

Guideline

Designing a Successful
Performance and Scalability Test

Product(s): IBM Cognos 8 BI

Area of Interest: Performance

Designing a Successful Performance and Scalability Test 2

Copyright and Trademarks

Licensed Materials - Property of IBM.

 © Copyright IBM Corp. 2009

IBM, the IBM logo, and Cognos are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml

While every attempt has been made to ensure that the information in this document
is accurate and complete, some typographical errors or technical inaccuracies may
exist. IBM does not accept responsibility for any kind of loss resulting from the use of
information contained in this document. The information contained in this document
is subject to change without notice.
This document is maintained by the Best Practices, Product and Technology team.
You can send comments, suggestions, and additions to cscogpp@ca.ibm.com.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

http://www.ibm.com/legal/copytrade.shtml
mailto:cscogpp@ca.ibm.com

Designing a Successful Performance and Scalability Test 3

Contents
1 INTRODUCTION.. 4
1.1 PURPOSE ..4
1.2 APPLICABILITY ...4
1.3 EXCLUSIONS AND EXCEPTIONS..4
2 VALIDATING SOFTWARE PERFORMANCE... 5
2.1 ONE-USER PERFORMANCE TESTING ..5
2.2 MULTI-USER PERFORMANCE TESTING..6
3 VALIDATING SOFTWARE SCALABILITY.. 7
3.1 PREDICTABLE SCALABILITY ..7
3.2 HORIZONTAL SCALABILITY...8
3.3 VERTICAL SCALABILITY ...9
4 GENERAL TIPS .. 9
4.1 CHANGE ONE VARIABLE AT A TIME..9
4.2 RESET AS MANY THINGS AS POSSIBLE PRIOR TO EXECUTING A TEST 10
4.3 EXECUTE BASELINE TESTS IN THE SAME TIMEFRAME AS THE CURRENT TEST............................ 10
4.4 AUTOMATE AS MUCH OF THE TEST AS POSSIBLE ... 10
4.5 MONOPOLIZE THE HARDWARE THE TEST IS RUNNING ON... 10
4.6 DO NOT WAIT UNTIL THE TEST IS OVER TO ANALYZE THE RESULTS....................................... 11
5 CREATING A TEST PLAN FOR THE PERFORMANCE AND SCALABILITY
ENGAGEMENT ... 12
6 DELIVERING THE RESULTS... 13
APPENDIX A: USEFUL SOFTWARE FOR MEASURING END-USER TRANSACTIONS
AND GENERATING LOAD FOR THE PERFORMANCE AND SCALABILITY TEST 14
APPENDIX B: USEFUL SOFTWARE FOR MEASURING SERVER RESOURCES FOR THE
PERFORMANCE AND SCALABILITY TEST.. 15

Designing a Successful Performance and Scalability Test 4

1 Introduction

1.1 Purpose
The purpose of this document is to help guide people with designing a
successful Performance and Scalability test with Cognos 8. It is a very high
level approach outlining some key principles of Performance and Scalability.

1.2 Applicability
This guide will specifically refer to Cognos 8 BI but the concepts can be
applied to many multi-user, multi-server software applications. It should be
taken from the perspective of a potential customer who may be evaluating
Cognos 8 as the vendor of choice for their Business Intelligence (BI) needs.

1.3 Exclusions and Exceptions
This is only meant to be a guide and factors such as time constraints,
coverage “creep”, hardware issues, etc can, and likely will, affect the scope of
what is actually tested. The assumption made while writing this document is
that software and hardware stability is not an issue.

Designing a Successful Performance and Scalability Test 5

2 Validating Software Performance

For many organizations consuming Business Intelligence, Software
Performance can be thought of as validating that the Cognos 8 BI product
meets certain performance criteria. Performance criteria may include things
such as execute 1000 specific scheduled reports in less than an hour, or
maintain an average transaction time of under 5 seconds at 100 simultaneous
users, or something as simple as be as fast as the legacy software, for
example.
The most prominent criteria are typically dependent on the function a person
performs within an organization:
1. A Business Analyst will typically be concerned with how much time certain

tasks take.
2. A Server Administrator will typically be concerned with how much server

resources (ex CPU and memory utilization) the software requires.

