
Revelations on Java signal handling and
termination
Taking advantage of improvements to JVM 1.3.1

Skill Level: Intermediate

Chris White (Chris.White@uk.ibm.com)
Software Engineer
IBM

01 Jan 2002

Java Virtual Machine (JVM) signal handling and termination behavior got a makeover
in version 1.3.1. Many Java developers might not know about the JVM's use of
signals and the facilities it provides to an application during the final stages of the
JVM's life. In this article, JVM engineer Chris White gives insight into why the JVM
uses signal handlers and describes how to deploy your own application signal
handlers without fear of compromising the JVM. This article also shows how to write
your own hooks that can be called when the JVM terminates normally or in an
application crash. Note: The signal handling described in this article is available with
the IBM JVM, versions 1.3.1 and 1.4.2 only.

What is signal handling?

This article assumes a basic understanding of signal handling, Java, and Java
Native Interface (JNI). It discusses the signal handling behavior of IBM's JVM 1.3.1
for

• IBM OMVS on z/OS (OS/390), called z/OS in this article

• IBM AIX

• Microsoft Windows

Although this article also refers to Linux signal handling, IBM's latest release of the

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 1 of 14

mailto:Chris.White@uk.ibm.com
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


Java Virtual Machine on Linux is at 1.3.0, so the overall behavior will differ. For other
JVMs and operating systems the techniques described in this article are applicable,
but the overall behavior is likely to differ.

With signals, an operating system can interrupt a running application and cause it to
enter a special handler function. Signals can be raised for many different reasons;
for example, a SIGSEGV will be raised when a process attempts to access an
address for which it does not have permission. A SIGINT might be raised when the
user requests termination by typing CTRL-C. With a signal handler your application
can trap signals and perform any necessary processing. In the case of a SIGSEGV
your handler could report essential diagnostic information to help diagnose the fault,
or even recover and thus improve the reliability of your application.

To install a signal handler for your native application use the system function
sigaction() (on Unix type platforms) or signal() (on Windows or Unix
platforms). In both cases, specify the number of the signal that is to be handled and
a reference to your signal handler function. If the call is successful, a reference to
the previously installed signal handler will be returned.

When a signal handler is installed for a signal it overrides any previously-installed
handler for that signal. And, a signal handler is processed widely and hence services
a signal sent to any thread. There are some interesting and fundamental differences
between operating systems regarding signal handling. For all platforms, whenever a
signal is directed at a particular thread (such as with a pthread_kill() or
raise() system call, or when an exception occurs on that thread), the signal
handler runs within that thread's context. However if a signal is raised at the process
level, by another process such as SIGINT raised when CTRL-C is entered, then the
behavior is platform-specific, as follows.

Table 1. Operating systems and behaviors
On z/OS and AIX A single thread, chosen by the operating system,

receives the signal.

Linux All threads receive the signal, and the signal
handler is invoked on each thread. Linux threads
are just separate processes that share the same
address space, so it is also possible for another
application to raise a signal on a specific thread.

Windows A new thread is created for executing the signal
handler. This thread dies once the signal handler
is complete.

The JVM's use of signals is platform-dependent; for certain platforms the JVM may
use signals for efficient byte code interpretation, or for suspending, resuming, and
interrupting threads. However, signals are used commonly across all JVMs with
abnormal termination, where the JVM performs the necessary cleanup and attempts
to gather useful diagnostic information for a dump.

developerWorks® ibm.com/developerWorks

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 2 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


By understanding how the JVM deals with signals and the processing it does on
termination, you can exploit signal handling in your applications and handle
abnormal termination reliably.

IBM JVM 1.3.1 improvements

With IBM's JVM 1.3.1, signal handling has been improved to give a consistent
termination sequence and to ensure that the JVM behaves itself when signals raised
for an application are not destined for the JVM. The reliability of the termination logic
has also been greatly improved. In particular, the JVM can ensure that your Java
application shutdown hooks are run under normal and interrupted exit (for example,
CTRL-C) conditions. Abnormal termination of the JVM now returns the correct status
to the operating system, and the resulting OS-generated diagnostic information
gives an accurate account of the problem. Previously, on some platforms, a
SIGABRT condition was generated that occasionally led to confusion.

Signals used by the JVM

The table below shows the signals used by the JVM for the platforms supported by
IBM. The signals have been grouped in the table by type or use, as follows.

• Exceptions (in red) - The operating system synchronously raises an
appropriate exception signal whenever a fatal condition occurs.

• Errors (in blue) - The JVM raises a SIGABRT if it detects a situation from
which it cannot recover.

