r) java.lang.String ClassPath
(r) java.lang.String SpecVersion
(r) java.lang.String Name
(r) boolean BootClassPathSupported

Do you remember the InputArguments from early in the article? They are all of
the -D parameters passed to the JVM. You used them to confirm that you were,
indeed, connected to the remote JMX agent. Add two more lines of code (as shown
in Listing 18) to print out the String[]:

Listing 18. Getting the InputArguments from the runtime MBean

println "\nHere are the InputArguments:"
mbean.InputArguments.each{println it}

If you see the output in Listing 19, you know that you have come full circle:

Listing 19. Displaying the InputArguments

Here are the InputArguments:
-Xserver
-Xmx512M
-Dcom.sun.management.jmxremote
-Djava.rmi.server.hostname=localhost
-Dcom.sun.management.jmxremote.port=9004
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false
-Dprogram.name=grails
-Dgroovy.starter.conf=/opt/grails/conf/groovy-starter.conf
-Dgrails.home=/opt/grails
-Dbase.dir=.
-Dtools.jar=/Library/Java/Home/lib/tools.jar

For more information on GroovyMBeans, see Resources.

Conclusion

Grails is ready for the enterprise. Common enterprise libraries like JMX, Spring, and
log4j are available in Grails because, despite appearances to the contrary, you are
still doing traditional Java EE development.

This article brings to a close a year's worth of columns exploring the Trip Planner
application. I wanted to keep the domain consistent across the articles so that the

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 20 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

focus could remain on core Grails functionality. I'll preserve this spirit in next year's
columns, but I also want to expand the horizon to include a variety of Grails
applications.

For example, next month I'll introduce a new blogging system. You'll get a quick
refresher on how to bootstrap a new Grails application, but it will be anything but a
rehash of old material. You'll revisit the RESTful side of Grails, but in the context of
setting up a full Atom infrastructure. You'll use JSON and Ajax again but this time to
enable calendars and tag-clouds. And after a couple of months, I'll roll out another
new idea.

Grails continues to gain mainstream acceptance with each new Web site. The
hallmark of a mature Web framework is seeing it used in a variety of ways. Next
year's Mastering Grails articles will demonstrate the diversity of Web sites possible
in Grails. Until then, have fun mastering Grails.

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 23

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Mastering Grails: Read more in this series to gain a further understanding of
Grails and all you can do with it.

• Grails: Visit the Grails Web site.

• Groovy Recipes (Scott Davis, Pragmatic Programmers, 2007): Learn more
about Groovy and Grails in Scott Davis' latest book.

• Grails Framework Reference Documentation: The Grails bible.

• "Java theory and practice: Instrumenting applications with JMX" (Brian Goetz,
developerWorks, September 2006): Learn more about getting visibility into the
JVM and your classes with JMX.

• Monitoring and Management Using JMX: Take a look at Sun's guide to JMX
monitoring.

• "Log4j delivers control over logging" (Ceki Gulcu, developerWorks, January
2001): The log4j project's founder describes the log4j API, its unique features,
and its design rationale.

• PatternLayout: Check out the Javadoc for this class.

• MBeanServer: Learn more about the methods available on an MBeanServer
class.

• Groovy and JMX: Get more information on GroovyMBeans.

• Grails Bean Builder: Programmatically build your Spring beans.

• Practically Groovy: This developerWorks series is dedicated to exploring the
practical uses of Groovy and teaching you when and how to apply them
successfully.

• Groovy: Learn more about Groovy at the project Web site.

• AboutGroovy.com: Keep up with the latest Groovy news and article links.

• Technology bookstore: Browse for books on these and other technical topics.

• developerWorks Java technology zone: Find hundreds of articles about every
aspect of Java programming.

Get products and technologies

• Grails: Download the latest Grails release.

Discuss

developerWorks® ibm.com/developerWorks

Grails in the enterprise
Page 22 of 23 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=mastering+grails
http://grails.codehaus.org/
http://www.pragprog.com/titles/sdgrvr
http://grails.org/doc/1.0.x/
http://www.ibm.com/developerworks/library/j-jtp09196/
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://www.ibm.com/developerworks/java/library/j-jw-log4j/
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://groovy.codehaus.org/Groovy+and+JMX
http://grails.org/Spring+Bean+Builder
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=practically+groovy:
http://groovy.codehaus.org/
http://aboutgroovy.com/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/java
http://grails.codehaus.org/Download
http://www.ibm.com/legal/copytrade.shtml

• Check out developerWorks blogs and get involved in the developerWorks
community.

About the author

Scott Davis
Scott Davis is an internationally recognized author, speaker, and software developer.
His books include Groovy Recipes: Greasing the Wheels of Java, GIS for Web
Developers: Adding Where to Your Application, The Google Maps API, and JBoss At
Work.

Trademarks

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.
Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

ibm.com/developerWorks developerWorks®

Grails in the enterprise
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 23

http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Implementing JMX instrumentation
	The MBean server, Grails, and Spring
	Using log4j with Grails
	Looking at Hibernate DEBUG output
	Using the Spring Bean Builder
	JMX in Groovy
	Conclusion
	Resources
	About the author
	Trademarks