2.1 One-user Performance testing
From the Business Analyst perspective, this test is typically the easiest to test
and requires the least amount of external tools to execute. The point of this
test is to measure (manually, if necessary) the software responsiveness of
end-user actions.
The Analyst running the test should have the following tools available to
them:
1. A test plan outlining the user gestures to measure and the expected result

or success criteria.
2. A method to accurately measure the user gestures in seconds. See

Appendix A.
3. A place to accurately record the test results.
A Server Administrator will typically use any one-user testing to gather a
baseline of the server resources the application consumes when it is relatively
quiet. The Server Administrator should have server resource monitoring
running on the servers while the Business Analysts test is running. Server
resources of most interest are the Big 3 of memory, CPU, and network
utilization. See Appendix B for a short list of useful tools for monitoring
server resources.

Designing a Successful Performance and Scalability Test 6

2.2 Multi-user Performance testing
Multi-user testing requires a decent amount of planning and having the right
set of tools for the job. The tester running the test should have the following
tools available to them:
1. A test plan outlining the user gestures to measure and the expected result

or success criteria.
2. A method to accurately measure the user gestures in seconds. This will

require a user load generating tool. See Appendix A.
3. A place to accurately record the test results.
Server Administrators should have server resource monitoring running on the
servers while the Business Analyst multi-user tests are running. Server
resources of most interest are the Big 3 of memory, CPU, and network
utilization. For multi-user tests the Server Administrator should work directly
with the Performance tester to ensure the correct commands for monitoring
server resources are executed while the tests are running. The resource
monitoring should be started and stopped concurrently with the multi-user
tests otherwise correlating the multi-user tests with resource usage can
become difficult. See Appendix B for a short list of useful tools for monitoring
server resources.

The question may be asked “That’s fine, monitor memory, CPU, and network
utilization but what should I be looking for”. Generally speaking, the server
resources can be approaching the limit but not surpassing it such that
product performance is suffering. For example:

1. Say the CPU is approaching 99-100% utilization. This may not be an
issue if the server is dedicated to the software currently being tested
and the user end experience is well within the success criteria.

2. Say the physical memory is totally exhausted and virtual memory
usage is extremely high. This can point to a severe issue if at the
same time memory is exhausted, end user transaction times suffer. If
extra memory is available, adding it to the system can often solve this
problem. Also, shutting off unnecessary programs on the server can
free up extra memory resources as well.

3. Say the network utilization is at 100%. This is an issue since the
network has now become a bottleneck in the system.

As a final note, the computers generating the load can also run out of
memory, CPU cycles, and network. Keeping a lightweight resource monitor
on them is useful as well to ensure the load generator does not become a
bottleneck.

Designing a Successful Performance and Scalability Test 7

3 Validating Software Scalability

An often forgotten aspect of testing is Scalability Testing. Scalability tests
often answer the questions people ask after an initial Performance test has
been completed. Things such as:
1. What happens when I add more users to this system? How does that

affect the performance of my current users?
2. What happens if I add more servers to the system to host the software?

Do my users see any improvement?
3. If I want to double my users, can I expect they will experience the same

performance if I simply double my hardware?
These questions can be summed up in the following three sections.

3.1 Predictable Scalability
This can be defined as the ability to add additional users to a static hardware
environment and experience a predictable, proportional, and linear change in
performance.
For example, if a customer doubles the amount of users on the system they
may expect user end performance to degrade by 50%. Inversely, if they
reduce the amount of users on the system by half they may expect user end
performance to improve by 50%.

General instructions to test Predictable Scalability:

1. Configure the software application on specific hardware.
2. Run a load test at a “small” load for the system for a given time

frame. Say 20-users for a smaller server. Record the end-user
responsiveness and server resources information.