• Interrupts (in green) - Interrupt signals are raised asynchronously, from
outside a JVM process, to request shutdown.

• Controls - Other signals used by the JVM for control purposes.

Table 2. Signals used by the JVM
SIGSEGV Incorrect

access to
memory (write
to inaccessible
memory)

No Yes Yes Yes

SIGILL Illegal
instruction
(attempt to
invoke a
unknown
machine
instruction)

No Yes Yes Yes

SIGFPE Floating point
exception
(divide by zero)

No Yes Yes Yes

ibm.com/developerWorks developerWorks®

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 3 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


SIGBUS Bus error
(attempt to
address
nonexistent
memory
location)

Yes Yes Yes No

SIGSYS Bad system
call issued

Yes Yes Yes No

SIGXCPU CPU time limit
exceeded
(you've been
running too
long!)

Yes Yes Yes No

SIGXFSZ File size limit
exceeded

Yes Yes Yes No

SIGEMT EMT
instruction (AIX
specific)

Yes No Yes No

SIGABRT Abnormal
termination.
The JVM
raises this
signal
whenever it
detects a JVM
fault.

Yes Yes Yes Yes

SIGINT Interactive
attention
(CTRL-C). JVM
will exit
normally.

Yes Yes Yes Yes

SIGTERM Termination
request. JVM
will exit
normally.

Yes Yes Yes Yes

SIGHUP Hang up. JVM
will exit
normally.

Yes Yes Yes No

SIGUSR1 User defined.
Used by some
JVMs for
internal control
purposes.

No Yes No No

SIGUSR2 User defined.
Used by some
JVMs for
internal control
purposes.

No No Yes No

developerWorks® ibm.com/developerWorks

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 4 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


SIGQUIT A quit signal for
a terminal.
JVM uses this
for taking Java
core dumps.

Yes Yes Yes No

SIGBREAK A break signal
from a
terminal. JVM
uses this for
taking Java
core dumps.

Yes No No Yes

SIGTRAP Internal for use
by dbx or
ptrace. Used
by some JVMs
for internal
control
purposes.

Yes (not for
AIX)

Yes Yes No

SIGPIPE A write to a
pipe that is not
being read.
JVM ignores
this.

No Yes Yes No

No Name (40) An AIX
reserved
signal. Used by
the AIX JVM
for internal
control
purposes.

No No Yes No

Note that -Xrs (reduce signal usage) is a JVM option that can be used to prevent the
JVM from using most signals. See Sun's Java application launcher page (in
Resources for more information).

How the JVM processes signals

When a signal is raised that is of interest to the JVM, a signal handler is called. This
handler determines whether it has been called for a Java or non-Java thread. If the
signal is for a Java thread, the JVM takes control of the signal handling. If the signal
is for a non-Java thread, and the application that installed the JVM had previously
installed its own handle for the signal, then control is given to that handler.
Otherwise the signal is ignored (even if this is not the signal's default action). The
one exception to this rule is on Windows, where for an externally generated signal
(you enter CTRL-C or CTRL-BREAK, for example) a new thread is created to
execute the signal handler. In this case the JVM signal handler assumes that the
signal is for the JVM.

ibm.com/developerWorks developerWorks®

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 5 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


What are Java threads?
A Java thread is one that is known to the JVM. The following
statements define when code is running as a Java or non-Java
thread:

• All Java code runs under a Java thread.

• All native code called from Java code runs under a Java
thread.

• A native application thread that successfully calls JNI
function: JNI_CreateJavaVM() or
AttachCurrentThread(), becomes a Java thread.

• A native application thread that successfully calls JNI
function: DestroyJavaVM() or
DetachCurrentThread(), becomes a non-Java
thread.

• All other native application threads will be non-Java
threads.

For exception and error signals, as shown in the table above, the JVM enters a
controlled shutdown sequence where it:

• Outputs a Java core dump, to describe the JVM state at the point of
failure

• Calls any application installed abort hook

• Performs the necessary cleanup to give a clean shutdown.

For interrupt signals the JVM also enters a controlled shutdown sequence, but this
time it is treated as a normal termination that:

• Runs all application shutdown hooks

• Calls any application installed exit hook

• Performs the necessary JVM cleanup.

The shutdown is identical to a call to the Java method System.exit().

Other signals used by the JVM are for internal control purposes and do not cause it
to terminate. The only control signal of interest is SIGQUIT (on Unix type platforms)
and SIGBREAK (on Windows), which cause a Java core dump to be generated.