3. Run another load test at a “medium” load for the system for a given
time frame. Say 40-users for a smaller server. Record the end-user
responsiveness and server resources information.

4. Run a third set of data points at a “high” load for the system for a
given time frame. Say 80-users for a smaller server. Record the end-
user responsiveness and server resources information.

5. Review and collate the data. The end-user responsiveness and server
resources should grow in a predictable fashion.

Designing a Successful Performance and Scalability Test 8

3.2 Horizontal Scalability
This can be defined as the ability to add hardware to a production
environment, keep the amount of system users constant, and expect to see
improved performance.
For example, if a customer doubles the available hardware while keeping the
amount of system users constant they could expect a 50% improvement in
performance.

General instructions to test Horizontal Scalability:

1. Configure the software application on specific “small” hardware
configuration. Say a single server. Have 2 more identical servers
configured but sitting idle.

2. Run a load test on the single server system for a given time frame.
Say 80-users for a single server. Record the end-user responsiveness
and server resources information.

3. Run the same load test (from a number of users perspective) on a
two server system for a given time frame. Say 80-users for two
identical servers. Record the end-user responsiveness and server
resources information.

4. Run the same load test (from a number of users perspective) on a
three server system for a given time frame. Say 80-users for three
identical servers. Record the end-user responsiveness and server
resources information.

5. Review and collate the data. The end-user responsiveness and server
resources should decrease in a predictable fashion.

Designing a Successful Performance and Scalability Test 9

3.3 Vertical Scalability
This can be defined as the ability to add hardware to a production
environment, add a proportionate amount of users to the environment, and
expect the same level of performance. For example, if a customer doubles
the hardware they might expect to double the users and maintain the same
performance.

General instructions to test Vertical Scalability:

1. Configure the software application on specific “small” hardware
configuration. Say a single server. Have 2 more identical servers
configured but sitting idle.

2. Run a load test on the single server system for a given time frame.
Say 40-users for a single server. Record the end-user responsiveness
and server resources information.

3. Run another load test but increase the user load and servers
proportionally. Say 80-users for two identical servers. Record the
end-user responsiveness and server resources information.

4. Run a final load test and again increase the user load and servers
proportionally. Say 120-users for three identical servers. Record the
end-user responsiveness and server resources information.

5. Review and collate the data. The end-user responsiveness and server
resources should remain relatively flat and stable.

4 General Tips

4.1 Change one variable at a time.
Try to be as scientific as possible. While it may seem time consuming to
change one variable at a time in a large software environment it will save
time in the long run. Nothing is worse than changing 5 things, watch the
performance take a nosedive, and then have to backtrack through all the
changes to find the offending problem. Make sure every change is clearly
documented and include the reason for the change.
After a change, it is recommended that at least 2 data points be revisited if all
cannot be given the time frame. Take a high user and low user test for a
specific test case. The reasoning being that some changes may assist users
on a very busy system but inversely slow down users on a less busy system
or vice versa. This is good information to note prior to recommending any
changes, especially to a production environment.

Designing a Successful Performance and Scalability Test 10

4.2 Reset as many things as possible prior to executing a test
Since tests results are compared to one another ensure that each test starts
at the same point. For example, it is recommended that each performance or
scalability test be run after the entire software system (hardware can usually
be left running) has been restarted. Otherwise, the previous test can
influence the current test since certain database connections may already be
established, data may be cached, and processes may be using more memory
since they have yet to clean up all the information from the previous test.
Cognos 8 products can easily be started and stopped from the command line
so as long as the tester has the correct privileges it can be trivial to reset
Cognos products prior to each test.

4.3 Execute Baseline tests in the same timeframe as the current test
What sometimes occurs is testers will use results from 6 months ago as the
baseline for a current test. The hardware and configuration are the same so
what could be the problem? What can happen is that in that time frame the
server may have been patched, the disk may have become heavily
fragmented, or new software may be running on the server that is consuming
CPU cycles and memory that wasn’t present 6 months ago. All can affect the
scalability and performance numbers.
To minimize this risk; always re-run the baseline right before the current test
so that the baseline and current test are equally affected by any factors on
the server.