Writing well-behaved native signal handlers

If your native application, which creates a JVM through JNI_CreateJavaVM(), is

developerWorks® ibm.com/developerWorks

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 6 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


to use its own signal handlers then ideally these should be installed prior to creating
the JVM. If you install handlers for signals that are used by the JVM after JVM
installation, then you must ensure they chain back to the JVM's signal handler.
Otherwise, the JVM might malfunction. The following examples show how to write a
well-behaved signal handler that chains back to a previously installed handler. In a
perfect world your signal handler should know whether or not the signal was
destined for it, by looking at some other state; in this case it should not chain to the
previous handler.

See the example signal handler code for Unix type platforms or for Windows
platforms.

Application signal handlers should be installed prior to the JVM or it can be
detrimental to JVM performance. Some JVMs use signals to trap recoverable error
conditions during runtime, so any application signal handler will slow the JVM.

Under certain conditions it is desirable for the JVM to be configured to use the least
number of signals it can. For example, on Windows if the JVM is run as a service,
such as the servlet engine for a Web server, it can receive CTRL_LOGOFF_EVENT
but should not initiate shutdown since the operating system will not actually
terminate the process. To avoid this type of problem the -Xrs JVM option has been
provided to reduce the number of signals that the JVM uses (see Table 1 for details).
But if the -Xrs option is used, certain JVM behavior will be disabled:

• For an interrupted exit, Java shutdown and native JVM exit hooks will not
be run.

• Under certain exception conditions JVM abort hooks will not be run, and a
Java core dump will not be produced.

• Sending a SIGQUIT/SIGBREAK signal to the JVM process will not
produce a Java core dump.

Writing Java signal handlers

A little-known feature of Java is the ability of an application to install its own signal
handler, which is supported through the sun.misc.Signal class. However, use
caution when using classes from the sun.misc package because it contains
undocumented support classes that may change between releases of Java. You can
install a Java handler for any signal that is not used by the JVM. These signal
handlers are similar to native handlers because they're invoked when a native
system signal is raised, but they will always run as a separate Java thread.
Essentially, when a signal is raised for which a Java signal handler is available, the
JVM's "signal dispatcher thread" is woken up and informed of the signal. The signal
dispatcher thread then invokes a Java method to create and start a new thread for

ibm.com/developerWorks developerWorks®

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 7 of 14

listing1.html#unixtype
listing1.html#windows
listing1.html#windows
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


the installed Java signal handler.

To write a Java signal handler, define a class that implements the
sun.misc.SignalHandler interface and register the handler by using the
sun.misc.Signal.handle() method. The following example, which installs a
Java signal handler for the SIGALRM signal, shows how it is done. The idea is to
wrap another Java application, specified on the command line, so that whenever a
SIGALRM signal is received a list of the current threads (for the default thread
group) will be output. It would be very easy to extend the signal handler to output
additional information about the application or take some specific action, such as
calling System.gc().

import sun.misc.Signal;
import sun.misc.SignalHandler;
import java.lang.reflect.*;

// Application Wrapper
// usage: java AppWrap <app name> <app arg1> ... <app argn>
// where: <app name> is the name of the wrapped application class
// containing a main method
// <app arg1> ... <app argn> are the application's arguments
class AppWrap {

public static void main(String[] args) {
try {

// Install diagnostic signal handler
DiagSignalHandler.install("ALRM");

// Get the passed application's class
Class wrappedClass = Class.forName(args[0]);

// Setup application's input arguments
String wrappedArgs[] = new String[args.length-1];
for (int i = 0; i < wrappedArgs.length; i++) {

wrappedArgs[i] = args[i+1];
}

// Get the main method for the application
Class[] argTypes = new Class[1];
argTypes[0] = wrappedArgs.getClass();
Method mainMethod = wrappedClass.getMethod("main", argTypes);

// Invoke the application's main method
Object[] argValues = new Object[1];
argValues[0] = wrappedArgs;
mainMethod.invoke(wrappedClass, argValues);

} catch (Exception e) {
System.out.println("AppWrap exception "+e);

}
}

}

// Diagnostic Signal Handler class definition
class DiagSignalHandler implements SignalHandler {

private SignalHandler oldHandler;

// Static method to install the signal handler
public static DiagSignalHandler install(String signalName) {

Signal diagSignal = new Signal(signalName);
DiagSignalHandler diagHandler = new DiagSignalHandler();
diagHandler.oldHandler = Signal.handle(diagSignal,diagHandler);

developerWorks® ibm.com/developerWorks

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 8 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


return diagHandler;
}

// Signal handler method
public void handle(Signal sig) {

System.out.println("Diagnostic Signal handler called for signal "+sig);
try {

// Output information for each thread
Thread[] threadArray = new Thread[Thread.activeCount()];
int numThreads = Thread.enumerate(threadArray);
System.out.println("Current threads:");
for (int i=0; i < numThreads; i++) {

System.out.println(" "+threadArray[i]);
}

// Chain back to previous handler, if one exists
if ( oldHandler != SIG_DFL && oldHandler != SIG_IGN ) {

oldHandler.handle(sig);
}

} catch (Exception e) {
System.out.println("Signal handler failed, reason "+e);

}
}

}

Because of the platform-specific nature of signals, this application will not run under
Windows since it does not support the SIGALRM signal. But you could modify the
application to use SIGINT, and start up with the -Xrs Java option.

An advantage of using Java signal handlers instead of native signal handlers is that
your implementation can be completely in Java, keeping the application simple.
Also, with Java signal handling you keep an object-oriented approach and refer to
signals by name, making the code more readable than its C equivalent. There are
many uses for Java signal handlers; you could create a simple interprocess
communication between native and Java applications, and the signal could instruct
the Java application to dump out useful diagnostics (as demonstrated by the above
application) or simply suspend/resume itself.

Writing JVM abort and exit hooks

JVM abort and exit hooks enable your native applications to perform some last
minute tidying prior to JVM termination. They are analogous to native exit hooks,
installed with the atexit() system function. Exit hooks are called during normal
JVM termination or when the JVM is requested to shutdown by an interrupt signal
(for example, entering CTRL-C). Abort hooks are called during abnormal JVM
termination, such as when an exception signal is raised or abort() is called. Abort
hooks are particularly useful because they allow your native application to perform
last minute tidying action prior to termination. Note that abnormal JVM termination
during a JNI call will mean that it never returns to your application.

You set up abort and exit hooks with the abort and exit JVM options, passed to the
JNI_CreateJavaVM() function. Each option takes as its parameter the address of

ibm.com/developerWorks developerWorks®

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 9 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


the abort or exit hook function as appropriate. The hook function should have the
following C signature:

• Abort hook - (void *)hookFunc(void *);

• Exit hook - (void *)hookFunc(int);

The following example shows how to specify an application abort and exit hook for
the JNI_CreateJavaVM() call.

#include <stdlib.h>
#include <jni.h>

/* Example JVM abort hook function */
void myAbortHook() {

fprintf(stderr, "myAbortHook called. JVM terminated abnormally\n");
}

/* Example JVM exit hook function */
void myExitHook(int status) {

fprintf(stdout, "myExitHook called with status %d\n", status);
}

/* Application to install the above abort and exit hook functions */
int main(int argc, char *argv[]) {

JavaVMInitArgs jvm_args;
JavaVMOption options[2];
jint status;
JavaVM *jvm = 0;
JNIEnv *env;

/* Setup the JVM options to include the hook functions */
options[0].optionString = "abort";
options[0].extraInfo = (void *)&myAbortHook;
options[1].optionString = "exit";
options[1].extraInfo = (void *)&myExitHook;
__etoa(options[0].optionString); /* Include for z/OS only */
__etoa(options[1].optionString); /* Include for z/OS only */

jvm_args.nOptions = 2;
jvm_args.version = JNI_VERSION_1_2;
jvm_args.options = options;

/* Start the JVM */
status = JNI_CreateJavaVM(&jvm, (void **)&env, &jvm_args);
if (status) {

fprintf(stderr, "JVM create failed, shutting down\n");
exit(1);

}
fprintf(stdout, "JVM installed\n");

/* If "fail" was specified on the command line then cause */
/* the application to crash, thus invoking the abort hook */
if ( argc > 1 && !strcmp(argv[1], "fail") ) {

int *p = (int *)123;
fprintf(stdout, "About to crash\n");
*p = 1;

}

/* Destroy the JVM. If we reach here the exit hook will be invoked */
status = (*jvm)->DestroyJavaVM(jvm);
fprintf(stdout, "JVM destroyed\n");
return 0;

developerWorks® ibm.com/developerWorks

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 10 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


}

When run with no arguments, this application outputs the following text to the
command line:

JVM installed

myExitHook called with status 0

JVM destroyed

When run with the "fail" argument this application outputs the following:

JVM installed

About to crash

<platform specific info from JVM>

Writing Java core file ....

Written Java core to <filename>

myAbortHook called. JVM terminated abnormally

<platform specific info>

Writing Java shutdown hooks

Shutdown hooks are a Java feature that let you have a piece of Java code run
whenever the JVM terminates under one of the following conditions:

• The program exits normally, such as when the last non-daemon thread
exits or when the Runtime.exit() method is invoked.