4.4 Automate as much of the test as possible
Automation will solve two problems:

1. The test can run relatively unattended so off-hours can be utilized for
testing. Working hours can then be spent analyzing results rather
than running tests.

2. Automation will ensure each test or subsequent re-test is run in the
exact same fashion.

Typically, all the software tools used for Performance testing come will a full
set of command line tools so only simple batch programming is required.

4.5 Monopolize the hardware the test is running on
Nothing is worse than having an unexpected result and later finding out
someone else was on the server while the test was running and executed
some nasty query thinking it wouldn’t affect the ongoing test. In many
environments, Performance and Scalability testers need to share with user
acceptance testers. A schedule should be worked out with these other
groups so that the Performance tests don’t interfere with User Acceptance
tests and vice versa.

Designing a Successful Performance and Scalability Test 11

4.6 Do not wait until the test is over to analyze the results
Plan to analyze test results on a daily basis. Like a doctor, testers will want
to find problems early so that they can be solved. Problems are easier to
resolve at the beginning of the test cycle than near or at the end. This will
also allow the tester to provide preliminary results to management types who
are very interested in the progress of the tests. With these results, plan to
send out daily status updates so all parties involved are aware of the current
status of the test.

Designing a Successful Performance and Scalability Test 12

5 Creating a Test Plan for the Performance and
Scalability Engagement

Testing without a plan is a recipe for trouble. These are common guidelines
but they are useful to review. Ensure that all the stakeholders read and sign
that they agree to the test plan prior to testing.
Ensure the following sections are in the test plan.

1. The purpose of the test. It should be direct and short such as “The
purpose of this Performance and Scalability test is to measure specific
deltas between Cognos 8.3 and the current production running
version of Cognos 8.4. Specific end-user experience cases and server
resource consumption during those cases will be measured.”

2. Define the performance success criteria for the test. Be as specific as
possible. It is extremely helpful to know the success criteria before
testing.

3. A full description of the specific test cases for the performance test.
Write out step-by-step what each test does. For example, for
Business Analyst test cases write out each click the user or
Performance Test tool will perform. If reports are run in Cognos 8 BI,
have a description of the type of report run, the amount of rows
returned, etc. These should relate to the success criteria for the test.

4. Take the general test descriptions from Steps 2-3 above and create
specific test cases where the test case, the number of users, and the
hardware resources used for that test case are clearly defined. These
should relate to the success criteria for the test.

5. A clear description of what deliverables will result from the test and
their due dates.

6. Generate a schedule that can fit into the time frame of the test.
Include script development, automation development, software
configuration, etc into the schedule. Save at least one day for every
week of the test cycle for documentation and final analysis of the test
results. Have all parties agree to the schedule. Place a caveat into
the schedule that states that if issues arise that negatively affect the
schedule that a meeting should be called as soon as possible to either
extend the test cycle or remove some test cases, for example.

Finally, after the test is completed. Review the test plan to see what could be
improved. Make note of any issues and incorporate the solutions into
subsequent tests.

Designing a Successful Performance and Scalability Test 13

6 Delivering the Results

While it is more fun just to jump in and start testing, take the time in the
initial part of the test planning phase to determine the deliverables for the
test. Sometimes going back later to gather missing information is not an
option.

Here is a short list of things to discuss when it comes to deliverables.

1. How will the data be delivered to various audiences? For example,
executives may prefer a formal PowerPoint type presentation while
the Business Analysts and Server Admins may prefer to see granular
data in an Excel format or a Cognos 8 report.

2. What information is required for each audience? For example,
executives may want to see summaries most times. Analysts may
want to see how much time certain tasks can take. Server Admins
may want to see how much server resources are consumed by various
tests. Discuss this ahead of time so nothing major is missed.