• The virtual machine is terminated in response to a user interrupt, such as
typing CTRL-C, or a system-wide event, such as user logoff or system
shutdown (for example, the JVM receives one of the interrupt signals
SIGHUP (Unix Only), SIGINT, or SIGTERM).

Shutdown hooks will not be run if

• Runtime.halt() method is called to terminate the JVM.
Runtime.halt() is provided to allow a quick shutdown of the JVM.

• The -Xrs JVM option is specified.

• The JVM exits abnormally, such as an exception condition or forced abort
generated by the JVM software.

ibm.com/developerWorks developerWorks®

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 11 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


A shutdown hook is a Java class that extends java.lang.Thread and is installed
with the Runtime.addShutdownHook() method. Your application may install
multiple shutdown hooks. On JVM termination, each shutdown hook will be started
and will run concurrently, so the normal rules of thread synchronization apply. You
can write shutdown hooks to do anything that a normal thread would do; the JVM will
treat them like any other. Generally we write a shutdown hook to do any last-minute
tidying, such as flushing memory buffers, closing files, or displaying an exit
message. The JVM will always wait until all shutdown hooks have completed before
continuing with the rest of the shutdown sequence, so it is important that your
shutdown hooks do actually complete.

The following example shows how to write and install a Java shutdown hook.

class ExampleShutdownHook {
public static void main(String[] args) {

// Java code to install shutdown hook: MyShutdown
MyShutdown sh = new MyShutdown();
Runtime.getRuntime().addShutdownHook(sh);

}
}

// Example shutdown hook class
class MyShutdown extends Thread {

public void run() {
System.out.println("MyShutdown hook called");

}
}

If at any time during the application you decide the shutdown hook is no longer
required, it can be removed with the Runtime.removeShutdownHook() method,
(or Runtime.getRuntime().removeShutdownHook(sh); for the above
shutdown hook example).

Signals and Java dumps

What have Java dumps got to do with signals? If the JVM terminates abnormally,
such as when a SIGSEGV condition occurs, a Java core dump will be generated.
This dump contains useful information, including the reason for the termination,
environment data, the state of each thread, and more.

A useful feature of the JVM is the ability for a Java core dump to be generated on
demand. On a Windows platform you can do this by typing CTRL-BREAK, which
sends a SIGBREAK signal to the application. On Unix type platforms you send a
SIGQUIT signal to the application (this will usually be with CTRL-V or CTRL-\,
depending on the platform, or command: kill -s SIGQUIT <process id>).
Java core dumps generated this way can be particularly useful when a lockup is
suspected. A useful technique for debugging lockups is taking two Java core dumps,
one immediately after the other, and looking for differences.

developerWorks® ibm.com/developerWorks

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 12 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


From a signal handling point of view, for Unix type platforms a Java core dump
contains the list of platform signals and identifies the installed signal handler for
each. (However, for z/OS only the library containing the signal handler is
referenced.) If you have an application that uses signal handlers, then a Java core
dump can be useful to determine which function (or library) is actually being used as
the handler. For Java signal handlers the handler identified in a Java core dump
should be the JVM's intrDispatchMD() function, from library libhpi.

Summary

I hope this article gave you useful insight into the signal handling and termination
behavior of IBM's JVM 1.3.1. Knowing why JVM uses signals, and writing your own
native signal handlers in a well-behaved manner that won't compromise JVM
operation, can circumvent problems. Understanding Java application signal handlers
and writing your own handler function is also useful. Using and writing termination
hook functions called by the JVM's termination logic during normal and abnormal
application shutdown helps with your last-minute tidying.

ibm.com/developerWorks developerWorks®

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 13 of 14

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml


Downloads

Description Name Size Download
method

SignalHandling.zip HTTP

Information about download methods

About the author

Chris White
Chris White is a software engineer with 13 years of industry-wide
development experience. He now works as a lead software engineer at
the IBM Centre for Java Technology in Hursley, England, on core JVM
technology for the z/OS platform. Contact Chris at
Chris.White@uk.ibm.com.

developerWorks® ibm.com/developerWorks

Revelations on Java signal handling and termination Trademarks
© Copyright IBM Corporation 2002. All rights reserved. Page 14 of 14

http://public.dhe.ibm.com/software/dw/library/SignalHandling.zip
http://www.ibm.com/developerworks/library/whichmethod.html
mailto:chris.white@uk.ibm.com
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	What is signal handling?
	Writing well-behaved native signal handlers
	Writing Java signal handlers
	Writing JVM abort and exit hooks
	Writing Java shutdown hooks
	Signals and Java dumps
	Summary
	Downloads
	About the author