3. Learn how to correlate the end-user experience with the server
resources in the same report or graph. These are very powerful
graphs in which data can be derived to see how the end-user
experience correlates to the resource consumption on the server. For
example, one test may show big performance degradation in end-user
times. However, when this graph is correlated to a graph showing
memory consumption it may show that the server has insufficient
memory to run this many users.

Designing a Successful Performance and Scalability Test 14

Appendix A: Useful Software for Measuring End-User
Transactions and Generating Load for the Performance
and Scalability Test

The following software, while not an exhaustive list by any stretch, are strong
tools for driving load and measuring certain aspects of Performance and
Scalability. They are merely suggestions. Investigate these tools and
evaluate them for use in your organization’s test suite. Fiddler is the only
free tool from this list.

IBM Rational Performance Tool (Single and Multi-user)
Rational Performance Tool or RPT is a performance testing tool offered by
IBM (http://www-01.ibm.com/software/awdtools/tester/performance/).

LoadRunner (Single and Multi-user)
LoadRunner is a performance testing tool offered by HP.

Fiddler (Single user)
Fiddler is a free, browser based, single user performance tool available online
(http://www.fiddler2.com/fiddler2/). It works with Internet Explorer, FireFox,
and Opera among others.

http://www-01.ibm.com/software/awdtools/tester/performance/
http://www.fiddler2.com/fiddler2/

Designing a Successful Performance and Scalability Test 15

Appendix B: Useful Software for Measuring Server
Resources for the Performance and Scalability Test

The following software, while not an exhaustive list by any stretch, are strong
tools for measuring server resource usage during Performance and Scalability
tests. These are merely suggestions. While there are a multitude of tools for
purchase that measure server resources, most operating systems come with
a useful toolkit by default. Investigate these free tools and evaluate them for
use in your organization’s test suite.

Nigel’s Monitor (NMON for AIX and Linux)
http://www.ibm.com/developerworks/wikis/display/WikiPtype/nmon
This is a nice tool since its file output can be analyzed automatically with an
Excel based application called ‘nmonAnalyser’
(http://www.ibm.com/developerworks/wikis/display/WikiPtype/nmonanalyser)
.

Microsoft’s SysInternals Tools (Windows)
http://technet.microsoft.com/en-us/sysinternals/default.aspx
There are a multitude of useful tools such as psList that can output process
and server related information to a file. That file then can be parsed to
retrieve relevant information.

Microsoft’s Performance Monitor (Windows)
This is Windows default Performance Monitoring tool and comes with the
operating system.

‘top’ and ‘ps’ (Solaris and HP)
These tools come with the operating system. Review the man pages for both
commands for the correct arguments to gather the necessary server and
process information for products running on these operating systems.

http://www.ibm.com/developerworks/wikis/display/WikiPtype/nmon
http://www.ibm.com/developerworks/wikis/display/WikiPtype/nmonanalyser
http://technet.microsoft.com/en-us/sysinternals/default.aspx

	Contents
	1 Introduction
	1.1 Purpose
	1.2 Applicability
	1.3 Exclusions and Exceptions

	2 Validating Software Performance
	2.1 One-user Performance testing
	2.2 Multi-user Performance testing

	3 Validating Software Scalability
	3.1 Predictable Scalability
	3.2 Horizontal Scalability
	3.3 Vertical Scalability

	4 General Tips
	4.1 Change one variable at a time.
	4.2 Reset as many things as possible prior to executing a test
	4.3 Execute Baseline tests in the same timeframe as the current test
	4.4 Automate as much of the test as possible
	4.5 Monopolize the hardware the test is running on
	4.6 Do not wait until the test is over to analyze the results

	5 Creating a Test Plan for the Performance and Scalability Engagement
	6 Delivering the Results
	Appendix A: Useful Software for Measuring End-User Transactions and Generating Load for the Performance and Scalability Test
	Appendix B: Useful Software for Measuring Server Resources for the Performance and Scalability Test

